当前位置:文档之家› (整理)定积分的近似计算.

(整理)定积分的近似计算.

(整理)定积分的近似计算.
(整理)定积分的近似计算.

实验二定积分的近似计算

一、问题背景与实验目的

利用牛顿—莱布尼兹公式虽然可以精确地计算定积分的值,但它仅适用于被积函数的原函数能用初等函数表达出来的情形.如果这点办不到或者不容易办到,这就有必要考虑近似计算的方法.在定积分的很多应用问题中,被积函数甚至没有解析表达式,可能只是一条实验记录曲线,或者是一组离散的采样值,这时只能应用近似方法去计算相应的定积分.

本实验将主要研究定积分的三种近似计算算法:矩形法、梯形法、抛物线法.对于定积分的近似数值计算,Matlab有专门函数可用.

二、相关函数(命令)及简介

1.sum(a):求数组a的和.

2.format long:长格式,即屏幕显示15位有效数字.

(注:由于本实验要比较近似解法和精确求解间的误差,需要更高的精度).3.double():若输入的是字符则转化为相应的ASCII码;若输入的是整型数值则转化为相应的实型数值.

4.quad():抛物线法求数值积分.

格式: quad(fun,a,b) ,注意此处的fun是函数,并且为数值形式的,所以使用*、/、^等运算时要在其前加上小数点,即 .*、./、.^等.

例:Q = quad('1./(x.^3-2*x-5)',0,2);

5.trapz():梯形法求数值积分.

格式:trapz(x,y)

其中x为带有步长的积分区间;y为数值形式的运算(相当于上面介绍的函数fun)

例:计算

x=0:pi/100:pi;y=sin(x);

trapz(x,y)

6.dblquad():抛物线法求二重数值积分.

格式:dblquad(fun,xmin,xmax,ymin,ymax),fun可以用inline定义,也可以通过某个函数文件的句柄传递.

例1:Q1 = dblquad(inline('y*sin(x)'), pi, 2*pi, 0, pi)

顺便计算下面的Q2,通过计算,比较Q1 与Q2结果(或加上手工验算),找出积分变量x、y的上下限的函数代入方法.

Q2 = dblquad(inline('y*sin(x)'), 0, pi, pi, 2*pi) 例2:Q3 = dblquad(@integrnd, pi, 2*pi, 0, pi)

这时必须存在一个函数文件integrnd.m:

function z = integrnd(x, y)

z = y*sin(x);

7.fprintf(文件地址,格式,写入的变量):把数据写入指定文件.例:x = 0:.1:1;

y = [x; exp(x)];

fid = fopen('exp.txt','w'); %打开文件

fprintf(fid,'%6.2f %12.8f\n',y); %写入

fclose(fid) %关闭文件

8.syms 变量1 变量2 …:定义变量为符号.

9.sym('表达式'):将表达式定义为符号.

解释:Matlab中的符号运算事实上是借用了Maple的软件包,所以当在Matlab中要对符号进行运算时,必须先把要用到的变量定义为符号.

10.int(f,v,a,b):求f关于v积分,积分区间由a到b.

11.subs(f,'x',a):将 a 的值赋给符号表达式 f 中的 x,并计算出值.若简单地使用subs(f),则将f的所有符号变量用可能的数值代入,并计算出值。

三、实验内容

一、问题的提出

计算定积分的方法:

(1) 求原函数;

(2) 利用牛顿-莱布尼茨公式计算结果。

问题:

(1) 被积函数的原函数不能用初等函数表示;

(2) 被积函数难于用公式表示,而是用图形或表格给出的;

(3) 被积函数虽然能用公式表示,但计算其原函数很困难。

解决办法:

建立定积分的近似计算方法。

思路:

在数值上表示曲边梯形的面积,只要近似地算出相应的曲边梯形的面积,就可得到所给定积分的近似值。

常用方法:矩形法、梯形法、抛物线法.

二、矩形法

用分点a=x

0,x

1

, (x)

n

=b将区间[a,b]n等分,取小区间左端点的函数值

y

i

(i=0,1,2,…,n-1)作为窄矩形的高,如图:

则有:

取小区间右端点的函数值y

(i=1,2,…,n)作为窄矩形的高,如图:

i

则有:

以上两公式称为矩形法公式。

例:用矩形法求

,并与用牛顿-莱布尼茨公式计算的结果进行比较。

程序如下:

#include

#include

void main()

{

double result,a=0,b=1,i,n=1000000,h;

printf("按牛顿公式计算得到的结果:%f\n",sin(b)-sin(a));

result=0;

h=(b-a)/n;//计算区间高度

for(i=1;i<=n;i++)//求和

result=result+cos(a+i*h);

result=h*result;//乘以区间高度

printf("用近似公式计算得到的结果:%f\n",result);

}

三、梯形法

梯形法就是在每个小区间上,以窄梯形的面积近似代替窄曲边梯形的面积,如图:

则有:

例:用梯形法求

,并与用牛顿-莱布尼茨公式计算的结果进行比较。

#include

#include

void main()

{

double result,a=0,b=1,i,n=1000000,h;

printf("按牛顿公式计算得到的结果:%f\n",sin(b)-sin(a));

result=0;

h=(b-a)/n;//计算区间高度

for(i=1;i<=n-1;i++)//求和

result=result+cos(a+i*h);

result+=(cos(a)+cos(b))/2;

result=h*result;//乘以区间高度

printf("用近似公式计算得到的结果:%f\n",result);

}

四、抛物线法

此法就是将曲线分成许多小段,用对称轴平行于y轴的二次抛物级上的一段弧来近似替代原来的曲线弧,从而得到定积分的近似值。

用分点a=x

0,x

1

, (x)

n

=b将区间[a,b]n等分(偶数),这些分点对应曲线上的点为

M i (x

i

,y

i

)(其中y

i

=f(x

i

),i=0,1,2,…,n),如图:

因为经过三个不同的点可以唯一确定一条抛物线,可将这些曲线上的点M

i

互相

衔接地分成n/2组{M

0,M

1

,M

2

},{M

2

,M

3

,M

4

},…,{M

n-2

,M

n-1

,M

n

},即每相邻两个区间为

一组。在每组{ M

2k-2, M

2k-1

, M

2k

}(k=1,2,…,n/2)所对应的子曲间[x

2k-2

,x

2k

]上,用

经过点M

2k-2, M

2k-1

, M

2k

的二次抛物线近似代替曲线弧。

下面讨论如何计算积分。

设h为区间高度,即h=x

2k -x

2k-1

=x

2k-1

-x

2k-2

。根据积分性质(积分在数值上表示曲

边梯形的面积)有如下等式成立:

即将区间[x

2k-2,x

2k

]平移到区间[-h,h]上,计算所得的定积分的值与原区间上的相

同。

计算在[-h,h]上过三点的抛物线为曲边的面积。

抛物线中的可由下列方程组确定:

由此得:

于是所求面积为:

显然,曲边梯形的面积只与的纵坐标及底边所在的区间的长度2h 有关。由此可知n/2组梯形的面积为:

例:用抛物法求

,并与用牛顿-莱布尼茨公式计算的结果进行比较。

#include

#include

void main()

{

double result,a=0,b=1,i,n=1000000,h;

printf("按牛顿公式计算得到的结果:%f\n",sin(b)-sin(a));

result=0;

h=(b-a)/n;//计算区间高度

for(i=1;i<=n/2;i++)//求和

result=result+2*cos(a+2*i*h)+4*cos(a+(2*i-1)*h);

result+=cos(a)+cos(b);

result=h*result/3;//乘以区间高度

printf("用近似公式计算得到的结果:%f\n",result);

}

注意:对于以上三种方法当n取得越大时近似程度就越好。

练习题:

用三种积分法近似计算如下定积分的值:

4. 直接应用Matlab命令计算结果

(1)数值计算

方法1:int('1/(1+x^2)','x',0,1) (符号求积分)

方法2:quad('1./(1+x.^2)',0,1) (抛物线法求数值积分)

方法3:x=0:0.001:1;

y=1./(1+x.^2);

trapz(x,y) (梯形法求数值积分)

(2)数值计算

方法1:int(int('x+y^2','y',-1,1),'x',0,2) (符号求积分)

方法2:dblquad(inline('x+y^2'),0,2,-1,1) (抛物线法二重数值积分)四、自己动手

1.实现实验内容中的例子,即分别采用矩形法、梯形法、抛物线法计算,取,并比较三种方法的精确程度.

2.分别用梯形法与抛物线法,计算,取.并尝试直接使用函数trapz()、quad()进行计算求解,比较结果的差异.

3.试计算定积分.(注意:可以运用trapz()、quad()或附录程序求解吗?为什么?)

4.将的近似计算结果与Matlab中各命令的计算结果相比较,试猜测Matlab中的数值积分命令最可能采用了哪一种近似计算方法?并找出其他例子支持你的观点.

5.通过整个实验内容及练习,你能否作出一些理论上的小结,即针对什么类型的函数(具有某种单调特性或凹凸特性),用某种近似计算方法所得结果更接近于实际值?

6.学习fulu2sum.m的程序设计方法,尝试用函数 sum 改写附录1和附录3的程序,避免for 循环。

(新)高中数学高考总复习定积分与微积分基本定理习题及详解

年 级 高二 学科 数学 内容标题 定积分的计算 编稿老师 马利军 一、教学目标: 1. 理解定积分的基本概念并能利用定积分的几何意义解决一些简单的积分计算问题. 2. 理解微积分的基本定理,并会用定积分公式解决简单函数的定积分问题. 二、知识要点分析 1. 定积分的概念:函数)(x f 在区间[a ,b ]上的定积分表示为:? b a dx x f )( 2. 定积分的几何意义: (1)当函数f (x )在区间[a ,b]上恒为正时,定积分? b a dx x f )(的几何意义是:y=f (x ) 与x=a ,x=b 及x 轴围成的曲边梯形面积,在一般情形下. ? b a dx x f )(的几何意义是介于x 轴、 函数f (x )的图象、以及直线x=a ,x=b 之间的各部分的面积代数和,在x 轴上方的面积取正号,x 轴下方的面积取负号. 在图(1)中:0s dx )x (f b a >=? ,在图(2)中:0s dx )x (f b a <=? ,在图(3)中:dx )x (f b a ? 表示函数y=f (x )图象及直线x=a ,x=b 、x 轴围成的面积的代数和. 注:函数y=f (x )图象与x 轴及直线x=a ,x=b 围成的面积不一定等于? b a dx x f )(,仅 当在区间[a ,b]上f (x )恒正时,其面积才等于 ? b a dx x f )(. 3. 定积分的性质,(设函数f (x ),g (x )在区间[a ,b ]上可积) (1)???±=±b a b a b a dx )x (g dx )x (f dx )]x (g )x (f [ (2)?? =b a b a dx x f k dx x kf )()(,(k 为常数) (3) ?? ?+=b c b a c a dx x f dx x f dx x f )()()( (4)若在区间[a ,b ]上,? ≥≥b a dx x f x f 0)(,0)(则

高中数学高考总复习定积分与微积分基本定理习题及详解

一、教学目标:1. 理解定积分的基本概念并能利用定积分的几何意义解决一些简单的积分计算问题. 2. 理解微积分的基本定理,并会用定积分公式解决简单函数的定积分问题. 二、知识要点分析 1. 定积分的概念:函数)(x f 在区间[a ,b ]上的定积分表示为:?b a dx x f )( 2. 定积分的几何意义: (1)当函数f (x )在区间[a ,b]上恒为正时,定积分?b a dx x f )(的几何意义是:y=f (x )与x=a ,x= b 及x 轴围成的曲边梯形面积,在一般情形下.?b a dx x f )(的几何意义是介于x 轴、函数f (x )的图象、以及直线x=a ,x= b 之间的各部分的面积代数和,在x 轴上方的面积取正号,x 轴下方的面积取负号. 在图(1)中:0s dx )x (f b a >=?,在图(2)中:0s dx )x (f b a <=?,在图(3)中:dx )x (f b a ?表示 函数y=f (x )图象及直线x=a ,x=b 、x 轴围成的面积的代数和. 注:函数y=f (x )图象与x 轴及直线x=a ,x=b 围成的面积不一定等于?b a dx x f )(,仅当在区间[a ,b]上f (x )恒正时,其面积才等于?b a dx x f )(. 3. 定积分的性质,(设函数f (x ),g (x )在区间[a ,b ]上可积) (1)???±=±b a b a b a dx )x (g dx )x (f dx )]x (g )x (f [ (2)??=b a b a dx x f k dx x kf )()(,(k 为常数) (3)???+=b c b a c a dx x f dx x f dx x f )()()( (4)若在区间[a , b ]上,?≥≥b a dx x f x f 0)(,0)(则 推论:(1)若在区间[a ,b ]上,??≤≤b a b a dx x g dx x f x g x f )()(),()(则 (2)??≤b a b a dx x f dx x f |)(||)(| (3)若f (x )是偶函数,则??=-a a a dx x f dx x f 0)(2)(,若f (x )是奇函数,则0)(=?-a a dx x f 4. 微积分基本定理: 一般地,若)()()(],[)(),()('a F b F dx x f b a x f x f x F b a -==?上可积,则在且 注:(1)若)()('x f x F =则F (x )叫函数f (x )在区间[a ,b ]上的一个原函数,根据

MATLAB实验三-定积分的近似计算

实验三定积分的近似计算 一、问题背景与实验目的 利用牛顿—莱布尼兹公式虽然可以精确地计算定积分的值,但它仅适用于被积函数的原函数能用初等函数表达出来的情形.如果这点办不到或者不容易办到,这就有必要考虑近似计算的方法.在定积分的很多应用问题中,被积函数甚至没有解析表达式,可能只是一条实验记录曲线,或者是一组离散的采样值,这时只能应用近似方法去计算相应的定积分. 本实验将主要研究定积分的三种近似计算算法:矩形法、梯形法、抛物线法.对于定积分的近似数值计算,Matlab有专门函数可用. 二、相关函数(命令)及简介 1.sum(a):求数组a的和. 2.format long:长格式,即屏幕显示15位有效数字. (注:由于本实验要比较近似解法和精确求解间的误差,需要更高的精度).3.double():若输入的是字符则转化为相应的ASCII码;若输入的是整型数值则转化为相应的实型数值. 4.quad():抛物线法求数值积分. 格式: quad(fun,a,b) ,注意此处的fun是函数,并且为数值形式的,所以使用*、/、^等运算时要在其前加上小数点,即 .*、./、.^等.例:Q = quad('1./(x.^3-2*x-5)',0,2); 5.trapz():梯形法求数值积分. 格式:trapz(x,y) 其中x为带有步长的积分区间;y为数值形式的运算(相当于上面介绍的函数fun) 例:计算 0sin()d x x π ? x=0:pi/100:pi;y=sin(x); trapz(x,y) 6.dblquad():抛物线法求二重数值积分. 格式:dblquad(fun,xmin,xmax,ymin,ymax),fun可以用inline定义,也可以通过某个函数文件的句柄传递. 例1:Q1 = dblquad(inline('y*sin(x)'), pi, 2*pi, 0, pi) 顺便计算下面的Q2,通过计算,比较Q1 与Q2结果(或加上手工验算),找出积分变量x、y的上下限的函数代入方法. Q2 = dblquad(inline('y*sin(x)'), 0, pi, pi, 2*pi)例2:Q3 = dblquad(@integrnd, pi, 2*pi, 0, pi) 这时必须存在一个函数文件integrnd.m:

实验二 定积分的近似计算

实验二定积分的近似计算 一、问题背景与实验目的 利用牛顿—莱布尼兹公式虽然可以精确地计算定积分的值,但它仅适用于被积函数的原函数能用初等函数表达出来的情形.如果这点办不到或者不容易办到,这就有必要考虑近似计算的方法.在定积分的很多应用问题中,被积函数甚至没有解析表达式,可能只是一条实验记录曲线,或者是一组离散的采样值,这时只能应用近似方法去计算相应的定积分. 本实验将主要研究定积分的三种近似计算算法:矩形法、梯形法、抛物线法.对于定积分的近似数值计算,Matlab有专门函数可用. 二、相关函数(命令)及简介 1.sum(a):求数组a的和. 2.format long:长格式,即屏幕显示15位有效数字. (注:由于本实验要比较近似解法和精确求解间的误差,需要更高的精度).3.double():若输入的是字符则转化为相应的ASCII码;若输入的是整型数值则转化为相应的实型数值. 4.quad():抛物线法求数值积分. 格式:quad(fun,a,b) ,注意此处的fun是函数,并且为数值形式的,所以使用*、/、^等运算时要在其前加上小数点,即.*、./、.^等. 例:Q = quad('1./(x.^3-2*x-5)',0,2); 5.trapz():梯形法求数值积分. 格式:trapz(x,y) 其中x为带有步长的积分区间;y为数值形式的运算(相当于上面介绍的函数fun) 例:计算 0sin()d x x π ? x=0:pi/100:pi;y=sin(x); trapz(x,y) 6.dblquad():抛物线法求二重数值积分. 格式:dblquad(fun,xmin,xmax,ymin,ymax),fun可以用inline定义,也可以通过某个函数文件的句柄传递. 例1:Q1 = dblquad(inline('y*sin(x)'), pi, 2*pi, 0, pi) 顺便计算下面的Q2,通过计算,比较Q1 与Q2结果(或加上手工验算),找出积分变量x、y的上下限的函数代入方法. Q2 = dblquad(inline('y*sin(x)'), 0, pi, pi, 2*pi) 例2:Q3 = dblquad(@integrnd, pi, 2*pi, 0, pi) 这时必须存在一个函数文件integrnd.m:

高中数学定积分计算习题

定积分的计算 班级 姓名 一、利用几何意义求下列定积分 (1)dx x ? 1 1 -2-1 (2)dx x ? 2 2-4 (3) dx x ? 2 2-2x (4) ()dx x x ? -2 4 二、定积分计算 (1)()dx ?1 7-2x (2)( ) d x ?+2 1 x 2x 32 (3)dx ?3 1 x 3 (4)dx x ?π π - sin (5)dx x ?e 1 ln (6)dx ? +1 x 112 (7)() dx x x ?+-10 2 32 (8)()dx 2 31 1-x ? (9)dx ?+1 1 -2x x 2)( (10)( ) d x x ?+21 2x 1x (11)() dx x x ?-+1 1 -352x (12)() dx e e x x ?+ln2 x -e (13)dx x ?+π π --cosx sin ) ( (14)dx ? e 1 x 2 (15)dx x ?2 1 -x sin -2e )( (16)dx ?++2 1-3x 1 x x 2 (17)dx ? 2 1x 13 (18)()dx 2 2 -1x ?+

三、定积分求面积、体积 1求由抛物线y 2=2x 与直线y =4-x 围成的平面图形的面积。 2.求曲线y =x ,y =2-x ,y =-1 3 x 所围成图形的面积. 3.求由曲线y =cos x (0≤x ≤2π)与直线y =1所围成的图形面积 4.如图求由两条曲线y =-x 2 ,y =-14 x 2 及直线y =-1所围成的图形的面积. 5、求函数f(x)=???? ? x +1 (-1≤x<0)cosx (0≤x ≤π 2)的图象与x 轴所围成的封闭图形的面积。 6.将由曲线y =x 2,y =x 3所 围成平面图形绕x 周旋转一周,求所得旋转体的体积。 7.将由三条直线x =0、x =2、y =0和曲线y =x 3所围成的图形绕x 周旋转一周,求所得旋转体的体积。 8.由曲线y =x 与直线x =1,x =4及x 轴所围成的封闭图形绕x 周旋转一周,求所得旋转体的体积

高中数学定积分训练题

定积分训练题 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代 号填在题后的括号内(每小题5分,共50分). 1.将和式的极限)0(.......321lim 1 >+++++∞→p n n P p p p p n 表示成定积分 ( ) A .dx x ?101 B .dx x p ?10 C .dx x p ?10)1( D .dx n x p ?10)( 2.下列等于1的积分是 ( ) A . dx x ? 1 B .dx x ?+10 )1( C .dx ? 1 01 D .dx ?1 021 3.dx x |4|1 02 ? -= ( ) A . 321 B .322 C .3 23 D .325 4.已知自由落体运动的速率gt v =,则落体运动从0=t 到0t t =所走的路程为 ( ) A .320gt B .2 0gt C .2 2 0gt D .6 2 0gt 5.曲线]2 3 ,0[,cos π∈=x x y 与坐标周围成的面积 ( ) A .4 B .2 C .2 5 D .3 6.dx e e x x ? -+1 )(= ( ) A .e e 1 + B .2e C . e 2 D .e e 1- 7.求由1,2,===y x e y x 围成的曲边梯形的面积时,若选择x为积分变量,则积分区间为( ) A .[0,2e ] B .[0,2] C .[1,2] D .[0,1] 8.由直线1,+-==x y x y ,及x轴围成平面图形的面积为 ( ) A .()[]dy y y ?--1 1 B . ()[]dx x x ?-+-210 1 C . ()[]dy y y ?--210 1 D .()[]dx x x ? +--10 1 9.如果1N 力能拉长弹簧1cm ,为将弹簧拉长6cm ,所耗费的功是 ( ) A .0.18 B .0.26 C .0.12 D .0.28 10.将边长为1米的正方形薄片垂直放于比彼一时为ρ的液体中,使其上距液面距离为2米, 则该正方形薄片所受液压力为 ( ) A .? 3 2 dx x ρ B . ()?+2 1 2dx x ρ C .? 1 dx x ρ D . ()?+3 2 1dx x ρ 二、填空题:请把答案填在题中横线上(每小题6分,共24分). 11.将和式)21 .........2111( lim n n n n +++++∞ →表示为定积分 . 12.曲线1,0,2===y x x y ,所围成的图形的面积可用定积分表示为 . 13.由x y cos =及x 轴围成的介于0与2π之间的平面图形的面积,利用定积分应表达为 .

定积分与定积分的近似计算

第六讲 定积分与定积分的近似计算 实验目的 1.通过本实验加深理解积分理论中分割、近似、求和、取极限的思想方法. 2.学习并掌握用matlab 求不定积分、定积分、二重积分、曲线积分的方法. 3.学习matlab 命令sum 、symsum 与int. 4. 了解定积分近似计算的矩形法、梯形法。(***) 实验内容 1. 学习matlab 命令 (1)求和命令sum 调用格式. sum(x),给出向量x 的各个元素的累加和,如果x 是矩阵,则sum(x)是一个元素为x 的每列列和的行向量. 例4.1.x=[1,2,3,4,5,6,7,8,9,10];? sum(x)? ans=55 例4.2.x=[1,2,3;4,5,6;7,8,9]? x= 1 2 3 4 5 6 7 8 9 sum(x)? ans=12 15 18 (2)求和命令symsum 调用格式. symsum(s,n), 求 ∑n s symsum(s,k,m,n),求∑=n m k s 当x 的元素很有规律,比如为表达式是)(k s 的数列时,可用symsum 求得x 的各项和,即 symsum ),1),((n k s =)()2()1(n s s s +++ symsum )()1()(),,),((n s m s m s n m k k s ++++=

例4.3.syms k n ? symsum(k,1,10)? ans=55 symsum(k^2,k,1,n)? ans=1/3*(n+1)^3-1/2*(n+1)^2+1/6*n+1/6 (3)matlab 积分命令int 调用格式 int (函数)(x f ) 计算不定积分 ?dx x f )( int (函数),(y x f ,变量名x ) 计算不定积分?dx y x f ),( int (函数b a x f ,),() 计算定积分 ?b a dx x f )( int (函数),,(y x f 变量名b a x ,,) 计算定积分 ?b a dx y x f ),( 1.计算不定积分 例4.4.计算 xdx x ln 2 ? 解:输入命令: int(x^2*log(x)) 可得结果: ans=1/3*x^3*log(x)-1/9*x^3 注意设置符号变量. 例4.5.计算下列不定积分: 1. dx x a ? -22 2. ?++dx x x 3 131 3. ?xdx x arcsin 2 解:首先建立函数向量. syms x syms a real y=[sqrt(a^2-x^2),(x-1)/(3*x-1)^(1/3),x^2*asin(x)]; 然后对y 积分可得对y 的每个分量积分的结果. int(y,x)? ans = [1/2*x*(a^2-x^2)^(1/2)+1/2*a^2*asin((1/a^2)^(1/2)*x), -1/3*(3*x-1)^(2/3)+1/15*(3*x-1)^(5/3), 1/3*x^3*asin(x)+1/9*x^2*(1-x^2)^(1/2)+2/9*(1-x^2)^(1/2)]

定积分的近似计算

数学实验报告 实验序号:4 日期:2012 年12 月13 日 实验名称定积分的近似计算 问题背景描述: 利用牛顿—莱布尼兹公式虽然可以精确地计算定积分的值,但它仅适用于被积函数的原函数能用初等函数表达出来的情形.如果这点办不到或者不容易办到,这就有必要考虑近似计算的方法.在定积分的很多应用问题中,被积函数甚至没有解析表达式,可能只是一条实验记录曲线,或者是一组离散的采样值,这时只能应用近似方法去计算相应的定积分. 实验目的: 本实验将主要研究定积分的三种近似计算算法:矩形法、梯形法、抛物线法。对于定积分的近似数值计算,Matlab有专门函数可用。

实验原理与数学模型: 1.矩形法 根据定积分的定义,每一个积分和都可以看作是定积分的一个近似值,即 在几何意义上,这是用一系列小矩形面积近似小曲边梯形的结果,所以把这个近似计算方法称为矩形法.不过,只有当积分区间被分割得很细时,矩形法才有一定的精确度. 针对不同的取法,计算结果会有不同。 (1)左点法:对等分区间 , 在区间上取左端点,即取。 (2)右点法:同(1)中划分区间,在区间上取右端点,即取。 (3)中点法:同(1)中划分区间,在区间上取中点,即取。2.梯形法 等分区间 , 相应函数值为().

曲线上相应的点为() 将曲线的每一段弧用过点,的弦(线性函数)来代替,这使得每个 上的曲边梯形成为真正的梯形,其面积为 ,. 于是各个小梯形面积之和就是曲边梯形面积的近似值, , 即, 称此式为梯形公式。 3.抛物线法 将积分区间作等分,分点依次为 ,, 对应函数值为 (), 曲线上相应点为 (). 现把区间上的曲线段用通过三点,,的抛物线

高中数学16微积分基本定理(教案)

三、教学过程 1、复习: 定积分的概念及用定义计算 2、引入新课 我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分的新方法,也是比较一般的方法。 变速直线运动中位置函数与速度函数之间的联系 设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为 2 1 ()T T v t dt ? 。 另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 2 1 ()T T v t dt ? =12()()S T S T - 而()()S t v t '=。 对于一般函数()f x ,设()()F x f x '=,是否也有 ()()()b a f x dx F b F a =-? 若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差()()F b F a -来计算 ()f x 在[,]a b 上的定积分的方法。 注:1:定理 如果函数()F x 是[,]a b 上的连续函数()f x 的任意一个原函数,则 ()()()b a f x dx F b F a =-? 证明:因为()x Φ= ()x a f t dt ? 与()F x 都是()f x 的原函数,故 ()F x -()x Φ=C (a x b ≤≤) 其中C 为某一常数。 令x a =得()F a -()a Φ=C ,且()a Φ= ()a a f t dt ? =0 即有C=()F a ,故()F x =()x Φ+()F a ∴ ()x Φ=()F x -()F a =()x a f t dt ? 令x b =,有 ()()()b a f x dx F b F a =-? 此处并不要求学生理解证明的过程 为了方便起见,还常用()|b a F x 表示()()F b F a -,即 ()()|()()b b a a f x dx F x F b F a ==-? 该式称之为微积分基本公式或牛顿—莱布尼兹公式。它指出了求连续函数定积分的一般方法,把求 定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁。 它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。因此它在教材中处于极其重要的地位,起到了承上启下的作用,不仅如此,它甚至给微积分学的发展带来了深远的影响,是微积分学中最重要最辉煌的成果。

matlab实验报告--定积分的近似计算 -

数学实验报告 实验序号:2 日期:2013 年11 月30日 班级应数二班姓名丁慧娜学号1101114088 实验名称定积分的近似计算 实验所用软件及版本MATLAB R2012b 问题背景描述: 利用牛顿—莱布尼兹公式虽然可以精确地计算定积分的值,但它仅适用于被积函数的原函数能用初等函数表达出来的情形.如果这点办不到或者不容易办到,这就有必要考虑近似计算的方法.在定积分的很多应用问题中,被积函数甚至没有解析表达式,可能只就是一条实验记录曲线,或者就是一组离散的采样值,这时只能应用近似方法去计算相应的定积分. 实验目的: 1、本实验将主要研究定积分的三种近似计算算法:矩形法、梯形法、抛 物线法。 2、加深理解积分运算中分割、近似、求与、取极限的思想方法。 3、学习fulu2sum、m的程序设计方法,尝试用函数sum 改写附录1与 附录3的程序,避免for 循环。 实验原理与数学模型: 1.矩形法 根据定积分的定义,每一个积分与都可以瞧作就是定积分的一个近似值,即 在几何意义上,这就是用一系列小矩形面积近似小曲边梯形的结果,所以把

这个近似计算方法称为矩形法.不过,只有当积分区间被分割得很细时,矩形法才有一定的精确度. 针对不同的取法,计算结果会有不同。 (1)左点法:对等分区间 , 在区间上取左端点,即取。 (2)右点法:同(1)中划分区间,在区间上取右端点,即取。 (3)中点法:同(1)中划分区间,在区间上取中点,即取。 2.梯形法 等分区间 , 相应函数值为(). 曲线上相应的点为() 将曲线的每一段弧用过点,的弦(线性函数)来代替,这使得每个上的曲边梯形成为真正的梯形,其面积为

最新定积分的近似计算2

定积分的近似计算2

定积分的近似计算 虽然牛顿——莱布尼兹公式解决了定积分的计算问题,但它的使用是有一定局限性的。对于被积分中的不能用初等函数表达的情形或其原函数虽能用初等函数表达但很复杂的情形,我们就有必要考虑近似计算的方法。 定积分的近似计算的基本思想是根据定积分的几何意义找出求曲边梯形面积的近似方法。下面介绍两种常用的方法梯形法及抛物线法。 一梯形法 将积分区间?Skip Record If...?作?Skip Record If...?等分,分点依次为 ?Skip Record If...? 相应的函数为 ?Skip Record If...? ?Skip Record If...? 曲线?Skip Record If...?上相应的点为 ?Skip Record If...? 将曲线的每一段弧?Skip Record If...?用过点?Skip Record If...?(线性函数)来代替,这使得每个?Skip Record If...?上的曲边梯形形成了真正的梯形(图11——25),其面积为 ?Skip Record If...? 于是各个小梯形面积之和就是曲边梯形面积的近 似值,即 ?Skip Record If...? 亦即 ?Skip Record If...?(2) 称此式为梯形法公式。 在实际应用中,我们还需要知道用这个近似值来代替所求积分时所产生的误差,从而有 ?Skip Record If...?

其中?Skip Record If...? 二抛物线法 由梯形法求近似值,当?Skip Record If...?为凹曲线时,它就偏小;当?Skip Record If...?为凸曲线时,它就偏大。如果每段改用与它凸性相接近的抛物线来近似,就可减少上述缺点。下面介绍抛物线法。 将区间?Skip Record If...?作?Skip Record If...?等分(图)分点依次为 ?Skip Record If...? 对应的函数值为 ?Skip Record If...? ?Skip Record If...? ?Skip Record If...?曲线上相应的点为?Skip Record If...? 现把区间?Skip Record If...?上的曲线段?Skip Record If...?用通过三点?Skip Record If...?的抛物线 ?Skip Record If...? 来近似代替,然后求函数?Skip Record If...?从?Skip Record If...?到?Skip Record If...?的定积分: ?Skip Record If...? ?Skip Record If...? ?Skip Record If...?由于?Skip Record If...?,将它代入上式整理后可得 ?Skip Record If...? ?Skip Record If...? 同样也有 ?Skip Record If...? ……………………………………………….. ?Skip Record If...? 将这?Skip Record If...?个积分相加即得原来所要计算的定积分的近似值: ?Skip Record If...? 即 ?Skip Record If...?

实验五 定积分的近似计算

实验五 定积分的近似计算 我们已经学习了定积分的基本概念和定积分的计算方法,那里所谓的计算方法,是基于原函数的牛顿-莱布尼兹公式。但在许多实际问题中遇到的定积分,被积函数往往不用算式给出,而通过图形或表格给出;或虽然可用一个算式给出,但是要计算它的原函数却很困难,甚至于原函数可能是非初等函数。本实验的目的,就是为了解决这些问题,介绍定积分的“数值积分”,即定积分的近似计算。 所谓定积分的近似计算,就是找到一个适当的计算公式,利用被积函数在积分区间上若干个点处的函数值,来计算定积分的近似值,并作出误差估计。我们知道,定积分 ? b a dx x f )(在几何上表示曲线)(x f y =,直线b x a x ==,及x 轴所围成的曲边梯形的面积。定积分近似计算的思想,就是将积分区间分割成许多小区间,然后在小区间上近似计算小曲边梯形的面积,最后将小曲边梯形的面积求和,就得到了定积分的近似值。 1、 观察黎曼和式的收敛性 由定积分的定义知道,定积分就是黎曼和式 i n i i x f ?∑=1 )(ξ的极限,因此可以用黎曼和 式来近似计算定积分。为计算方便,这里特殊的,将积分区间等分为n 段,并以小区间中点 处的函数值作近似,于是黎曼和式为:∑=-+-+-n k n a b k a f n a b 1))5.0)1(((, 因而 ? ∑=-+-+-≈b a n k n a b k a f n a b dx x f 1))5.0)1((()(。 例1 计算 dx x ? 3 2 ln 1 的黎曼和。 解:输入命令如下: 2、 梯形法 大家可以看出,用上述方法进行的近似计算,其实是对小曲边梯形的面积用矩形面积来近似,上面取的特殊的黎曼和又称为中点积分公式。如果不用矩形而改用梯形来近似,就可以得到定积分的一个较好的近似方法——梯形积分法。具体方法如下: 将区间],[b a 用b x x x a n ==,,,10 等分为n 个小区间,小区间的长度为 n a b -。设)()(n a b i a f x f y i i -+==),,1,0( n i =,则每个小梯形的面积为n a b y y i i -?++21,从而得到梯形法的公式为:

高等数学第五章定积分总结

第五章 定积分 内容:定积分的概念和性质、微积分基本公式、换元积分法、分部积分法、广义积分。 要求:理解定积分的概念和性质。掌握牛顿-莱布尼兹公式、定积分的换元法和分部积分法,理解变上限的定积分作为其上限的函数及其求导定理,理解广义积分的概念和计算方法。 重点:定积分的概念和性质;微积分基本公式;换元积分法、分部积分法。 难点:定积分的概念;变上限积分函数及其导数;换元积分法、分部积分法。 §1.定积分的概念 一、实例分析 1.曲边梯形的面积 设函数)(x f y =∈C[a , b ], 且)(x f y =>0. 由曲线0,,),(====y b x a x x f y 围成的图形称为曲边梯形. 如何定义曲边梯形的面积?(1) 矩形面积=底高. (2) 预备一张细长条的纸, 其面积底高. (3) 预备一张呈曲边梯形状的纸, 将其撕成许多细长条. (4) 启示: 将曲边梯形分割为许多细长条, 分割得越细, 误差越小. y =f (x ) x =a x =b y =f (x ) a=x 0 x 1 x i-1 x i x n =b

第i 个细长条面积)],,[()(11---=?∈??≈?i i i i i i i i i x x x x x x f S ξξ 曲边梯形面积: ∑=?≈ n i i i x f S 1 )(ξ 定积分概念示意图.ppt 定义: ),,2,1,max {()(lim 1 n i x x f S i n i i i Λ=?=?=∑=→λξλ 抛开上述过程的几何意义,将其数学过程定义为定积分. 二、定积分的定义 1. 定义 设)(x f y =在[a , b ]有定义, 且有界. (1) 分割: 用分点b x x x a n =<<<=Λ10把[a , b ]分割成n 个小区间: } ,,2,1,max{,,,2,1],,[11n i x x x x n i x x i i i i i i ΛΛ=?=-=?=--λ记 (2) 取点: 在每个小区间],[1i i x x -上任取一点i , 做乘积: i i x f ?)(ξ. (3) 求和: ∑=?n i i i x f 1 )(ξ (4) 取极限: ∑=→?n i i i x f 1 )(lim ξλ 若极限存在, 则其为)(x f 在[a , b ]上的定积分, 记作: ? b a dx x f )(. 即: ∑? =→?=n i i i b a x f dx x f 1 )(lim )(ξλ [a , b ]: 积分区间;a :积分下限;b :积分上限; ∑=?n i i i x f 1 )(ξ积分和式. 问题: 定积分是极限值, 在求极限的过程中, 谁是常量, 谁是变量?

高等数学第五章定积分及自测题

第五章定积分 一、基本要求: 1.理解定积分的概念、几何意义、物理意义及定积分的性质. 2.理解积分上限的函数,并掌握其求导法则. 3.掌握牛顿——莱布尼兹公式. 4.掌握定积分的换元法和分布积分法. 5.理解反常积分(广义积分)的概念,会计算反常积分,了解反常积分的审敛法. 6.了解定积分的近似计算方法. 二、主要内容

Ⅰ. 定积分概念: 1. 定积分定义:设()f x 在区间[,]a b 上有界,在[,]a b 中任意插入若干个分点 0121n n a x x x x x b -=<<<<<=.把[,]a b 分成n 个小区间1[,],(1,2, ,)i i x x i n -=,小 区间的长度记为1,(1,2, ,)i i i x x x i n -?=-=,在1[,]i i x x -上任意取一点i ξ,作1 ()n i i i f x ξ=?∑, 若0 1 lim ()n i i i f x λξ→=??∑ 1(max{})i i n x λ≤≤=?存在. 就称该极限为()f x 在[,]a b 上的定积分. 记为 1 ()lim ()n b i i a i f x dx f x λξ→==??∑? 当上述极限存在时,称()f x 在[,]a b 上可积. 2. 若()f x 在[,]a b 上连续,则()f x 在[,]a b 上可积。 3. 若()f x 在[,]a b 上有界,且只有有限个间断点,则()f x 在[,]a b 上可积. Ⅱ. 定积分的几何意义 定积分 ()b a f x dx ? 在几何上表示:由曲线()y f x =,直线x a =和x b =以及x 轴所围图形面 积的代数和 (x 轴上方的面积取正,x 轴下方的面积取负) Ⅲ. 定积分的性质 1. 补充规定:(1)当a b =时, ()0b a f x dx =? (2)当a b >时, ()()b a a b f x dx f x dx =-?? 2. 性质: (1) [()()]()()b b b a a a f x g x dx f x dx g x dx - -+=+? ?? (2) ()(),()b b a a kf x dx k f x dx k =? ?为常数 (3) ()()()b c b a a c f x dx f x dx f x dx =+? ?? (4) b a dx b a =-? (5) 若在[,]a b 上,()0f x ≥,则 ()0,()b a f x dx a b ≥

高中数学选修2-2精品学案:§1.6 微积分基本定理

学习目标 1.直观了解并掌握微积分基本定理的含义. 2.会利用微积分基本定理求函数的积分.

知识点一 微积分基本定理(牛顿—莱布尼茨公式) 思考1 已知函数f (x )=2x +1,F (x )=x 2+x ,则?10(2x +1)d x 与F (1)-F (0)有什么关系? 思考2 对一个连续函数f (x )来说,是否存在唯一的F (x ),使得F ′(x )=f (x )? 梳理 (1)微积分基本定理 ①条件:f (x )是区间[a ,b ]上的连续函数,并且______; ②结论:?b a f (x )d x =__________; ③符号表示:?b a f (x )d x =________=__________. (2)常见的原函数与被积函数关系 ①?b a c d x =cx |b a (c 为常数). ②?b a x n d x = ??1n +1x n +1b a (n ≠-1). ③?b a sin x d x =-cos x |b a .

④?b a cos x d x =sin x |b a . ⑤?b a 1x d x =ln x |b a (b >a >0). ⑥?b a e x d x =e x |b a . ⑦?b a a x d x = ??a x ln a b a (a >0且a ≠1). ⑧?b a x d x = ???233 2x b a (b >a >0). 知识点二 定积分和曲边梯形面积的关系 思考 定积分与曲边梯形的面积一定相等吗? 梳理 设曲边梯形在x 轴上方的面积为S 上,在x 轴下方的面积为S 下,则 (1)当曲边梯形在x 轴上方时,如图①,则?b a f (x )d x =________. (2)当曲边梯形在x 轴下方时,如图②,则?b a f (x )d x =________. (3)当曲边梯形在x 轴上方、x 轴下方均存在时,如图③,则?b a f (x )d x =________________.特别地,若S 上=S 下,则?b a f (x )d x =____.

高中数学导数与定积分知识点

高中数学知识点—导数、定积分 一.课标要求: 1.导数及其应用 (1)导数概念及其几何意义 ①通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵; ②通过函数图像直观地理解导数的几何意义。 (2)导数的运算 ①能根据导数定义求函数y=c,y=x,y=x2,y=x3,y=1/x,y=x 的导数; ②能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax+b))的导数; ③会使用导数公式表。 (3)导数在研究函数中的应用 ①结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间; ②结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。 (4)生活中的优化问题举例 例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。 (5)定积分与微积分基本定理 ①通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念; ②通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。 (6)数学文化 收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积

分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中"数学文化"的要求。 二.命题走向 导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常以解答题形式和其它数学知识结合起来,综合考察利用导数研究函数的单调性、极值、最值. 三.要点精讲 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即 x y ??=x x f x x f ?-?+)()(00。 如果当0→?x 时, x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f ’(x 0)或y ’|0x x =。 即f (x 0)=0 lim →?x x y ??=0 lim →?x x x f x x f ?-?+)()(00。 说明: (1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y ??不存在极限,就说函数在点x 0处不可导,或说无导数。 (2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳): (1)求函数的增量y ?=f (x 0+x ?)-f (x 0);

定积分的近似计算以及误差估计

定积分的近似计算方法与误差估计 作者: 操乐青 指导老师: 邢抱花 摘要 本文主要讨论了一元函数常见的数值积分方法,例如插值型求积公式,高斯求积公式等近 似计算方法,在用这些方法计算定积分时,会产生一些误差,为了减少误差, 可以利用复化求积公式、复化高斯公式等.本文围绕这些方法,系统介绍它们的计算公式以及截断误差,并用例题分析它们产生误差的大小、计算量等. 关键词 插值型积分 高斯积分 误差分析 近似计算 1引言 在计算定积分的值()b a I f x dx =?时,常常根据微积分学基本定理求出)(x f 的一个原函数 )(x F ,再用牛顿-莱布尼茨公式求得积分,()()()b a I f x dx F b F a ==-?.但这种方法只限于解 决一小部分定积分的求值问题.当函数没有具体表达式,只是一些实验测得数据形成的表格或图形或者是()F x 无法用初等函数表示,例如,2 b x a e dx ? ,2 sin b a x dx ?等等,这就需要我们用一些近似方法来求积分值. 与数值积分一样,把积分区间细分,在每个小区间上,找到简单函数)(x ?来近似代替()f x ,且 ()b a x dx ?? 的值容易求的.这样就把计算复杂的()b a f x dx ?转化为求简单的积分值()b a x dx ??. 因此,定积分的近似计算实质上就是被积函数的近似计算问题. 2 定积分的近似计算——常见数值方法 2.1 矩形公式 根据定积分的定义,每一个积分和都可以看作是定积分的一个近似值,即 1 ()d ()n b i i a i f x x f x ?==?∑? 在几何意义上,这是用一系列小矩形面积近似小曲边梯形的结果,所以把这个近似计算方法称为矩形法.不过,只有当积分区间被分割得很细时,矩形法才有一定的精确度. 针对不同i ?的取法,计算结果会有不同,常见的取法有: (1)左端点法,即1-=i i x ?, i a b n i i x x f dx x f ? ∑=-?≈11)()( (2)右端点法,即 i i x =?,i n i i a b x x f dx x f ?≈∑?=1 )()(

几种定积分的数值计算方法

几种定积分的数值计算方法 摘要:本文归纳了定积分近似计算中的几种常用方法,并着重分析了各种数值方法的计算思想,结合实例,对其优劣性作了简要说明. 关键词:数值方法;矩形法;梯形法;抛物线法;类矩形;类梯形 Several Numerical Methods for Solving Definite Integrals Abstract:Several common methods for solving definite integrals are summarized in this paper. Meantime, the idea for each method is emphatically analyzed. Afterwards, a numerical example is illustrated to show that the advantages and disadvantages of these methods. Keywords:Numerical methods, Rectangle method, Trapezoidal method, Parabolic method, Class rectangle, Class trapezoid

1. 引言 在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数 )(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式 求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用. 在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数)(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式 求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用.另外,对于求导数也有一系列的求导公式和求导法则.但是,在实际问题中遇到求积分的计算,经常会有这样的情况: (1)函数)(x f 的原函数无法用初等函数给出.例如积分 dx e x ?-1 02 , ? 1 0sin dx x x 等,从而无法用牛顿-莱布尼茨公式计算出积分。 (2)函数)(x f 使用表格形式或图形给出,因而无法直接用积分公式或导数公式。 (3)函数)(x f 的原函数或导数值虽然能够求出,但形式过于复杂,不便使用. 由此可见,利用原函数求积分或利用求导法则求导数有它的局限性,所以就有了求解数值积分的很多方法,目前有牛顿—柯特斯公式法,矩形法,梯形法,抛物线法,随机投点法,平均值法,高斯型求积法,龙贝格积分法,李查逊外推算法等等,本文对其中部分方法作一个比较. 2.几何意义上的数值算法 s 在几何上表示以],[b a 为底,以曲线)(x f y =为曲边的曲边梯形的面积A ,因此,计 算s 的近似值也就是A 的近似值,如图1所示.沿着积分区间],[b a ,可以把大的曲边梯形分割成许多小的曲边梯形面积之和.常采用均匀分割,假设],[b a 上等分n 的小区间 ,x 1-i h x i +=b x a x n ==,0,其中n a b h -= 表示小区间的长度. 2.1矩形法 矩形法就是用小矩形面积近似代替各个小曲边梯形面积,从面积得到S 的近似值.若 取小区间左端点的函数值为小矩形的高,如图1中所示,则∑=-=n i i x f n a b A 1 ).(

相关主题
文本预览
相关文档 最新文档