当前位置:文档之家› Identification and photometry of globular clusters in M31 and M33 galaxies

Identification and photometry of globular clusters in M31 and M33 galaxies

Identification and photometry of globular clusters in M31 and M33 galaxies
Identification and photometry of globular clusters in M31 and M33 galaxies

a r X i v :a s t r o -p h /9806222v 1 16 J u n 1998

Identi?cation and photometry of globular clusters in M31and

M33galaxies

B.J.Mochejska &J.Kaluzny

Warsaw University Observatory,Al.Ujazdowskie 4,00–478Warszawa,Poland e-mail:mochejsk@https://www.doczj.com/doc/cb11019189.html,.pl,jka@https://www.doczj.com/doc/cb11019189.html,.pl

M.Krockenberger,D.D.Sasselov &K.Z.Stanek 2

Harvard-Smithsonian Center for Astrophysics,60Garden St.,Cambridge,MA 02138

e-mail:krocken@https://www.doczj.com/doc/cb11019189.html,,sasselov@https://www.doczj.com/doc/cb11019189.html,,

kstanek@https://www.doczj.com/doc/cb11019189.html,

ABSTRACT

We have used the data from the DIRECT project to search for new globular cluster candidates in the M31and M33galaxies.We have found 67new objects in M31and 35in M33and con?rmed 38and 16previously discovered ones.A V I and BV I photometry has been obtained for all the clusters in M31and M33respectively.Luminosity functions have been constructed for the clusters in each galaxy and compared with that of the Milky Way.

1.Introduction

Many globular cluster searches have been conducted in the M31galaxy.The ?rst search,conducted by Hubble (1932),resulted in the discovery of 140globular clusters with m pg ≤18mag.The ?rst major compilation of all the globular clusters known at the time and their equatorial coordinates was compiled by Veteˇs nik (1962)and contained about 300objects.Since then that number has grown to 1028objects appearing in at least one catalogue (Fusi Pecci et al.1993),of which only ~200are included in the three latest major catalogues (Sargent et al.1977,Crampton et al.1985,Battistini et al.1980,1987,1993).Most of the previous searches had been conducted on photographic plates using the technique of visual identi?cation of potential globular clusters.The catalogues are fairly complete down to V ~18(M V ~6.5),although the degree of completeness is not uniform.According to Fusi Pecci (1993)the catalogues are incomplete:

1.in the central part of the galaxy;

2.for bright,concentrated clusters,especially if superimposed on a strong galaxy

background;

3.for fainter objects.

M33had been searched for globular clusters rather sporadically.The existence

of globular clusters in that galaxy had been?rst noted by Sandage in1956(Carnegie Institution Yearbook).The only recent catalogue was compiled by Christian&Schommer (1982),containing around200objects.

Taking the above facts into consideration it seemed reasonable to assume that new globular clusters could be found in both galaxies,using the data collected by the DIRECT project(Kaluzny et al.1998;Stanek et al.1998).The frames obtained as part of that project seemed suitable for the purpose of identi?cation and photometry of globular clusters for the following reasons:

https://www.doczj.com/doc/cb11019189.html,rge scale of the CCD frames(0.32arcsec/pixel);

2.the limiting magnitude of the frames V~22,in the light of completeness of the M31

catalogues down to V~18;

3.the frames covered central regions of the galaxies,where there could still be

undiscovered objects.

2.Data reduction

All the observational data used here was taken from the DIRECT project(Kaluzny et al.1998;Stanek et al.1998).Some additional data generated by that project was also used, as will be later noted.The frames for M31were taken with the1.3McGraw-Hill telescope at Michigan-Dartmouth-MIT(MDM)Observatory using the front-illuminated,Loral20482 pixel CCD”Wilbur”.At the f/7.5station it had a pixel scale of0.32arcsec/pixel and a?eld of view of about11′×11′.Kitt Peak Johnson-Cousins V I?lters were used.The observations for M33were done with the1.2m telescope at the F.L.Whipple Observatory(FLWO) using a thinned,back-side illuminated,AR-coated Loral20482pixel CCD“AndyCam”. The pixel scale is the same as in the case of M31.Standard Johnson-Cousins BV I?lters were used.The preliminary reduction of the frames was done as part of the DIRECT project and will not be discussed here.Details on that procedure can be found in Kaluzny

et al.1998.Bad columns were masked out using the IMREPLACE routine of the IRAF2 package.

For each of the?elds in M31ten frames were selected in V I?lters with sub-arcsecond seeing.Exceptions were made for?eld C in the V?lter,where only seven frames were chosen,and for?eld D in the I?lter,where only one frame was available.

The frame with the best seeing and lowest background was chosen as the template for each of the?elds.The choice of the template frames was taken from the DIRECT project, as were the data used in creating lists containing the positions of common stars on the frames.The individual,non-template frames were transformed to the template coordinate system with the GEOMAP and GEOTRAN routines of the IRAF package.The frames were then averaged together using IMCOMBINE.

In the case of M33single frames were used because of the substantial amount of bad columns on the detector.Since each frame was o?set by a couple of pixels from the template,bad columns would cover a large area on the combined image,thus hindering the identi?cation of new globular cluster candidates.

Photometry was extracted using the Daophot/Allstar package(Stetson1987).A point spread function(PSF)varying quadratically with the position on the frame was used for the ?elds in M31.The PSF was modeled with a Mo?at function.Stars were identi?ed using the FIND subroutine and aperture photometry was done on them with the PHOT subroutine. Around100bright isolated stars were chosen for the construction of the PSF.The same stars were used as in the DIRECT project,with the exception of the M31D?eld in I?lter.

For the?elds in M33the PSF was approximated by a Mo?at function linearly varying with position on the frame.Only about50stars were used to construct the PSF and that proved to be su?cient.

The construction of the PSF consisted of two separate stages:

https://www.doczj.com/doc/cb11019189.html,ing a modi?ed version of the PSF-subroutine a preliminary PSF was constructed in

an iterative process.In each iteration the PSF stars with pro?le errors greater than twice the average were removed from the list.

2.The neighbors of the PSF stars were?tted using Allstar and then subtracted with the

SUBSTAR subroutine.An improved PSF was constructed from the subtracted frame.

This procedure was repeated twice.

The PSF obtained using the above method was then used by Allstar in pro?le photometry.In case there were stars remaining on the subtracted frame,FIND was ran again to identify them.PHOT was used to determine the aperture photometry for the newly found stars.The output?le was combined with the one containing the stars found previously and used as input to Allstar.In the case of?elds A,B in M33it was found necessary to introduce another step,where stars less than3pixels apart were removed and Allstar was ran again on that?le.The reason for this was that the second FIND had been ran with a rather low threshold.Such a procedure was used to make sure that the residuals of previously subtracted stars wouldn’t be identi?ed and then?tted as separate objects.

3.Photometric and astrometric calibration

For all?elds in M31and?elds A,B in M33the photometric calibration from the DIRECT project was used.The transformation to the standard system was derived from observations of the Landolt?elds(Landolt1992).More details on that subject can be found in Kaluzny et al.(1998).

In the?eld M33C the same calibration was used as for the?eld B.This was possible because those?elds overlapped by a substantial amount and enough bright and isolated common stars could be found in each?lter.

Sample color-magnitude diagrams are shown in Figs.1-3.

The equatorial coordinates of globular clusters in M31were derived from the data generated by the DIRECT project.In the M33galaxy the right ascension and declination of the objects was found using reference stars from the USNO A-1astrometric catalogue. In both cases the accuracy of the positions is better than2arcsec.

4.Identi?cation and photometry of GC candidates

The following catalogues were used to identify the already known globular clusters in M31:Battistini et al.(1987);Crampton et al.(1985);Sargent et al.(1977).All objects from those catalogues which were located within the studied?elds had photometry done on them,regardless whether they appeared to be globular clusters or not.

In the case of M33the only catalogue used for this purpose was the one compiled by

V-I

V

2

4

24

22201816

14

Fig.1.—The V/V ?I color-magnitude diagram for the stars in ?eld C in M31

V-I

V 0

2

424

2220181614Fig.2.—The V/V ?I color-magnitude diagram for the stars in ?eld C in M33

B-V

V -1012

24

2220181614Fig.3.—The V/B ?V color-magnitude diagram for the stars in ?eld C in M33Christian &Schommer (1982).Magnitudes were measured only for those objects which were identi?ed independently in this work.

The basic idea behind the identi?cation of new globular cluster candidates was the fact that the point spread function of a globular cluster is di?erent from that of a star.The PSF of a globular cluster should have a larger FWHM than a stellar one.Taking that into account it was expected that on the subtracted frames such objects should exhibit toroidal residuals,thus enabling their identi?cation.Objects displaying this characteristic were selected and then their nature was veri?ed on the original frames.The following criteria were used to discern globular clusters from other objects:

1.FWHM of the object had to be larger than that of a separate star;

2.the object had to be spherical.

Objects which didn’t meet those criteria in all ?lters were rejected.Remaining objects were classi?ed on a scale from A to D,

A –very high probability globular cluster candidates,exhibiting spherical structure and a substantially larger FWHM than for a nearby star.

B–high probability globular cluster candidates.Objects in this category usually exhibited small departures from spherical shape not associated with the object itself, caused by nearby faint stars,brightness?uctuations of the galaxy background,etc.

C–objects that might be globular clusters.Such objects were usually faint and roughly spherical.Due to their faintness their radial pro?les showed substantial background variations.Thus it was hard to discern whether they were globular clusters or blended stars.

D–objects that are probably not globular clusters.Objects in this category met the above criteria rather poorly,usually because of low S/N ratio.Objects from other catalogues which were found unlikely to be globular clusters were also put into this category.

It should be noted that the criteria used in the selection of globular cluster candidates were not very keen in discerning globular clusters from other non-stellar objects,especially if faint.HII regions,planetary nebulae are some of the possible sources of false identi?cations.

This classi?cation is similar to the one used in the Battistini(1987)catalogue.One important di?erence is that for objects in classes A and B Battistini put on an additional restriction on their color.

After having created the list containing all globular cluster candidates photometry was done on them.This procedure consisted of several separate steps:

1.Selection of reference stars

Several(3-5)reference stars were selected for each frame in order to convert the

instrumental magnitudes of globular clusters to the standard system.For this purpose bright stars with known standard magnitudes were selected,located in regions with low background brightness.

2.Subtraction of neighboring stars

Most of the globular clusters were rather faint,so it was necessary to subtract nearby stars in order not to overestimate their brightness.

3.Photometry of globular clusters

Since the point spread function of a globular cluster di?ers substantially from the stellar PSF derived by Daophot and later used by Allstar,pro?le photometry wasn’t suitable for this purpose.Aperture photometry was used instead.Magnitudes were measured inside an aperture of18pixels using the PHOT subroutine.PHOT had

problems determining the magnitude when there were bad pixels near a cluster, resulting from the subtraction of nearby faint objects.In such cases those pixels were ?lled with the value of the median computed in a box of11×11pixels.Bad columns were treated in a similar fashion.Magnitudes of objects,which incorporated the use of this method are marked in the tables by a colon.

4.Transformation to the standard system

The standard magnitudes were determined by the following formula:

1

M gc=

https://www.doczj.com/doc/cb11019189.html,parison within the catalogue

Taking advantage of the fact that there was some overlap between subsequent ?elds the magnitudes of clusters caught on two frames were compared.Such a comparison was to provide information on random errors associated with the implemented procedure of determining magnitudes.The results of the comparison are shown graphically in Figure

4.

V

?V 16

17

18

19-.4

-.20.2.4I

?I 16

18

20

-.4

-.20.2.4Fig. 4.—A comparison of V and I magnitudes for objects in M31and M33found in two ?elds

The V magnitudes are self-consistent to a su?cient degree over a wide range.The di?erences between the I magnitudes of the same objects show a growing tendency with decreasing magnitude.A possible explanation of this phenomenon is that for each ?eld di?erent star ?nding thresholds were used.Thus the number of stars subtracted from the regions surrounding those objects was not the same in each case.A closer look at two such objects,39and 50in the M31,revealed that the magnitudes measured in ?eld B were lower than the values obtained for ?eld C and,as expected,more stars were subtracted from frame B than frame C (23stars in ?eld B against 17in ?eld C for the ?rst object and 15versus 10for the second).This e?ect was much weaker in the V band since there were far less objects near the resolution limit visible in those frames.In any case the I magnitudes below 17th mag should be treated with reserve.

The measurement errors were estimated at σ(B )=0.05,σ(V )=0.9,σ(I )=0.18.These values were obtained by ?nding the average di?erence between the globular cluster magnitudes measured on di?erent frames.

https://www.doczj.com/doc/cb11019189.html,parison with other catalogues

Magnitudes for the 38already known globular clusters within the M31?elds were taken from the two following sources:Battistini 1987(V B );Crampton et al.1985(V C ).In the M3316previously discovered objects were identi?ed as globular clusters,and the magnitudes of some of those objects were found in Christian &Schommer 1982(V CS 1)and Christian &Schommer 1988(V CS 2).The results of the comparison are showed in Figure 5.

14

161820

-101

M31

Battistini 1987

V V-V B

14161820

-1

1

M31

Crampton et al. 1985

V V-V C

1516171819-101

M33

Christian &Schommer 1982

V V-V CS1

1516171819

-1

1

M33

Christian &Schommer 1988

V V-V CS2

Fig.5.—A comparison of our V magnitudes with data from other sources

The magnitudes of globular clusters in the M31measured here showed good consistency with the values determined by others.The above comparison gave no indication for the existence of meaningful systematic errors in our measurements.

In the case of M33there were relatively few objects available for comparison.Taking that into consideration and the fact that both measurements were conducted by the same persons,probably using the same method,no de?nite conclusions can be drawn from the comparison.The magnitudes of the brighter objects are consistent with our values.For the

fainter objects there seems to be a tendency for our magnitudes to be lower than those of Christian&Schommer.Another striking feature is that the three objects appearing only in the second diagram have magnitudes that di?er by~0.5?1mag.from our values.Taking into consideration the results of a similar comparison in M31it seems plausible to assume that the errors of our measurements contribute a smaller amount to those large di?erences.

5.2.Luminosity functions

In order to obtain a qualitative comparison of the objects found in M31and M33with the globular cluster system of the Milky Way,luminosity functions were constructed for each of those galaxies.

Data on143Milky Way clusters was taken from Harris1996.The following distance moduli were used:μ0,M31=24.47mag(Stanek&Garnavich1998),μ0,M33=24.63mag (Madore&Freeman1991).Only the clusters visible in our?elds are included in the histograms for M31and M33.It should be noted that those?elds cover only parts of the galaxies,so the sample is not complete.Extinction hasn’t been accounted for.Three histograms were drawn for the M31and M33clusters containing:a)all of the cluster candidates found in our?elds;b)A,B and C class clusters;c)A and B class clusters.

The luminosity functions are shown in Figs6and7.

The maximum of the luminosity function of the observed M31disk globular clusters appears to be shifted by about2magnitudes towards lower brightness in comparison with the Milky Way.A comparison of the halo globular cluster luminosity functions for the M31 and the Milky Way shows that the di?erence between their turnover magnitudes is~0.3 mag(Harris1993),with the M31clusters being brighter.According to Gnedin&Ostriker (1997)the in?uence of dynamical e?ects on the cluster population is greater in the inner parts of the galaxy.In particular the destruction mechanisms are stronger in the central part.Their research indicates that low mass(hence less luminous)clusters would have short lifetimes.In accordance with the latter Gnedin(1997)found that the peak of the inner globular cluster luminosity function is brighter by0.8mag than for the outer clusters. Our luminosity function,constructed for the previously discovered clusters and the new globular cluster candidates,does not exhibit such behavior.Strong extinction due to the large tilt of the galaxy could be a possible,although not very likely,explanation.More research should be done in order to clarify this situation.Higher resolution observational data should be obtained for the newly discovered objects,most of them classi?ed as C

or D,in order to verify their true nature.Not much can be said about the shape of

-10-8-6-4

-20

1020

30M V

N GC

The Milky Way

-10-8-6-4

-20

10

20

30M V

N GC

M31

A B C D

-10-8-6-4

-20

102030M V

N GC

M31

A B C

-10-8-6-4

-20

10

20

30M V

N GC

M31

A B

Fig.6.—A comparison of the luminosity functions in the Milky Way and M31

-10-8-6-4

-20

10

20

30M V

N GC

The Milky Way

-10-8-6-4

-20

5

10

M V

N GC

M33

A B C D

-10-8-6-4

-20

510M V

N GC

M33

A B C

-10-8-6-4

-20

5

10

M V

N GC

M33

A B

Fig.7.—A comparison of the luminosity functions in the Milky Way and M33

the luminosity function for A and B class clusters in M31due to the possibility of large statistical?uctuations within such a small sample of objects.In particular the maximum of that luminosity function is shifted with respect to the other two.Another noteworthy feature is the brightness cuto?at V~?10mag.seen in both the M31and the Milky Way.

The luminosity function of the globulars in M33has a maximum at the same brightness as is observed in our Galaxy.M33is seen face on and the extinction is much weaker than in the case of M31.

5.3.Color-magnitude diagrams

The color-magnitude diagrams for the globular clusters are shown in Figs8-12. Objects belonging to di?erent classes are marked with di?erent symbols.Class A and B clusters are denoted by circles(?),class C by boxes(2)and class D by crosses(×).The stars shown in the background come from?elds M31A and M33C.The photometric data for the Milky Way globulars was taken from Harris(1996).

The color-magnitude diagrams for the Milky Way’s globular clusters exhibit sharp color cuto?s at V?I~0.8and B?V~0.6,with all of the clusters being located to the right of those lines.

In the V/V?I diagram for M31there is a sharp cuto?at V?I~1for objects brighter than~17mag,a value very similar to the one observed for the Milky Way’s globulars.A situation like that is not seen for fainter objects.This may result from the lower accuracy of I magnitude values below17mag,as was mentioned in section4.

The color-magnitude diagrams for M33show color cuto?s at V?I~0?0.2and

B?V~0.1.The globular clusters in the M33are,on the average,bluer than their Milky Way counterparts.In the V/V?I diagram a B class object(A13)is seen far to the left of the region occupied by other globulars.The faintness of the object in the I band(18.54 mag.)is a probable cause of the error in the V?I color.

5.4.The color-color diagram

The V?I/B?V diagram for the globular clusters in the Milky Way and the M33is shown in Fig.13.The M33globulars are shown as open circles and the ones in the Milky Way by triangles.Data for the Milky Way was taken from Harris(1996).

On the V?I/B?V plane the Milky Way globular clusters are located in a nearly

V-I

M V

.51 1.52 2.5

-5

-6

-7

-8

-9

-10

The Milky Way

Fig.8.—The V/V ?I color-magnitude diagram for the Milky Way globular clusters

B-V

M V

.5

1

1.5

2

2.5

-2

-4

-6

-8

-10

The Milky Way

Fig.9.—The V/B ?V color-magnitude diagram for the Milky Way globular clusters.

M31

V-I

V

-101234

24

22

20

18

16

14

Fig.10.—The V/V ?I color-magnitude diagram for the M31globular cluster candidates.Class A and B clusters are denoted by circles (?),class C by boxes (2)and class D by crosses (×).

M33

V-I

V

-101234

24

22

20

18

16

14

Fig.11.—The V/V ?I color-magnitude diagram for the M33globular cluster candidates.Class A and B clusters are denoted by circles (?),class C by boxes (2)and class D by crosses (×).

M33

B-V

V

-1-.50.51 1.52 2.5

24

22

20

18

16

14

Fig.12.—The V/B ?V color-magnitude diagram for the M33globular cluster candidates.Class A and B clusters are denoted by circles (?),class C by boxes (2)and class D by crosses (×).

straight line extending approximately between the points (0.8,0.6)and (2.5,2.1).In the case of M33the clusters also appear to form a roughly straight line of a similar slope,shifted towards lower color values.

-1-.50.51 1.52 2.5

.5

1

1.5

2

V-I

B-V

The Milky Way M33

Fig.13.—The V ?I/B ?V color-color diagram for the Milky Way and M33

5.5.A double globular cluster candidate

An object that could possibly be a double globular cluster was found in ?eld A in the M31galaxy.Both components were assigned a C class because of the di?culty in estimating the degree of contribution of the other object to the widening of the radial

煤油冷却器的设计说明

煤油冷却器的设计 一前言 1列管式换热器的种类 固定管板式换热器 管板式换热器浮头式换热器 填料涵式换热器 U型管换热器 2换热器的特点 列管式换热器,是一种通用的标准换热设备,它具有结构简单,坚固耐用,造价低廉,用材广泛,清洗方便,适应性强等优点,应用最为广泛。管壳式换热器根据结构特点分为以下几种: 固定管板式换热器:固定管板式换热器两端的管板与壳体连在一起,这类换热器结构简单,价格低廉,但管外清洗困难,宜处理两流体温差小于50℃且壳方流体较清洁及不易结垢的物料。带有膨胀节的固定管板式换热器,其膨胀节的弹性变形可减小温差应力,这种补偿方法适用于两流体温差小于70℃且壳方流体压强不高于600Kpa的情况。 浮头式换热器:浮头式换热器的管板有一个不与外壳连接,该端被称为浮头,管束连同浮头可以自由伸缩,而与外壳的膨胀无关。浮头式换热器的管束可以拉出,便于清洗和检修,适用于两流体温差较大的各种物料的换热,应用极为普遍,但结构复杂,造价高。 填料涵式换热器:填料涵式换热器管束一端可以自由膨胀,与浮头式换热器相比,结构简单,造价低,但壳程流体有外漏的可能性,因此壳程不能处理易燃,易爆的流体。 U型管换热器:U型管换热器的管子两端固定在同一管板上,管子两端可以自由伸缩,与其他管子机壳体无关。这种换热器结构比较简单,重量轻,适用于高温高压场合,但管清洗比较困难且管板利用率较差。 几种换热器的结构

3换热器的发展趋势 70年代的世界能源危机,有力地促进了传热强化技术的发展。为了节能降耗,

提高工业生产经济效益,要求开发适用于不同工业过程要求的高效能换热设备。这是因为,随着能源的短缺(从长远来看,这是世界的总趋势),可利用热源的温度越来越低,换热允许温差将变得更小,当然,对换热技术的发展和换热器性能的要求也就更高。所以,这些年来,换热器的开发与研究成为人们关注的课题。最近,随着工艺装置的大型化和高效率化,换热器也趋于大型化,并向低温差设计和低压力损失设计的方向发展。同时,对其一方面要求成本适宜,另一方面要求高精度的设计技术。当今换热器技术的发展以CFD(Computational Fluid Dynamics)、模型化技术、强化传热技术及新型换热器开发等形成了一个高技术体系。近年来,随着制造技术的进步,强化传热元件的开发,使得新型高效换热器的研究有了较大的发展,根据不同的工艺条件与换热工况设计制造了不同结构形式的新型换热器,并已在化工、炼油、石油化工、制冷、空分及制药各行业得到应用与推广,取得了较大的经济效益。 二设计任务及操作条件 1设计任务 生产能力(进料量) 80000 吨/年 2操作条件 1、煤油:入口温度:140℃ 出口温度:40℃ 2、冷却介质:自来水 入口温度:30℃出口温度:40℃,水压力为0.3MPa 3、允许压降:不大于105Pa 4、每年按330天计算,每天24小时运行 三设计方案 1换热器的类型 浮头式换热器如右图所示,两端管板之一不与外壳固定连接,该端称为浮头。当管子受热(或受冷)时,管子连同浮头可以自由伸缩,而与外壳的膨胀无关。浮头式换热器不但可以补偿热膨胀,而且固定端的管板是以法兰与壳体相连接的,因此管束可以从壳体抽出,便于清洗和检修,故浮头式换热器应用比较普

煤油冷却器的设计

南京工业大学《材料工程原理B》课程设计 设计题目: 煤油冷却器的设计 专业:高分子材料科学与工程 班级:高材0801 学号: 1102080104 姓名: 夏亚云 指导教师: 周勇敏 日期: 2010/12/30 设计成绩:

目录 一.任务书 (3) 1.1.设计题目 1.2.设计任务及操作条件 1.3.设计要求 二.设计方案简介 (3) 2.1.换热器概述 2.2列管式换热器 2.3.设计方案的拟定 2.4.工艺流程简图 三.热量设计 (5) 3.1.初选换热器的类型 3.2.管程安排(流动空间的选择)及流速确定 3.3.确定物性数据 3.4.计算总传热系数 3.5.计算传热面积 四.工艺结构设计…………………………………………………………………………………………..-8- 4.1.管径和管内流速 4.2.管程数和传热管数 4.3.平均传热温差校正及壳程数 4.4.传热管排列和分程方法 4.5.壳程内径及换热管选型汇总 4.6.折流板 4.7.接管 五.换热器核算………………………………………………………………………………………….-13- 5.1.热量核算 5.2.压力降核算 六.辅助设备的计算和选择……………………………………………………………………………17 6.1.水泵的选择 6.2.油泵的选择 七.设计结果表汇 (20) 八.参考文献. (20) 九.心得体会………………………………………………………………………………….…………… 21附图:(主体设备设计图,工艺流程简图)

§一.化工原理课程设计任务书 1.1设计题目 煤油冷却换热器设计 1.2设计任务及操作条件 1、处理能力 15.8×104t/y 2、设备型式列管式换热器 3、操作条件 (1)煤油: 入口温度140℃,出口温度40℃ (2)冷却介质:工业硬水,入口温度20℃,出口温度40℃ (3)油侧与水侧允许压强降:不大于105 Pa (4)每年按330天计,每天24小时连续运行 (5)煤油定性温度下的物性参数: 1.3设计要求 选择合适的列管式换热器并进行核算 1.4绘制换热器装配图 (见A4纸另附) §二.设计方案简介 2.1换热器概述 换热器是化工,炼油工业中普遍应用的典型的工艺设备。在化工厂,换热器的费用约占总费用的10%~20%,在炼油厂约占总费用35%~40%。换热器在其他部门,如动力、原子能、冶金、食品、交通、环保、家电等也有着广泛的应用。因此,设计和选择得到使用、高效的换热器对降低设备的造价和操作费用具有十分重要的意义。 在不同温度的流体间传递热能的装置称为热交换器,即简称换热器,是将热流体的部分热量传递给冷流体的设备。

煤油冷却器设计.docx

河西学院 Hexi University 化工原理课程设计 题目 :煤油冷却器设计 学院 :化学化工学院 专业 :化学工程与工艺 学号 : 姓名 :张冠雄 指导教师 :王兴鹏 2016 年 11 月 21 日

化工原理课程设计任务书一、设计题目 煤油冷却器的设计 二、设计任务及操作条件 1.设计任务 生产能力(进料量)25000吨 / 年 操作周期7200小时 / 年 2. 操作条件 煤油入口温度120 ℃,出口温度40 ℃ 冷却介质自来水,入口温度20 ℃,出口温度40 ℃ 允许压降≦ 105Pa 冷却水温度20℃ 饱和水蒸汽压力( 表压 ) 3. 设备型式列管式换热器 4.厂址上海(压力: 1atm ) 三、设计内容 1.设计方案的选择及流程说明 2.换热器的工艺计算 3.换热器的主要尺寸设计 4.辅助设备选型 5.设计结果汇总 6.绘制换热器总装配图:主视图、俯视图、剖面图、两个局部放大图 7.设计评述

目录 1 概述 .................................................. 化工原理课程设计的目的、要求...........................列管式换热器及其分类................................... 换热器的设计要求....................................... 符号说明 ............................................... 2 确定设计方案 .......................................... 设计任务 ............................................... 列管式换热器形式的选择................................. 管壳程的选择 ........................................... 流体流速的选择......................................... 3 列管式换热器的结构.................................... 管程结构 ............................................... 壳程结构 .............................................. 4 列管式换热器的设计计算................................ 计算步骤 ............................................... 计算传热系数 ........................................... 计算传热面积 ........................................... 5 工艺结构尺寸的计算.................................... 管径和管内流速......................................... 管程数和传热管数....................................... 平均传热温差校正系数................................... 传热管排列和分程方法................................... 壳体内径 ............................................... 折流板 ................................................. 接管 ................................................... 6 换热器核算 ............................................ 热量核算 ............................................... 面积核算 ...............................................错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。

(完整版)化工原理课程设计---煤油冷却器的设计

课程设计 课程名称化工原理课程设计题目名称煤油冷却器的设计

专业班级08级食品科学与工程(2)班学生姓名纪平平 学号50806022006 指导教师赵大庆 二O一O年十二月三十日

目录 1 《化工原理》课程设计任务书.......................................................................................................... - 1 - 1.1 设计题目..................................................................................................................................... - 1 - 1.2 原始数据及操作条件................................................................................................................. - 1 - 1.3 设计要求..................................................................................................................................... - 1 - 2 《化工原理》课程设计说明书.......................................................................................................... - 2 - 2.1 前言............................................................................................................................................. - 2 - 2.2 工艺流程图及说明..................................................................................................................... - 3 - 3 生产条件的确定.................................................................................................................................. - 4 - 4 换热器的设计计算.............................................................................................................................. - 4 - 4.1 选择换热器类型......................................................................................................................... - 4 - 4.2 流动空间及流速的确定............................................................................................................. - 4 - 4.3 确定物性数据............................................................................................................................. - 4 - 4.4 计算总传热系数......................................................................................................................... - 5 - 4.4.1 热流量............................................................................................................................ - 5 - 4.4.2 平均传热温差................................................................................................................ - 5 - 4.4.3 冷却水用量.................................................................................................................... - 6 - 4.4.4 总传热系数.................................................................................................................... - 6 - 4.5 计算传热面积............................................................................................................................. - 7 - 4.6 工艺结构尺寸............................................................................................................................. - 7 - 4.6.1 管径和管内流速............................................................................................................ - 7 - 4.6.2 管程数和传热管数........................................................................................................ - 7 - 4.6.3 平均传热温差校正及壳程数 ........................................................................................ - 7 - 4.6.4 传热管排列和分程方法................................................................................................ - 8 - 4.6.5 壳体内径........................................................................................................................ - 8 - 4.6.6 折流板............................................................................................................................ - 8 - 4.6.7 接管................................................................................................................................ - 9 - 4.7 换热器核算................................................................................................................................. - 9 - 4.7.1热量核算......................................................................................................................... - 9 - 4.7.2 换热器内流体的流动阻力...........................................................................................- 11 - 5 设计结果汇总表................................................................................................................................ - 13 - 6 设计评述............................................................................................................................................ - 14 - 7 心得体会.............................................................................................................................................. - 15 - 8 参考文献............................................................................................................................................ - 16 -

煤油冷却器设计原版

课程设计任务书 一、摘要 换热器是将热流体的部分热量传递给冷流体的设备,以实现不同温度流体间的热能传递,又称热交换器。换热器是实现化工生产过程中热量交换和传递不可缺少的设备。在换热器中,至少有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量。 在化工、石油、动力、制冷、食品等行业中广泛使用各种换热器,且它们是上述这些行业的通用设备,占有十分重要的地位。随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,对换热器的要求也日益增强。换热器的设计制造结构改进以及传热机理的

研究十分活跃,一些新型高效换热器相继问世。根据不同的目的,换热器可以是热交换器、加热器、冷却器、蒸发器、冷凝器等。因为使用条件的不同,换热器可以有各种各样的形式和结构。在生产中,换热器有时是一个单独的设备,有时则是某一工艺设备的组成部分。 衡量一台换热器好的标准是传热效率高、流体阻力小、强度足够、结构合理、安全可靠、节省材料、成本低,制造、安装、检修方便、节省材料和空间、节省动力。 二、关键字 煤油,换热器,列管式换热器,固定管板式 目录 一、概述 (1) 二、工艺流程草图及设计标准 (1) 2.1工艺流程草图 (1) 2.2设计标准 (2) 三、换热器设计计算 (2) 3.1确定设计方案 (2) 3.1.1选择换热器的类型 (2) 3.1.2流体溜径流速的选择 (2) 3.2确定物性的参数 (3) 3.3估算传热面积 (3) 3.3.1热流量 (3) 3.3.2平均传热温差 (3) 3.3.3传热面积 (3) 3.3.4冷却水用量 (4) 3.4工艺结构尺寸 (4) 3.4.1管径和管内流速 (4)

煤油冷却器 设计

河西学院 HexiUniversity 化工原理课程设计题目:煤油冷却器设计 学院:化学化工学院 专业:化学工程与工艺 学号: 姓名:张冠雄 指导教师:王兴鹏 2016年11月21日

化工原理课程设计任务书一、设计题目 煤油冷却器的设计 二、设计任务及操作条件 1.设计任务 生产能力(进料量)25000吨/年 操作周期7200小时/年 2.操作条件 煤油入口温度120℃,出口温度40℃ 冷却介质自来水,入口温度20℃,出口温度40℃ 允许压降≦105Pa 冷却水温度20℃ 饱和水蒸汽压力0.25Mpa(表压) 3.设备型式列管式换热器 4.厂址上海(压力:1atm) 三、设计内容 1.设计方案的选择及流程说明 2.换热器的工艺计算 3.换热器的主要尺寸设计 4.辅助设备选型 5.设计结果汇总 6.绘制换热器总装配图:主视图、俯视图、剖面图、两个局部放大图 7.设计评述

目录

附图

煤油冷却器设计 作者:张冠雄 摘要:换热器在许多行业中有非常重要的地位,尤其是在化工、石油、等行业中。本次课程设计的任务是设计年处理25000吨煤油的煤油冷却器,采用列管式换热器。设计过程包括方案确定、换热器结构选择、主要换热设计计算并绘制列管式换热器的装配图。通过热量核算,压力降的核算以及面积裕度的求解,该换热器能够完成设计任务。 关键词:列管式换热器折流板法兰管板煤油水 1概述 1.1化工原理课程设计的目的、要求 课程设计是化工原理课程教学中综合性和实践性较强的教学环节,是理论联系实际的桥梁,是使学生体察工程实际问题复杂性的初步尝试,进行融会贯通的独立思考,在规定的时间内完成指定的化工设计任务,从而得到化工设计的初步训练通过课程设计,要求学生了解工程设计的基本内容,掌握化工设计的主要程序和方法,培养学生分析和解决工程实际问题的能力。同时,通过课程设计,还可以使学生树立正确的设计思路,培养实事求是、严肃认真、高度负责的科学作风。 课程设计是学生展示创新能力的有益实践。在设计中需要学生作出决策,即自己确定方案、选择流程、查阅资料、进行过程和设备计算,并要对自己的选择做出论证和核算,经过反复的分析和比较,择优选定最理想的方案和合理的设计。所以,课程设计是培养学生独立工作能力、增强学生创新意识的环节。 通过课程设计,应该提高以下几个方面的能力: 熟悉查阅文献资料、搜索有关数据、正确选用公式。当缺乏必要数据时,尚需通过实验测定或到生产现场实际查定。 在兼顾技术上先进性、可靠性、经济上合理性的前提下,综合分析设计任务的要求,确定化工工艺流程,进行设备选型,并提出保证过程正常。安全运行所需要的检测和计量参数,同时还要考虑改善劳动条件和环境保护的有效措施。 准确而迅速地进行过程设计计算及主要设备的工艺设计计算。 用精练的语言、简洁的文字、清晰地图表来表达自己的设计思想和计算结果。1.2列管式换热器及其分类 列管式换热器是目前化工及酒精生产上应用最广的一种换热器。它主要由壳体、管板、换热管、封头、折流挡板等组成。所需材质,可分别采用普通碳钢、紫铜或不

煤油冷却器的设计----原版

煤油冷却器的设计----原版

一、摘要

换热器是将热流体的部分热量传递给冷流体的设备,以实现不同温度流体间的热能传递,又称热交换器。换热器是实现化工生产过程中热量交换和传递不可缺少的设备。在换热器中,至少有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量。 在化工、石油、动力、制冷、食品等行业中广泛使用各种换热器,且它们是上述这些行业的通用设备,占有十分重要的地位。随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,对换热器的要求也日益增强。换热器的设计制造结构改进以及传热机理的研究十分活跃,一些新型高效换热器相继问世。根据不同的目的,换热器可以是热交换器、加热器、冷却器、蒸发器、冷凝器等。由于使用条件的不同,换热器可以有各种各样的形式和结构。在生产中,换热器有时是一个单独的设备,有时则是某一工艺设备的组成部分。 衡量一台换热器好的标准是传热效率高、流体阻力小、强度足够、结构合理、安全可靠、节省材料、成本低,制造、安装、检修方便、节省材料和空间、节省动力。 目录 一、概述 (1) 二、工艺流程草图及设计标准 (1)

2.1工艺流程草图 (1) 2.2设计标准 (2) 三、换热器设计计算 (2) 3.1确定设计方案 (2) 3.1.1选择换热器的类型 (2) 3.1.2流体溜径流速的选择 (2) 3.2确定物性的参数 (3) 3.3估算传热面积 (3) 3.3.1热流量 (3) 3.3.2平均传热温差 (3) 3.3.3传热面积 (3) 3.3.4冷却水用量 (4) 3.4工艺结构尺寸 (4) 3.4.1管径和管内流速 (4) 3.4.2管程数和传热管数 (4) 3.4.3平均传热温差校正及壳程数 (4) 3.4.4传热管排列和分程方法 (5) 3.4.5壳体内径 (5) 3.4.6折流板 (5) 3.4.7接管 (5) 3.5换热器核算 (6) 3.5.1热流量核算 (6)

煤油列管换热器

二、列管式换热器设计任务书 (一)、设计题目: 列管式换热器设计 (二)、设计任务及操作条件 1、设计任务 处理能力: 20万吨/年 设备型式: 列管式 2、操作条件 (1)煤 油:入口温度 140℃ 出口温度 40℃ (2)冷却介质:循环水 入口温度 20℃ 出口温度 40℃ (3)允许压降:不大于0.1MPa (4)煤油定性温度下的物性数据 ( ) () C m W C kg kJ c s Pa m kg o c o pc c c ?=?=??==-/14.0/22.21005.7/82543λμρ (5)每年按330天计算,每天24小时连续运行。 (三)、设计内容 1、概述 2、设计方案的选择 3、确定物理性质数据 4、设计计算 (1) 计算总传热系数 (2) 计算传热面积 5、主要设备工艺尺寸设计 (1)管径尺寸和管内流速的确定 (2)传热面积、管程数、管数和壳程数的确定 (3)接管尺寸的确定 6、设计结果汇总

7、工艺流程图及换热器工艺条件图 8、设计评述 (四)、图纸要求 A3图纸 三、概述 3.1换热器概述[1] 热器(英语翻译:heat exchanger),是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。在化工生产中换热器可作为加热器、冷却器、

冷凝器、蒸发器和再沸器等,应用更加广泛。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。在三类换热器中,间壁式换热器应用最多。 3.2.列管式换热器概述[1] 列管式换热器是目前化工及酒精生产上应用最广的一种换热器。它主要由壳体、管板、换热管、封头、折流挡板等组成。所需材质,可分别采用普通碳钢、紫铜、或不锈钢制作。在进行换热时,一种流体由封头的连结管处进入,在管流动,从封头另一端的出口管流出,这称之管程;另-种流体由壳体的接管进入,从壳体上的另一接管处流出,这称为壳程。 在列管式换热器中,管束的表面积即为该换热器所具有的传热面积。当传热面积较大,管子数目较多时,为了提高管内流体的流速,增大管内一侧流体的传热膜系数,常将全部管子平均分成若干组,流体每次只流经一组管子,即采用多管程结构。其方法是在封头内装设隔板,在一端的封头内装设一块隔板,便成二管程;在进口端装两块挡板,另一端装一块隔板,便成四管程;如此,还可以设置其他多管程,但过多使流体阻力增大,隔板占有分布管面积,而使传热面积减小。 列管换热器(又名列管式冷凝器),按材质分为碳钢列管换热器,不锈钢列管换热器和碳钢与不锈钢混合列管换热器三种,按形式分为固定管板式、浮头式、U 型管式换热器,按结构分为单管程、双管程和多管程。 四、工艺设计及主要设备设计 4.1确定设计方案 4.1.1选择换热器的类型[4] 在本次设计任务中,两流体温度变化情况:热流体(煤油)进口温度140℃,出口温度40℃;冷流体(循环水)进口温度20℃,出口温度40℃。该换热器用循环水冷却介质,受环境影响,进口温度会降低,考虑到这一因素,估计该换热器的管壁温和壳体壁温之差较大,且管束与管壳之间的温差较大会产生不同热膨胀,因此初步确定选用带膨胀节的固定管板式换热器。 4.1.2流程安排

煤油冷却器的设计原版

煤油冷却器的设计原版 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

一、摘要 换热器是将热流体的部分热量传递给冷流体的设备,以实现不同温度流体间的热能传递,又称热交换器。换热器是实现化工生产过程中热量交换和传递不可缺少的设备。在换热器中,至少有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量。

在化工、石油、动力、制冷、食品等行业中广泛使用各种换热器,且它们是上 述这些行业的通用设备,占有十分重要的地位。随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,对换热器的要求也日益增强。换热器的设计制造结构改进以及传热机理的研究十分活跃,一些新型高效换热器相继问世。根据不同的目的,换热器可以是热交换器、加热器、冷却器、蒸发器、冷凝器等。由于使用条件的不同,换热器可以有各种各样的形式和结构。在生产中,换热器有时是一个单独的设备,有时则是某一工艺设备的组成部分。 衡量一台换热器好的标准是传热效率高、流体阻力小、强度足够、结构合理、安全可靠、节省材料、成本低,制造、安装、检修方便、节省材料和空间、节省动 力。 目录 一、概述 (1) 二、工艺流程草图及设计标准 (1) 工艺流程草图 (1) 设计标准 (2) 三、换热器设计计算 (2) 确定设计方案 (2) 选择换热器的类型 (2) 流体溜径流速的选择 (2) 确定物性的参数 (3) 估算传热面积 (3) 热流量 (3)

平均传热温差 (3) 传热面积 (3) 冷却水用量 (4) 工艺结构尺寸 (4) 管径和管内流速 (4) 管程数和传热管数 (4) 平均传热温差校正及壳程数 (4) 传热管排列和分程方法 (5) 壳体内径 (5) 折流板 (5) 接管 (5) 换热器核算 (6) 热流量核算 (6) 壳程表面传热系数 (6) 管内表面传热系数 (7) 污垢热阻和管壁热阻 (7) 计算传热系数K C (7) 换热器的面积裕度 (8) 换热器内流体的流动阻力 (8) 管程流体阻力 (8) 壳程阻力 (8) 四、设计结果设计一览表 (10)

煤油冷却器设计

课程设计报告 ( 2016—2017年度第一学期) 名称:化工原理 题目:煤油冷却器的设计院系:环境科学与工程学院班级:能化1402 学号:201405040207 学生姓名:冯慧芬 指导教师:朱洪涛 设计周数: 1 成绩: 日期:2016 年11月

目录 一.任务书 1.1目的与要求 1.2.主要内容 二.设计方案简介 2.1.换热器概述 2.2 列管式换热器 2.3.设计方案的拟定 三.工艺计算及主体设备设计 3.1热量设计 3.1.1.初选换热器的类型 3.1.2.管程安排(流动空间的选择)及流速确定 3.1.3.确定物性数据 3.1. 4.计算总传热系数 3.1.5.计算传热面积 3.2工艺结构设计 3.2.1管径和管内流速 3.2.2管程数和传热管数 3.2.3平均传热温差校正及壳程数 3.2.4传热管排列和分程方法 3.2.5折流板 3.2.6壳程内径及换热管选型汇总 3.3换热器核算 3.3.1热量核算 3.3.2压力降核算 四.辅助设备的计算及选型 4.1 封头 4.2 缓冲挡板 4.3 放气孔、排液管 4.4 假管 4.5 拉杆和定距管 4.6 膨胀节 4.7 接管 五.设计结果一览表 六.心得体会 七.参考文献 八.主体设备的工艺条件图

一.任务书 1.1 目的与要求 1. 要求学生能综合运用本课程和前修课程的基本知识,进行融会贯通的独立思考,在规定的时间内完成列管换热器设计任务。 2. 使学生了解工程设计的基本内容,掌握化工设计的主要程序和方法,培养学生分析和解决工程实际问题的能力。 3. 熟悉和掌握查阅技术资料、国家技术标准,正确地选用公式和数据。 1.2 主要内容 1.2.1处理能力:25000kg/h 煤油 1.2.2设备型式:列管换热器 1.2.3操作条件: 煤油:入口温度:140℃出口温度:40℃ 冷却介质:自来水入口温度:30℃出口温度:40℃ 允许压强降:不大于100kPa 煤油定性温度下的物性参数:密度825kg/m3粘度7.15×10-4Pa·s 比热容2.22kJ/kg·℃导热系数0.14W/m·℃水定性温度下的物性参数:密度994kg/m3粘度7.28×10-4Pa·s 比热容4.174kJ/kg·℃导热系数0.626W/m·℃ 1.2.4主体设备工艺条件图。

煤油冷却器的设计原版

一、摘要 换热器是将热流体的部分热量传递给冷流体的设备,以实现不同温度流体间的热能传递,又称热交换器。换热器是实现化工生产过程中热量交换和传递不可缺少的设备。在换热器中,至少有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量。 在化工、石油、动力、制冷、食品等行业中广泛使用各种换热器,且它们是上述这些行业的通用设备,占有十分重要的地位。随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,对换热器的要求也日益增强。换热器的设计制造结

构改进以及传热机理的研究十分活跃,一些新型高效换热器相继问世。根据不同的目的,换热器可以是热交换器、加热器、冷却器、蒸发器、冷凝器等。由于使用条件的不同,换热器可以有各种各样的形式和结构。在生产中,换热器有时是一个单独的设备,有时则是某一工艺设备的组成部分。 衡量一台换热器好的标准是传热效率高、流体阻力小、强度足够、结构合理、安全可靠、节省材料、成本低,制造、安装、检修方便、节省材料和空间、节省动 力。 目录 一、概述 (1) 二、工艺流程草图及设计标准 (1) 工艺流程草图 (1) 设计标准 (2) 三、换热器设计计算 (2) 确定设计方案 (2) 选择换热器的类型 (2) 流体溜径流速的选择 (2) 确定物性的参数 (3) 估算传热面积 (3) 热流量 (3) 平均传热温差 (3)

传热面积 (3) 冷却水用量 (4) 工艺结构尺寸 (4) 管径和管内流速 (4) 管程数和传热管数 (4) 平均传热温差校正及壳程数 (4) 传热管排列和分程方法 (5) 壳体内径 (5) 折流板 (5) 接管 (5) 换热器核算 (6) 热流量核算 (6) 壳程表面传热系数 (6) 管内表面传热系数 (7) 污垢热阻和管壁热阻 (7) 计算传热系数K C (7) 换热器的面积裕度 (8) 换热器内流体的流动阻力 (8) 管程流体阻力 (8) 壳程阻力 (8) 四、设计结果设计一览表………………………………………………… 10

管式换热器(煤油冷却器)的设计

课程设计课程名称化工原理课程设计 题目名称煤油冷却器的设计 专业班级09级生物工程(2)班 学生姓名 学号 指导教师孙兰萍 二O一一年十二月二十日

1 设计任务书 1.1 设计题目 煤油冷却器的设计 1.2 设计任务及操作条件 (1)处理能力: M ?104 t/Y 煤油 (2)设备型式: 列管式换热器 (3)操作条件 ①煤油:入口温度140℃,出口温度40℃。 ②冷却介质:循环水,入口温度30℃,出口温度40℃。 ③允许压降:不大于105 Pa 。 ④煤油定性温度下的物性数据: 3/825m kg C =ρ; s Pa C ??=-41015.7μ; pC c =2.22kJ/(kg.℃); C λ=0.14 W/(m.℃) ⑤每年按330天计,每天24小时连续运行。 (4)建厂地址 天津地区 1.3 设计要求 试设计一台适宜的列管式换热器完成该生产任务。 1.4 工作计划 1、领取设计任务书,查阅相关资料(1天); 2、确定设计方案,进行相关的设计计算(2天);

3、校核验算,获取最终的设计结果(1天); 4、编写课程设计说明书(论文),绘制草图等(1天)。 1.5 设计成果要求 1、通过查阅资料、设计计算等最终提供课程设计说明书(论文)电子稿及打印稿1份,并附简单的设备草图。 2、课程设计结束时,将按以下顺序装订的设计成果材料装订后交给指导教师: (1)封面(具体格式见附件1) (2)目录 (3)课程设计任务书 (4)课程设计说明书(论文)(具体格式见附件2) (5)参考文献 (6)课程设计图纸(程序) 1.6 几点说明 1、本设计任务适用班级:09生物工程(本)2班(其中:学号1-15号,M=15;学号16-30号,M=25;学号31-46号,M=40); 2、课程设计说明书(论文)格式也可参阅《蚌埠学院本科生毕业设计(论文)成果撰写规范》中的相关内容。 指导教师:教研室主任:系主任:

煤油冷却器的设计说明

化工原理课程设计 煤油冷却器的设计 姓名: 学号: 学院: 专业班级: 指导教师: xx年xx月 摘要

本设计的任务就是完成一满足生产要求的列管式换热器的设计和选型。 本设计的核心是计算换热器的传热面积,进而确定换热器的其他尺寸或选择换热器的型号。由总传热速率方程可知,要计算换热面积,得确定总传热系数和平均温差。由于总传热系数与换热器的类型、尺寸、流体流到等诸多因素有关,----而平均温差与两流体的流向、辅助物料终温的选择有关,因此管壳式换热器设计和选型需考虑许多问题。通过多次核算和比较,设计结果如下:带膨胀节的固定管板式换热器,选用φ25Χ2.5的碳钢管,换热面积为131.4 m2,且为双管程单壳程结构,传热管排列采用组合排列法,即每程内均按正三角形排列,隔板两侧采用正方形排列。管数为300,管长为6m,管间距为32mm,折流板形式采用上下结构,其间距为150mm,切口高度为25%,壳体内径为700mm,该换热器可满足生产需求。 Abstract

The task of this design is to complete a meet the production requirements of shell and tube heat exchanger design and type selection. The total heat transfer rate equation shows that to calculate heat transfer area, you must determine the total heat transfer coefficient and the mean temperature difference. Through the repeated calculation and comparison, design results are as follows. Fixed tube plate heat exchanger with expansion joint, Select phi25 25 carbon steel pipe, heat transfer area of 131.4 square meters, And for the tube side shell side of the single structure, the pipe arrangement method, namely each way are sorted by regular triangle, diaphragm use square is arranged on both sides. Pipe number is 300, the length is 6 meters, tube spacing is 32 mm, baffle plate form adopts up and down structure, the spacing is 150 mm, incision height was 25%, the shell inside diameter is 700 mm, the heat exchanger can meet the production requirements.

相关主题
文本预览
相关文档 最新文档