当前位置:文档之家› 作息时间控制器(基于51单片机和DS1302的时钟)要点

作息时间控制器(基于51单片机和DS1302的时钟)要点

作息时间控制器(基于51单片机和DS1302的时钟)要点
作息时间控制器(基于51单片机和DS1302的时钟)要点

课程设计(论文)

题目:作息时间控制器

院(系):电子工程与自动化学院

专业:测控技术与仪器

学生姓名:吉哲

学号: 0900820413

指导教师:徐翠锋

职称:讲师

2012年12月27日

摘要

本次作息时间控制器设计是采用AT89S52单片机作为系统的核心元件,在其最小系统基础上与DS1302时钟芯片配合,四个独立按键控制,六位七段数码管显示,无源蜂鸣器发声。单片机最小系统作为核心处理和控制单元;时钟芯片用来实现实时时间的精准输出和闹钟信息的存储,并可用纽扣电池供电以保持时间的连续运行;独立按键用于进行时间及闹钟的设定;数码管用于显示时间及闹钟信息;蜂鸣器用于在达到设定的时间后进行及时提醒。

关键词:时间控制;AT89S52;单片机;DS1302;时钟芯片;闹铃;定时报警

Abstract

This work and rest time controller design is to use AT89S52 SCM as the core of the system components, in its minimum system with DS1302 clock chip based on coordination, four independent key control, six seven period of digital tube display, passive buzzer sound. Single chip microcomputer minimum system as the core processing and control unit; Clock chip to realize real-time time accurate output and alarm information storage, and use button batteries to keep continuous operation time, Independent key for time and alarm clock Settings; Digital tube is used to display the time and alarm information; Buzzer to reach a set time for timely remind.

Key words:Time control; AT89S52 devices; SCM; DS1302; Clock chip; Alarm; Timing alarm

目录

引言 (1)

1 课程设计任务及要求 (1)

2 硬件设计 (1)

2.1 总体设计思路及系统框图 (1)

2.2 中央处理控制器 (2)

2.3 晶振电路 (3)

2.4 时钟信号产生电路 (3)

2.5 显示电路 (4)

2.6 控制电路 (6)

2.7 闹铃电路 (8)

2.8 电源及下载电路 (8)

3 程序设计 (9)

3.1 主程序流程图 (9)

3.2 按键扫描程序流程图 (9)

3.3 响铃扫描程序 (10)

4 制板、组装与调试 (11)

4.1 PCB制作 (11)

4.2 制作PCB板流程 (11)

4.3 调试 (11)

5 方案总结 (11)

心得体会 (12)

谢辞 (13)

参考文献 (14)

附录 (15)

引言

时间是人类生活必不可少的重要元素,从古至今它都扮演着一个非常重要的角色。时间对人们来说总是那么宝贵,学习、工作的忙碌性和繁杂容易使人忘记当前的时间。随时提醒那些容易忘记时间的人,电子钟无疑最为直观。所以一个能够帮助人们提醒时间的事物对于人们来说有着非常重要的意义。

数字钟通过数字电路实现时、分、秒。数字显示的计时装置,广泛用于人家庭、车站、码头办公室等公共场所成为人们日常生活中不可少的必需品。由于数字集成电路的发展和石英晶体振荡器的广泛应用,使得数字钟的精度远远超过老式钟表。

多功能数字钟的应用非常普遍。由单片机作为数字钟的核心控制器,通过它的时钟信号进行实现计时功能,将其时间数据经单片机输出,利用显示器显示出来,通过键盘可以进行校时、定时闹钟等功能,输出设备显示器可以用液晶显示技术和数码管来显示技术。

作息时间控制器利用单片机控制技术将时钟电子化、数字化,拥有时钟精确、体积小等特点,拥有人性化的闹铃提醒功能,可被广泛应用于我们日常的学习、工作和生活当中。

1 课程设计任务及要求

1 掌握单片机最小系统的设计方法;

2 熟悉单片机定时器的原理。

3 了解数码显示器与MCU的接口方法;

4 掌握独立按键的使用方法;

5 要求显示时钟的时、分、秒,在预定的时间内响铃,可同时预置5次以上时间。

6 扩展:按键后才显示时间(低功耗),液晶显示记事。

2 硬件设计

2.1 总体设计思路及系统框图

通过时钟信号产生电路产生时钟信号,然后将信号送入中央处理单元,然后由控制电路控制中央处理单元控制时钟闹钟的设定及修改、显示电路的显示和蜂鸣器的闹铃。

系统结构框图

2.2 中央处理控制器

AT89S52是一种低功耗、高性能的CMOS 工艺的8位单片机。它带有8KB 的可在线编

程的

Flash 存储器,该单片机采用了ATMEL 公司的高密度、非易失性存储器技术,与工业上标准型80C51单片机的指令系统及引脚完全兼容;片内的Flash 存储器可在线重新编程,或使用通用的非易失性存储器编程器;通用的8位CPU 与在线可编程Flash 集成在一块芯片上,从而使AT89S52功能更加完善,应用更加灵活;具有较高的性能价格比,使其在嵌入式控制系统中有着广泛的应用前景。

单片机结构图

2.3 晶振电路

时钟是单片机的心脏,单片机各功能部件的运行都是以时钟频率为基准,有条不紊地一拍一拍地工作。常用的时钟电路有两种方式,一种为内部时钟方式,另一种为外部时钟方式。外部时钟方式是使用外部振荡脉冲信号,常用于多片单片机同时工作,以便于同步。对外部脉冲信号只要求高电平的持续时间大于20uS,一般为低于12MHz的方波。在单片机内部有一个用于构成振荡器的高增益反相放大器,该高增益反相放大器的输入端为芯片引脚XTAL1,输出端为引脚XTAL2,这两个引脚跨接石英晶体振荡器可微调电容,就构成一个稳定的自激振荡器,下图是单片机内部时钟方式的振荡器电路。

本时钟电路是采用内部时钟方式,在XT1和X2引脚之间外接振荡器,构成一个自激振荡器,自激振荡器与单片机内部的时钟发生器构成单片机的时钟电路。

晶振电路

电路中电容的大小会影响振荡器频率的高低、振荡器的稳定性和起振的快速性,C1和C2的典型取值通常选择为30pF左右。晶振的振荡频率的范围通常是在1.2MHz~12MHz 之间,常选择振荡频率6MHz或12MHz的石英晶体。

2.4 时钟信号产生电路

(1)方案一:单片机内部定时器

利用单片机内部定时器设计时间计时处理,采用单片机内部的T0定时器溢出中断来实现,工作在方式2下,8位定时器,具有自动重装载功能,具有精确定时功能。

优点:电路简单,充分利用现有资源,节约资源和成本

缺点:掉电后数据丢失,需重新设定时间和闹钟

(2)方案二:DS1302时钟芯片

DS1302是美国DALLAS公司推出的一种高性能、低功耗的实时时钟芯片,附加31字节静态RAM,采用SPI三线接口与CPU进行同步通信,并可采用突发方式一次传送多个字节的时钟信号和RAM数据。实时时钟可提供秒、分、时、日、星期、月和年,一个月小与31天时可以自动调整,且具有闰年补偿功能。工作电压宽达2.5~5.5V。采用双电源供电(主电源和备用电源),可设置备用电源充电方式,提供了对后背电源进行涓细电流充电的能力。DS1302用于数据记录,特别是对某些具有特殊意义的数据点的记录上,能实现数据与出现该数据的时间同时记录,因此广泛应用于测量系统中。本次设计中,使用DS1302提供的RAM区保存5个闹铃数据,达到掉电不丢失功能。

优点:掉电后不掉数据,可以保存时间和闹钟,比较符合实际使用

缺点:成本稍高,使用程序相对复杂

时钟芯片应用电路

考虑到实际使用需求,为方便用户使用,故采用方案二。

2.5显示电路

(1)方案一:OCM12864

带中文字库的128*64是一种具有4位/8位并行、2线或 3线串行多种并行方式。内部含有国标一级、二级简体中文字库的点阵图形液晶显示模块,其分辨率为128*64,内置8192个16*16点汉字,和128个16*8点ASCⅡ字符集,利用该模块可构成全中文人机交互图形界面。

优点:屏幕较大,使用方便,可显示信息量大

缺点:体积大,价格昂贵,在较远处无法清晰看到屏幕内容

OCM12864

(2)方案二:LCM1602

1602液晶也叫1602字符型液晶,它是一种专门用来显示字母、数字、符号等的点阵型液晶模块。它由若干个5X7或者5X11等点阵字符位组成,每个点阵字符位都可以显示一个字符,每位之间有一个点距的间隔,每行之间也有间隔,起到了字符间距和行间距的作用,正因为如此所以它不能很好地显示图形。

优点:体积较小,使用方便,显示信息量较大

缺点:成本稍高,在较远处无法清晰看到屏幕内容

LCM1602

(3)方案三:数码管

常用的数码管有7段和“米”段之分,又有共阳极和共阴极两种。该系统采用7段共阳极数码管。共阳极数码管内的发光二极管的阳极连接在一起,通常此公共阳极接正电压,当某个发光二极管的阴极接低电平时,发光二极管被点亮,相应的段被显示。

数码管有静态显示和动态显示两种显示方式。静态显示方式程序简单,显示度高,但占用I/O口资源较多,硬件成本高,且功耗大。本系统需要显示时分秒,所以采用动态显示,当要显示信息时,由P0口输出字符的段码,P2口对相应的位输出低电平,三极管导通,点亮相应的数码管,就可以把要显示的字符在数码管上显示。在这种显示电路中,一个字位一个字位地轮流点亮各LED,每一个字位停留1ms左右,由于人的视觉暂留,不会察觉有闪烁现象。

优点:体积较小,价格便宜,使用方便,亮度高,远处也可看清

缺点:可现实信息量小

由于实际使用中需要在较远处也可清洗看到显示的时间,结合成本和体积,故援用方案三。

2.6控制电路

常用到的一般有编码键盘和非编码键盘。编码键盘是靠硬件电路对每个键位进行编码,当有键按下时,输出固定的数码,并用来判断键位。编码键盘一般需要较多的硬件电路,成本较高。单片机一般采用非编码键盘。非编码键盘是指不是靠固定的编码来实现键位的识别,而是用软件确定一种算法对键位进行扫描。非编码键盘能实现实现软件的资源的充分利用。常见的非编码键盘有独立按键和矩阵键盘两种。矩阵式键盘与独立按键相比同样多的按键使用的I/O口较少,节省资源,但编程、电路设计较复杂。独立式按键则只需读对应的I/O口,来确定键位,而且考虑到作息时间控制器中需要的I/O 口较少,所以采用独立式按键。键盘模块连接的I/O口为P3口,P3口的引脚都有第二

功能。电子闹钟的时间校准时需要把定时器的标志位和寄存器等与系统时间相关的参数恢复到计时初始状态,虽说在一般的函数内部也可以做到,但如果用单片机自带的外部中断方式会更方便,便于人工随时设置。键盘输入采用P3口使得软件设计更灵活。

(1)方案一:两个按键

两个按键调整是在日常生活中最长见的一种。其中一个键用来切换需要调整的内容,另一个键用来改变当时选定的数值,一般为增量改变。

优点:节约资源,节省整体体积

缺点:如遇需切换量大,修改值比当前值稍小时,使用极不方便

(2)方案二:三个按键

在方案一的基础上,增加减量修改按钮。

优点:节约资源,节省整体体积

缺点:如遇需切换量大,使用不方便

(3)方案三:四个按键

在方案二的基础上增加一个辅助切换按钮,即:按键A为切换时间与闹钟循环显示按键;按键B为修改按钮,即在当前显示值需要修改时,按下此按键即可修改,同时此按键还有切换修改数的功能,即切换所需修改的“时”“分”“秒”;剩余两个位增量修改和减量修改键。

优点:使用方便,符合实际使用需求

缺点:按键复用较多,编程较复杂

控制按键电路

考虑到板子体积,故没有采用按键较多的矩阵式键盘。再结合考虑实际使用需求,故选用方案三。

2.7闹铃电路

蜂鸣器报警的发音器件常采用压电式蜂

鸣器。压电式蜂鸣器约需10mA的驱动电流,

可以用一个晶体三极管驱动,如图1.2.5所

示。P1.0接晶体管的基极输入端,当P1.0

输出低电平“0”时,三极管导通并对I/O

口的灌电流放大驱动蜂鸣器;当P1.0输出

高电平“1”时,三极管截止,蜂鸣器停止

发声。

闹铃电路

2.8电源及下载电路

考虑到在实际使用中,需要有电源指示

灯来指示当前电源供电时候正常,故增加电

源指示灯(红色LED)一个;考虑到实际使

用中的需要和节能功能,设置电源开关(自

锁式开关)一个,以方便使用;考虑到实际

使用中,程序已经写入单片机内,无需频繁

修改,故将普通九针式牛角座下载口改换为

排针式,以节约空间,减小实物体积。

电源电路

3 程序设计

3.1 主程序流程图

3.2 按键扫描程序流程图

3.3 响铃扫描程序

4 制板、组装与调试

4.1 PCB制作

硬件电路的调试首先是系统原理图的检查。根据所学的理论知识检查原理图是否有不合理之处,各部分的参数是否合理。其次检查绘制的PCB的封装和实物是否相符。再次检查PCB各网络间的连接是否和原理图相符,以及做出来的电路板是否有在制作过程中断线的情况。电路板的初步检查就完成了。

4.2 制作pcb板的流程

设计好原理图sch→→改变封装→→绘制pcb板→→布局布线→→打印pcb图纸→→印制铜板→→腐蚀铜板→→钻孔→→焊接元器件→→测板→→修改电路→→测试。

4.3 调试

对硬件电路的检查需借助万用表,用来检测每一条线路之间是否通路,以及有没有虚焊,还要检测一些靠的比较近的线之间是否出现短路。将检测出来的问题解决后,就可以进行第二步的调试

然后进行上电调试。对最小系统板,看下载口是否能正常工作。如果不能正常工作,检查与下载相关的下载接口和复位电路。如果能正常工作,编写与模块相应的程序检查模块是否能正常工作。

5 方案总结

AT89S52除8K在系统可编程Flash外,与工业80C51产品指令和引脚完全兼容。片上Flash允许程序存储器在系统可编程,亦适用于常规编程器。在单芯片上,拥有灵巧的8位CPU和在系统可编程Flash,使得AT89S52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。

AT89S52具有以下标准功能:8k字节Flash,256字节RAM,32位I/O口线,看门狗定时器,2个数据指针,三个16位定时/计数器,全双工串行口,片内晶振及时钟电路。另外,AT89S52支持2种软件可选择节电模式。空闲模式下,CPU停止工作,允许RAM、定时/计数器、串口、中断继续工作。掉电保护方式下,RAM内容被保护,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。

作息时间控制器是以AT89S52为核心,辅以必要的电路,设计的带有闹铃功能的数字电子时钟。通过12864液晶显示时间,可调整时间。系统的重点是基于AT89S52单片机的编程,通过设计系统从而达到学习、设计、开发软、硬件的能力。

电子时钟采用液晶实现对“时”、“分”、“秒”数字显示。相比老式的机械钟表单就显示而言就遥遥领先。电子时钟小巧,价格低廉,走时精度高,使用方便,功能多,便于集成化使得数字时钟功能大大的得到了扩展。诸如定时自动报警、按时自动响铃、时间程序自动控制、定时广播、自动启闭路灯、定时开关烘箱等,所有的这些都是以钟表数字化为基础的。因此,研究电子时钟及扩大其应用,有着非常现实的意义。

心得体会

两个星期的课程设计结束了,我们从中获益匪浅。从选题、确定方案、设计原理图、焊接、调试的过程中,我们体会到了课本联系实际并学以致用,设计思想、动手能力都有所提高,这对我们来说是一次将课本所学知识应用到具体实践中的一次考验。

在课程设计之初,首先对题目要求做一个分析,构思好每一个功能要通过什么电路来实现。要做好一个课程设计,还必须做到:在设计程序之前,对所用单片机的内部结构有一个系统的了解,知道该单片机内有哪些资源;要有一个清晰的思路和一个完整的软件流程图;在设计程序时,不能妄想一次就将整个程序设计好,反复修改、不断改进是程序设计的必经之路;要养成注释程序的好习惯,一个程序的完美与否不仅仅是实现功能,而应该让人一看就能明白你的思路,这样也为资料的保存和交流提供了方便;在设计课程过程中遇到问题是很正常的,但我们应该将每次遇到的问题记录下来,并分析清楚,以免下次再碰到同样的问题。在焊接每个元件的时候一定要注意各个输入、输出引脚,因为每个引脚都是不一样的,只要让各个引脚互相对应,才能得出正确的结果,否则,出现任何一点小的误差就会对整个系统造成毁灭性的打击。

通过课程设计,对一些已学过的知识,是一个很好的回顾,巩固了自己所学的知识,又从实践中验证了理论知识,实践与理论相结合。

谢辞

转眼课程设计已接近尾声,老师们治学严谨,学识渊博,思想深邃,视野雄阔,为我营造了一种良好的精神氛围。在课程设计开始之初,徐老师就告诉我们要认真对待自己的课程设计,并在过程中经常抽出时间来关心我们的设计进度情况,帮助我们分析问题,督促我们抓紧学习。授人以鱼不如授人以渔,置身其间,耳濡目染,潜移默化,使我不仅接受了全新的思想观念,树立了宏伟的学术目标,领会了基本的思考方式。特别是徐老师在课程设计期间投注了大量的时间及精力关注我们的设计进度,指导我们的论文写作。在此我衷心的感谢各位老师,并向各位老师表达我崇高的敬意。最后,我也向各位在课程设计期间帮助我,给予我支持的同学表达我的谢意。

参考文献

[1] 白驹珩,雷晓平编著.单片计算机及其应用.北京: 高等教育出版社,2010 [2]郭天祥. 51单片机C语言教程. 电子工业出版社. 2009.

[3]康华光.电子技术基础(模拟部分)[M]. 高等教育出版社. 1998

[4] 谭浩强. C程序设计.清华大学出版社.2005

[5] 王选民. 智能仪器原理及设计. 清华大学出版社.2008

附录

附录一整体原理图

附录二整体PCB图

附录三整体实物图

附录四整体程序

基于DS1302的数码管显示数字钟

单片机原理课程设计 课题名称:基于DS1302的数码管显示数字钟 专业班级:电子信息工程 学生学号: 学生姓名: 指导教师: 设计时间:2010年6月21日--2010年6月25日

目录 摘要........................................................................................................................................................................ 1 设计任务和要求............................................................................................................................................ 2 方案论证........................................................................................................................................................ 3 系统硬件设计................................................................................................................................................ 3.1 系统总原理图 ................................................................................................................................ 3.2 元器件清单...................................................................................................................................... 3.3 PCB板图....................................................................................................................................... 3.4 Proteus仿真图 ............................................................................................................................... 3.5 分电路图及原理说明................................................................................................................... 3.5.1 主控部分(单片机MCS-51).............................................................................. 3.5.2 计时部分(实时时钟芯片DS1302).................................................................. 3.5.3 显示部分(共阳极数码管)................................................................................ 3.5.4 调时部分(按键)................................................................................................ 4系统软件设计................................................................................................................................................ 4.1 程序流程图..................................................................................................................................... 4.2 程序源代码........................................................................................................................................ 5心得体会........................................................................................................................................................ 6参考文献........................................................................................................................................................ 7结束语............................................................................................................................................................

单片机时钟电路的设计

单片机时钟电路的设计 单片机内部虽有振荡电路,但要形成时钟必须在外总附加电路。 MCS-51单片机的时钟产生方法有如下两种。 1内部时钟方式 利用芯片内部的振荡电路,在XTAL1和XTAL2引脚上外接定时元件,内部振荡电路便产生自激振荡,用示波器可以观察到XTAL2输出时的时钟信号。 最常用的内部时钟方式是采用外接晶体(在频率稳定性要求不高而希望尽可能廉价时,可选用陶瓷谐振器)和电容组成的并联谐振回路,HMOS型和CHMOS型单片机和并联,谐振回路及参数相同。 振荡晶体可在1. 2MHz~12MHz之间。电容值无严格要求,但电容取值对振荡频率输出的稳定性、大小和振荡电路起振速度有少许影响,CX1和CX2可在20p~100pF间取值,但在60PF~70PF时振荡器有较高的频率稳定性。 在设计PCB板时,晶体或陶瓷谐振器和电容应尽可能靠近单片机芯片安装,以减少寄生电容,更好的保护振荡电路稳定可靠的工作。为了提高温度稳定性,采用NPO电容。2外部时钟方式 外部时钟方式是利用外部振荡信号源直接接入XRAL1或XTAL2。由于HMOS和CHMOS单片机内部时钟进入的引脚不同(CHMOS型单片同由XTAL1进入,HMOS 型单片机由XTAL2进入),其外部振荡信号源的接入方法也不同。HMOS型单片机的外部振荡信号接至XTAL2,而内部的反相放大器的输入端XTAL1应接地。由于XTAL2端的逻辑电平不是TTL的,故建议外接一个上拉电阻。而XTAL2不可以接地。 在CMOS电路中,因内部时钟引入端取自反相放大器的输入端(即与非门的输入端),故采用外部振荡信号源时接线方式与HNOS型有所不同,外部信号接至XTAL1,而XTAL2不可以接地。外部振荡信号通过去一个2分频的触发器而成为一个时钟信号。故对外部信号的占空比没什么要求,但高电平持续时间和低电平持续时间应大于20ns.

51单片机作的电子钟程序及电路图

51单片机作的电子钟程序在很多地方已经有了介绍,对于单片机学习者而言这个程序基本上是一道门槛,掌握了电子钟程序,基本上可以说51单片机就掌握了80%。常见的电子钟程序由显示部分,计算部分,时钟调整部分构成。 时钟的基本显示原理:时钟开始显示为0时0分0秒,也就是数码管显示000000,然后每秒秒位加1 ,到9后,10秒位加1,秒位回0。10秒位到5后,即59秒,分钟加1,10秒位回0。依次类推,时钟最大的显示值为23小时59分59秒。这里只要确定了1秒的定时时间,其他位均以此为基准往上累加。 开始程序定义了秒,十秒,分,十分,小时,十小时,共6位的寄存器,分别存在30h,31h,32h,33h,34h,35h单元,便于程序以后调用和理解。 6个数码管分别显示时、分、秒,一个功能键,可以切换调整时分秒、增加数值、熄灭节电等功能全部集一键。

以下是部分汇编源程序,购买我们产品后我们用光盘将完整的单片机汇编源程序和烧写文件送给客户。;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; 中断入口程序 ;; (仅供参考) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; ORG 0000H ;程序执行开始地址 LJMP START ;跳到标号START执行 ORG 0003H ;外中断0中断程序入口 RETI ;外中断0中断返回 ORG 000BH ;定时器T0中断程序入口 LJMP INTT0 ;跳至INTTO执行 ORG 0013H ;外中断1中断程序入口

RETI ;外中断1中断返回 ORG 001BH ;定时器T1中断程序入口 LJMP INTT1 ;跳至INTT1执行 ORG 0023H ;串行中断程序入口地址 RETI ;串行中断程序返回 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; 主程序 ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; START: MOV R0,#70H ;清70H-7AH共11个内存单元MOV R7,#0BH ;clr P3.7 ; CLEARDISP: MOV @R0,#00H ; INC R0 ; DJNZ R7,CLEARDISP ; MOV 20H,#00H ;清20H(标志用) MOV 7AH,#0AH ;放入"熄灭符"数据 MOV TMOD,#11H ;设T0、T1为16位定时器 MOV TL0,#0B0H ;50MS定时初值(T0计时用)MOV TH0,#3CH ;50MS定时初值 MOV TL1,#0B0H ;50MS定时初值(T1闪烁定时用)MOV TH1,#3CH ;50MS定时初值 SETB EA ;总中断开放 SETB ET0 ;允许T0中断 SETB TR0 ;开启T0定时器 MOV R4,#14H ;1秒定时用初值(50M S×20)START1: LCALL DISPLAY ;调用显示子程序 JNB P3.7,SETMM1 ;P3.7口为0时转时间调整程序SJMP START1 ;P3.7口为1时跳回START1 SETMM1: LJMP SETMM ;转到时间调整程序SETMM ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; 1秒计时程序 ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;T0中断服务程序 INTT0: PUSH ACC ;累加器入栈保护 PUSH PSW ;状态字入栈保护

简单51单片机数字时钟设计

题目:简单51单片机数字时钟设计 院系: 物理与电气工程学院 专业:自动化专业 班级:10级自动化 姓名:苏吉振 学号:2 老师:李艾华

引言 20世纪末,电子技术获得了飞速的发展,在其推动下,现代电子产品几乎渗透了社会的各个领域,有力地推动了社会生产力的发展和社会信息化程度的提高,同时也使现代电子产品性能进一步提高,产品更新换代的节奏也越来越快。 时间对人们来说总是那么宝贵,工作的忙碌性和繁杂性容易使人忘记当前的时间。忘记了要做的事情,当事情不是很重要的时候,这种遗忘无伤大雅。但是,一旦重要事情,一时的耽误可能酿成大祸。 目前,单片机正朝着高性能和多品种方向发展趋势将是进一步向着CMOS 化、低功耗、小体积、大容量、高性能、低价格和外围电路内装化等几个方面发展。下面是单片机的主要发展趋势。 单片机应用的重要意义还在于,它从根本上改变了传统的控制系统设计思想和设计方法。从前必须由模拟电路或数字电路实现的大部分功能,现在已能用单片机通过软件方法来实现了。这种软件代替硬件的控制技术也称为微控制技术,是传统控制技术的一次革命。 单片机模块中最常见的是数字钟,数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更更长的使用寿命,因此得到了广泛的使用。 数字钟是采用数字电路实现对时,分,秒数字显示的计时装置,广泛用于个 人家庭,车站, 码头办公室等公共场所,成为人们日常生活中不可少的必需品,由于数字集成电路的发展和石英晶体振荡器的广泛应用,使得数字钟的精度,远远超过老式钟表, 钟表的数字化给人们生产生活带来了极大的方便,而且大大地扩展了钟表原先的报时功能。诸如定时自动报警、按时自动打铃、时间程序自动控制、定时广播、自动起闭路灯、定时开关烘箱、通断动力设备、甚至各种定时电气的自动启用等,所有这些,都是以钟表数字化为基础的。因此,研究数字钟及扩大其应用,有着非常现实的意义。

基于51系列单片机及DS1302时钟芯片的电子时钟Proteus仿真_报告

目录 摘要 一、引言 (1) 二、基于单片机的电子时钟硬件选择分析 (2) 2.1主要IC芯片选择 (2) 2.1.1微处理器选择 (2) 2.1.2 DS1302简介 (4) 2.1.3 DS1302引脚说明 (4) 2.2电子时钟硬件电路设计 (5) 2.2.1时钟电路设计 (6) 2.2.2整点报时功能 (7) 三、Protel软件画原理图 (8) 3.1系统工作流程图 (8) 3.2原理图 (9) 四、proteus软件仿真及调试 (9) 4.1电路板的仿真 (9) 4.2软件调试 (9) 五、源程序 (10) 六、课设心得 (13) 七、参考文献 (13)

基于单片机电子时钟设计 摘要 电子时钟主要是利用电子技术将时钟电子化、数字化,拥有时钟精确、体积小、界面友好、可扩展性能强等特点,被广泛应用于生活和工作当中。另外,在生活和工农业生产中,也常常需要温度,这就需要电子时钟具有多功能性。 本设计主要为实现一款可正常显示时钟/日历、带有定时闹铃的多功能电子时钟。 本文对当前电子钟开发手段进行了比较和分析,最终确定了采用单片机技术实现多功能电子时钟。本设计应用AT89C52芯片作为核心,6位LED数码管显示,使用DS1302实时时钟日历芯片完成时钟/日历的基本功能。这种实现方法的优点是电路简单,性能可靠,实时性好,时间精确,操作简单,编程容易。 该电子时钟可以应用于一般的生活和工作中,也可通过改装,提高性能,增加新功能,从而给人们的生活和工作带来更多的方便。 关键词:电子时钟;多功能;AT89C52;时钟日历芯片

一、引言 时间是人类生活必不可少的重要元素,如果没有时间的概念,社会将不会有所发展和进步。从古代的水漏、十二天干地支,到后来的机械钟表以及当今的石英钟,都充分显现出了时间的重要,同时也代表着科技的进步。致力于计时器的研究和充分发挥时钟的作用,将有着重要的意义。 1.1 多功能电子时钟研究的背景和意义 20世纪末,电子技术获得了飞速的发展。在其推动下,现代电子产品几乎渗透到了社会的各个领域,有力的推动和提高了社会生产力的发展与信息化程度,同时也使现代电子产品性能进一步提升,产品更新换代的节奏也越来越快。 时间对人们来说总是那么宝贵,工作的忙碌性和繁杂容易使人忘记当前的时间。然而遇到重大事情的时候,一旦忘记时间,就会给自己或他人造成很大麻烦。平时我们要求上班准时,约会或召开会议必然要提及时间;火车要准点到达,航班要准点起飞;工业生产中,很多环节都需要用时间来确定工序替换时刻。所以说能随时准确的知道时间并利用时间,是我们生活和工作中必不可少的[1]。 电子钟是采用电子电路实现对时、分、秒进行数字显示的计时装臵,广泛应用于个人家庭,车站,码头办公室等公共场所,成为人们日常生活中不可少的必需品。由于数字集成电路的发展和石英晶体振荡器的广泛应用,使得数字钟的精度,远远超过老式钟表,钟表的数字化给人们生产生活带来了极大的方便,而且大大地扩展了钟表原先的报时功能。诸如定时自动报警、0按时自动打铃、定时广播、自动起闭路灯、定时开关烘箱、通断动力设备、甚至各种定时电气的自动启用等,所有这些,都是以钟表数字化为基础的。因此,研究数字钟及扩大其应用,有着非常现实的意义。

基于51单片机的实时时钟设计报告

课程设计(论文)任务书 信息工程学院信息工程专业(2)班 一、课程设计(论文)题目嵌入式课程设计 二、课程设计(论文)工作自 2014 年 6 月 9 日起至2014年 6月15日止。 三、课程设计(论文) 地点: 5-402 单片机实验室 四、课程设计(论文)内容要求: 1.本课程设计的目的 (1)使学生掌握单片机各功能模块的基本工作原理; (2)培养学生单片机应用系统的设计能力; (3)使学生能够较熟练地使用proteus工具完成单片机系统仿真。 (4)培养学生分析、解决问题的能力; (5)提高学生的科技论文写作能力。 2.课程设计的任务及要求 1)基本要求: (1)分析所设计系统中各功能模块的工作原理; (2)选用合适的器件(芯片); (3)提出系统的设计方案(要有系统电路原理图); (4)对所设计系统进行调试。 2)创新要求: 在基本要求达到后,可进行创新设计,如改善单片机应用系统的性能。 3)课程设计论文编写要求 (1)要按照书稿的规格打印撰写论文。 (2)论文包括目录(自动生成)、摘要、正文、小结、参考文献、附录等。 (3)论文装订按学校的统一要求完成。 4)答辩与评分标准: (1)完成原理分析:20分; (2)完成设计过程:30分; (3)完成调试:20分; (4)回答问题:20分; (5)格式规范性(10分)。

5)参考文献: (1)张齐.《单片机原理与嵌入式系统设计》电子工业出版社 (2)周润景.《PROTUES入门实用教程》机械工业出版社 (3)任向民.《微机接口技术实用教程》清华大学出版社 (4)https://www.doczj.com/doc/c96680219.html,/view/a5a9ceebf8c75fbfc77db2be.html 6)课程设计进度安排 内容天数地点 构思及收集资料1图书馆 系统设计与调试 4 实验室 撰写论文2图书馆、实验室 学生签名: 2014 年6 月9日 课程设计(论文)评审意见 (1)完成原理分析(20分):优()、良()、中()、一般()、差(); (2)设计分析(30分):优()、良()、中()、一般()、差(); (3)完成调试(20分):优()、良()、中()、一般()、差(); (4)回答问题(20分):优()、良()、中()、一般()、差(); (5)格式规范性(10分):优()、良()、中()、一般()、差(); 评阅人:职称: 2014 年6 月15 日

基于51单片机的电子时钟的设计

目录 0 前言 (1) 1 总体方案设计 (2) 2 硬件电路设计 (2) 3 软件设计 (5) 4 调试分析及说明 (7) 5 结论 (9) 参考文献 (9) 课设体会 (10) 附录1 电路原理 (12) 附录2 程序清单 (13)

电子时钟的设计 许山沈阳航空航天大学自动化学院 摘要:传统的数字电子时钟采用了较多的分立元器件,不仅占用了很大的空间而且利用率也比很低,随着系统设计复杂度的不断提高,用传统时钟系统设计方法很难满足设计需求。 单片机是集CPU、RAM、ROM、定时器/计数器和多种接口于一体的微控制器。它体积小、成本低、功能强,广泛应用于智能产品和工业自动化上。而51系列的单片机是各单片机中最为典型和最有代表性的一种。,本次设计提出了系统总体设计方案,并设计了各部分硬件模块和软件流程,在用C语言设计了具体软件程序后,将各个模块完全编译通过过后,结果证明了该设计系统的可行性。该设计给出了以AT89C2051为核心,利用单片机的运算和控制功能,并采用系统化LED显示模块实时显示数字的设计方案,适当地解决了实际生产和日常生活中对计时高精确度的要求,因此该设计在现代社会中具有广泛的应用性。 关键字:AT89C2051,C语言程序,电子钟。 0前言 利用51单片机开发电子时钟,实现时间显示、调整和闹铃功能。具体要求如下: (1)按以上要求制定设计方案,并绘制出系统工作框图; (2)按要求设计部分外围电路,并与单片机仿真器、单片机实验箱、电源等正确可靠的连接,给出电路原理图; (3)用仿真器及单片机实验箱进行程序设计与调试;

(4)利用键盘输入调整秒、分和小时时刻,数码管显示时间; (5)实现闹钟功能,在设定的时间给出声音提示。 1总体方案设计 该电子时钟由89C51,BUTTON,1602 LCD液晶屏等构成,采用晶振电路作为驱动电路,利用单片机内部定时计数器0通过软件扩展产生的一秒定时,达到时分秒的计时,六十秒为一分钟,六十分钟为一小时,满二十四小时为一天。闹钟和时钟的时分秒的调节是由一个按键控制,而另外一个按键控制时钟和闹钟的时间的调节。 图1 系统结构框图 该电子时钟由STC89C51,BUTTON,1602 LCD液晶屏等构成,采用晶振电路作为驱动电路,晶振电路的晶振频率为12MHZ,使用的定时器/计数器工作方式0,通过软件扩展产生的一秒定时,达到时分秒的计时,60秒为一分钟,60分钟为一小时,24小时为一天,又重00:00:00开始计时。没有按键按键按下时,时钟正常运行,当按下调节时钟按键K1,就会关闭时钟,当按下闹钟按键K3时时钟就会进入设置时间界面,但是时钟不会停止工作,按K2键,,就可以对时钟和闹钟要设置的时间进行调整。 2硬件电路设计

51单片机DS1302日历时钟程序

51 单片机ds1302 时钟芯片 #define uint unsigned int #define uchar unsigned char sbit lcdrs = P1^0; sbit lcdrw = P1^1; sbit lcden = P1^2; sbit key0 = P2^0;//功能键,选择时分秒 sbit key1 = P2^1;//加1键 sbit key2 = P2^2;//减1键 sbit key4 = P2^4; sbit clk_1302 = P1^5; //1302芯片位定义sbit io_1302 = P1^6; sbit rst_1302 = P1^7; uchar bdata dat; sbit dat0 = dat^0; sbit dat7 = dat^7; uchar key0_count;//按键0被按的次数(0~3) uchar flag; char hour,minute,second; uchar table_date[] = "2009-4-12 Mon"; uchar table_time[] = "00:00:00"; /****** 函数申明********/ void write_cmd_1602(uchar cmd); void write_data_1602(uchar dat); void write_add(uchar add,uchar dat); void init1602(); void delay(uint z); uchar reverse(uchar c); void keyscan(); void init(); void RTC_initial (); void wr_1302(uchar wr_data); uchar rd_1302(void); uchar uc_R1302(uchar ucAddr); void v_W1302(uchar ucAddr, uchar ucDa); 主程序 #include

AT89C51单片机时钟电路

工程设计 AT89C51单片机时钟电路 工程设计 目录 任务书 摘要 前言 说明书 第一章电路原理分析 1-1 显示原理 1-2 数码管结构及代码显示 1-3 键盘及读数原理 1-4 连击功能的实现 第二章程序设计思想和相关指令介绍 2-1 数据与代码转换 2-2 计时功能的实现与中断服务程序 2-3 时间控制功能与比较指令 2-4 时钟误差的分析 附录A 电路图 附录B 存储单元地址表 附录C 输入输出口功能分配表 附录D 定时中断程序流程图 附录F 调时功能流程图 附录G 程序清单 摘要

单片计算机即单片微型计算机。(Single-Chip Microcomputer ),是集 CPU ,RAM ,ROM ,定时,计数和多种接口于一体的微控制器。他体积小,成本低,功能强,广泛应用于智能产品和工业自动化上。而51 单片机是各单片机中最为典型和最有代表性的一种。这次毕业设计通过对它的学习,应用,从而达到学习、设计、开发软、硬的能力。 前言 本文通过用对一个能实现定时,时钟,日历显示功能的时间系统的设计学习,详细介绍了51 单片机应用中的数据转换显示,数码管显示原理,动态扫描显示原理,单片机的定时中断原理、从而达到学习,了解单片机相关指令在各方面的应用。系统由AT89C51、LED 数码管、按键、二极管等部分构成,能实现时钟日历的功能:能进行时、分、秒的显示。也具有日历计算、显示和时钟,日历的校准、定时时间的设定,实现三路开关定时输出等功能。文章后附有电路图,程序清单,各数据存储单元的所在地址,输入输出口对应表。以供读者参考。因作者本人也是个初学者,水平有限,难免有疏落不足之处,敬请老师和同学能给与批评正。 说明书 系统由AT89C51、LED 数码管、按键、发光二极管等部分构成,能实现时间的调整、定时时间的设定,输出等功能。系统的功能选择由SB0、SB1、SB2、SB3、SB4 完成。其中SB0为时间校对,定时器调整功能键,按SB 0 进入调整状态。SB1 为功能切换键。第一轮按动SB1 依次进入一路、二路、三路定时时间设臵提示程序,按SB3 进入各路定时调整状态。定时时间到,二极管发亮。到了关断时间后灭掉。如果不进入继续按SB1 键,依次进入时间?年?位校对、?月?位校对、?日?位校对、?时?位校对、?分?位校对、?秒?位校对状态。不管是进入那种状态,按动SB2 皆可以使被调整位进行不进位增量加1 变化。各预臵量设臵完成后,系统将所有的设臵存入RAM 中,按SB1 退出调整状态。上电后,系统自动进入计时状态,起始于? 00?时? 00?分。SB4 为年月日显示转换键,可使原来显示时分秒转换显示年月日。 二、电路原理分析 1. 显示原理 电原理图见附图1。由6 个共阴极的数码管组成时、分、秒的显示。P0 口的8 条数据线P0.0 至P0.7 分别与两个CD4511 译码的ABCD 口相接,P2 口的P2.0 至P2.2 分别通过电阻R10 至R13 与VT1 至VT3 的基极相连接。这样通过P0 口送出一个存储单元的高位、低位BCD显示代码,通过P2 口送出扫描选通代码轮流点亮LED1 至LED6,就会将要显示的数据在数码管中显示出来。从P0 口输出的代码是BCD 码,从P2 口输出的就是位选码。 2. 数码管结构及代码显示

基于51单片机的电子时钟设计源程序

#include unsigned char DispBuf[6]; //时间显示缓冲区 unsigned char Disdate[6]; //日期显示缓冲区 unsigned char DisSec[6]; //秒表缓冲区 struct //设定时间结构体 { unsigned char Hour; unsigned char Min; unsigned char Sec; }Time; struct //设定日期结构体 { unsigned char Year; unsigned char Month; unsigned char Days; }Date; struct //设定毫秒结构体 { unsigned char Minite; unsigned char Second; unsigned char MilliSec; }Millisecond; unsigned char point=0; unsigned char point1=0; unsigned char point2=0; unsigned char Daymount; unsigned char Daymount1; unsigned char T0_Int_Times=0; //中断次数计数变量 unsigned char Flash_flag=0; //闪烁标志,每半秒闪烁 unsigned char Flash_flag1=0; //闪烁标志,每半秒闪烁 unsigned char DisPlay_Back=0; //显示缓冲区更新备份,如果显示缓冲区更新则跟闪烁标志不一致 unsigned char DisPlay_Back1=0; //显示缓冲区更新备份,如果显示缓冲区更新则跟闪烁标志不一致 unsigned char i,j; unsigned char SetMillisecond; //启动秒表 code unsigned char LEDCode[]={0x01,0xd7,0x22,0x82,0xc4,0x88,0x08,0xc1,0x00,0x80}; //数码管显示代码 code unsigned char ErrorLEDCode[]={0x01,0xe7,0x12,0x82,0xc4,0x88,0x08,0xc1,0x00,0x80};//绘制错误图纸的数码管显示代码 void DisPlayBuf(); void ChangeToDispCode(); void ChangeToDispCode1(); void changedate(); // 调日期 void displaydate(); // 显示日期 void makedays(); //确定每个月的日期 void runSec();

电子时钟设计(DS1302)基于51单片机

安康学院单片机课程设计报告书 课题名称:电子时钟的设计(DS1302) 姓名: 学号: 院系:电子与信息工程系 专业:电子信息工程 指导教师: 时间:2012年6月

课程设计项目成绩评定表设计项目成绩评定表

课程设计报告书目录 设计报告书目录 一、设计目的 (1) 二、设计思路 (1) 三、设计过程 (1) 3.1系统设计结构图 (1) 3.2 MCU微控制器电路 (2) 3.3 LCD液晶显示电路 (4) 3.4 实时时钟电路 (5) 3.5 复位电路 (5) 3.6 晶振电路 (6) 四、系统调试与结果 (6) 五、主要元器件与设备 (6) 六、课程设计体会 (7) 七、参考文献 (7)

一、设计目的 1、掌握电子时钟的基本工作方式。 2、进一步熟悉DS1302芯片的特性。 3、通过使用各基本指令,进一步熟练掌握单片机的编程和程序调试。 二、设计思路 利用AT89C52的特点及DS1302的特点,设计一种基于DS1302单片机控制,再利用数码管显示的数字钟。本系统硬件利用AT89S52作为CPU进行总体控制,通过DS1302时钟芯片获取准确详细的时间(年、月、日、周、日、时、分、秒准确时间),对时钟信号进行控制,同时利用液晶显示芯片LCD1602对时间进行准确显示年、月、日、周、日、时、分、秒。 三、设计过程 3.1系统设计结构图 图1系统设计结构图

图2 系统软件流程图 根据系统设计的要求和设计思路,确定该系统的系统设计结构图。如图1所示。硬件电路主要由MCU微处理控制器单元、DS1302时钟电路、储存器、复位电路、晶振电路、数码管显示模块构成。 3.2MCU微控制器电路 AT89S52作为系统的核心控制元件,只有它能正常工作后才能使其它的元件进入正常工作状态。因此,下面对AT89S52进行必要的说明,AT89S52的管脚如图3所示。

51单片机电子时钟设计报告

电子时钟实验报告 全部代码在文档末尾:51单片机,LCD1602液晶显示屏平台下编程实现,可直接编译运行 目录: 一,实验目的 (1) 二,实验要求 (2) 三,实验基本原理 (2) 四,实验设计分析 (2) 五,实验要求实现 (3) A.电路设计 (3) 1. 整体设计 (3) 2. 分块设计 (4) 2.1 输入部分 (4) 2.2 输出部分 (5) 2.3 晶振与复位电路 (5) B.程序设计 (6) B.1 程序总体设计 (6) B.2 程序主要模块 (6) 五.实验总结及感想 (8) 一,实验目的 20世纪末,电子技术获得了飞速的发展,在其推动下,现代电子产品几乎渗透了社会的各个领域,有力地推动了社会生产力的发展和社会信息化程度的提高,同时也使现代电子产品性能进一步提高,产品更新换代的节奏也越来越快。 现代生活的人们越来越重视起了时间观念,可以说是时间和金钱划上了等号。对于那些对时间把握非常严格和准确的人或事来说,时间的不准确会带来非常大的麻烦,所以电子钟是以其小巧,价格低廉,走时精度高,使用方便,

功能多,便于集成化而受广大消费的喜爱,得到了广泛的使用。 1. 学习8051定时器时间计时处理、按键扫描及LCD液晶显示的设计方法。 2. 设计任务及要求利用实验平台上LCD1602液晶显示屏,设计带有闹铃功能的数字时钟 二,实验要求 A.基本要求: 1. 在LCD1602液晶显示屏上显示当前日期,时间。 2. 利用按键可对时间及闹玲进行设置,并可显示设置闹玲的时间。闹玲时间到蜂鸣器发出 声响,一分钟后闹铃停止。 B.扩展部分: 1.日历功能(能对年,月,日,星期进行显示,分辨平年,闰年以及各月天数,并调整)实现年月日时分秒的调整,星期准确的随着日期改变而改变进行显示。 2.定时功能(设定一段时间长度,定时到后,闹铃提示) C.可扩展部分: 1.闹铃重响功能(闹铃被停止后,以停止时刻开始,一段时间后闹铃重响,且重响时间的间隔可调) 2.可进行备忘录提示,按照年月日,可在设定的某年某月进行闹铃提示。 三,实验基本原理 利用单片机定时器完成计时功能,定时器0计时中断程序每隔0.05s中断一次并当作一个计数,设定定时1秒的中断计数初值为20,每中断一次中断计数初值加1,当减到20时,则表示1s到了,秒变量加1,同理再判断是否1min钟到了,再判断是否1h到了,是否一天到了,是否一个月到了,是否一年到了。 将时间在LCD液晶屏上显示,降低了程序的编写难度。LCD的固定显示特性是我们省去了数码管的动态扫描显示。 四,实验设计分析 针对要实现的功能,采用AT89S52单片机进行设计,AT89S52 单片机是一款低功耗,高性能CMOS8位单片机,片内含4KB在线可编程(ISP)的可反复擦写1000次的Flash只读程序存储器,器件采用高密度、非易失性存储技术制造,兼容标准MCS- 51指令系统及80C51引脚结

基于单片机DS1302的时钟万年历(带闹钟)

#include #define uchar unsigned char #define uint unsigned int sbit lcdws=P2^1; //1602管脚定义 sbit lcden=P2^0; sbit lcdrs=P2^2; sbit key1=P2^3; //闹钟设置键 sbit key2=P2^4; sbit key3=P1^5;//功能键定义 sbit key4=P1^6;//增大键定义 sbit key5=P1^7;//减小键定义 uchar shi,fen,miao,ashi,afen,amiao,year,month,day,week; uchar s1num=0,s1num2=0,temp; bit flag; float f_temp; uint i,d; uchar code table2[]={0x20,0x20,0x2e,0x20,0xdf,0x43}; uchar code table[]="20 - - "; uchar code table1[]=" : : "; sbit ds=P1^0;//ds18b20信号线 sbit beep=P1^4; //蜂鸣器管脚定义 sbit ACC_7 = ACC^7; //位寻址寄存器定义 sbit SCLK = P1^2; // DS1302时钟信号sbit DIO= P1^1; // DS1302数据信号sbit CE = P1^3; //地址、数据发送子程序 //void delay2(uint ms) // { // uchar t; // while(ms--); for(t=0;t<120;t++); //} // void playmusic() // { // uint i2=0,j2,k2; // while(jiepai[i2]!=0||song[i2]!=0) // { // for(j2=0;j2

51单片机的电子时钟设计

基于51单片机的电子时钟设计 摘要:本文介绍了基于51单片机的电子时钟的设计,从硬件和软件两个方面给出了具体实现过程。该时钟的设计采用功能分块的思想方法,将硬件电路划分为开关电路,显示驱动电路和数码管电路等若干独立模块,而软件的实现则由闹钟的声音程序、时间显示程序、日期显示程序,秒表显示程序,时间调整程序、闹钟调整程序、定时调整程序,延时程序等组成。文中给出了各个模块的电路图,并用Proteus的ISIS软件对电子时钟系统的各个功能进行了仿真,并给出了相应的仿真结果图像。 关键词:单片机;电子时钟;键盘控制 Electronic Clock Design Based on 51 Single-chip *** Shandong Institute of Business and Technology , 264005 Abstract:This paper introduces the electronic clock design based on 51 single-chip microcomputer, and it provides us specific implementation process from aspects of hardware and software. This clock is designed by the method of function blocks. In hardware, it’s circuit is divided into switch block, display drive block and digital control block. However, the software consist of the program of alarm clock, time display, date display, stopwatch display, time adjust, timing adjustment, the alarm clock adjustment, time delay and so on. Circuit diagrams of each module is also given and the corresponding simulation image of this clock produced by software of Proteus is also showed in this paper. Key words:single chip microcomputer; electronic clock;Keyboard control 一,引言 1957年,Ventura发明了世界上第一个电子表,从而奠定了电子时钟的基础,电子时钟开始迅速发展起来。现代的电子时钟是基于单片机的一种计时工具,采用延时程序产生一定的时间中断,用于一秒的定义,通过计数方式进行满六十秒分钟进一,满六十分小时进一,满二十四小时小时清零。从而达到计时的功能,是人民日常生活补课缺少的工具。现在高精度的计时工具大多数都使用了石英晶体振荡器,由于电子钟、石英钟、石英表都采用了石英技术,因此走时精度高,

基于51单片机 DS1302 LCD1602数字时钟显示

#include #include #include #define uint unsigned int #define uchar unsigned char uchar code table[]="I LIKE MCU!"; sbit RS=P2^0; sbit RW=P2^1; sbit EN=P2^2; sbit IO=P1^0; sbit sclk=P1^1; sbit rst=P1^2; uchar *week[]={"SUN","****","MON","TUS","WEN","THU","FRI","SAT"}; uchar lcd_buffer1[]={"DA TE 00-00-00 "}; uchar lcd_buffer2[]={"TIME 00:00:00 "}; uchar datetime[7]; void delay(uchar ms) { uchar i; while(ms--) for(i=0;i<120;i++);

} //忙检测 uchar busy() { uchar test; RW=1; RS=0; EN=1; test=P0; EN=0; return test; } //写LCD命令 void writecmd(uchar cmd) { while((busy()&0x80)==0x80); RS=0; RW=0; P0=cmd; EN=1; delay(5); EN=0; } //发送数据 void writedata(uchar dat) { while((busy()&0x80)==0x80); RW=0; RS=1; P0=dat; EN=1; delay(5); EN=0; } void init() { writecmd(0x38); delay(5); writecmd(0x01); delay(5); writecmd(0x06);

相关主题
文本预览
相关文档 最新文档