当前位置:文档之家› 陶瓷窑炉的发展趋势

陶瓷窑炉的发展趋势

陶瓷窑炉的发展趋势
陶瓷窑炉的发展趋势

陶瓷窑炉的发展趋势

当今陶瓷窑炉的发展趋势是由我们过去说的辊道化、煤气化、轻型化、自动化、大型化向绿色(环保节能型)窑炉方向发展。

所谓绿色窑炉,即环保节能型窑炉的标准主要包括:1)低消耗(节能型)。包括低燃料消耗、低电能消耗、低水消耗、低耐火材料及其他资源消耗。2)低污染(环保型)。其中包括低废气(CO2)排放,低SO2及NOx气体排放,低烟尘排放,无黑烟,低污水排放,燃料完全燃烧,低噪音及振动,工作环境舒适。3)低成本。包括初投资成本低,投资回收期短,运行费用低,劳动成本低。4)高效率。窑炉内温度分布均匀,优等品率高,热效率高,操作控制灵活方便,自动化水平高,生产过程适应性强,劳动生产率高,竞争性强,经济效益高。

实现绿色窑炉需要从以下几个方面努力:

1)窑炉风机降低电耗和噪音的研究

目前国外先进风机噪音在50~70分贝,国产风机噪音在80~90分贝,有的甚至超过100分贝,国外一条窑炉风机使用功率为50~70KW,而国产窑炉为90~130KW(以产量相同的建筑卫生陶瓷窑炉计算)。如每条窑炉节电50KW,年节电40万KW.h,以全国陶瓷行业2万条窑炉计算,每年可节电40亿KW·h左右。并大大改善窑炉烧成车间的工作环境,显著减少风机材料消耗和运输费用。

2)研究先进的窑炉燃烧器

我国是世界上CO2排放量较多的国家之一,陶瓷行业又是耗能大户。燃烧释放出的SO2跟水形成亚硫酸,NOx形成酸雨和光雾,对人畜、植物、建筑物都有较大危害。要以辊道窑为对象研究适用于窑炉使用的低NOX燃烧器(如脉冲式燃烧器等),既要保证窑内温度均匀,断面温差小,又要使燃料完全燃烧,避免局部高温以减少NOx的生成。

3)使用新型的耐火材料和涂料

对于陶瓷窑炉,采用耐高温的陶瓷纤维作内衬,可以有效提高陶瓷窑炉的热效率。为减少陶瓷纤维粉化脱落,利用多功能涂层材料(如远红外线涂料)来保护陶瓷纤维,达到既提高纤维抗粉化能力,又可增加窑炉内传热效率,节能降耗。由于陶瓷纤维导热系数比较小,增强了窑炉的保温,减少了热散失,改善了烧成环境。

4 )研究新的窑炉自动控制方式和方法

利用人工神经网络技术进行模拟,以新的控制方式和方法来控制窑炉同一断面,同一水平面上的温差以及突破还原气氛控制的难点,并设计相应的控制系统和控制软件。使温度、气氛控制更精确和稳定,窑炉自动控制程度更高。

5 )建立陶瓷窑炉废气净化研究检测中心。

逐步建立陶瓷窑炉废气排放数据库系统,以指导或提供陶瓷窑炉废气净化的研究及改进,

弄清NOx等有害气体在陶

瓷窑炉内产生的机理及减少生成有害废气的办法,可通过实验窑模拟实验解决。在烟囱加涂层材料以吸收燃烧废气中的有害成分,使NOx含量低于70PPM。

经过努力,不久的将来可以全面实现绿色窑炉工程,使我国在现有先进的陶瓷窑炉的基础上,燃料消耗下降10~30%,热效率提高10~20%,电力消耗下降30~50%。噪音和烟尘有较大程度的下降,并使我国陶瓷窑炉达到世界先进水平。

由于环境保护的需要,现代陶瓷窑炉在选择燃料方面应着重考虑用清洁燃料。

清洁燃料包括:柴油、煤油、天然气、液化石油气。焦炉煤气、水煤气及发生炉冷煤气。

1、柴油及煤油

A、柴油用作清洁燃料其优点是:运输及贮存比较简便,设备投资少,热值高而稳定,粘度较小,较易雾化,发热温度高达2080~2100℃。

缺点是:价格高,凝点较高的柴油在较冷的环境中使用时需要加热。在选用柴油时应注意其含硫量,如含硫量过高,将会影响陶瓷产品品质并腐蚀设备及管道、污染环境。

B、煤油用作清洁燃料其优点是:低位热值比轻柴油稍高约42.8~43.5MJ/kg。它是清洁燃料中的上品,不凝固,粘度比轻柴油更小,更易雾化。

缺点是:闪点不低于40℃,否则使用不安全,另外价格太高。

2、天然气及液化石油气

A、天然气作为燃料其燃烧特性如下:

(1)因其主要成分为甲烷,所以燃烧特性取决于甲烷。甲烷与空气混合物的着火浓度范围很窄,在5%~15%。因此,在燃烧过程中对缺氧很敏感,同时也减少了回火的危险性。

(2)甲烷的火焰传播速度很小。其常温、常压下最大可见火焰传播速度不到1.0m/s。因而燃烧较为缓慢。天燃气属于低火焰传播速度的燃气。比较容易发生脱水。

(3)天燃气的发热温度约2000~2040℃,对于各种陶瓷产品几乎都可满足要求的烧成温度,即使用常温空气。

(4)天燃气与空气混合良好时其火焰黑度很小,为液化石油气的二分之一弱,比液体燃料的黑度更低得多。然而对于现代陶瓷窑炉来说,火焰辐射传热不占重要地位。一般都使用高速烧嘴,为无焰燃烧,几乎没有火焰。

(5)天燃气的理论空气量大,约为7.8~11.2Nm3/Nm3,因此对烧嘴混合性能要求高,也就是说1Nm3,天然气要能很好地与多于7.8~11.2Nm3的空气混合。

(6)天燃气的碳/氢质量比(3.0~3.2)比液体燃料(6.0~7.4)或固体燃料(10~30)低得多。因此燃烧产物中含H2O较多。

B、液化石油气作为燃料有如下几个特点:

(1)

热值很高,是气体燃料中最高的。

(2)理论空气量高达

24~30Nm3/Nm3,因此,助燃空气与之混合完全比天燃气更为困难。可以用空气或烟气先冲稀液化石油气,然后使用。但用空气稀释时,不得在着火浓度范围内以防爆炸。通常规定液化石油气体积浓度必须高于着火浓度范围上限的1.5倍。

(3)火焰传播速度低,燃烧缓慢,但较天燃气快一些。

(4)纯净。一般含硫少,是烧制高档陶瓷产品的优质燃料。

(5)密度较大,约为同温度及压力下的空气的1.5~2.0倍,泄漏时往下沉,易与空气混合达到着火浓度范围内,遇火发生爆炸。

(6)一般液化石油气蒸气压较高。在37.8℃时约为0.9~1.5Mpa。这作为气体燃料是有利的。但在使用中必须要求气化站减压阀良好,以保证安全。

3、焦炉煤气、水煤气及发生炉煤气

焦炉煤气、水煤气及发生炉煤气这些人造气体燃料是由煤炭气化制成,又统称为煤制气。

A、焦炉煤气

焦炉煤气的平均组成为:

H246%~61%CO4.0%~8.5%CH421%~30%CmHn1.5%~3.0%

CO21.0%~4.0%N23.6%~26%O20.3%~1.7%

干煤气的低热值为13.2~19.2MJ/Nm3,属于中热值燃气,其发热温度高约为2100~2130℃。由于含氢高,故火焰传播速度比天然气和液化石油气大,其常温、常压下最大火焰传播速度约为1.5m/s。焦炉煤气的着火范围也较大,下限约为6%,上限约为31%。焦炉煤气能够满足现代陶瓷窑炉各种烧成温度的要求,而且燃烧快,不易脱水,但回火的爆炸危险较大一些。

B、水煤气

水煤气是将水蒸气与赤热焦炭中的碳产生下列反应而生成的燃气

H2O+C=CO+H22H2O+C=CO2+2H2

生成的CO、CO2又产生下列反应

CO+H2O=CO2+H2CO2+C=2CO

由反应式可以看出,水蒸气被碳还原后生成的CO和H2的分子数是相等的,因此,水煤气的理论组成是:CO50%,H250%,理论低热值是11.78MJ/Nm3,水煤气也属中热值燃气,其发热温度高达2200℃左右。

C、发生炉煤气

我国在现阶段,常压固定床发生炉冷煤气很适合陶瓷窑炉使用,因为这种煤制气虽然属于低热值燃气,但对于一般烧成温度不太高的陶瓷产品烧成,还是完全能够满足的。

常压固定床发生炉煤气属于低热值燃气,冷煤气热值一般在4.49~7.62MJ/Nm3范围内,其发热温度为1650℃~1750℃,如果取空气系数为1.10,高温系数取0.83,则可得到助燃空气温度与实际燃烧温度之间的关系,对烧成温度为1280℃的陶瓷产品来说,实际燃烧温度约高于烧成温度50~100℃,约为1350℃,当使用热值为5.70MJ/Nm3的冷煤气,助燃空气只

需要常温即可。如烧成温度1300~1350℃,实际燃烧温度需要达到约1400℃,则助燃空气温度需要200℃左右

,这对于一般隧道窑,辊道窑及带有换热器的间歇窑炉是不难做到的。对于烧成温度较低的1100~1200℃陶瓷产品,更可以使用发生炉煤气。

《建筑卫生陶瓷工业窑炉节能技术要求》

《建筑卫生陶瓷工业窑炉节能技术要求》 编制说明 (征求意见稿) 《建筑卫生陶瓷工业窑炉节能技术要求》协会标准工作组 二零二零年十一月

(一)工作简况,包括任务来源、协作单位、主要工作过程、国家标准主要起草人及其所做的工作等 1.任务来源 根据中国建筑材料联合会《2020年第九批协会标准制定计划的通知》(中建材联标发[2020]70号)的要求,《建筑卫生陶瓷工业窑炉节能技术要求》被列为制定项目,统一纳入中国建筑材料协会标准体系,项目编号为:2020-79-xbjh,该标准由中国建材检验认证集团(陕西)有限公司负责起草,并牵头组织相关单位共同完成。协会标准制定完成后将由中国建筑材料联合会发布。 2.制定的目的和意义 我国建筑卫生陶瓷产量已连续多年位居世界第一,产量已占世界总产量半壁江山,而该行业又具有“高能耗、高排放”的问题。目前,建陶行业仍是一个典型的高能耗行业,能耗中约有60%来自烧成工序。窑炉是该行业能耗最多的热工设备,每年消耗着大量的资源。建筑卫生陶瓷窑炉年耗能折合标煤超过6000万吨,为陶瓷行业之首,日用陶瓷窑炉年耗能超过1000万吨标准煤,其他陶瓷窑炉年耗能近3000万吨标准煤。此外,建陶工业窑炉烧成过程中会排放大量的废烟气,烟气中含有大量的颗粒物、氮化物、氧化物和硫化物,加重了空气中“雾霾”的形成。据统计,陶瓷工业每年约产生NOx150万吨以上,SO2150万吨以上,粉尘80万吨以上,重金属及其化合物等污染物。 当前,国内外在建筑卫生陶瓷工业窑炉节能领域标准化方面研究较为欠缺,国内外窑炉节能技术水平存在一定差距。从各国实际情况中可发现,国外建陶工业窑炉发达国家如意大利、德国和日本等国家的陶瓷窑炉节能技术水平高于我国,窑炉能效利用率高于国内。如我国建陶工业窑炉的热效率与上述国家相比存在着一定差距,如美国达到50%以上,而国内窑炉厂商较好产品能达到40%以上,而一些中小型企业生产的产品在30%左右。与此同时,国内外在建陶工业窑炉节能领域标准化方面研究较为欠缺,尤其是国内此类相关标准缺乏。正因为缺乏相关标准的约束指引,间接促使国内建陶工业窑炉生产主要侧重于用户的需求进行“定制化”开发,偏向于产能的实现。一定程度上造成了建陶工业窑炉整体能耗高,节能意识差和行业无序发展等问题。因此,提出标准《建筑卫生陶瓷工业窑炉节能技术要求》,来提高该行业工业窑炉的热效率,为提升该行业工业窑

陶瓷在中国发展史

夏、商、周朝时期的陶瓷文化 商朝殷虚的遗址中挖出的陶片、陶罐包括很多种款式,有灰陶、黑陶、红陶、彩陶、白陶,以及带釉的硬陶,这些陶器上的纹饰、符号、文字与殷商时代的甲骨文和青器有密切的关系。青器的成本高只能为贵族享用,广大民众的各种生活器皿只能采用陶器。因此可以了解商代制陶工艺也得到普遍的发展,带釉的硬陶在这个时期已经出现了,釉色青绿而带褐黄,胎质比较硬,呈灰白色。 陶器在此时已经不在局限於盛物器皿,应用范围较广,大略可分为日用品类、建筑类、殉葬类、祭祀礼器类。朝廷对於制陶工作也很重视。 秦汉时期陶瓷文化 秦汉-古代的建筑多采用木料来架构,不易久存,所以一些伟大的建筑,如秦代的阿房宫和汉代的未央宫,都无法完整保存下来,但仍可在残存的废墟中发现瓦当及汉砖等遗物,藉以略窥古代建筑的规模。 隋唐朝时期的陶瓷文化 西元五百八十九年,杨坚篡北周并南陈,统一中原,改国号为隋,隋的朝代虽短,但在瓷器烧制上,却有了新的突破,不但有青瓷烧造,白瓷也有很好的发展,另外此时在装饰手法上也有了创新,如在器物上另外的泥片—贴花,就是一例。 唐朝时期的陶瓷文化 到了唐代,瓷器制作可为以蜕变到成熟的境界,而跨入真正的瓷器时代。因为陶与瓷的分野,在乎质白坚硬或半透明,而最大的关键在於火烧温度。汉代虽有瓷器,但温度不高,质地脆弱只能算是原瓷,而发展到唐代,不但釉药发展成熟,火烧温度能达到摄氏一千度以上,所以我们说唐代是真正进入瓷器的时代。唐代最著名的窑为越窑与邢窑。 五代十国时期的陶瓷文化 这个时期较为有名的是后周世宗的柴窑,以天青色为主,世宗评为「雨过天晴云破处、者般颜色作将来」,所以有「雨过天晴青」的美称。陶路上记载「青如天、明如镜、薄如纸、声如磬」,可略知其制作精美。 越窑到了五代,一度成为吴越王钱氏的御用器皿,臣庶不得享用,因此当时又称为「秘色窑」,皆属於青瓷的制造。 宋朝时期的陶瓷文化—集瓷器之大成 后周赵匡胤夺取政权,建立宋朝定都开封,历史上称为北宋。宋代的陶瓷氏我国的鼎盛时期,「宋瓷」也是闻名世界。定窑、汝窑、官窑、哥窑、钧窑为五大名窑,形制优美,高雅凝重,不但超越前人的成就,即使后人仿制也少能匹敌。 元朝时期陶瓷文化 元代入主中原九十一年,瓷业较宋代为衰落,然而这时期也有新的发展,如青花和釉里红的兴起,彩瓷大量的流行,白瓷成为瓷器的主流,釉色白泛青,带动以后明清两代的瓷器发展,得到很高的成就。

陶瓷窑炉的分类

陶瓷窑炉的分类及特点 一、陶瓷窑炉分类 1、按构造型式分:梭式窑、隧道窑、辊道窑、推板窑、圆型(转盘窑)、钟罩窑 2、按供热方式分:煤窑、柴窑、电窑、燃气窑。煤窑、柴窑已被淘汰,清洁能源窑炉(电、燃气)已走向成熟阶段。 3、按烧成温度分:高温窑、中温窑、低温窑。 二、陶瓷窑炉介绍 1、梭式窑:是间歇烧成的窑,跟火柴盒的结构类似,窑车推进窑内烧成,烧完了再拉出来,卸下烧好的陶瓷。窑车如同梭子,故而称为梭式窑。 2、隧道窑:一般是一条长的直线形隧道,其两侧及顶部有固定的墙壁及拱顶,底部铺设的轨道上运行着窑车。燃烧设备设在隧道窑的中部两侧,构成了固定的高温带,烧成带,燃烧产生的高温烟气在隧道窑前端烟囱或引风机的作用下,沿着隧道向窑头方向流动,同时逐步地预热进入窑内的制品,这一段构成了隧道窑的预热带。在隧道窑的窑尾鼓入冷风,冷却隧道窑内后一段的制品,鼓入的冷风流经制品而被加热后,再抽出送入干燥器作为干燥生坯的热源,这一段便构成了隧道窑的冷却带。 3、辊道窑:辊道窑是连续烧成的窑,以转动的辊子作为坯体运载工具的隧道窑。陶瓷产品放置在许多条间隔很密的水平耐火辊上,靠辊子的转动使陶瓷从窑头传送到窑尾,故而称为辊道窑。 4、倒焰窑:燃烧所产生的火焰都从燃烧室的喷火口上行至窑顶,由于窑顶是密封的,火焰不能继续上行,在走投无路的情况下,就被烟囱的抽力拉向下行,经过匣钵柱的间隙,自窑底吸火孔进支烟道,主烟道,最后由烟囱排出。 5、推板窑:又称推板式隧道窑,是一种连续式加热烧结设备,按照烧结产品的工艺要求,布置所需的温区及功率,组成设备的热工部分,满足产品对热量的需求。把烧结产品直接或间接放在耐高温、耐磨擦的推板上,由推进系统按照产品的工艺要求对放置在推板上产品进行移动,在炉膛中完成产品的烧结过程。 三、陶瓷窑炉选择 1、对于日产量在20M3以下,且产品种类较多,烧成温度各异,由于其本身产量难以满足隧道窑的生产量,推荐采用快速烧成梭式窑。 2、对于日产量等于或大于20M3,但其釉色复杂,如窑变结晶釉需一定的恒温及冷却时间,可采用传统梭式窑或电热梭式窑;如果窑变釉或结晶釉只是部分,可以选用快速窑,快速窑不是只快,也可以放慢。慢,温差可控制很小。但慢的节能效果差。 3、对产量较大、高度较高、重量较重、温度较高、釉色单一,可选用台车式隧道窑。如高温日用陶瓷,卫浴陶瓷。 4、对温度在1300℃以内,产量较大的艺术陶瓷、日用陶瓷、卫浴陶瓷,建议采用辊道窑,或大型快速梭式窑。

工业窑炉节能技术措施正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.工业窑炉节能技术措施正 式版

工业窑炉节能技术措施正式版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 工业窑炉的能好受许多方面因素的影响,但是节能的主要措施一般都离不开优化设计、改进设备、回收余热利用、加强检测控制的生产管理等方面。 工业窑炉各项节能改造所节约的是煤炭和石油资源,还可以获得较好的温室气体CO2的减排效果,有益于缓解全球气候变暖,还可以减少酸雨气体SO2和NOX与总悬浮颗粒物的排放,有利于改善地区的生态环境。 工业窑炉节能改造的内容很多,主要有热源改造、燃烧系统改造、窑炉结构改

造、窑炉保温改造、烟气余热回收利用以及控制系统节能改造等项。 一、热平衡测试 节能必须有科学的计量对比测试方法。目前公认的测试方法是热平衡测试。通过对窑炉的现场热工测定,全面地了解窑炉的热工过程,计算窑炉收入和支出的能量、供给能量、有效能量及损失能量的平衡关系,从而了解炉窑的热工状况,判断其能量有效利用程度,查明各项损失的分布情况,分析炉窑运行工况,及时调整运行工艺参数,使其达到运行的最佳状态,同时找出节约能源的有效途径,明确节能方向,为提高窑炉等能源利用效率提供科学依据,达到节能的目的。

陶瓷工业窑炉能耗现状及节能技术

陶瓷工业窑炉能耗现状及节能技术 一.陶瓷工业窑炉概况 陶瓷工业窑炉按样式分:辊道窑、隧道窑、梭式窑。按热源分:燃油窑、燃气窑、电窑、微波窑。陶瓷产品主要分为:建筑陶瓷、日用陶瓷、卫生陶瓷、特种陶瓷。 建筑陶瓷具有薄、平、规则的特点,全部采用辊道窑快速烧成。日用陶瓷根据产品的各自特点,小而薄的可采用辊道窑烧成;大而不规则的则采用隧道窑烧成。卫生陶瓷大多体型大,不规则,厚度不一多采用隧道窑或梭式窑生产。特种陶瓷根据产品的样式以及物理化学要求大多采用电辊道窑、燃气梭式窑或微波窑烧成。 二.能耗因素 影响陶瓷窑炉能耗的因素有: 1.窑炉样式。隧道窑、梭式窑的窑车具带走的热量占窑炉 总耗热的20%左右。国内辊道窑能耗在450—1200Kcal/kg 瓷,隧道窑的能耗在1000Kcal/Kg瓷以上。 2.窑炉结构。窑墙的保温蓄热性能、窑顶结构对于气体流动 的影响、各种管道分布的合理性及对热量的利用率的影响。 3.窑炉尺寸。窑炉宽度增加1m,单位制品的能耗大概减少 2.5%。窑炉越长,窑头排烟带走的热量就越少。窑炉越高, 散热面积越大,能耗越大。

4.窑炉燃料。同样的温度要求下,洁净燃料所需的空气量和 产生的烟气量少,排烟带走的热量就少。微波、电热、燃气、燃油、燃煤窑炉的能耗依次增大。 5.窑炉材料。窑体材料的热导率越低,窑体散热越少,材料 越轻,窑体蓄热越少。 6.窑炉控制。目前国内大多采用计算机自动监测控制系统, 合理调节窑内温度、压力、气氛,从而减少燃料消耗;合理调节风机和传动电机频率,减少无用功。 7.窑炉烧嘴。目前国内新建窑炉大多采用高速预混式节能烧 嘴,该烧嘴可调节空气过量系数,高速,减少宽断面温差。 8.窑炉余热的回收利用。目前国内陶瓷窑炉基本都采用直接 热回收利用的方式,如:加热空气、干燥坯体等,动力回收的很少。 9.产品。产品的原料、规格、性能的不同,烧成参数也不同, 能耗自然也不同,产品烧成温度降低100℃,单位产品热耗可降低10%。目前广东外墙砖的能耗大概为530—1000Kcal/Kg瓷,仿古砖480—700Kcal/Kg瓷,抛光砖530—800Kcal/Kg瓷,日用卫生陶瓷大概为1000—2000Kcal/Kg瓷。 三.几种常见窑炉的能耗或节能成果。 辊道窑: 辊道窑因其机械自动化程度高、结构简单、产量大深受

世界七大陶瓷产业格局发展分析

精心整理世界七大陶瓷产业格局发展分析 世界陶器产业的起源从历史看有三大区域,东亚区域、西亚、北非、欧州区域、美州区域。美州制陶业在哥伦布发现美州大陆之前一直独立、缓慢地发现着。东亚陶瓷主要是中国为源头及核心不断向周边的热南、朝鲜(高丽)、日本及东南亚扩散。 釉软质瓷,直至17世纪荷兰的锡釉陶以仿制中国青花和五彩而闻名天下,中世纪欧州瓷是在伊斯兰陶器和中国瓷的影响下发展起来的。 虽然陶器世界很多地方在几千年前均有生产,但瓷器却被公认是中国人的发明,自14世纪开始的东西方陶瓷贸中,由于欧州存在

着巨大的贸易逆差,造成大量白银流失,为增加本国财富,18世纪欧州各国都加紧了陶瓷的研制。欧州最早的瓷器是德国的迈森工厂生产的,然后制瓷技术扩散到意大利及英法等国。 日本陶瓷业 1616年,归化日本的朝鲜人李参平在日本有田盯(Arita)发现瓷土并成功烧制出青花瓷,宣告了白本瓷器时代的来临,日本瓷器真 1658 势。 在原材料方面,由于国内陶瓷原料供应不足,日本陶瓷企业从国外进口陶瓷原料数量逐年增长,如可塑性高岭土原料需从韩国及新西兰进口,进口量已达总进口量50%以上。另外,从英国与中国进口高岭土原料数量逐年增多。随着原料的进口,导致产品成本增加,迫使企业必须生产高附加值的产品,提高产品的档次。

在陶瓷原料开发利用方面,日本不再局限于满足过去普通的陶器与瓷器制品生产,而是强调更多地满足日用陶瓷的使用功能与用途,如增强陶瓷餐具的抗菌性能,对于卫生瓷强调产品的防污性、节水效果等;研制新产品中他们很注意提高环境保护的标准与有利于人体保健的效果,如对于釉料、色料含铅镉溶出所造成的污染进行规划治理。如日本的东陶公司将日本在新材料、电子方面的 牌 脑的 欧州陶瓷业 在欧共体,建筑瓷、日用瓷、卫生瓷工业拥有1500家企业,从业人员大约200000人。建筑瓷是最重要的行业,占据年销售额14000MECU的60%,余下的日用瓷和卫生瓷基本平均。日用瓷和卫生瓷也有一些集中性生产区域,但不象建筑瓷、卫生瓷生产集

节能技术(重点)

节能技术 第一章热能、电能利用节能技术:第一、锅炉节能技术 一、(1)加强燃料管理与实现动力配煤,节约用煤:动力配煤根据用户对煤质的特定要求,将不同种类、不同性质的若干种煤按照一定的比例,经过筛选、破碎掺配加工成混煤,使其成为认为加工的“新煤种”。这种“新煤种”的化学组成、物理特性和燃煤特性与各原单一煤种均有不同,合理配比可以达到改善性质、特性互补、劣煤优用、有利燃烧、减少污染物排放的目的。(2)加强水质管理,减少结垢和排污:锅炉水处理会减少锅炉结垢,降低排污热损失。 二、(1)锅炉节能的目的:主要是提高锅炉热效率,降低燃料消耗,减少热损失和污染物。(2)锅炉常用分类方法:不同的分类方法可以将锅炉分成不同的类别,各种分类方法分成的锅炉类别不能混淆。按使用燃料种类不同分为燃煤锅炉、燃油锅炉、燃气锅炉等;按蒸发受热面中工质流动的方式可分为自然循环锅炉、强制循环锅炉和直流锅炉;按主蒸汽压力高低可分为低压锅炉、中压锅炉、高压锅炉、超高压锅炉、亚临界压力锅炉、超临界压力锅炉和超超临界压力锅炉等;按燃烧方式不同可分为层燃炉、室燃炉、流化床炉和旋风炉。(3)加强运行调整,减少各项热损失 锅炉运行时存在着种种热损失,找出引起热损失的原因,提出减少各项热损失的措施,就可以提高锅炉热效率,以节约能源。锅炉输入热力主要来源于燃料燃烧放出的热量。为了便于分析,将燃料在锅炉内燃烧输入的热量分为两部分,一部分为锅炉的有效利用热,其余的即为各项热损失。锅炉的热效率表示锅炉设备有效利用热量Q1与输入热量Qr之比的百分数,即:η= Q1/Q r×100%。为了确定锅炉的热效率,就需要建立在正常运行工况下,锅炉热量的收支平衡关系,通常称为锅炉的热平衡。在锅炉机组稳定运行的热力状态下,1Kg燃料带入锅炉内的热量、锅炉的有效利用热量和热损失之间有如下热平衡关系。Qr=Q1+Q2+Q3+Q4+Q5+Q6 KJ/Kg将上式两边都除以Qr,则锅炉的热平衡可以用占输入热量的百分比来比表示。100%=q1+q2+q3+q4+q5+q6显然,要提高锅炉热效率,必须设法降低各项热损失。 1、减少排烟热损失q2.排烟热损失时指高温烟气排入大气而损失的热量。排烟损失由尾部排烟温度、烟气量与漏入系统内的冷空气量综合决定的。因此,降低排烟损失,就要减少炉膛的空气系数和各烟道的漏风量以及降低排烟温度。 2、减少气体未完全燃烧热损失q3。对燃煤锅炉而言,这项损失主要取决于排烟处的一氧化碳含量和空气系数。 3、减少固体未完全燃烧热损失q4。未燃尽而残留的固定碳常存在于灰渣、飞灰与落煤之中。 4、减少散热损失q5.散热损失大小取决于散热表面的面积、温度和环境条件。因此,散热损失与锅炉容量有关,也与锅炉有无省煤器、空气预热器等受热面有关。锅炉容量越大,其与外界接触的面积相对地变小,散热损失减小。通常小型锅炉的散热损失较大,有尾部受热面(如省煤器、空气预热器)的锅炉散热损失较大。 5、减少灰渣物理热损失q6。灰渣物理热损失是指炉渣所带走的热损失。通常层燃炉的灰渣量较大而且温度高,需要考虑灰渣物理热损失。 (4)燃煤锅炉的两个主要节能措施1、运行调整。运行调整主要是降低排烟损失和合理配风。锅炉降低排烟损失,合理配风的目标,就是要根据负荷要求,恰当地供给燃料量,不断寻求并力争控制最佳空气系数,达到完全燃烧。 在理论上达到完全燃烧所需要的空气量,称为理论空气量。但在实际条件下,根据燃料品种、燃烧方式及控制技术的优劣,往往需要多供给一些空气量,称为实际空气量。实际空气量与理论空气量之比,称为空气系数。 但是最佳空气系数无法从理论上进行准确计算,只能依靠试验研究和实践经验来优选。通常对于气体燃料由于它能与助燃空气达到良好的混合,较小的空气系数便可以实现完全燃烧;对于固体燃料,因为它与助燃空气在表面接触燃烧,不能直接进入内部混合,空气系数相对较大;对于液体燃料,一般采用雾化燃烧,雾化微粒与空气混合比固体燃料好,但比气体燃料差,空气系数介于固体和气体燃料之间。即使同一种燃料,由于可燃成分、燃烧方式与控制技术的差异,空气系数也不完全相同。2、节能改造。节能改造主要包括六条措施:給煤装置改造;炉拱改造;燃烧系统改造;层燃锅炉改造成循环流化床锅炉;控制系统改造;采用节能新设备。 第二、工业窑炉节能技术 一、在工业生产中,利用燃料燃烧产生的热量,或将电能转化为热能,从而实现对工件或物料进行熔炼、加热、烘干、烧结、裂解和蒸馏等各种加工工艺所用的热工设备,称为工业窑炉。工业窑炉主要由炉衬、炉架、供热装置(如燃烧装置、电加热元件)、预热器、炉前管道、排烟系统、炉用机械等部分组成。 二、(一)工业窑炉的分类:工业窑炉的种类繁多,用途各异。实际应用中一般是按其某些主要特征来进行分类的。按工艺特点分为加热炉和熔炼炉;按所使用能源种类分为燃料炉和电加热炉;按工作温度高低分为高温炉、中温炉、低温炉;按热工操作制度分为连续式工作窑炉和间歇式工作窑炉;按炉型特点分为室燃炉、步进炉、竖炉等;按工作制度分为辐射式工作制度窑炉、对流式工作制度窑炉和层式工作制度窑炉。 (二)工业窑炉节能改造的主要内容七个方面:热源改造、燃烧系统改造、窑炉结构改造、窑炉保温改造、烟气余热

陶瓷废料的综合利用现状

陶瓷废料的综合利用现状 2006-1-5 1 前言 随着社会经济及陶瓷工业的快速发展,陶瓷工业废料日益增多,它不仅对城市环境造成巨大压力,而且还限制了城市经济的发展及陶瓷工业的可持续发展,所以陶瓷工业废料的处理与利用非常重要。目前,我国陶瓷工业废料的处理与利用程度比较低,资金紧缺,致使大量废渣挤占耕地,使水和空气受到污染。特别是近20年的高速发展,陶瓷业随着产量的增加,废料的数量越来越多,根据不完全统计:仅佛山陶瓷产区,各种陶瓷废料的年产量已经超过400万吨,而全国陶瓷废料的年产量估计在1000万吨左右,如此大量的陶瓷废料已经不是简单填埋可以解决的问题,而且随着经济的日益发展和社会的进步,环境已经成为人们关注的焦点,陶瓷废料的堆积挤占土地,影响当地空气的粉尘含量,而陶瓷废料的填埋耗费人力物力,还污染地下水质,如何变废为宝,化废料为资源,已经成为科技和环保部门的当务之急。 因此,我国必须高度重视对陶瓷生产中废料的再循环和利用,把它提高到环境材料学的高度加以研究和利用,提高到全民绿色环保的高度加以重视和解决。 2 废料的来源与分类 陶瓷工业废料主要是指陶瓷制品生产过程中,由于成形、干燥、施釉、搬运、焙烧及贮存等工序中产生的废料, 通常大致分类如下。 (1)坯体废料主要是指陶瓷制品焙烧之前所形成的废料,包括上釉坯体废料及无釉坯体废料。 (2)废釉料是在陶瓷制品的生产过程中(抛光砖的研磨、抛光及磨边倒角等深加工工序除外)所形式的污水,污水经净化处理后形成的固体废料,通常含有重金属元素,按其化学含量多少可分为有毒废釉料和有害废釉料。 (3)烧成废料是陶瓷制品经焙烧后生成的废料,主要是烧成废品和在贮存和搬运等生产工序中的损坏而造成的。 (4)采用重油或煤作为燃料的陶瓷窑炉,由于重油及煤的机械不完全燃烧损失及化学不完全燃烧损失偏高,形成了大量未燃烬的游离碳,极易污染陶瓷制品。因此,日用陶瓷制品通常采用隔焰加热的方式进行焙烧。而获得隔焰加热方式最经济的方法是采用匣钵焙烧,此外,极个别的小型墙地砖生产企业采用多孔窑焙烧制品时仍需利用匣钵。由于匣钵多次承受室温,高温室温的热应力作用及装钵过程中的搬运、碰撞等易于损坏而成为匣钵废渣。 (5)瓷质砖及厚釉砖等经刮平定厚、研磨抛光及磨边倒角等一系列深加工成为光亮如镜及平滑细腻的抛光砖制品后,产生大量的砖屑。研磨抛光工序通常将从砖坯表面去除0.5-0.7 毫米表面层,有时甚至高达1-2毫米,那么生产1平方米抛光砖将形成1.5公斤左右的砖屑,若以年产40万平方米抛光砖的抛光生产线为例,那么每年约产生840万吨左右的抛光砖废渣。 3 国内外的综合利用 3.1用来生产陶瓷砖 3.1.1用于瓷砖坯料 建筑陶瓷企业在从事生产时也会造成许多种类的工业废料。如用于淘洗原料及冲刷设备排出的废泥水、烧成后的瓷砖废品、不可再用的匣钵与窑具等。当前,对陶瓷厂自身产生的工业废料的回收利用的研究已取得突破性进展。废弃的泥水经回收、拣去杂物、除铁外,又可以添加入瓷砖的配料中用于瓷砖坯料。对于废品、废匣钵与废窑具之类经过高温烧成的废料,也可采用重新粉碎加工方法,将其磨碎成粒径在5mm以下,然后按 3w%的比例添加到瓷砖或西式瓦的配料中用于瓷砖坯料。近年来,日本许多建陶企业都配备了带式回转磨机装置,专门对企业内产生的废料进行再加工与回收利用,取得明显的经济效益与社会效益。国际上许多国家已将绿色陶瓷制品定位为在生产线上不形成污染的产品。让陶瓷企业真正形成无废料排放、实现良性循环的生产体制,已成为许多建陶企业追逐的目标。

工业窑炉节能技术

工业窑炉节能技术 姓名:张毅 专业:动力机械及工程

一绪论 1.1采用先进技术,使工业窑炉不断改造升级 窑炉的更新改造应该以优质、高效、节能、环保、安全、智能化、多工种、工序联动及自动化为主。水泥预分解技术是最具现代化、规模化的水泥生产方法,在世界各国被普遍采用,成为当代水泥生产方式的主流。该技术以悬浮预热和预分解为核心,利用现代流体力学、燃烧动力学、反应动力学、热工学、计算流体力学数值预测技术、粉体工程学和工程测试技术等现代科学理论和技术,并采用计算机信息及网络化技术,具有高效、优质、节能、节约资源等特点,符合可持续发展的要求。 在工业窑炉燃烧技术节能方面,通过将高温空气燃烧技术、富氧燃烧技术、脉冲燃烧节能技术、水煤浆燃烧技术和流化床燃烧技术等先进燃烧技术应用于工业锅炉中,可显著提高燃烧热效率。 2.1 推进工业窑炉余压热利用 我国工业窑炉主要以煤炭为燃料,以电能为动力,是典型的耗能大户。一般工业窑炉烟气带走的热量占燃料炉总供热量的30%~70%,充分回收烟气余热是节能的主要途径。通常烟气余热利用途径有:1)装设预热器,利用烟气预热助燃空气和燃料;2)装设余热锅炉,生产热水或是蒸汽,以供生产或生活;3)利用烟气作为低温炉的热源或用来预热冷的工件或炉料。 二工业窑炉节能基本原理 2.1 工业窑炉的分类 工业窑炉是指加热或熔化金属或非金属的装置而言,加热或熔化金属的装置称为工业炉,加热或熔化非金属的装置称为窑炉。工业窑炉是工业加热的关键设备,同时工业窑炉又是高能耗设备。目前,全国工业窑炉年能耗约占总能耗的25%,占工业总能耗的60%。目前工业窑炉根据行业分类主要如图2.1.

工业窑炉简介

目录 目录 (1) 工业炉窑简介 (2) 一、工业窑炉简述: (2) 二、工业炉窑历史、现状 (3) 三、行业发展趋势 (4) 四、窑炉的工作原理、参数、工艺条件 (4) 4.1原理 (4) 4.2工业窑炉的参数 (5) 4.3工业窑炉的工艺条件 (6) 五、工业窑炉节能现状 (6) 5.1 热源改造,燃烧系统改造 (6) 5.2 窑炉结构改造 (7) 5.3 余热回收与利用 (10) 5.4 控制系统节能改造 (12)

工业炉窑简介 一、工业窑炉简述: 窑炉是用耐火材料砌成的用以煅烧物料或烧成制品的设备。按煅烧物料品种可分为陶瓷窑、水泥窑、玻璃窑、搪瓷窑、石灰窑等。前者按操作方法可分为连续窑(隧道窑)、半连续窑和间歇窑。按热原可分为火焰窑和电热窑。按热源面向坯体状况可分为明焰窑、隔焰窑和半隔焰窑。按坯体运载工具可分为有窑车窑、推板窑、辊底窑(辊道窑)、输送带窑,步进梁式窑和气垫窑等。按通道数目可分为单通道窑、双通道窑和多通道窑。一般大型窑炉燃料多为重油,轻柴油或煤气、天然气。窑炉通常由窑室、燃烧设备、通风设备,输送设备等四部分组成。电窑多半以电炉丝、硅碳棒或二硅化钼作为发热元件。其结构较为简单,操作方便。此外,还有多种气氛窑等。 在具体行业,窑炉还有更多细分类型,如水泥回转窑、玻璃池窑、钢铁的高炉和转炉,化工行业的一些设备也可归为窑炉。但通常意义上的工业窑炉,范围主要指金属和无机材料的煅烧设备。 窑炉大致分为箱式、井式、梭式、网带式、回转式、窑车式、推板式隧道电阻炉、真空炉、气体保护炉、超高温管式推板炉(碳管炉)、钨钼粉焙烧炉、还原炉等各种高、中、低温工业窑炉,工作温度200~2500℃。可用于ZnO压敏电阻器、避雷器阀片、结构陶瓷、纺织陶瓷、PTC&NTC热敏电阻器、电子陶瓷滤波器、片式电容、瓷介电容、厚膜

陶瓷窑炉设计

陶瓷窑炉设计 2007-04-19 18:13 在设计窑炉时,一般需要考虑两个问题:一是窑体本身的材质和结构等方面的问题;二是向被烧产品的传热问题。不言而喻,不管窑体建造得如何坚固,只要烧出的产品不好也是没有用的。因此,设计窑炉时不重视对被烧制品的传热问题是一个重大失误,因为向被烧制品传热是建窑的唯一目的。 窑的用途是烧制一件件个别制品,但几乎所有人对窑的这一用途缺乏正确的理解。许多窑炉建造者认为窑的用途是为烧制大量制品提供一个受热的容器。许多窑炉使用者也持有这种观点。 窑内的每一件制品必须受到同样的热处理。如果制品在造型、规格以及重量方面越接近,那么制品的平均质量就会越高。哪一件制品受热越均匀,哪一件制品在烧成质量就越高。整个窑炉的温度越均匀,窑内所有制品的烧成质量也越高。那些在设计中适当考虑了加热方式的窑炉,总是比未考虑传热原则的窑炉更好用。 尽管谁也不愿意在窑炉设备上多耗资,但高质量产品所获取的利润足以弥补较高的设备投资。事实上,与那些廉价设备生产的制品相比,好设备在每件制品上所消耗的设备成本更低。 表1是现代化窑炉与传统窑炉的比较。数据表明,新型窑炉的生产能力提高了50%。甚至在采用与传统窑炉相同烧成周期的情况下使用,新型窑炉的使用费用也仍然较低。若按照新型窑炉的生产效率使用时,不仅其单位重量制品的烧成成本降低了20%,而且所产量也提高了50%。 表1 传统窑炉与新型窑炉的比较 表2是具有较小尺寸但却有相同年产量的新型窑炉与传统窑炉的比较。表2说明:新型窑炉不但造价较低,而且单位重量制品的烧成成本也比传统窑炉降低16%。 表2 传统窑炉与产量相同但容量更小的新型窑炉的比较

工业窑炉节能技术

第二节工业窑炉节能技术 一、概述 在工业生产中,利用燃料燃烧产生的热量,或将电能转化为热能,从而买现对工件或物料进行熔炼、加热、烘干、烧结、裂解和蒸馏等各种加工工艺所用的热工设备,称为工业炉窑。工业窑炉主要由炉衬、炉架、供热装置(如燃烧装置、电加热元件)、预热器、炉前管道、排烟系统、炉用机械等部分组成。 目前,工业炉窑广泛应用于国民经济各行各业,如冶金、建材、化工、轻工、食品和陶瓷等行业。其品种多、耗能高、影响大,是工业加热的关键设备。其加热技术的发展与高效节能技术的采用,对于提高产品质量、降低生产成本、合理利用能源、改善劳动条件、实现文明生产等都有很大影响。 工业窑炉的类型繁多,在不同的行业需要满足不同的应用背景和生产工艺要求。工业窑炉一般应满足如下要求: (1)炉温、气氛易于控制,保证热加工产品质量达到工艺要求; (2)炉子生产率高; (3)热效率高,单位产品能耗低; (4)使用寿命长,砌筑和维护方便,筑炉材料消耗少; (5)机械化、自动化程度高; (6)基建投资少,占地面积小月、便于布置; (7)对环境污染少,劳动条件好。 在实际应用中,应根据不同的工业窑炉和具体生产工艺要求,从设计、施工、运行操作和维护管理等各方面综合考虑,力求尽可能达到上述的基本要求。 目前,我国工业窑炉年耗煤达3亿多吨,约占我国工业用煤的40%。水泥、墙体材料窑炉每年消耗煤炭约2.24亿t,其中水泥窑约7 800座,年耗煤1.6亿t,平均能效比国外先进水平低20%以上;墙体材料窑炉约10万座,年耗煤6 400万t,平均能效比国外先进水平低30%以上。钢铁工业窑炉每年消耗煤炭约6 600万t,其中球团工序回转窑生产线20多条,平均能效比国外先进水平低50%以上;石灰热工窑炉约350座,平均能效比国外先进水平低10%;耐火材料热工窑炉约1 900余座,平均能效比国外先进水平低10%~20%。 我国工业窑炉存在的主要问题是:技术水平低,装备陈旧落后、规模小;能耗高,大部分缺乏除尘脱硫污染控制设施,污染严重;运行管理水平低,管理粗放。 我国工业窑炉的节能潜力巨大,例如:钢铁厂余热资源据估计相当于1 000多万吨标准煤,其中65%是可以回收的,而目前只回收了总量的10%,仍有约500多万吨标准煤的能量可以回收利用。因此,如果全国的工业窑炉能够平均节能10%,则年节约的能源相当于1亿tee。 随着全球经济、资源和环境一体化趋势的发展,我国的工业炉窑技术及装置水平面临极

中国陶瓷发展历史(最全版)

中国陶瓷发展史 中国就是瓷器的故乡,中国瓷器的发明就是中华民族对世界文明的伟大贡献,在英文中"瓷器"(china)一词也有"中国"的意思。大约在公元前16世纪的商代中期,中国就出现了早期的瓷器。因为其无论在胎体上,还就是在釉层的烧制工艺上都尚显粗糙,烧制温度也较低,表现出原始性与过渡性,所以一般称其为"原始瓷"。 瓷器脱胎于陶器,它的发明就是中国古代先民在烧制白陶器与印纹硬陶器的经验中,逐步探索出来的。烧制瓷器必须同时具备三个条件:一就是制瓷原料必须就是富含石英与绢云母等矿物质的瓷石、瓷土或高岭土。二就是烧成温度须在1200℃以上。三就是在器表施有高温下烧成的釉面。 原始瓷作为陶器向瓷器过渡时期的产物,与各种陶器相比,具有胎质致密、经久耐用、便于清洗、外观华美等特点,因此发展前景广阔。原始瓷烧造工艺水平与产量的不断提高,为后来瓷器逐渐取代陶器,成为中国人日常生活的主要用器奠定了基础。 中国瓷器就是从陶器发展演变而成的,原始瓷器起源于3000多年前。至宋代时,名瓷名窑已遍及大半个中国,就是瓷业最为繁荣的时期。当时的钧窑、哥窑、官窑、汝窑与定窑并称为五大名窑。被称为瓷都的江西景德镇在元代出产的青花瓷已成为瓷器的代表。青花瓷釉质透明如水,胎体质薄轻巧,洁白的瓷体上敷以蓝色纹饰,素雅清新,充满生机。青花瓷一经出现便风靡一时,成为景德镇的传统名瓷之冠。与青花瓷共同并称四大名瓷的还有青花玲珑瓷、粉彩瓷与颜色釉瓷。另外,还有雕塑瓷、薄胎瓷、五彩胎瓷等,均精美非常,各有特色。 多姿多彩的瓷器就是中国古代的伟大发明之一,"瓷器"与"中国"在英文中同

为一词,充分说明中国瓷器的精美绝伦完全可以作为中国的代表。而各个时期的陶瓷文化展现着不同的风采。 夏、商、周朝时期的陶瓷文化 商朝殷虚的遗址中挖出的陶片、陶罐包括很多种款式,有灰陶、黑陶、红陶、彩陶、白陶,以及带釉的硬陶,这些陶器上的纹饰、符号、文字与殷商时代的甲骨文与青器有密切的关系。青器的成本高只能为贵族享用,广大民众的各种生活器皿只能采用陶器。因此可以了解商代制陶工艺也得到普遍的发展,带釉的硬陶在这个时期已经出现了,釉色青绿而带褐黄,胎质比较硬,呈灰白色。 陶器在此时已经不在局限於盛物器皿,应用范围较广,大略可分为日用品类、建筑类、殉葬类、祭祀礼器类。朝廷对於制陶工作也很重视。 秦汉时期陶瓷文化 秦汉-古代的建筑多采用木料来架构,不易久存,所以一些伟大的建筑,如秦代的阿房宫与汉代的未央宫,都无法完整保存下来,但仍可在残存的废墟中发现瓦当及汉砖等遗物,藉以略窥古代建筑的规模。 隋唐朝时期的陶瓷文化 西元五百八十九年,杨坚篡北周并南陈,统一中原,改国号为隋,隋的朝代虽短,但在瓷器烧制上,却有了新的突破,不但有青瓷烧造,白瓷也有很好的发展,另外此时在装饰手法上也有了创新,如在器物上另外的泥片—贴花,就就是一例。 唐朝时期的陶瓷文化 到了唐代,瓷器制作可为以蜕变到成熟的境界,而跨入真正的瓷器时代。因为陶与瓷的分野,在乎质白坚硬或半透明,而最大的关键在於火烧温度。汉代虽有瓷器,但温度不高,质地脆弱只能算就是原瓷,而发展到唐代,不但釉药发展成熟,火烧

陶瓷窑炉燃料现状分析

陶瓷窑炉燃料现状分析 (Analysis of ceramic kiln fuel) 摘要:全国迅猛发展的陶瓷业对我国的环境造成很大的污染,由于环境保护的需要,现代陶瓷窑炉在选择燃料方面赢着重考虑使用清洁燃料。 Abstract:The rapid development of the country on China's environment ceramics lot of pollution, due to need for environmental protection, modern ceramic kiln fuel in the choice of focus to consider the use of clean fuels win. 关键词:陶瓷窑炉燃料分析环保 我国是陶瓷生产大国,日用瓷和建筑卫生陶瓷的产量均居世界第一。据有关资料显示,2003年建筑陶瓷产量达30亿平方米,占全世界总产量的40%;卫生陶瓷6000万~6500万件,全国有陶瓷厂上万家,拥有大小窑炉几万条,消耗能源4000万~5000万吨标准煤。然而,我国是一个能源资源相对贫乏的国家,人均能源可采储量2000年石油为2.6吨、天然气为1074立方米、煤炭为90吨,分别为世界平均值的11.1%、4.3%和55.4%,远远低于世界的平均水平。而陶瓷行业是一个高能耗的行业,能耗占陶瓷生产成本的30%~40%,陶瓷的高能耗必然带来高污染 全国迅猛发展的陶瓷业对我国的环境造成很大的污染,特别是陶瓷发展迅速的瓷区及周边地区更为严重。广东省内除佛山地区外,其他地区,如深圳、东莞、清远、潮州等地及全国各主要瓷区已出现不少有关陶瓷厂烟囱废气污染而造成附近农民果树及农作物枯死失收等纠纷。另外,窑炉废气易造成酸雨,广东每年因酸雨损失多达40亿元。因此,节能降耗减少陶瓷窑炉污染是陶瓷生产的大势所趋,也是陶瓷工业可持续发展的重要条件。 窑炉结构不合理造成热污染据报道,我国共有建筑卫生陶瓷厂3000多家,有大小窑炉上万座,年耗标准煤近500万吨。而能源的利用率仅是美国的一半,即28%~30%.这些窑炉中,很大部分仍是砖砌式窑墙结构,窑墙厚。早期的隧道窑,窑墙厚达1~2米,由于大都是重质耐火砖,导热系数大,故窑墙外表面温度高,有的高达300~400℃,不但造成了热损失,降低了窑炉的热效率,还造成严重热污染。如车间窑炉旁温度高达几十摄氏度,造成车间环境恶劣,严重影响窑炉操作工人的身体健康。 燃料和燃烧方式不同形成的污染物不同 (一)以煤为燃料我国是煤炭储量大国,同时也是世界上最大的煤炭消费国,耗煤量占世界总耗煤量的1/4,2000年煤产量达14.5亿吨,这么多煤炭,大部分都作为燃料烧掉,故煤炭作为燃料直接燃烧是我国大气污染的主要根源。目前我国大气中90%的SO2、85%的CO2、80%的ROx(粉尘)和50%的NOx均来自煤的燃烧。 陶瓷窑炉使用燃料多种多样,而煤占燃料总消耗量的2/3,由于燃煤窑炉建造费用和燃料成本低,煤炭资源丰富,分布广泛,可就地取材,所以对大、中、小陶瓷

中国陶瓷发展史

中国陶瓷发展史 中国陶器,发明于伏羲神农之时,而瓷的名称,则始于汉代,真正成功于李唐。宋世,瓷业大盛,定、汝、官、哥、均,名垂千古。明人继之,宣德、成化之作,尤为特出。清代,则古雅浑朴,不如前人,但是精巧华丽,美妙绝伦,康乾所制,更有出类拔萃之概. 就瓷器的功能而言,主要有以实用为主的日用瓷和以观赏为主的艺术瓷,除此尚有卫生建筑和特种工业瓷等;就瓷器的装饰工艺而言,有釉下装饰、釉上装饰、釉中装饰、高低温颜色釉装饰、色釉彩装饰和多种工艺综合运用等几大装饰类别,工艺品种和表现形式琳琅满目,各具特色。 20世纪中国瓷器艺术的发展大致可分为50年代前和50年代后两大阶段。前半葉,中国社会并未改变半殖民地半封建的性质,国无宁日、经济衰败、民不聊生。尤其是日本的侵华战争,给中华民族带来深重的灾难。在这样的国运天时下,整个陶瓷事业濒临于人亡艺绝之境。然而,也有不少有志之士与爱国的陶工及匠师们结合起来,为陶瓷的发展而拼搏努力。醴陵釉下五彩能在本世纪初创制出来,不能不说是个乱世之奇。活跃于20年代后的景德镇“珠山八友”,将文人画技法和审美意识带人瓷壇,形成了一代画风,其余辉至今犹存。在制瓷技术上,先后引进和小规模地试验了煤窑窑炉设计及烧成技术,新法选矿及粉碎技术,机械练泥和成型以及吹釉技术,石膏模具使用,注浆成型技术,新彩及釉上、釉下贴 花装饰工艺等。它为后来的瓷器艺术改善了工艺条件,推广了先进技术。但整体上说,本世纪前半葉是中国瓷器艺术黯淡失色的历史时期,直到本世纪50年代,长期动荡的社会得以安定,国民经济得到迅速恢复和发展。国家对整个工艺美术采取了一系列“保护、发展、提高”的方针,实施了一系列较大举措:如把“散之四方”的能工巧匠重新组织起来,提高其待遇,鼓励其带徒传艺;各地陶瓷研究

工业锅炉、窑炉、节能减排技术途径和关键问题.doc

工业锅炉及窑炉节能减排技术途径与关键问题分析 当前我国的燃煤工业锅炉、窑炉普遍存在技术落后、效率低下、污染严重、监管难度大等问题,节能潜力超过1亿t煤,是煤炭节能减排技术的重点。实现工业炉窑燃煤节能是一个系统工程,关键是依靠燃煤技术和运行控制技术的进步,法规政策的促进和保障作用,社会化服务有助于推动新技术发展,先进的节能技术必会带来可观的经济和社会效益。 1 工业燃煤锅炉及窑炉现状分析 据统计,我国现有燃煤工业锅炉总数接近55万台,总容量达169万蒸吨(118.4万MW),平均单台装机容量仅2.4 MW,其中约85%为燃煤锅炉,耗煤量约4亿t/a。目前,每年锅炉产量约2-3万台,其中约1/4用于新增需求。燃煤工业锅炉装备水平普遍较低、系统技术落后,平均热效率约60%,比国外低20%-25%,计算节煤潜力约1.2亿t/a;污染治理及运行水平差,每年向大气排放SO2600多万t,烟尘800多万t,CO21.64亿t,灰渣8700多万t,是城市主要大气低空污染源,直接影响城区空气质量,总体污染仅次于电站锅炉,在许多城市工业锅炉污染甚至超过了电站锅炉。 目前全国共有16万座以上燃煤工业窑炉,主要集中在建材、冶金、化工及陶瓷等行业,年耗煤量即达到3亿t。工业燃煤窑炉平均热效率仅40%左右,比国外先进水平低10%-30%。主要用于水泥、砖瓦、石灰等生产,普遍规模小、装备陈旧、技术落后、运行管理粗放,缺乏除尘脱硫措施,总体能源效率比发达国家低30%-50%;在钢铁行业采用的工业窑炉有用于球团工序的迥转窑、石灰热工窑炉、耐火材料热工窑炉(如竖窑、隧道窑、梭式窑、迥转窑,还有少量倒焰窑)等,热效率一般在25%-50%之间,约有30%左右的节能潜力;另外,我国还有相当一部分燃油、燃气的炉窑,其中许多面临无油无气可烧的局面。工业窑炉带来的能源利用效率低下、环境污染严重问题已经成为影响我国经济社会发展的制约因素。 燃料煤质量不稳定、燃烧装置与多变煤质不匹配、不能根据煤质的变化适时调整操作状态、污染物排放缺乏经济而有效的控制手段等诸多问题,是造成燃煤工业锅炉和窑炉热效率低下、污染排放严重的主要原因。其根本所在是缺乏对狭小空间中各种燃煤过程及复杂耦合规律等方面的基础研究。通过开展相应的基础研究,继而开发出高效、洁净的燃煤技术及配套技术,经初步分析可使工业锅炉、窑炉热效事至少平均提高10%,总节煤量约达1.2亿t/a;仅节煤所减少的S02排放约200万t/a、减少灰渣排放2800万t/a、减少 CO2排放约2.9亿t/a;同时可减少大量运力。 近年来,国内一些城市和地区采取了热电联供、锅炉大型化或集中供热、清洁燃料(天然气、液化石油气等)替代等措施,一定程度上缓解了燃煤污染。但是,随着工业化和城镇化建设快速发展,燃煤工业锅炉、窑炉数量和燃煤量仍然很大。由于我国以煤为主、油气资源相对短缺的能源资源特点,预计燃煤工业锅炉、窑炉今后还将长期、大量被应用于各个领域。 我国工业锅炉、窑炉燃煤技术及运行状态大大低于其他领域现代工业技术水平,其低效率和高污染问题亟待改变,已经引起政府管理部门、科技界和企业界的极大关注。国家发展和改革委员会制定的《节能中长期专项规划》中,已将燃煤工业锅炉(窑炉)节能改造列为“十一五”十大重点节能工程之一,并制定了工程示范实施方案,目前正在进行前期准备工作。研究、开发工业锅炉(窑炉)高效、洁净燃煤技术是实施国家节能重点工程的现实需要。 2 工业锅炉及窑炉燃煤节能技术途径 全面提高燃煤锅炉、窑炉的热效率及控制污染物排放,必须立足我国煤种、煤质多变的现状,一方面需稳定和提高燃煤质量,另一方面需针对狭小燃烧空间开发先进的高效低污染燃烧技术和开发适应煤质变化的自动控制调整技术,进而实现整体燃烧技术系统的优化。

浅谈现代陶瓷窑炉的烧成制度

陶瓷窑炉的烧成制度分为温度制度、压力制度和气氛制度。其中温度制度和气氛制度直接影响产品的产量的质量,而压力制度保证温度和气氛制度的实现。它们之间既相互影响又相互辅助,在现代陶瓷窑炉中,由于在结构上与传统窑炉相比有了较为明显的变化,一些新方法,新技术已应用于现代陶瓷窑炉中,故而烧成制度,尤其压力制度呈现出了新的特点。从而要求温度和气氛制度与之相适应。一、现代陶瓷窑炉烧成制度最近几年,随着陶瓷窑炉的引进、消化吸收和对传统窑炉的改造,现代陶瓷窑炉已经在陶瓷工业中占到统治地位。比传统窑炉,无论是在预热带、烧成带和冷却带,现代陶瓷窑炉都应用了新方法、新技术。比如:在预热带,现代窑炉都较为普遍地使用了顶吹和侧吹气幕风。这对于调节预热带上下温差,升温速率的缓急和窑头温度有关至关重要的作用,气幕风的使用,使得在预热带上部的一段区域内呈现一定程度的正压,而不象传统窑炉预热带全呈匀压的状态。由于大部分窑炉都使用洁净化的燃料,如城市煤气、液化石油气和天然气,故而现代陶瓷窑炉自动控制水平提高,最高温度点能够控制到±1℃的范围内,并且能长期保持稳定,在冷却带,急冷风由狭缝式改为排管式冷却,冷却效果均匀稳定,在传统窑炉中,由于急冷风比较集中并且量大,急冷温度一般都在750℃以上,而在现代窑炉中,急冷温度甚至可以降到600℃左右,在烧瓷片和日用瓷的辊道窑中,急冷温度甚至可以降到550℃以下而不会出现风惊缺隐。在压力制度方面,一般来讲,窑炉的最大压点是在急冷和烧成带尾部之间,在传统窑炉中一般在1.5-1.8mm水柱;即15-18Pa,而在现代陶瓷窑炉中,压力在5-8Pa左右,在缓冷带,美国SD和意大利西蒂等公司的窑炉中还采用了顶吹和侧吹结构。此外,现代陶瓷窑炉的新型保温砌体和低蓄热窑车的应用,都使得现代陶瓷窑炉无论是在产品产量、质量,以及产品能耗方面与传统窑炉相比呈现出巨大优势。在产品质量上,现代窑炉的烧成缺陷非常低,合格率、优级品率很高。在产量方面,一般都在50万件以上,在我们调试过的美国SD公司的窑炉,断面3.8米年产量在100万件。窑炉适应能力强,高、中、低档产品在同一窑炉中都能有非常好的烧成质量。产品能耗低、周期短,并且如果压力制度调节合适,产品出窑温度也很低,能够达到60℃以下。由于新方法、新技术的应用,现代陶瓷窑炉的调试极为方便,和传统窑炉相比,更加有规律可循。故而现代窑炉产量高、缺陷低,并且能够长期保持稳定。但现代陶瓷窑炉在结构上,设备上与传统窑炉相比,毕竟有所不同,沿有过去的传统思想和方式,会产生一系列的偏差,这一点主要体现在烧成制度中温度制度和压力制度相互适应上。在现代陶瓷窑炉中,要掌握其调试方法,必须认清和掌握现代陶瓷窑炉中各种布置的特点和作用,只有这样,才能充分地利用这些新技术、新方法。二、现代陶瓷窑炉中烧成制度的制定1、在现代陶瓷窑炉中,温度制度和压力制度的配合尤为重要,总体来讲,现代窑炉,由于使用的是保温砌体,低蓄热窑车,燃料是洁净化气体燃料,以及自动化控制。产品能耗是很低的(和传统窑炉相比)。反映在窑炉上,就是整体窑炉的烟气量的降低,所以无论是预热带、烧成带和冷却带的压力普遍下降,这就要求整个窑炉的送风和排烟抽热要有良好的配合。一般来讲,在整个窑炉内部应掌握三个平衡,一是预热带和烧成带之间的平衡,二是冷却带中、急冷风和窑尾送风与抽热之间的平衡。三是窑内压力和窑下压力之间的平衡。这三个平衡哪一个平衡做得不好,都会对产品质量窑炉使用寿命造成影响。在此方面,一些教料书和技术资料中有详尽论述,在本文不再重复。需要注意的是,窑头的气幕风机和窑尾风机、缓冷带的顶吹、侧风机都地对整个窑炉的温度和整窑的压力产生影响,调试时一定要综合考虑。2、在现代陶瓷窑炉中,预热带和冷却带的温度压力制度的调节是很方便的。技术人员可综合升温速度,上下温差、晶型转换等工艺因素,再结合排烟和气幕风机以及各分类闸板的开度可以实现升(降)温的缓急。需注意的是在调节气幕风机时,不要频繁并且动作幅度不宜过大,否则会出现窑脏等缺陷。在冷却带,冷风的鼓入应尽量由上部鼓入,抽热由上部抽出。急冷的温度在保证不出风惊的情况下,尽量降低一些,以缓解缓冷段的压力。3、在烧成带,制定温度曲线一定要与压力制度有效地结合起来,

相关主题
文本预览
相关文档 最新文档