当前位置:文档之家› 高中物理竞赛解题方法之假设法例题

高中物理竞赛解题方法之假设法例题

高中物理竞赛解题方法之假设法例题
高中物理竞赛解题方法之假设法例题

十、假设法

方法简介

假设法是对于待求解的问题,在与原题所给条件不相违的前提下,人为的加上或减去某些条件,以使原题方便求解。求解物理试题常用的有假设物理情景,假设物理过程,假设物理量等,利用假设法处理某些物理问题,往往能突破思维障碍,找出新的解题途径,化难为易,化繁为简。

赛题精析

例1:如图10—1所示,一根轻质弹簧上端固定,下端挂一质量为m 0的平盘,盘中有一物体,质量为m 。当盘静止时,弹簧的长度比其自然长度伸长了L 。今向下拉盘使弹簧再伸长ΔL 后停止,然后松手放开。设弹簧总处在弹性限度以内,则刚松开手时盘对物体的支持力等于( )

A 、(1 +L L

?)mg B 、(1 +

L L

?)(m + m 0)g

C 、

L L

?mg D 、L L

?(m + m 0)g

解析:此题可以盘内物体为研究对象受力分析,根据牛顿第二定律列出一个式子,然后再以整体为研究对象受力分析,根据牛顿第二定律再列一个式子和根据平衡位置的平衡条件联立求解,求解过程较麻烦。若采用假设法,本题将变得非常简单。

假设题中所给条件ΔL = 0 ,其意义是没有将盘往下拉,则松手放开,

弹簧长度不会变化,盘仍静止,盘对物体的支持力的大小应为mg 。 以ΔL = 0代入四个选项中,只有答案A 能得到mg 。由上述分析可知,此题答案应为A 。 例2:如图10—2所示,甲、乙两物体质量分别为m 1 =

2kg ,m 2 = 3kg ,叠放在水平桌面上。已知甲、乙间的动摩擦因数为μ1 = 0.6 ,物体乙与平面间的动摩因数为μ2 = 0.5 ,现用水平拉力F 作用于物体乙上,使两物体一起沿水平方向向右做匀速直线运动,如果运动中F 突然变为零,则物体甲在水平方向上的受力情况(g 取10m/s 2)

A 、大小为12N ,方向向右

B 、大小为12N ,方向向左

C 、大小为10N ,方向向右

D 、大小为10N ,方向向左

解析:当F 突变为零时,可假设甲、乙两物体一起沿水平方运动,则它们运动的加速度可由牛顿第二定律求出。由此可以求出甲所受的摩擦力,若此摩擦力小于它所受的滑动摩擦力,则假设成立。反之不成立。

如图10—2甲所示。假设甲、乙两物体一起沿水平方向运动,则由牛顿第二定律得:

f 2 = (m 1 + m 2)a ① f 2 = μN 2 = μ2 (m 1 + m 2)

g ②

由①、②得:a = 5m/s 2

可得甲受的摩擦力为f 1 = m 1a = 10N 因为f = μ1m 1g = 12N

f 1<f

所以假设成立,甲受的摩擦力为10N ,方向向左。应选D 。 例3:一升降机在箱底装有若干个弹簧,如图10—3所示,设在某次事故中,升降机吊索在空中断裂,忽略摩擦力,则升降机在从弹簧下端触地后直到最低点的一段运动过程中( )

A 、升降机的速度不断减小

B 、升降机的速度不断变大

C 、先是弹力做的负功小于重力做的正功,然后是弹力做的负功大于重力做的正功

D 、到最低点时,升降机加速度的值一定大于重力加速度的值

解析:升降机在从弹簧下端触地后直到最低点的一段运动过程,它受重力、弹簧弹力两个力作用。当重力大于弹力时速度继续增大,当重力等于弹力时速度增大到最大,当重力小于弹力时,速度开始减小,最后减为零,因而速度是先增大后减小,所以选项C 正确。

假设升降机前一运动阶段只受重力作用,做初速度为零的匀加速直线运动,它下降了h 高度,末速度为v ,则:

v 2

= 2gh

后一运动阶段升降机只受弹力作用,做初速度为v 、末速度为零的匀减速直线运动,把弹簧压缩了x ,则:

v 2 = 2ax

所以2gh = 2ax

而a =

F m

∑=

0kx

2m

+,所以:2gh = 2 (

kx 2m

)x ,即:

kx m g

=

2h x

因为h >x ,所以kx m g

>2 ,即:a 低 =kx m g m

->

2mg mg

m

-= g ,所以选项D 也正确。

例4:一个光滑的圆锥体固定在水平桌面上,其轴线沿竖直

方向,母线与轴线之间的夹角为θ = 30°,如图10—4所示。一长为L 的绳(质量不计),一端固定在圆锥体的顶点O 处,另一端拴着一个质量为m 的小物体(可看做质点)。物体以速度v 绕圆锥体的轴线在水平面内做匀速圆周运动。

(1)当v 1

(2)当v 2

解析:当物体以某一速率绕圆锥体的轴线做水平匀面内的匀速圆周运动时,可能存在圆锥体对物体的弹力为零的临界状况,此时物体刚好与圆锥面接触但不发生形变。而当速

率变大时,物体将脱离圆锥面,从而导致绳对物体的拉力大小和方向都要变化。因此,此

题的关键是先求出临界状态下线速度的值。

以小物体为研究对象,假设它与圆锥面接触,而没有弹力作用。受力如图10—4甲所示,根据运动定律得:

Tcos θ = mg ① Tsin θ =

2

m v

L sin θ

解①、②得:

(1)因为v 1v ,所以物体m 与圆锥而接触且有压力,受力如图10—4乙所

示,由运动定律得:

T 1cos θ + Nsinθ = mg ③

T 1sinθ-Ncosθ = m

2

1

v L sin θ

解③、④得拉力:T 1 =mg 6

(2)因为v 2 v ,所以物体m 脱

离圆锥面,设绳子与轴线的夹角为φ ,受力如图10—4丙所示,由运动定律得:

T 2sin φ = m

2

2v L sin θ

T 2cos φ = mg ⑥ 解⑤、⑥得绳子拉力:T 2 = 2mg

例5:如图10—5所示,倾角为α的斜面和倾角为β的斜面具有共同的顶点P ,在顶点上安装一个轻质小滑轮,重量均为W 的两物块A 、B 分别放在两斜面上,由一根跨过滑轮的细线连接着,已知倾角为α的斜面粗糙,物块与斜面间摩擦因数为μ ;倾角为β的斜面光滑,为了使两物块能静止在斜面上,试列出α 、β必须满足的关系式。

解析:因题目中没有给出具体数值,所以精糙斜

面上物块的运动趋势就不能确定,应考虑两种可能。令细线的张力为T ,假设物块A 有沿斜面向上运动的趋势时,对A 物块有:

T -μWcosα = Wsinα

对B 物块有:T = Wsinβ

两式联立解得:sinβ = sinα + μcosα

同理,假设物块A 有沿斜面向下运动的趋势时,可解得: sinβ = sinα-μcosα

因此,物块静止在斜面上时两倾角的关系为sinα-μcosα≤sinβ≤sinα + μcosα

例6:如图10—6所示,半径为r 的铅球内有一半径为r

2的球形空腔,其表面与球面相切,此铅

球的质量为M ,在铅球和空腔的中心连线上,距离铅球中心L 处有一质量为m 的小球(可以看成质点),求铅球小球的引力。

解析:设想把挖去部分用与铅球同密度的材料填充,填充部分铅球的质量为M 1 。为了抵消填充球体产生的引力,我们在右边等距离处又放置一个等质量的球体。如图10—6甲所示。

设放置的球体的质量为M 1 ,则: M 1 = ρ1?

43

π (r 2

)3 =18

M 0 =1

7

M

填补后的铅球质量: M 0 = M + M 1 =8

7M

则原铅球对小球引力为: F = F 0-F 1 =

02

G M m L

12

G M m r (L )

2-

=

2

8G M m 7L

2

4G M m 7(2L r)

-=

4G M m 7

2

2L

2

1(2L r)

-]

例7:三个半径为r 、质量相等的球放一在一个半球形碗内,现把第四个半径也为r ,质量也相等的相同球放在这三个球的正上方,要使四个球都能静止,大的半球形碗的半径应满足什么条件?不考虑各处摩擦。

解析:假设碗的球面半径很大,把碗面变成平面。因为各接触面是光滑的,当放上第四个球后,下面的三个球会散开,所以临界情况是放上第四个球后,下面三个球之间刚好无弹力。把上面的球记为A ,下面三个球分别记为B 、C 、D ,则四个球的球心连起来构成一个正四面体,正四面体的边长均2r ,如图10—7所示。

设A 、B 球心的连线与竖直方向的夹角为α ,设碗面球心为

O ,O 与B 球心的连线与竖直方向的夹角为β ,碗面对上面三个球的作用力都为F ,如图10—7甲所示。先以整体为研究对象,受重力、碗面对三个球的弹力F ,在竖直方向上有:

3Fcos β = 4mg ①

再以B 球为研究对象,受重力mg 、碗面对B 球的作用力F 、A 球对B 的压力F N ,根据共点力平衡条件,有:

N N F cos m g F cos F sin F sin β=+α??

β=α?

,消去F N ,得:

tan α =

F sin F cos m g

ββ- ②

①、②联立,消去F 得:

tan β =1

4tan α ③

因为四个球的球心构成一个边长为2r 正四面体,如图10—7所示,根据几何关系,可以知道:

tan α =

B O A O ''

'

2

2r =1

2

代入③式得:tan β

于是碗面的半径为:R =BO + r =B O sin 'β

+ r =BO

'

所以半球形碗的半径需满足R ≤7.633r 。

例8:如图10—8所示,一根全长为L 、粗细均匀的铁链,对称地挂在轻小光滑的定滑轮上,当受到轻微的扰动,铁链开始滑动,当铁链下降L 1(L 1≤L 2

)的瞬间,铁链的速

度多大?

解析:在铁链下降时,只有重力做功,机械能守恒。当铁链下降L 1时,如图10—8甲所示,假设此位置是把左侧铁链下端AB = L 1段剪下来再接到右侧铁链的下端CD 处实现的。

设铁链的总质量为m ,铁链下降到L 1时,L 1段中心下降L 1高,所以重力做功:

W =

m L

L 1g ?L 1 =2

1

mgL L

根据机械能守恒定律:1

2

mv 2

=

2

1

mgL L

解得铁链的速度:

1

例9:如图10—9所示,大小不等的两个容器被一根细玻璃管连通,玻璃管中有一段水银柱将容器内气体隔开(温度相同),当玻璃管竖直放置时,大容器在上,小容器在下,水银柱刚好在玻璃管的正中间,现将两容器同时降低同样的温度,若不考虑容器的变化,则细管中水银柱的移动情况是( )

A 、不动

B 、上升

C 、下降

D 、先上升后下降

解析

:只要假设水银柱不动,分析气体压强随温度的变化情况,就可

判定水银柱怎样移动。

假设水银柱不移动,则两部气体的体积都不变,根据查理定律,有:

p T

=

p p T T

-?-?,化简为:Δp =

T T

?p

有:Δp A =T T

?p A ,Δp B =

T T

?p B

由于p A <p B ,所以:Δp A <Δp B ,水银柱向下移动。 答案:C

例10:如图10—10所示,将一定量的水银灌入竖直放置的U 形管中,管的内径均匀,内直径d = 1.2cm 。水银灌完后,两管听水银在平衡位置附近做简谐振动,振动周期T = 3.43s 。已知水银的密度ρ = 1.36×104kg/m 3 。试求水银的质量m 。

解析:题中水银做简谐振动,已知振动周期要求水银

的质量m 。根据简谐振动的周期公式T = 2T 已知,

关键是求出k 。简谐振动的物体受的回复力F=-kx ,找出F 与 x 的关系,求出k ,问题就可以求解。

如图10—10所示,设水银离开平衡位置的距离为x , 则回复力为:

F =

4

πd 2

?2x ?ρg

由回复力的大小F = kx ,得:k =F x

=

2

πd 2ρg

根据T = 2

m =

2

2T k 4π

=

2

2

gT d 8ρπ

=

224

3.430.012 1.36109.8

8 3.14

?????= 9.0kg

例11:热气球是靠加热气球内部空气排除部分气体而获得上升动力的装置,现外界气体温度是15℃ ,密度为1.2kg/m 3 ,气球内、外气压相等,要用容积1000m 3的气球吊起200kg 的重物,必须把气球内的空气温度加热到多少才行(取g = 10m/s 2

)?

解析:加热气球内的气体时,气体被排出,质量减少,在浮力不变的情况下,使F

≥G 总时,热气球升空。这里出现了气体质量减小的变质量问题,为应用三大实验定律只有依靠假设法,在此,为应用等压变化规律,假设升温后排出去的气体与留在热气球内的气体状态相同,如图10—11所示。

初态体积V 1 = V 0 ,末态体积V 2 = V 0 + ΔV 0 气体质量m = ρV 0 = 1.2kg/m 3×1000m 3 = 1.2×103kg F 浮 = ρ空gV 0≥G 总 = (m′ + m 物)g

代入已知数据:1.2×10×103

≥(m′ + 200)×10 得m′ ≤1.0×103kg

其中m 是加热前热气球内空气质量,m′ 为加热后热气球内空气质量。 Δm = m -m ′= 1.2×103

kg -10×103

kg = 200kg

当密度相同时,

m m ?'

=

V V ?,所以:ΔV =

m m ?'

V 0 = 200m 3

对等质量、等压的气体应用盖 吕萨克定律: 初态V = V 0 = 103

m 3

T 1 = 273 + 15 = 288k

未态V 2 = V 0 + ΔV = 1.2×103m 3

根据:

12

V V =

12

T T

解得加热后气体温度:T 2 =21

V V T 1 = 345.6K = 72.6℃

例12:0.2L 的氧气瓶内,装有4g 氧气,在室温为0℃时,瓶内氧气的压强是多少? 解析:本题乍一看似乎缺少已知量,更无法利用理想气体状态方程,但当我们假设这些氧气的标准状态为初态时,则问题就可以解决了。

假设这些氧气的初态为标准状态,则有: V 1 =

432

×22.4L ,p 1 = 1atm ,T 1 = 273K

由已知该氧气的末状态为V 1 = 0.2L ,T 2 = 273K ,p 2未知, 由于T 1 = T 2 ,所以根据玻意耳定律p 1V 1 = p 2V 2

解得:p 2 = 1.4atm

例13:如图10—12所示,用导热材料制成的两端开口的U 型管ABCD ,其中AB 高L 1 = 24cm ,CD 高L 2 = 20cm ,截面积分别为S AB = 1cm 2 ,S CD = 2cm 2 ,开始时两管均有高h = 16cm 的水银柱,现用两个橡皮帽将两个管口封闭,打开下方的阀门K ,有注射器从底部缓慢抽出水银,当其中的一个管内的水银被抽干时立即关闭阀门K (已知大气压强为p 0 = 75cmHg )。

(1)请你判断首先被抽干的是哪一管中的水银?

(2)另一只管中剩余的水银柱高度为多少?

解析:求解这一类题时,应根据可解的情况先做出必要的假设,然后按着所做出的假设进行推理,在推理过程中,对所做假设做出否定或认同即可求解。

假设左管内水银先被抽干,并设这时右管内剩余水银柱的高度为x ,对左管内封闭气体用玻意耳定律有:

p 1V 1 = 1p '1V '

可得:1p '=

11V V '

p 1 =

(1416)S 24S

-×75 = 25cmHg

所以右管内气体压强为:2p '= (25-x)cmHg 再对右管内被封气体,根据玻意耳定律得:

75 (20-16)S CD = (25-x)(20-x)S CD 整理得:x 2-45x + 200 = 0

解得:x = 5cm 或40cm (不合题意舍去)

在根据以上假设列的方程中,有满足题设的实数解,故所做假设成立,即左管内水银

先抽干,且此时右管内剩余水银柱高度为5cm 。

例14:如图10—13所示,正四面体ABCD各面均为导体,但又彼此绝缘,已知带电后四个面的电势分别为φ1,φ2,φ3,φ4,求四面体中心点的电势。

解析:保持四面体不动,假设按照一定方式调换四个面上的

电荷,即假设四个面的电荷绕中心O转动,结果会得到正四面体

的四个面的若干带电模式,由于转动时并未改变各面电荷之间的

相对位置,所以各种模式在中心O点的电势φ0都相同。现假设将

四种模式叠加,则O点电势应为4φ0。另一方面,四处模式叠加

后,正四面体的每个面的电势皆为φ1 + φ2 + φ3 + φ4,这时正四面

体构成一近似封闭的等势面,它所包围的空间(其中无电荷)就

近似为一等势体,因此O点的电势为φ1 + φ2 + φ3 + φ4。

所以上分析得出:4φ0 = φ1 + φ2 + φ3 + φ4

(φ1 + φ2 + φ3 + φ4)

所以中心点的电势:φ0 =1

4

例15:有一半径为R的不导电的半球薄壳,均匀带电,倒扣在xOy平面上,如图10—14所示,图中O为球心,ABCD为球壳边缘,AOC为直径。有一电电为q的点电荷位于OC上的E点,OE = r 。已知将此点电荷由E点缓慢移至球壳顶点T时,外力需要做功W(W>0),不计重力影响。

(1)试求将此点电荷由E点缓慢移至A点

外力需做功的正负、大小,并说明理由;

(2)P为球心正下方的一点,OP = R 。试

求将此点电荷由E点缓慢移至P点,外力需做功

的正负及大小,并说明理由。

解析:(1)假设取另一完全相同的带电半球

壳扣在题给的半球壳下面,构成一个完整的地均

匀带电球壳,则球壳及其内部各点电势都相等,

令U表示此电势。根据对称性可知,上下两个半

球壳分别在圆面ABCD上各点引起的电势是相

等的,再由电势叠加原理可知,当只有上半球壳

存在时,圆面ABCD上各点的电势都应为完整球壳内电势的一半,即U

,所以将电荷由E

2

点移至A点的过程中,外力做功为零。

(2)对完整球壳,E点与T点等势,电势差为零。由电势叠加原理可知,若上半球壳在T 、E两点形成的电势差为(U T-U E),则下半球壳在T 、E两点形成的电势差必为-(U T-U E) 。已知W = q (U T-U E) 。所以在下半球产生的电场中,q由E到T外力做功必为-W 。由对称性可知,在上半球壳产生的电场中,q由E到P外力的功刀必为-W 。

例16:无穷方格电阻丝网格如图10—15所示,其中每一小段电阻丝的电阻均为r ,试求相邻两个格点A、B间的等效电阻R AB。

解析:假设从A 点注入电流I ,根据对称性,追踪一条支路,再根据欧姆定律可求出R AB 。假设电流I 从A 点流入,不从B 点流出,I 将分流到无穷远处。据对称性,其中有I

4流经AB 段。再假设电流I 不是从A 点流入,而是从无穷远处流向B 点,从B 点流出,

据对称性,其中也有I

4

流经AB 段。

现在假设电流I 从A 点流入,经过足够长的时间达稳定后,从B 点流出的电流也应为I ,经AB 段的电流为两个I

4的叠加,如图10—15

甲所示,即为I 2

,于是有U AB =

I 2

?

r 。所以AB 间的等效电阻R AB =

A B U I

=r

2

例17:如图10—16所示,在半径为r 的圆柱形区域内,充满与圆柱轴线平行的匀强

磁场,一长为的金属棒MN 与磁场方向垂直地放在磁场区域内,棒的端点MN 恰在磁场边界的圆周上,已知磁感应强度B 随时间均匀变化,其变化率为

B

t

??=

k ,求MN 中产生的电动势为多大? 解析:由题可知,MN 上有感应电动势,这种感应电动势无法直接计

算。但如果注意MN ,结合题意,可虚构两根与NM 完全相同的金属棒与MN 棒一起刚好构成圆的内接正三角形,如图2—10—16—甲

所示。由法拉第电磁感应定律,这一回路中的感应电动势ε =t

?φ?=

B t

???

4

kr 2 。MN 上

的感应电动势是整个回路中电动势的1

3,所以:

εMN =13

ε4

2

针对训练

1.两个物体A 和B ,质量分别为M 和m ,用跨过定滑轮的轻绳相连,A 静止于水平地面上,如图10—17所示,不计摩擦,A 对绳的作用力的大小与地面对A 的作用力的大小分别为( )

A 、mg ,(M -m)g

B 、mg ,Mg

C 、(M -m)g ,Mg

D 、(M+m)g ,(M -m)g

2.如10—18所示,A、B是静止在水平地面上完全相同的两块长木板,A的左端和B的右端相接触,两板的质量皆为M = 2.0kg ,长度皆为L = 1.0m ,C是质量为m = 1.0kg 的小物块。现给它一个初速度v0= 2.0m/s ,使它从板B的左端向右滑动,已知地面是光滑的,而C与板A、B之间的动摩擦因数皆为μ= 0.10 ,求最后A、B 、C各以多大的速度做匀速运动。取重力加速度g = 10m/s2。

3.质量为m的物体A置于质量为M 、倾角为θ的斜面体B上,A、B之间光滑接触,B的底面与水平地面也是光滑接触。设开始时A与B均静止,而后A以某初速度沿B 的斜面向上运动,如图10—19所示,试问A在没有到达斜面顶部前是否会离开斜面?为什么?讨论中不必考虑B向前倾倒的可能性。

4.半径为r 、质量为m的三个相同的球放在水平桌面上,两两互相接触。用一个高为1.5r的圆柱形圆筒(上下均无底)将此三球套在筒内,圆筒的内径取适当值,使得各球间以及球与筒壁之间均保持无形变接触。现取一质量亦为m 、半径为R的第四个球,放在三球的上方正中。设四个球的表面、圆筒的内壁表现均由相同物质构成,其相互之间的

最大静摩擦系数为μ

(约等于0.775),问R取何值时,用手缓慢竖直向上提起圆筒

即能将四个球一起提起来?

5.如图10—20所示的一段封闭、水平放置的粗细均匀的玻璃管中,有水银柱将气体

隔成了体积不同的左右两部分,初温T

左>T

,当两部分气体升高相同的温度时,判断

水银柱如何移动。(提示:假设用一装置将水银柱固定住,两边气体作等容变化。)

6.如图10—21所示,A、B两容器容积相等,用粗细均匀的细玻璃管相连,容器内装有不同气体,细管中央有一段水银且保持平衡,此时A中气体的温度为0℃,B中气体温度为20℃,若将它们的温度都降低10℃,则水银柱将()

A、向A移动

B、向B移动

C、不动

D、不能确定

7.如图10—22所示,半径为R的大球O被内切地挖去半径为R

的小球O′,大球余

2

下的部分均匀带电量为Q ,试求距大球球心O点r处(r>R)P点的场强。已知OP的连线经过小球球心。

8.如图10—23所示,两种电路中电源相同,各电阻器阻值相等,各电流表的内阻相等且不可忽略,电流表A1、A2、A3和A4读出的电流值分别为I1、I2、I3和I4。下列关系式中正确的是()

A、I1 = I3

B、I1<I4

C、I2 = 2I1

D、I2<I3 + I4

9.如图10—24所示,匀强磁场的磁感应强度为B ,方向垂直纸面向里,质量为m 、电量为+q的微粒在磁场中由静止开始下落,空气阻力不计。求微粒下落的最大高度和最大速度。

10.两根相距d = 0.2m的平行光滑金属长轨道与水平方向成30°角固定,匀强磁场的磁感应强度B = 0.2T ,方向垂直两导轨组成的平面。两根金属棒ab、cd互相平行且始终与导轨垂直地放在导轨上,它们的质量m1 = 0.1kg ,m2 = 0.02kg ,两棒电阻均为0.02Ω,导轨的电阻不计。如图10—25所示,ab棒在平行于导轨平面斜向上的外力作用下,以v = 1.5m/s的速度沿斜面匀速向上运动,求在此过程中金属棒cd运动的最大速度。

11.两个定值电阻R1、R2串联后接在输出电压U稳定于12V的直流电源上。有人把一个内阻不是远大于R1、R2的电压表接在R1两端,如图10—26所示,电压表的示数8V ,如果把此电压表改接在R2的两端,则电压表的示数将()

A、小于4V

B、等于4V

C、大于4V,小于8V

D、等于或大于8V

12.如图10—27所示的电路中,电池的电动势为ε,内阻为r ,R1和R2是两个阻值固定的电阻。当可变电阻R的滑片向a点移动时,通过R1的电流I1和通过R2的电流I2将发生如下的变化中,正确的是()

A、I1变大,I2变小

B、I1变大,I2变大

C、I1变小,I2变大

D、I1变小,I2变小

参考答案

1、A

2、v A 15

m/s ,v A 10

m/s ,v C =

215

(1 +3、不会离开斜面,因为A 与B 的相互作用力为2

m M g cos M m sin θ+θ

,始终为正值。

4、(

23

1)r <R ≤(

2233

1)r

5、水银柱将向左移动

6、A

7、

4K Q 7

2

2r

2

1(2r R )

-]

8、BD 9、d m =

2

2

22m g q B

,v m =

2m g qB

10、v ′ = 1m/s ,方向沿斜面向下 11、A 12、C

高中物理竞赛试题及答案

高中物理竞赛模拟试卷(一) 说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150 分,考试时间 120 分钟. 第Ⅰ卷(选择题 共 40 分) 一、本题共 10 小题,每小题 4 分,共 40 分,在每小题给出的 4 个选项中,有的小题只有一个选项正确,有的小题有多个选项正确,全部选对的得 4 分,选不全的得 2 分,有错选或不答的得 0 分. 1.置于水平面的支架上吊着一只装满细砂的漏斗,让漏斗左、右摆动,于是桌面上漏下许多砂子,经过一段时间形成一砂堆,砂堆的纵剖面最接近下图Ⅰ-1中的哪一种形状 2.如图Ⅰ-2所示,甲乙两物体在同一光滑水平轨道上相向运动,乙上连有一段轻弹簧,甲乙相互作用过程中无机械能损失,下列说法正确的有 A.若甲的初速度比乙大,则甲的速度后减到 0 B.若甲的初动量比乙大,则甲的速度后减到0 C.若甲的初动能比乙大,则甲的速度后减到0 D.若甲的质量比乙大,则甲的速度后减到0 3.特技演员从高处跳下,要求落地时必须脚先着地,为尽量保证安全,他落地时最好是采用哪种方法 A.让脚尖先着地,且着地瞬间同时下蹲 B.让整个脚板着地,且着地瞬间同时下蹲 C.让整个脚板着地,且着地瞬间不下蹲 D.让脚跟先着地,且着地瞬间同时下蹲 4.动物园的水平地面上放着一只质量为M 的笼子,笼内有一只质量为 m 的猴子.当猴以某一加速度沿竖直柱子加速向上爬时,笼子对地面的压力为F 1;当猴以同样大小的加速度沿竖直柱子加速下滑时,笼子对地面的压力为 F 2(如图Ⅰ-3),关于 F 1 和 F 2 的大小,下列判断中正确的是 A.F 1 = F 2>(M + m )g B.F 1>(M + m )g ,F 2<(M + m )g C.F 1>F 2>(M + m )g D.F 1<(M + m )g ,F 2>(M + m )g 5.下列说法中正确的是 A.布朗运动与分子的运动无关 B.分子力做正功时,分子间距离一定减小 C.在环绕地球运行的空间实验室里不能观察热传递的对流现象 D.通过热传递可以使热转变为功 6.如图Ⅰ-4所示,虚线a 、b 、c 代表电场中的三个等势面,相邻等势面之 图Ⅰ -3 图Ⅰ -4 图Ⅰ-2

高中奥林匹克物理竞赛解题方法之七对称法

例1:沿水平方向向一堵竖直光滑的墙壁抛出一个弹性小球A , 抛出点离水平地面的高度为h ,距离墙壁的水平距离为s , 小球与墙壁发生弹性碰撞后,落在水平地面上,落地点距墙壁的水平距离为2s ,如图7—1所示. 求小球抛出时的初速度. 解析:因小球与墙壁发生弹性碰撞, 故与墙壁碰撞前后入射速度与反射速度具有对称性, 碰撞后小球的运 动轨迹与无墙壁阻挡时小球继续前进的轨迹相对称,如图7—1—甲所示,所以小球的运动可以转换为平抛运动处理, 效果上相当于小球从A ′点水平抛出所做的运动. 根据平抛运动的规律:?? ? ??==2 021gt y t v x 因为抛出点到落地点的距离为3s ,抛出点的高度为h 代入后可解得:h g s y g x v 2320 == 例2:如图7—2所示,在水平面上,有两个竖直光滑墙壁A 和B ,间距为d , 一个小球以初速度0v 从两墙正中间的O 点斜向上抛出, 与A 和B 各发生一次碰撞后正好落回抛出点O , 求小球的抛射角θ. 解析:小球的运动是斜上抛和斜下抛等三段运动组成, 若按顺序求解则相当复杂,如果视墙为一平面镜, 将球与墙的弹性碰撞等效为对平面镜的物、像移动,可利用物像对称的规律及斜抛规律求解. 物体跟墙A 碰撞前后的运动相当于从O ′点开始的斜上抛运动,与B 墙碰后落于O 点相当于落到O ″点,其中O 、O ′关于A 墙对称,O 、O ″对于B 墙对称,如图7—2—甲所示,于是有 ? ??==?? ???-==0221sin cos 200y d x gt t v y t v x 落地时θθ 代入可解得2 202arcsin 2122sin v dg v dg == θθ 所以抛射角 例3:A 、B 、C 三只猎犬站立的位置构成一个边长为a 的正三角形,每只猎犬追捕猎物的速度均为v ,A 犬想追捕B 犬,B 犬 想追捕C 犬,C 犬想追捕A 犬,为追捕到猎物,猎犬不断调整方向,速度方向始终“盯”住对方,它们同时起动,经多长时间可捕捉到猎物? 解析:以地面为参考系,三只猎犬运动轨迹都是一条复杂的曲线,但根据对称性,三只猎犬最后相交于 三角形的中心点,在追捕过程中,三只猎犬的位置构成三角形的形状不变,以绕点旋转的参考系来描述,可认为三角形不转动,而是三个顶点向中心靠近,所以只要求出顶点到中心运动的时间即可. 由题意作图7—3, 设顶点到中心的距离为s ,则由已知条件得 a s 3 3 = 由运动合成与分解的知识可知,在旋转的参考系中顶点向中心运动的速度为 v v v 2330cos = =' 由此可知三角形收缩到中心的时间为 v a v s t 32='= 此题也可以用递推法求解,读者可自己试解. 例4:如图7—4所示,两个同心圆代表一个圆形槽,质量为m ,内外半径几乎同为R. 槽内A 、B 两处分别放有一个质量也为m 的小球,AB 间的距离为槽的直径. 不计一切摩擦. 现将系统置于光滑水平面上,开始时槽静止,两小球具有垂直于AB 方向的速度v ,试求两小球第一次相距R 时,槽中心的速度0v . 解析:在水平面参考系中建立水平方向的x 轴和y 轴. 由系统的对称性可知中心或者说槽整体将仅在x 轴方向上 运动。设槽中心沿x 轴正方向运动的速度变为0v ,两小球相对槽心做角速度大小为ω的圆周运动,A 球处于

全国中学生物理竞赛真题汇编光学

全国中学生物理竞赛真题汇编---光学 1.(19Y5)五、(20分)图预19-5中,三棱镜的顶角α为60?,在三棱镜两侧对称位置上放置焦距均为 30.0cm f =的两个完全相同的凸透镜L 1和 L 2.若在L 1的前焦面上 距主光轴下方14.3cm y =处放一单色点光源S ,已知 其像S '与S 对该光学系统是左右对称的.试求该三棱 镜的折射率. 2.(21Y6)六、(15分)有一种高脚酒杯,如图所示。 杯内底面为一凸起的球面,球心在顶点O 下方玻璃中的 C 点,球面的半径R =,O 到杯口平面的距离为。在杯脚底中心处P 点紧贴一张画片,P 点距O 点。这种酒杯未斟酒时,若在杯口处向杯底方向观看,看不出画片上的景物,但如果斟了酒,再在杯口处向杯底方向观看,将看到画片上的景物。已知玻璃的折射率n 1=,酒的折射率n 2=。试通过分析计算与论证解释这一现象。 3.(22Y3)三、(18分)内表面只反射而不吸收光的圆筒内有一半径为尺的黑球,距球心为2R 处有一点光源S ,球心p 和光源s.皆在圆筒轴线上,如图所示.若使点光源向右半边发出的光最后全被黑球吸收,则筒的内半径r 最大为多少? 4.(16F2)(25分)两个焦距分别是1f 和2f 的薄透镜1L 和 2L ,相距为d ,被共轴地安置在光具座上。 1. 若要求入射光线和与 之对应的出射光线相互平行,问该入射光线应满足什么条件? 2. 根据所得结果, 分别画出各种可能条件下的光路示意图。 5.(17F2) 如图1所示,在真空中有一个折射率为n(n>n0,n0为真空的折射率),半径为r的质地均匀的小球,频率为ν的细激光束在真空中沿直线BC传播,直线BC 与小球球心O 的距离为l(l<r),光束于小球体表面的点C经折射进入小球(小球成为光传播的介质),并于小球表面的点D 又经折射进入真空.设激光束的频率在上述两次折射后保持不变.求在两次折射过程中激光束中一个光子对小球作用的平均力的大小. 图1 6.(17F6)、普通光纤是一种可传输光的圆柱形细丝,由具有圆形截面的纤芯A和包层B组成,B的折射率小于A的折射率,光纤的端面和圆柱体的轴垂直,由一端面射入的光在很长的光纤中传播时,在纤芯A和包层B的分界面上发生多次全反射.现在利用普通光纤测量流体F 的折射率.实验方法如下:让光纤的一端(出射端)浸在流体F 中.令与光纤轴平行的单色平行光束经凸透镜折射后会聚光纤入射端面的中心O,经端面折射进入光纤,在光纤中传播.由点O出发的光束为圆锥形,已知其边缘光线和轴的夹角为α0,如图3甲所示.最后光从另一端面出射进入流体F.在距出射端面h1处放置一垂直于光纤轴的毛玻璃屏D,在D上出现一圆形光斑,测出其直径为d1,然后移动光屏D至距光纤出射端面h2处,再测出圆形光斑的直径d2,如图3乙所示.

(完整版)数学归纳法经典例题详解

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ. 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k Λ 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k

()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 例3.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2.

高中奥林匹克物理竞赛解题方法 10图像法

高中奥林匹克物理竞赛解题方法 十、图像法 方法简介 图像法是根据题意把抽象复杂的物理过程有针对性地表示成物理图像,将物理量间的代数关系转变为几何关系,运用图像直观、形象、简明的特点,来分析解决物理问题,由此达到化难为易,化繁为简的目的,图像法在处理某些运动问题,变力做功问题时是一种非常有效的方法。 赛题精讲 例1:一火车沿直线轨道从静止发出由A 地驶向B 地,并停止在B 地。AB 两地相距s ,火 车做加速运动时,其加速度最大为a 1,做减速运动时,其加速度的绝对值最大为a 2,由此可可以判断出该火车由A 到B 所需的最短时间为 。 解析:整个过程中火车先做匀加速运动,后做匀减速运动,加速度最大时,所用时间最短,分段运动可用图像法来解。 根据题意作v —t 图,如图11—1所示。 由图可得1 1t v a = vt t t v s t v a 21)(21212 2=+== 由①、②、③解得2 121)(2a a a a s t += 例2:两辆完全相同的汽车,沿水平直路一前一后匀速行驶,速度为v 0,若前车突然以恒定 的加速度刹车,在它刚停住时,后车以前车刹车时的加速度开始刹车。已知前车在刹车过程中所行的距离为s ,若要保证两辆车在上述情况中不相碰,则两车在做匀速行驶时保持的距离至少为 ( ) A .s B .2s C .3s D .4s 解析:物体做直线运动时,其位移可用速度——时间图像 中的面积来表示,故可用图像法做。 作两物体运动的v —t 图像如图11—2所示,前车发 生的位移s 为三角形v 0Ot 的面积,由于前后两车的刹车 加速度相同,根据对称性,后车发生的位移为梯形的面积 S ′=3S ,两车的位移之差应为不相碰时,两车匀速行驶 时保持的最小车距2s. 所以应选B 。 ① ② ③ 图11—2

高中物理竞赛几何光学测试题(含详细解析)

几何光学测试题 1、如图(a )所示,一细长的圆柱形均匀玻璃棒,其一个端面是平面(垂直于轴线),另一个端面是球面,球心位于轴线上.现有一很细的光束沿平行于轴线方向且很靠近轴线人射.当光从平端面射人棒内时,光线从另一端面射出后与轴线的交点到球面的距离为a ;当光线从球形端面射人棒内时,光线在棒内与轴线的交点到球面的距离为b .试近似地求出玻璃的折射率n 。 2、内表面只反射而不吸收光的圆筒内有一半径为R 的黑球,距球心为2R 处有一点光源S ,球心O 和光源S 皆在圆筒轴线上,如图所示.若使点光源向右半边发出的光最后全被黑球吸收,则筒的内半径r 最大为多少? 3、如图1中,三棱镜的顶角α为60?,在三棱镜两侧对称位置上放置焦距均为 30.0cm f =的两个完全相同的凸透镜L 1和 L 2.若在L 1的前焦面上距主光轴下方14.3cm y =处放一单色点光源S ,已知其像S '与S 对该光学系统是左右对称的.试求该三棱镜的折射率. 4、如图(a )所示,两平面镜A 和B 的镜面分别与纸面垂直,两镜面的交线过图中的O 点,两镜面间夹角为 ?=15α,今自A 镜面上的C 点处沿与A 镜面夹角?=30β的方向在纸面内射出一条光线,此光线在两镜面经 多次反射后而不再与镜面相遇。设两镜面足够大,1=CO m 。试求: (1)上述光线的多次反射中,最后一次反射是发生在哪块镜面上? (2)光线自C 点出发至最后一次反射,共经历多长的时间? 5、有一水平放置的平行平面玻璃板H ,厚3.0 cm ,折射率 1.5n =。在其下表面下2.0 cm 处有一小物S ;在玻璃扳上方有一薄凸透镜L ,其焦距30cm f =,透镜的主轴与玻璃板面垂直;S 位于透镜的主轴上,如图(a )所示。若透镜上方的观察者顺着主轴方向观察到S 的像就在S 处,问透镜与玻璃板上表面的距离为多少? 6、望远镜的物镜直径D =250cm ,其焦距f =160m 。要用此望远镜对相距L =320km ,直径d =2m 的人造地球卫星拍摄照片,试问:(1)照像底片应该放在距焦点多远的位置上?(2)人造卫星的像的大小是多少? α β O A B 图(a) C D 图(a ) 2R S r R O 图1 S f α F y 2 L 1 L S ' n ? 图(a )

高中物理竞赛(力学)练习题解

1、(本题20分)如图6所示,宇宙飞船在距火星表面H高度处作匀速圆周运动,火星半径为R 。当飞船运行到P点时,在极短时间内向外侧点喷气,使飞船获得一径向速度,其大小为原来速度的α倍。因α很小,所以飞船新轨道不会与火星表面交会。飞船喷气质量可以不计。 (1)试求飞船新轨道的近火星点A的高度h近和远火星点B的高度h远; (2)设飞船原来的运动速度为v0 ,试计算新轨道的运行周期T 。 2,(20分)有一个摆长为l的摆(摆球可视为质点,摆线的质量不计), 在过悬挂点的竖直线上距悬挂点O的距离为x处(x<l)的C点有一固 定的钉子,如图所示,当摆摆动时,摆线会受到钉子的阻挡.当l一定 而x取不同值时,阻挡后摆球的运动情况将不同.现将摆拉到位于竖直 线的左方(摆球的高度不超过O点),然后放 手,令其自由摆动,如果摆线被钉子阻挡后,摆球恰巧能够击中钉子,试 求x的最小值. 3,(20分)如图所示,一根长为L的细刚性轻杆的两端分别连结小球a和 b,它们的质量分别为m a 和m b. 杆可绕距 a球为L/4处的水平 定轴O在竖直平面内转动.初始时杆处于竖直位置.小球b几乎 接触桌面.在杆的右边水平桌面上,紧挨着细杆放着一个质量为 m的立方体匀质物块,图中ABCD为过立方体中心且与细杆共面 的截面.现用一水平恒力F作用于 a球上,使之绕O轴逆时针 转动,求当a转过 角时小球b速度的大小.设在此过程中立方 体物块没有发生转动,且小球b与立方体物块始终接触没有分 离.不计一切摩擦. 4、把上端A封闭、下端B开口的玻璃管插入水中,放掉部分空气后 放手,玻璃管可以竖直地浮在水中(如下图).设玻璃管的质量m=40克,横截面积S=2厘米2,水面以上部分的 长度b=1厘米,大气压强P0=105帕斯卡.玻璃管壁厚度不计,管内空气质量不计. (1)求玻璃管内外水面的高度差h. (2)用手拿住玻璃管并缓慢地把它压入水中,当管的A端在水面下超过某一深度时,放手后玻璃管 不浮起.求这个深度. (3)上一小问中,放手后玻璃管的位置是否变化?如何变化?(计算时可认为管内空气的温度不变) 5、一个光滑的圆锥体固定在水平的桌面上,其轴线沿竖直方向,母线与轴线之间的夹角θ=30°(如右 图).一条长度为l的绳(质量不计),一端的位置固定在圆锥体的顶点O处,另一端拴着一个质量为 m的小物体(物体可看作质点,绳长小于圆锥体的母线).物体以速率v绕圆锥体的轴线做水平匀 速圆周运动(物体和绳在上图中都没画出 ). a O b A B C D F

高中物理竞赛(解题方法:整体法)

高中奥林匹克物理竞赛解题方法 、整体法 方法简介 整体是以物体系统为研究对象,从整体或全过程去把握物理现象的本质和规律,是一种把具 有相互联系、相互依赖、相互制约、相互作用的多个物体,多个状态,或者多个物理变化过程组合 作为一个融洽加以研究的思维形式。整体思维是一种综合思维,也可以说是一种综合思维,也是多 种思维的高度综合,层次深、理论性强、运用价值高。因此在物理研究与学习中善于运用整体研究 分析、处理和解决问题,一方面表现为知识的综合贯通,另一方面表现为思维的有机组合。灵活运 用整体思维可以产生不同凡响的效果,显现“变”的魅力, 把物理问题变繁为简、变难为易。 赛题精讲 例1如图1—1所示,人和车的质量分别为m和M,人用水 平力F拉绳子,图中两端绳子均处于水平方向,不计滑轮质量及摩 擦,若人和车保持相对静止,且水平地面是光滑的,则车的加速度为 ________________________________________________ . 解析:要求车的加速度,似乎需将车隔离出来才能求解,事实 上,人和车保持相对静止,即人和车有相同的加速度,所以可将人和车看做一个整体,对整体用 牛顿第二定律求解即可 将人和车整体作为研究对象,整体受到重力、水平面的支持力和两条绳的拉力 向重力与支持力平衡,水平方向绳的拉力为2F,所以有: 2F=(M+m)a,解得: 2F a M m 例2用轻质细线把两个质量未知的小球悬挂起来,如图 1 —2所示,今对小球a持续施加一个向左偏下30°的恒力,并对小球b持续施加一个向右 偏上30°的同样大小的恒力,最后达到平衡,表示平衡状态的图可能是 ?在竖直方解析

第31届全国中学生物理竞赛决赛试题与解答(word版)

第 31 届全国中学生物理竞赛决赛理论考试试题 一、(12 分)一转速测量和控制装置的原理如图 所示. 在 O 点有电量为 Q 的正电荷,内壁光滑 的轻质绝缘细管可绕通过 O 点的竖直轴在水平 面内转动, 在管内距离 O 为 L 处有一光电触发 控制开关 A ,在 O 端固定有一自由长度为 L/4 的轻质绝缘弹簧,弹簧另一端与一质量为 m 、带 有正电荷 q 的小球相连 接. 开始时,系统处于静态平衡. 细管在外力矩作用下,作定轴转动,小球可在细管内运动. 当细管转速ω逐渐变大时,小球到达细管的 A 处刚好相对于细管径向平衡,并触发控制 开关, 外力矩瞬时变为零,从而限制转速过大;同时 O 点的电荷变为等量负电荷-Q.通 过测量此后小球相对于细管径向平衡点的位置 B ,可测定转速. 若测得 OB 的距离为 L/2, 求 (1)弹簧系数0k 及小球在 B 处时细管的转速; (2)试问小球在平衡点 B 附近是否存在相对于细管的径向微振动?如果存在,求出该微 振 动的周期. 二、(14 分)多弹头攻击系统是破解导弹防御体系的有效手 段. 如图所示,假设沿某海岸有两个军事目标 W 和 N , 两 者相距 L ,一艘潜艇沿平行于该海岸线的航线游弋,并 监视 这两个目标,其航线离海岸线的距离为 d . 潜艇接到攻击命令 后浮出海面发射一颗可分裂成多弹头的母弹,发射 速度为0 v (其大小远大于潜艇在海里游弋速度的大小),假设母弹到达最高点时分裂成三个分弹头, 每个分弹头的质量相等,分裂时相对原母弹的速度大小均为 v ,且分布在同一水平面内, 分弹头 1、2 为实弹,分弹头 3 迷惑对方雷达探测的假弹头. 如果两个实弹能够分别击中 军事目标 W 和 N ,试求潜艇发射母弹时的位置与发射方向,并给出相应的实现条件. 三、(14 分)如图所示,某绝热熔器被两块装有阀门 K 1 和 K 2 的固定绝热隔板分割成相 等体积0V 的三室 A 、B 、C ,0A B C V V V V ===.容器左端用绝热活塞 H 封闭,左侧 A 室 装有11ν=摩尔单原子分子气体,处在压强为 P 0、温度为 T 0 的平衡态;中段 B 室为真空; 右侧 C 室装 有ν2 = 2 摩尔双原子分子气体,测得其平衡态温度为 Tc = 0.50 T 0.初始时刻 K 1 和 K 2 都处在关闭状态.然后系统依次经历如下与外界无热量交换的热力学过程: (1)打开 K 1,让 V A 中的气体自由膨胀到中段真空 V B 中;等待气体达到平衡态时,缓 慢推动活塞 H 压缩气体,使得 A 室体积减小了 30%(A V ' = 0.70 V 0).求压缩过程前后,该部分气体的平衡态温度及压强; (2)保持 K 1 开放,打开 K 2,让容器中的两种气体自由混合后共同达到平衡态. 求此时混 合气体的温度和压强; (3)保持 K 1 和 K 2 同时处在开放状态,缓慢拉动活塞 H ,使得 A 室体积恢复到初始体 积 A V ''=V 0. 求此时混合气体的温度和压强.

(完整版)数学归纳法经典例题及答案(2)

数学归纳法(2016.4.21) 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ Λ. 那么当n =k +1时, 11 1 31 21 1++++++k k Λ 1 1 1211 2+++=++

全国中学生物理竞赛真题汇编热学

全国中学生物理竞赛真题汇编---热学 1.(19Y4) 四、(20分)如图预19-4所示,三个绝热的、容积相同的球状容器A 、B 、C ,用带有阀门K 1、K 2的绝热细管连通,相邻两球球心的高度差 1.00m h =.初始时,阀门是关闭的,A 中装有1mol 的氦(He ),B 中装有1mol 的氪(Kr ),C 中装有lmol 的氙(Xe ),三者的温度和压强都相同.气体均可视为理想气体.现打开阀门K 1、K 2,三种气体相互混合,最终每一种气体在整个容器中均匀分布,三个容器中气体的温度相同.求气体温度的改变量.已知三种气体的摩尔质量分别为 31He 4.00310kg mol μ--=?? 在体积不变时,这三种气体任何一种每摩尔温度升高1K ,所吸收的热量均为 3/2R ,R 为普适气体常量. 2.(20Y3)(20分)在野外施工中,需要使质量m =4.20 kg 的铝合金构件升温;除了保温瓶中尚存有温度t =90.0oC 的1.200kg 的热水外,无其他热源。试提出一个操作方案,能利用这些热水使构件从温度t 0=10.0oC 升温到66.0oC 以上(含66.0oC),并通过计算验证你的方案. 已知铝合金的比热容c =0.880×103J ·(k g·oC)-1 , 水的比热容c = 4.20×103J ·(kg ·oC)-1 ,不计向周围环境散失的热量. 3.(22Y6)(25分)如图所示。两根位于同一水平面内的平行的直长金属导轨,处于恒定磁场中。 磁场方向与导轨所在平面垂直.一质量为m 的均匀导体细杆,放在导轨上,并与导轨垂 直,可沿导轨无摩擦地滑动,细杆与导轨的电阻均可忽略不计.导轨的左端与一根阻值为 尺0的电阻丝相连,电阻丝置于一绝热容器中,电阻丝的热容量不计.容器与一水平放置的开口细管相通,细管内有一截面为S 的小液柱(质量不计),液柱将l mol 气体(可视为理想气体)封闭在容器中.已知温度升高1 K 时,该气体的内能的增加量为5R /2(R 为普适气体常量),大气压强为po ,现令细杆沿导轨方向以初速V 0向右运动,试求达到平衡时细管中液柱的位移. 4.(16F1)20分)一汽缸的初始体积为0V ,其中盛有2mol 的空气和少量的水(水的体积可以忽略)。平衡时气体的总压强是3.0atm ,经做等温膨胀后使其体积加倍,在膨胀结束时,其中的水刚好全部消失,此时的总压强为2.0atm 。若让其继续作等温膨胀,使体积再次加倍。试计算此时: 1.汽缸中气体的温度; 2.汽缸中水蒸气的摩尔数; 3.汽缸中气体的总压强。 假定空气和水蒸气均可以当作理想气体处理。 5.(17F1)在一大水银槽中竖直插有一根玻璃管,管上端封闭,下端开口.已知槽中水银液面以上的那部分玻璃管 的长度l=76cm,管内封闭有n=1.0×10-3 mol的空气,保持水银槽与玻璃管都不动而设法使玻璃管内空气的温度缓慢地降低10℃,问在此过程中管内空气放出的热量为多少?已知管外大气的压强为76cmHg,每摩尔空 气的内能U=CVT,其中T为绝对温度,常量CV=20.5J·(mol·K)-1 ,普适气体常量R=8.31J·(m ol·K)-1 31Kr 83.810kg mol μ--=??31Xe 131.310kg mol μ--=??

高中物理竞赛解题方法之降维法例题

十三、降维法 方法简介 降维法是将一个三维图变成几个二维图,即应选两个合适的平面去观察,当遇到一个空间受力问题时,将物体受到的力分解到两个不同平面上再求解。由于三维问题不好想像,选取适当的角度,可用降维法求解。降维的优点是把不易观察的空间物理量的关系在二维图中表示出来,使我们很容易找到各物理量之间的关系,从而正确解决问题。 赛题精讲 例1:如图13—1所示,倾角θ=30°的粗糙斜面上放一物体,物体重为G ,静止在斜面上。现用与斜面底边平行的力F=G/2推该物体,物体恰好在斜面内做匀速直线运动,则物体与斜面间的动摩擦因数μ等于多少?物体匀速运动的方向如何? 解析:物体在重力、推力、斜面给的支持力和摩擦力四个力的作用下做匀速直线运动,所以受力平衡。但这四个力不在同一平面内,不容易看出它们之间的关系。我们把这些力分解在两个平面内,就可以将空间问题变为平面问题,使问题得到解决。 将重力沿斜面、垂直于斜面分解。我们从上面、侧面观察,图13—1—甲、图13—1—乙所示。 如图13—1—甲所示,推力F 与重力沿斜面的分力G 1的合力F ′为: G G F F 2 22 12 = += ' F ′的方向沿斜面向下与推力成α角, 则 ?=∴== 451 tan 1ααF G 这就是物体做匀速运动的方向 物体受到的滑动摩擦力与F ′平衡,即 2/2G F f = '= 所以摩擦因数:3 630cos 2/2=? ==G G F f N μ 例2:如图13—2所示,一个直径为D 的圆柱体,其侧面刻有螺距为h 的光滑的螺旋形凹槽,槽内有一小球,为使小球能自由下落,必须要以多大的加速度来拉缠在圆柱体侧面的绳子? 解析:将圆柱体的侧面等距螺旋形凹槽展开成为平面上的斜槽,如图13—2—甲所示,当圆柱体转一周,相当于沿斜槽下降一个螺距h ,当圆柱转n 周时,外侧面上一共移动的

数学归纳法典型例习题

欢迎阅读数学归纳法典型例题 一. 教学内容: 高三复习专题:数学归纳法 二. 教学目的 掌握数学归纳法的原理及应用 三. 教学重点、难点 四. ??? ??? (1 ??? (2()时命题成立,证明当时命题也成立。??? 开始的所有正整数 ??? 即只 称为数学归纳法,这两步各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。 【要点解析】 ? 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n=k+1时也成假设了,命题并没有得到证明。 ??? 用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。

? 2、运用数学归纳法时易犯的错误 ??? (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。 ??? (2)没有利用归纳假设:归纳假设是必须要用的,假设是起桥梁作用的,桥梁断了就通不过去了。 ??? (3)关键步骤含糊不清,“假设n=k时结论成立,利用此假设证明n=k+1时结论也成立”,是数学归纳法的关键一步,也是证明问题最重要的环节,对推导的过程要把步骤写完整,注意证明过程的严谨性、规范性。 ? 例1. 时,。 ,右边,左边 时等式成立,即有,则当时, 由①,②可知,对一切等式都成立。 的取值是否有关,由到时 (2 到 本题证明时若利用数列求和中的拆项相消法,即 ,则这不是归纳假设,这是套用数学归纳法的一种伪证。 (3)在步骤②的证明过程中,突出了两个凑字,一“凑”假设,二“凑”结论,关键是明确 时证明的目标,充分考虑由到时,命题形式之间的区别和联系。

高中物理竞赛习题

高中物理竞赛习题 1、圆环放在光滑水平面上,有一甲虫,质量与环相等,沿环爬行,相对环的角速度为ω0,求甲虫在环上爬行一周,环的角位移。 2、一小水滴在均匀的静止雾气中凝结成核,当它下落时,扫光位于路径上的雾气,假如它留住了收集到的全部雾气,仍能保持球形,且没有粘滞阻力,渐渐地它会趋于匀速下落:v ( t ) = a t ( 对应较大的t )。试求系数a 。 3、处于固定的、绝热长方体密封器中央的绝热活塞,质量为m,截面积为S,两边的气体压强均为P0,气柱长度均为L ,若不计摩擦,求活塞微振动的周期。

4、0.1 mol 的单原子气体作如图1所示的循环,已知P 1 = 32P a ,V 1 = 8.00m 3 ,P 2 = 1.0P a V 2 = 64.0m 3,试求: (1)循环中的最高温度; (2)循环中气体对外界做的功。 5、如图2所示,等边三角形ABC 以及内含的无 限网络均由相同的、均质的细铜线连成。现在BC 边上又接上同种导线组成的等边三角形。已知铜线单位 长度的电阻为R 0 ,试求AB 两端的等效电阻R AB 。 6、如图3所示,在空间有相互垂直的场强为E 的匀强电场和磁感强度为B 的匀强磁场。一电子从原点静止释放,试求其在y 轴方向前进的最大距离。 V 图 1图 3A B C a a a a -2图 2

7、为了测量玻璃楞镜的折射率n ,采用如图4所示的装置。棱镜放在会聚透镜的前面,AB 面垂直于透镜的主光轴,在透镜的焦平面上放一个屏,当散射光照在AC 面上时,在屏上可以观察到两个区域:照亮区和非照亮区。连接两区分界处(D 点)与透镜光心O 的直线与透镜的主光轴O O '成30°角。已知棱镜的顶角α= 30°,试求棱镜的折射率n 。 高中物理竞赛习题答案 1、 θ= -32π 2、 a = 7 1g 3、 T = S P 28mL 20π 4、 (1) m T = 721K ; (2) W = 636 J 5、 0AB aR 127 75R -= 6、 2m eB E 2Y π= 7、 n = 1)ctgj j sin i sin ( 20 +- ( 其中0i = 30°,j = 30°) A B C O O′30°图 4

高中物理竞赛 解题 方法

高中奥林匹克物理竞赛解题方法 五、极限法 方法简介 极限法是把某个物理量推向极端,即极大和极小或极左和极右,并依此做出科学的推理分析,从而给出判断或导出一般结论。极限法在进行某些物理过程的分析时,具有独特作用,恰当应用极限法能提高解题效率,使问题化难为易,化繁为简,思路灵活,判断准确。因此要求解题者,不仅具有严谨的逻辑推理能力,而且具有丰富的想象能力,从而得到事半功倍的效果。 赛题精讲 例1:如图5—1所示, 一个质量为m 的小球位于一质量可忽略的直立 弹簧上方h 高度处,该小球从静止开始落向弹簧,设弹簧的劲度 系数为k ,则物块可能获得的最大动能为 。 解析:球跟弹簧接触后,先做变加速运动,后做变减速运动,据此推理, 小球所受合力为零的位置速度、动能最大。所以速最大时有 mg =kx ① 图5—1 由机械能守恒有 22 1)(kx E x h mg k +=+ ② 联立①②式解得 k g m m g h E k 2 221?-= 例2:如图5—2所示,倾角为α的斜面上方有一点O ,在O 点放一至 斜面的光滑直轨道,要求一质点从O 点沿直轨道到达斜面P 点 的时间最短。求该直轨道与竖直方向的夹角β。 解析:质点沿OP 做匀加速直线运动,运动的时间t 应该与β角有关, 求时间t 对于β角的函数的极值即可。 由牛顿运动定律可知,质点沿光滑轨道下滑的加速度为 βcos g a = 该质点沿轨道由静止滑到斜面所用的时间为t ,则 OP at =22 1 所以β cos 2g OP t = ① 由图可知,在△OPC 中有 图5—2

) 90sin()90sin(βαα-+=- OC OP 所以) cos(cos βαα-=OC OP ② 将②式代入①式得 g OC g OC t )]2cos([cos cos 4)cos(cos cos 2βαααβαβα-+=-= 显然,当2,1)2cos(αββα= =-即时,上式有最小值. 所以当2α β=时,质点沿直轨道滑到斜面所用的时间最短。 此题也可以用作图法求解。 例3:从底角为θ的斜面顶端,以初速度0υ水平抛出一小球,不计 空气阻力,若斜面足够长,如图5—3所示,则小球抛出后, 离开斜面的最大距离H 为多少? 解析:当物体的速度方向与斜面平行时,物体离斜面最远。 以水平向右为x 轴正方向,竖直向下为y 轴正方向, 则由:gt v v y ==θtan 0,解得运动时间为θtan 0g v t = 该点的坐标为 θθ2202200tan 221tan g v gt y g v t v x ==== 由几何关系得:θθtan cos /x y H =+ 解得小球离开斜面的最大距离为 θθsin tan 220?=g v H 。 这道题若以沿斜面方向和垂直于斜面方向建立坐标轴,求解则更加简便。 例4:如图5—4所示,一水枪需将水射到离喷口的水平距离为3.0m 的墙外, 从喷口算起, 墙高为4.0m 。 若不计空气阻力,取 2/10s m g =,求所需的最小初速及对应的发射仰角。 解析:水流做斜上抛运动,以喷口O 为原点建立如图所示的 直角坐标,本题的任务就是水流能通过点A (d 、h )的最小初速度和发射仰角。 图5— 3 图5—4

实用文库汇编之数学归纳法经典例题及答案

*实用文库汇编之数学归纳法(2016.4.21)* 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 11 1 31 21 1++++++k k 1 1 1211 2+++=++

高中奥林匹克物理竞赛解题方法

高中奥林匹克物理竞赛解题方法 一、整体法 方法简介 整体是以物体系统为研究对象,从整体或全过程去把握物理现象的本质和规律,是一种把具有相互联系、相互依赖、相互制约、相互作用的多个物体,多个状态,或者多个物理变化过程组合作为一个融洽加以研究的思维形式。整体思维是一种综合思维,也可以说是一种综合思维,也是多种思维的高度综合,层次深、理论性强、运用价值高。因此在物理研究与学习中善于运用整体研究分析、处理和解决问题,一方面表现为知识的综合贯通,另一方面表现为思维的有机组合。灵活运用整体思维可以产生不同凡响的效果,显现“变”的魅力,把物理问题变繁为简、变难为易。 赛题精讲 例1:如图1—1所示,人和车的质量分别为m 和M , 人用水平力F 拉绳子,图中两端绳子均处于水平方向, 不计滑轮质量及摩擦,若人和车保持相对静止,且 水平地面是光滑的,则车的加速度为 . 解析:要求车的加速度,似乎需将车隔离出来才 能求解,事实上,人和车保持相对静止,即人和车有相同的加速度,所以可将人和车看做一个整体,对整体用牛顿第二定律求解即可. 将人和车整体作为研究对象,整体受到重力、水平面的支持力和两条绳的拉力.在竖直方向重力与支持力平衡,水平方向绳的拉力为2F ,所以有: 2F=(M+m)a ,解得: m M F a +=2 例2 用轻质细线把两个质量未知的小球悬挂起来,如图 1—2所示,今对小球a 持续施加一个向左偏下30°的恒力,并 对小球b 持续施加一个向右偏上30°的同样大 小的恒力,最后达到平衡,表示平衡状态的图可能是 ( )

解析表示平衡状态的图是哪一个,关键是要求出两条轻质细绳对小球a和小球b的拉力的方向,只要拉力方向求出后,。图就确定了。 先以小球a、b及连线组成的系统为研究对象,系统共受五个力的作用,即两个重力(m a+m b)g,作用在两个小球上的恒力F a、F b和上端细线对系统的拉力T1.因为系统处于平衡状态,所受合力必为零,由于F a、F b大小相等,方向相反,可以抵消,而(m a+m b)g的方向竖直向下,所以悬线对系统的拉力T1的方向必然竖直向上.再以b球为研究对象,b球在重力m b g、恒力F b和连线拉力T2三个力的作用下处于平衡状态,已知恒力向右偏上30°,重力竖直向下,所以平衡时连线拉力T2的方向必与恒力F b和重力m b g的合力方向相反,如图所示,故应选A. 例3有一个直角架AOB,OA水平放置,表面粗糙,OB竖直向下,表面光滑,OA上套有小环P,OB上套有小环Q,两个环的质量均为m,两环间由一根质量可忽略、不何伸长的细绳相连,并在某一位置平衡,如图1—4所示.现将P环向左移动一段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态相比,OA杆对P环的支持力N和细绳上的拉力T的变化情况是()A.N不变,T变大B.N不变,T变小 C.N变大,T变小D.N变大,T变大 解析先把P、Q看成一个整体,受力如图1—4—甲所示, 则绳对两环的拉力为内力,不必考虑,又因OB杆光滑,则杆在 竖直方向上对Q无力的作用,所以整体在竖直方向上只受重力和 OA杆对它的支持力,所以N不变,始终等于P、Q的重力之和。 再以Q为研究对象,因OB杆光滑,所以细绳拉力的竖直分量等 于Q环的重力,当P环向左移动一段距离后,发现细绳和竖直方向 夹角a变小,所以在细绳拉力的竖直分量不变的情况下,拉力T应变小.由以上分析可知应选B. 例4 如图1—5所示,质量为M的劈块, 其左右劈面的倾角分别为θ1=30°、θ2=45°, 质量分别为m1=3kg和m2=的两物块, 同时分别从左右劈面的顶端从静止开始下滑,

相关主题
文本预览
相关文档 最新文档