当前位置:文档之家› 热泵用制冷剂对比分析

热泵用制冷剂对比分析

热泵用制冷剂对比分析
热泵用制冷剂对比分析

随着热泵市场的繁荣,不同的产品,所应用的制冷剂也不一样,那怎样的配比才能达到机器的高效率运行呢?佛山西莱克将解析下制冷剂的特点及用途简析;

空气能热水器制冷剂主要为R22,R134a,后来又有一些混合制冷剂问世

R404a,R415b,R417a等,下面就对这几种制冷剂特点和用途进行介绍。目前,南方热泵热水器制主要为R22,R134a;北方热泵热水器制主要为R404a,

R410a,,407a;

R22用于空调非常合适,因为冷凝温度总能控制在45度以下(因为空气温度几乎总在40度以下);但是热泵热水器水温总是要求在40度以上,这时冷凝温度总在45度以上,R22排气温度很容易超过85度(润滑油容易裂解温度),尤其是空气温度在40度以上时。因此,R22用于热泵热水器会因为R22排气温度高,致使压缩机润滑油冷却不好,裂解速度急剧加快,从而使压缩机寿命缩短。并且R22的ODP 值为0.05,对臭氧层有破坏作用,但是根据《蒙特利尔议定书》规定,从2004年开始欧洲地区以R407C和R410A替代R22,同时日本地区则开始全部使用R410A制冷剂,即以1985年的生产量为基准,2003年压缩为65%,2010年为35%,2015年为10%,到2030年时,发达国家将全面禁用R22,发展中国家也将于2040年淘汰R22。根据制冷剂替换时间表,我国最迟必须在2040年全面禁止制冷剂R22产品的生产。

R-404A制冷剂,别名R404A,商品名称有SUVA HP62、SUVA 404A、Genetron 404A 等。由于R-404A属于HFC型非共沸环保制冷剂(完全不含破坏臭氧层的CFC、HCFC),得到目前世界绝大多数国家的认可并推荐的主流低温环保制冷剂,广泛用于新冷冻设备上的初装和维修过程中的再添加。符合美国环保组织EPA、SNAP和UL的标准,符合美国采暖、制冷空调工程师协会(ASHRAE)的A1安全等级类别(这是最高的级别,对人身体无害)。常应用于冷库、食品冷冻设备、船用制冷设备、工业低温制冷、商业低温制冷、交通运输制冷设备(冷藏车等)、冷冻冷凝机组、超市陈列展示柜等制冷设备。

R134a(CH2FCF3)属于环保制冷剂,排气温度也低,但是其沸点(标准大气压下)为-26.5度,这会导致热泵在冬季因为制冷剂蒸发缓慢而使制热效率低下,因此,我们见到的R134a全是用于室内制冷设备,或者热带地区,北方室外制冷设备没有用的(除非冬天不用该设备)。

R415b,为混合制冷剂,是由清华大学朱明善教授系发明的(联合国环境规划署国际制冷空调热泵技术委员会委员)国际制冷统一编号:R415A、R415B、R418A、R425A,并已列入国家重点环境保护实用技术(A)类项目推广使用。荣获国务院“国家技术发明奖”、国家环保总局“国家重点环境保护实用技术A类推广项目”、并取得美国国家环保总局《SNAP计划》认证,在欧美地区得到了广泛应用。其ODP不为零,且与417a相比,排气温度稍高一些。R415b替换R22后,系统制热能力有大约10%的衰减。

R417a为混合制冷剂(HFC-143、HFC-125和R600),最早由罗地亚1997年发明(2005年卖给杜邦,李兵为负责人),欧洲主要用来替换R22工质(不够环保和节

能),占了替代工质的80%市场份额,根据《蒙特利尔条约》,中国将在明年1月1日开始逐步淘汰R22工质,R417a是替代选择方向之一。R417a具有环保,高效和排气温度低等特点。比较适合热泵热水器用,如今,国内热泵热水器厂家开始增大该制冷剂的使用范围,国内出口欧洲的空调使用R417a较多。R417a有个一个缺点:替换后的系统,系统制热功率衰减10%左右;也就是说,10匹压机能力变成了约9匹的能力。由R417A发明厂家罗地亚公司提供的检测表格可以看出,同样的空调,用R417A比R22的效率相比提高了13%(3.00/2.65),这是其优点。但是用R22的制热量为3548瓦(热泵热水器只需要制热),用R417A的制热量为3149瓦,用R417A 比用R22制热量衰减了10%。这就是R417A用于制热时的不利一面,需要设计时加大压机及换热器的配比来弥补衰减。

充注制冷剂方法

充注制冷剂方法(空气源热泵热水器/中央空调) 对于全封闭式压缩机,充注氟利昂往往采用低压收入法。 ⑴. 充注前需将制冷剂从大钢瓶倒入小钢瓶中,其方法是:先将修理用的小钢瓶放入有冰块的容器中冷却降温,然后用一根橡胶软管将大、小钢瓶连接起来,但大钢瓶的阀门暂不开启。将大钢瓶阀门和小钢瓶的接头松开,用氟利昂气体将软管中的空气排出,然后关闭大钢瓶的阀门,旋紧小钢瓶的软管接头。开启大、小钢瓶的阀门,充注制冷剂,待充到80%时,关闭大小钢瓶的阀门,去掉软管。 ⑵. 由钢瓶往制冷系统中充注制冷剂时可将钢瓶与修理阀相连接,也可用复合式压力表的中间接头充入。打开小钢瓶并倒置,将接管内的空气排出后,拧紧接头,充入制冷剂,表压不超过0.15Mpa时关闭直通阀门。起动压缩机将制冷剂吸入,同时观察蒸发器的结霜情况,待蒸发器上已结满霜或结露时,即可停止充注。 制冷剂的充入量有以下几种方法: ⑴测重量(常在产品生产时用)。 在充注氟利昂时,事先准备一个小台秤,将制冷剂钢瓶放入一个容器中,再在容器中注入40℃以下的温水(适用于空调器的低压充注制冷剂蒸汽)。充注前记下钢瓶、温水及容器的重量,在充注过程中注意观察指针。当钢瓶内制冷剂的减少量等于所需要的充注量时可停止充注。也可直接称量钢瓶不用加温水。 ⑵测压力。(常在调试时用法) 制冷剂饱和蒸气的温度与压力呈一一对应关系,若已知制冷剂的蒸发

温度即可查出相对应的蒸发压力。此压力的表压值由高、低压压力表显示出来。因此,根据安装在系统上压力表的压力值即可判断制冷剂的充注量是否宜适。如空调器的蒸发温度为7.2℃,冷凝温度为54.5℃使用R22。查R22的饱和温度与饱和压力对应表,以确定其蒸发压力值和冷凝压力值。查表可知:R22在7.2℃时相应绝对压力值为0.53Mpa(5.3kg/cm2)和54.5℃时的相应绝对压力值为2.11Mpa(21.1kg/cm2),将此压力换算为表压值即可。用高、低压压力表或复合式压力表测试充氟中的制冷系统,若高、低压力表表压值符合上述范围即表明制冷剂的充注量合适;若高、低压压力均低则表明充入量不够;若高、低压压力均高,则表明充入量过多。压力测定法较为简便,在维修时经常作用,但是缺点是比较粗,准确度不高。 ⑶测温度。(常在维修时用法) 用半导体测温仪,测量蒸发器的进出口、集液器的出口等各点的温度,以判断制冷剂充注量如何。在蒸发器的进口(毛细管前150mm 处)与出口两点之间的温差约7—8℃,集液器出口的温度应高于蒸发器的出口处1-3℃。如果蒸发器进出口的温差大,表明制冷量充注不足,若吸气管结霜段过长或邻近压缩机处有结霜现象,则表明制冷剂充注过多。 ⑷测工作电流。(常在维修时用法) 用钳型电流表测工作电流,制冷时,环境温度35℃,所测得的工作电流与铭牌上电流相对应。温度越高,电流相应增大,温度越低电流相应减少。在风机正常、两器散热好的情况下按空调器工况测电流

空气源热泵技术与应用

空气源热泵技术及其应用 建筑工程学院建筑环境与能源应用工程 B132班游诚 目录 摘要 --------------------------------------------2 关键词 --------------------------------------------2 前言 --------------------------------------------3 1.空气源热泵的简介 ----------------------------------4 1)概念 ----------------------------------------4 2)特点 ----------------------------------------4 3)发展历史 ----------------------------------------5 4)优点 ----------------------------------------6 5)工作原理 ----------------------------------------6 2.空气源热泵的应用 -----------------------------------9 1)空气源热泵在我国的应用 ------------------------9 2)空气源热泵的技术性分析 ------------------------9 3)空气源热泵的经济性分析 ------------------------10 4)空气源热泵的能量利用分析 ------------------------10 5)空气源热泵与能源价格的关系 ----------------------10 参考文献 -------------------------------------------11 word完美格式

空调制冷剂充注机操作规程通用版

操作规程编号:YTO-FS-PD284 空调制冷剂充注机操作规程通用版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

精品规程范本 编号:YTO-FS-PD284 2 / 2 空调制冷剂充注机操作规程通用版 使用提示:本操作规程文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 1. 使用充注机前,操作人员应做好安全防护工作。 2. 严格按照充注机的使用说明进行操作。 3. 定期检查充注机的泄漏情况,如有故障及时进行修复。 4. 不准强行操作,以防损伤仪器。 5. 充注机必须定期进行保养,更换真空泵油。 6. 进行制冷剂处理时,必须加强环保意识,以防造成环境污染。 7. 保持充注机清洁、完好。 8. 该套设备技术性较高,使用和操作人员均需经培训过才能对机器进行操作。 该位置可输入公司/组织对应的名字地址 The Name Of The Organization Can Be Entered In This Location

热泵技术与应用

热泵技术方案 摘要:介绍了蒸汽压缩式热泵和吸收式热泵的原理、基本构成、工作过程及计算方法,结合工程应用进行了经济效益分析。通过热泵回收低温余热是一项重要的节能措施,技术上可行,经济上合理。 1、背景 在石油、化工、电力、冶金、纺织、制药等行业的工艺生产过程中,往往会产生大量30~60℃的废热水,这些的低品位热源若不加以利用,不仅造成环境污染,而且还会浪费大量能源。如果这些行业有工艺或采暖用热需求,可以配备热泵,回收利用工艺产生的废热,达到节能、减排、降耗的目的。 2、热泵原理 热泵技术是根据逆卡诺循环原理,将低温热源(如城市污水、各种废水、地下水等)中的低品位热能进行回收,转换为高品位热能的一种节能与环保性技术,利用这项技术的逆过程同时还可以达到制冷的目的。目前使用的热泵主要有蒸汽压缩式热泵和吸收式热泵两种。 2.1蒸汽压缩式热泵 (1)基本构成 蒸汽压缩式热泵主机主要有以下四大部分:压缩机、膨胀阀、蒸发器、冷凝器,同时还有过滤器、储水箱等辅助部件。 压缩式热泵采用电能驱动,通过制冷剂经压缩后状态的变化,把自然界的空气热能吸收,对冷水进行加热。 (2)工作过程 蒸汽压缩式热泵机组系统工作过程如下: ●处于低压液态循环工质(如氟利昂R22及R134a)经过蒸发器,在蒸发器中工质从低温热源吸收热量变成低温、低压蒸汽进入压缩机。 ●蒸汽工质经过压缩机压缩、升温后,变成高温、高压的蒸汽排出压缩机。 ●蒸汽进入冷凝器,在冷凝器中将从蒸发器中吸取的热量及压缩机做工所产生的那部分热量传递给冷水,使其温度提高。工质经过冷凝器放热后变成液态。 ●高压液体经过膨胀阀节流降压后,变成低压液体,低压液态工质再次进入蒸发器,由此不断循环工作。 整个过程就象是热量搬运一样将低温热源中的热量连续不断的搬运至高温热源(水)中去。

空调器制冷剂最佳充注量确定

空调器制冷剂最佳充注量确定 每一种空调器的设计都存在着如何确定制冷剂充注量的问题,特别是在采用毛细管作节流装置的空调器中,由于毛细管的调节能力较热力膨胀阀差,充注量的变化对其性能影响更大。目前这方面的研究较少,缺少成熟的理论计算方法,各生产厂家只好采取试验手段,依据经验估计值进行多次试验,以最终确定最佳充注量。这种重复的工作不仅费钱,也费时费力。为了使确定最佳充注量变得简单可行,本文在系统稳态性能模拟的基础上,对分体式空调器的最佳充注量进行了计算,并提出了确定系统最佳充注量的原则:当空调器的结构尺寸和工作条件一定,制冷量达到设计要求时,系统的能效比最大。此时,空调器及各部件处于最佳工作状态。本人曾对KFR-32GW/H分体挂壁式空调器反复做试验,理论计算和试验结果很吻合。 1充注量计算 制冷剂在制冷系统中的状态可分为单相和两相两种,这两部分的制冷剂质量计算应分别考虑。 1.1单相区质量计算 单相区制冷剂密度计算较为简单,处于单相区的各部分制冷 剂质量可通过积分计算。 (1) 式中m1为制冷剂质量,kg;ρ为密度,kg/m3;V为容积,m3;Pv为压力,Pa;Tv为制冷剂温度,K。 单相区制冷剂主要存在于蒸发器过热区、冷凝器过冷区、连接管路、压缩机壳体内、过滤器和润滑油中,故单相区制冷剂质量为: (2) 式(2)中各参数的下标含义为:filt过滤器,pipe管路,oil润滑油,com压缩机,V单相区容积。 考虑到压缩机、过滤器、接管内制冷剂温度变化不大,故式(2)中采用平均温度来计算密度。润滑油中溶解的制冷剂量,可根据油质量及制冷剂的溶解度进行计算。

1.2两相区质量的计算 充注量计算的难点在于两相区中制冷剂量的确定,其关键是两相区空泡系数的计算。在两相区空泡系数修正模型的研究和验证方面,不少学者已经做了大量工作。笔者在此基础上,结合空调器的实际工作条件,在稳态工况下,假设换热器两相区单位面积热负荷一定,选用Hughmark模型计算两相区的制冷剂量。其数学表达式为: (3) 式中α为空泡系数,x为干度,β、kH为系数,其中kH=f(z)具体见表1。 (4) 式中G为质量流速,kg/(m2·s);μ为粘度,Pa·S;Di为管内径,m。 此模型系数计算中包括α,所以在计算α时必须经过迭代,计算量较大。 两相区中制冷剂量m2: (5) 式中ls为两相区长度,m;l为制冷剂管长,m。 制冷剂的总充注量m为各部分充注量之和: m=m1+m2(6) 2充注量对空调器性能的影响及试验结果 不同的制冷剂充注量对空调器性能的影响是不一样的。笔者对KFR-32

抽真空、充注制冷剂具体操作步骤

一、歧管表使用方法 1、管道压力测试装置(岐管表) (1)管道压力测试装置的结构 当低压阀开启时,“A”与“B”之间的管路接通。同样,当高压阀开启时,“A”与“C”之间的管路接通。当两个阀都开启时,“A”、“B”和“C”之间的所有管路都接通。 不管对应阀的状态,低压表总是接通“B”,而高压表总是接通“C”。 (2)管道压力测试装置的操作方法 a.将“B”连接到低压侧的接头阀,将“C”连接到高压侧接头阀。 b.在排空时,将“A”连接到真空泵或者在再填充制冷剂,连接制冷剂容器。 c.除在排空或再填充制冷剂时外,所有的阀应保持关阀。 1. 2 二、真空泵的操作方法 1、将中央填充软管连接到真空泵。 2、开启管道压力测试装置的低压阀和高压阀和真空泵上的阀,使真空泵运转。

三、制冷剂充注方法 在使用空调中,最应注意的问题是确保组件中没有水分,当一个组件暴露在大气中时,空气及其所含的水分进入空调中,即使在空调中仅有少量的水分,在低温部位水蒸气可能结冰,造成诸如制冷循环堵塞或压缩机阀腐蚀等问题。因此,在更换零件或者空调系统重新安装到汽车中后重新充注制冷剂到空调系统中时,必须将尽可能多的水分从该系统中除去。除去水分的唯一可用的方法是空调抽真空,使其内部的水分沸腾,这样水分可以蒸汽形式除去。 1、充注制冷剂的工作步骤 建议:在保压力密封性后,无发现异常情况后,再抽真空15-20分钟!此为抽二次真空,对空调系统真空度要求大有好处。 2、制冷剂的充注方法 (1)连接管道压力测试装置 a.关闭管道压力测试装置的高压阀(HI)和低压阀(LO) b.连接填充软管到高压和低压接头阀。 (2)抽真空 a.将管道压力测试装置中央的填充软管连接到真空泵上。 b. 开启管道压力测试装置的高压阀(HI)和低压阀(LO)

热泵技术及其应用的综述

热泵技术及其应用的综述 热泵机组由于其具有节能、环保及冷暖联供等优点,目前在国内广泛应用。本次收集了在全国各类报刊杂志、年会资料集及论文集有关热泵技术及应用这方面的论文共207篇。在此作为一个专题研讨,供在座的各位教员和同学们参考。有关问题综述如下: 一、空气源热泵 空气源(风冷)热泵目前的产品主要是家用热泵空调器、商用单元式热泵空调机组和热泵冷热水机组。热泵空调器已占到家用空调器销量的40~50%,年产量为400余万台。热泵冷热水机组自90年代初开始,在夏热冬冷地区得到了广泛应用,据不完全统计,该地区部分城市中央空调冷热源采用热泵冷热水机组的已占到 20~30%,而且应用范围继续扩大并有向此移动的趋势。 1、关于空气源热泵能耗评价问题 为了评价和比较热泵机组与其它冷暖设备的能耗,大约有30篇论文涉及此问题。介绍了适用于热泵机组能耗分析的理论与软件,根据空调冷负荷、室外干球温度、热泵出水温度等参数,采用温频数法,求解热泵供冷全年能耗。在求解热泵冬季能耗时,除考虑空调

热负荷、热泵出水温度、室外干球温度外,还把室外相对湿度(即温湿频数)考虑到热泵供热性能中,软件经工程实例计算,与实际耗能量有较好的吻合,为能耗评价提供了一种方法。 2、风冷热泵机组的选用 目前设计选用风冷热泵冷热水机组,常根据计算得到的冷热负荷,考虑同时使用系数及冷(热)量损耗系数后,按机组铭牌标定值选择机组台数。由于空气源热泵机组的产冷(热)量随室外参数的改变而变化,这种选择方法可能造成机组选得过大,造成浪费;或者选得过小,使供冷(热)量不足,达不到使用要求。为此建议采用空调的逐时冷热负荷和热泵机组的供热供冷能力的逐时变化曲线对照选择,会得到比较满意的结果。 3、热泵机组冬季除霜 空气源热泵冬季供热运行时,最大的一个问题就是当室外气温较低时,室外侧换热器翅片表面会结霜,(需要采取除霜措施)。根据有关文献摘录,经二年的现场跟踪测试,其结果是除霜损失约占热泵总能耗损失的10.2%,而由于除霜控制方法问题,大约27%的除霜功能是在翅片表面结霜不严重,不需要除霜的情况下进入除霜循环的。目前常用的一些方法,或多或少都存在一些问题,如发生多

充注氟利昂操作规程标准范本

操作规程编号:LX-FS-A42716 充注氟利昂操作规程标准范本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

充注氟利昂操作规程标准范本 使用说明:本操作规程资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 充注氟利昂有两种方法:一种是在制冷系统的高压端加入,适用于较大的新安装的制冷系统;另一种是在制冷压缩机的低压端加入,适用于小型制冷装置及一般补充氟利昂不足。 由制冷压缩机低压端进行补充氟利昂的操作: 1 将氟利昂钢瓶放于磅秤上,并拧上“钢瓶接头”; 2 把低压阀按“反时针”方向倒足,关闭多用通道口,拆下堵头; 3 堵头处装上“三通接头”。一端接压力真空表;另一端用连接管经干燥过滤器再接到氟利昂“钢

太阳能-空气能双源一体热泵制冷剂充注量研究

·102· 制冷与空调 2014年 文章编号:1671-6612(2014)01-102-05 太阳能-空气能双源一体热泵制冷剂充注量研究 靳晓钒 秦 红 刘重裕 (广东工业大学材料与能源学院 广州 510006) 【摘 要】 太阳能-空气能双源一体式热泵热水器由于在结构设计和运行工况上与普通热泵存在较大的差异, 因此在研究过程中系统制冷剂充注量就不能借用已有的经验公式。针对自行研究设计的双源一体 热泵R134a 制冷剂充注量问题,采用Tandon 空泡系数计算模型,借助于Maple 应用数学软件,推 导出系统在最佳设计工况下的制冷剂充注量。实验结果显示,该方法得到的数据与实际最佳制冷 剂充注量基本吻合。并总结推导出适用于本类型双源一体热泵的制冷剂充注量估算公式。 【关键词】 双源一体热泵;制冷剂充注量;空泡系数模型;估算公式 中图分类号 TK515 文献标识码 A Research on Refrigerant Filling Quantity for Integrative Solar/Air Double Source Heat Pump System Jin Xiaofan Qin Hong Liu Chongyu ( Material and energy institute of Guangdong University of Technology, Guangzhou, 510006 ) 【Abstract 】 Because of the large difference in structural design and operating conditions compared with the traditional heat pump system, in the process of research the existing empirical formula of refrigerant filling quantity is not fit for the new integrative solar/air double source heat pump system. In this paper Tandon’s void fraction model and Maple applied mathematics software are used in the validation of refrigerant R134a filling quantity for the new heat pump system, and refrigerant filling quantity in the optimal conditions is gained. Experimental results show that the value deduced from this method is consistent with the actual optimum refrigerant filling quantity. More over, refrigerant filling quantity estimation formula for the integrative solar/air double source heat pump system is also given in this paper. 【Keywords 】 double source heat pump system; refrigerant filling quantity; void fraction model; estimation formula 基金项目:太阳能-空气能双源一体式热泵热水器集成关键技术及产业化;2011广东省产学研结合项目(2011B090400501) 作者简介:靳晓钒(1983.8-),男,硕士研究生,工程师,E-mail :jxf4201@https://www.doczj.com/doc/c918231201.html, 通讯作者:秦 红(1957-),女,博士,副教授,科研方向为空调制冷节能技术及太阳能光伏光热利用技术, E-mail :qh8402@https://www.doczj.com/doc/c918231201.html, 收稿日期:2013-03-05 0 引言 将太阳能集热器和空气能热泵热水机蒸发器 整合为一体的机组简称为太阳能/空气能双源一体 式热泵热水机。与一般的空气能热泵热水机组相 比,太阳能/空气能双源一体机组存在两个方面的 显著差异。一是在集热蒸发器设计上,为了保证可 以接收到足够面积的太阳辐射能量,双源一体机组 的迎风面面积相比会增大很多。高效集热器正面结 构类似于平板式太阳能集热器,剖面类似于翅片管 式空气能换热器,并通过新型翅片折角形成烟囱作用,强化自然对流条件下的空气对流换热。本课题组设计的集热器具体结构如下图1所示[1]。 图1 太阳能/空气能双源一体式机组高效集热器 Fig.1 high efficiency heat collector of integrative solar/air 第28卷第1期 2014年2月 制冷与空调 Refrigeration and Air Conditioning V ol.28 No.1 Feb. 2014.102~106

制冷剂加注方法

制冷剂的充入量有以下几种方法: ⑴测重量。 在充注氟利昂时,事先准备一个小台秤,将制冷剂钢瓶放入一个容器中,再在容器中注入40℃以下的温水(适用于空调器的低压充注制冷剂蒸汽)。福州格力空调售后维修充注前记下钢瓶、温水及容器的重量,在充注过程中注意观察指针。当钢瓶内制冷剂的减少量等于所需要的充注量时可停止充注。也可直接称量钢瓶不用加温水。 ⑵测压力。 制冷剂饱和蒸气的温度与压力呈一一对应关系,若已知制冷剂的蒸发温度即可查出相对应的蒸发压力。此压力的表压值由高、低压压力表显示出来。因此,根据安装在系统上压力表的压力值即可判断制冷剂的充注量是否宜适。如空调器的蒸发温度为7.2℃,冷凝温度为54.5℃使用R22。查R22的饱和温度与饱和压力对应表,以确定其蒸发压力值和冷凝压力值。查表可知:R22在7.2℃时相应绝对压力值为0.53Mpa(5.3kg/cm2)和54.5℃时的相应绝对压力值为2.11Mpa(21.1kg/cm2),将此压力换算为表压值即可。用高、低压压力表或复合式压力表测试充氟中的制冷系统,若高、低压力表表压值符合上述范围即表明制冷剂的充注量合适;若高、低压压力均低则表明充入量不够;若高、低压压力均高,则表明充入量过多。压力测定法较为简便,在维修时经常作用,但是缺点是比较粗,准确度不高。 ⑶测温度。 用半导体测温仪,测量蒸发器的进出口、集液器的出口等各点的温度,以判断制冷剂充注量如何。在蒸发器的进口(毛细管前150mm处)与出口两点之间的温差约7—8℃,集液器出口的温度应高于蒸发器的出口处1-3℃。格力渠道策略成功的核心,福州格力空调维修中心和您一起探讨如果蒸发器进出口的温差大,表明制冷量充注不足,若吸气管结霜段过长或邻近压缩机处有结霜现象,则表明制冷剂充注过多。 ⑷测工作电流。 用钳型电流表测工作电流,制冷时,环境温度35℃,所测得的工作电流与铭牌上电流相对应。温度越高,电流相应增大,温度越低电流相应减少。在风机正常、两器散热号的情况下按空调器工况测电流值作比较。

汽车空调制冷剂的充注方法

汽车空调制冷剂的充注 方法 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

汽车空调制冷剂的充注方法 一.系统抽真空 1.连接充注软管和歧管压力表,拧紧螺母。关闭岐管压力表手动阀,拧下制冷管路的维 修阀的阀盖。连接快速脱开适配器并锁紧。 2.将高压表接入高压管的维修阀,低压表接入自蒸发器至压缩机低压管的维修阀。中间 充注软管安装于真空泵接口。 3.启动真空泵,打开歧管压力表的高压阀和低压阀。 4.抽真空时间约为10~15分钟左右. 5.关闭高压阀和低压阀。 6.放置5分钟,观察压力表,指针继续上升,说明真空下降,系统有泄露。检查泄露情 况,并修补漏洞。 7.继续抽真空20~25分钟,重复6步骤,如压力表保持不动,说明无泄漏,可进行下 一步的工作。 8.关闭高压阀和低压阀,停止抽真空。拆下中间充注管,准备冲入制冷剂。 二.充入制冷剂 1.罐装制冷剂使用前的准备工作,操作如下: ①在制冷剂罐上安装启开阀之前,逆时针旋转蝶形手柄,直到阀针完全缩回为止。 ②逆时针旋转板状螺母,使其升到最高位置。 ③将歧管压力表的中间充注软管安装该阀的接头上,顺时针旋转板状螺母并拧紧。 ④顺时针旋转蝶形手柄,使其前端的阀针在制冷剂罐凸台上刺出小孔。 ⑤逆时针旋转蝶形手柄,制冷剂便沿注入软管流到歧管压力表内。 ⑥顺时针旋转蝶形手柄到最低位置,重新封闭制冷剂罐,但不可拆动启开阀,否则罐 内的制冷剂会泄露。

2.充注制冷剂的步骤。 ①连接好歧管压力表和制冷剂罐。 ②逆时针旋松启开阀手柄,使制冷剂进入中间充注软管,这时不能打开两侧的手动阀 门。 ③拧松歧管压力表中间软管的螺母,会看到白色制冷剂气体外溢并听到嘶嘶声,排出 中间软管的空气后,再旋紧中间软管螺母。 ④旋开高压手动阀门,将制冷剂罐倒立,立即以液态注入制冷系统。切忌打开空调装 置,以防倒灌。 ⑤关闭高压手动阀门,打开低压手动阀门,让制冷剂以气态进入制冷系统。从低压手 动阀门注入的制冷剂必须是气态,如液态,会出现压缩机的液击现象而损毁压缩机。 ⑥启动发动机,打开空调装置,适当加大油门,使制冷剂更快的流入。 ⑦当一罐制冷剂充注完后,关闭低压手动阀门。重复1~3步骤,打开低压充注阀 门。

热泵技术及其在工业节能中的应用概要

1.能量系统的转换 1.1能量的品位 能量是物质的基本特性参数,它表示物质所具有的做功能力。热力学第一定律说明了不同形式的能量可以转换,但在转换过程中数量守恒,热力学第二定律指出,能量除了有量的多少外,还有品位的高低,不同品位的能量转变为功的能力不同。 物质的总能中可用能所占的比例代表了能量的品质。世界各国学者对“可用能”的理论和在各个领域中的应用进行了深入的研究和广泛的实践。1960年至1963年间,南斯拉夫学者郎特把能量分为可转变为技术功部分火用(Exergy)和不可转变为技术功部分火无(Anergic)。 火用表示热力系统中物质在任意状态下相对于环境零态(dead state)所具有的最大做功能力。火无表示物质所具有的总能中,相对于环境零态,不可转变为技术功部分。 根据火用的定义,对于开口系物质所具的比火用为: e = h-h0-T0(s-s0) (1-1) 根据火无的定义,物质流的物理火无为: e = h-e = h0+T0(s-s0) (1-2) 火用的概念是建立在热力学第一定律和第二定律基础上的热力参数,它表示能量在给定的环境条件下(P0、T0及其它参数),所能产生的最大有用功。它既可以表示能量的数量,又可以表示能量的品位及其可利用程度,火用的单位与焓的单位相同。 稳流工质可逆变化到环境状态,可设想由等熵和可逆等温两个过程组成。当忽略流动工质动能和位能的变化,由状态1可逆变化到环境状态零态(P0、T0)。 稳定物流火用的数值可以用工质热力性能参数表计算得出,也可用火用---熵图(e-s)表示。在实际过程中流入火用一定大于流出火用。即e x1>e x2+e w 。它同能量概念不同,进出设备的火用并不守恒,只会减少,其减少的数值就是火用损失,见公式(1-3)。Δe x表示能量的变质。e w 表示火用转变为机械功部分。 Δe x = e x1– e x2 -e w (1-3) 根据孤立体系熵增原理,对于整个体系来说,不可逆过程熵只会增加,即产生有用功的能力减少。在数量上熵的增加等于火用的减少。 流入火用等于流出火用和火用损失之和,称为火用平衡方程式: Δe x = e x2 + e w +Δe x (1-4)

冷媒充注工艺规范

冷媒充注工艺规范 1范围 本标准规定了制冷剂充注技术、工艺规范要求。 本标准适用于家用空调器产品制冷系统的制冷剂充注。 2引用标准 下列标准所包含的条文, 通过在本标准中引用而构成为本标准的条文。 GB/T 7778-2001 制冷剂编号方法和安全性分类 3冷媒的种类 空调常用的冷媒有三种:R22、R407C、R410A 3.1 R22俗称氟里昂,是由三氯甲烷(CHCl3)无水氟化氢(AHF)在五氯化锑催化下反应生成的二氟 一氯甲烷,分子式为CHClF2。 R22在常温下为无色的气体,加压可液化为无色透明的液体。 3.2 R407C为三元混合工质,化学名称为二氟甲烷/五氟乙烷/四氟乙烷(R32/R125/R134a- 23/25/52wt%), 分子式为CH2F2 /CHF2 CF3 /CH2F CF。 R407C在常温下为无色的气体,无浑浊,无异臭,加压可液化为无色透明的液体。 3.3 R410A是由R32(C H2F2)和R125(CF3-CF2H)按照1:1重量比混合而成的沸点为-51.6℃的近共 沸混合物。 R410A在常温下为无色的气体,加压可液化为无色透明的液体,无浑浊。 4冷媒充注要求、参数 4.1充注机设备要求 4.1.1 充注机充注管路清洁无杂质、水分,管路无泄漏及结霜等情况; 4.1.2 充注机性能指标应符合下表要求:

5冷媒充注 5.1增压系统 5.1.1 压缩空气压力应在5kgf/cm2~8kgf/cm2; 5.1.2 增压泵增压系统出口压力应在20~30 kgf/cm2,充注R410A时,正常压力范围应为: 20~40Kgf/cm2; 5.1.3 第一次充注前,要手动放出制冷剂约500g以排除管路里空气; 5.2 充注机校验 5.2.1根据生产机型,选择冷媒的种类,并调好充注机的充注量; 5.2.2进行充注量校验调整;充注校对前应对称氟瓶抽真空,确保氟瓶真空度小于20Pa,且瓶表面应无水汽、杂物等;将调好的充注量充注到氟瓶,用电子称称量,待显示屏稳定后进行读数,检验称量完成后作好记录。 5.2.2需要对充注机进行校验的情况:①每天生产线开线前的校对;②出现设备故障时必须进行校对;③转机时必须充注机进行校对;④不转产每2小时校对一次。 5.3充注 5.3.1抽真空完毕,且快速接头无杂物、油污及冷凝水;若系统内真空度不良,冷媒充注机会报警,这时不能强行充注,需对此台机重新抽真空,方可充注。 5.3.2系统保压时间≥2S,压力回弹值≤100p a; 5.3.3用手握住工艺管上的快速接头,将充注枪插到快速接头上,确定连接完好后,按下启动按钮进行充注; 5.3.4充注时注意显示屏,观察显示的真空度,充注完毕后,冷媒机蜂鸣器提示,拨出枪头。 6充注工艺要求 6.1禁止从低压阀进行充注冷媒; 6.2充注过程中,若发现有制冷系统有泄漏,立即停止充注,将泄漏位置标识出来; 6.3在生产过程中,因系统泄漏或其它原因造成的返修机,应使用专用的真空泵抽真空,抽真空的时间应确保≥20分钟、真空度小于40P a,然后再进行充冷媒工序,禁止对系统内有残余冷媒返修机进行充注。 6.4 R22和新冷媒不能共用冷媒流通管路; 6.5充注R407C、R410A等新冷媒时,充注量没达到或部分泄漏,严禁进行加充,须使用专用真空泵重新抽真空后再进行充注。 6.6当充注机更换冷媒种类时,必须对其进行清洗,清洗完成后,转换冷媒进行调试,在设备功能菜单中选择相应冷媒类型,校对前按要求进行排空; 6.7充注精度应符合下表要求

R22、R410a冷媒充注

R22、R410a冷媒充注冷媒的特性 冷媒R-22R-407C R-410A 分子式CHCLF2CH2F2/CHF2CF3/CF3CH2F CH2F2/CHF2CF3 分子量86.586.272.6 沸点(℃)-40.8-43.7-52.7 临界温度(℃)9687.372.5 497448164949.6 临界压力 (kPa) 512.82515.78500.0 临界密度 (kg/m3) 120811711107 液体密度 (kg/m3) 38.2837.6853.84 气体密度 (kg/m3) 1.212 1.483 1.637 液体比热 (kj/kg·K) 0.76040.9328 1.027 气体比热 (kj/kg·K) 潜热(kj/kg)233.7249.73256.68 0.087250.092140.1025 液体导热系数 (W/m·K ) 气体导热系数 0.011220.012800.01266 (W/m·K ) 液体粘度(μ 180816961314 poise) 气体粘度(μ 126.5123.5128.8 poise)

ODP0.0500 GWP0.370.380.46 表中R410A蒸发潜热和蒸汽密度较大,压缩机单位排气体积的能力大,为避免系统设计点的偏离导致的效率低下,需要缩小压缩机的排气体积,更改压缩机汽缸。 在P-h图上,R410A冷媒的运转冷凝压力约为R22的1.5倍,设计时需要考虑相关构成部品的耐压性。(均为标准工况下)。 注意事项 空调停电12小时以上: 启动空调时,必须先使曲轴箱加热器得电预热,预热时间以系统充注冷媒量每公斤冷媒不少于1小时,目的是将曲轴箱内冷冻油中混有的液体冷媒蒸发,避免压缩机吸入液体冷媒,引起液压缩。 充注操作工具及连接 压力表(组合表阀) 数字温度表 钳形电流表 重量计 冷媒R-22 操作工具连接 压力表的连接与排空

制冷剂充注步骤

制冷剂充注步骤 一、仪表校验 1、歧管压力计 2、N2钢瓶 3、真空泵 4、制冷剂罐 二、打压检漏 1、用耐压软管的两端分别连接于充氮手阀和检修阀加液口; 2、打开氮气瓶总阀及减压阀(减压压力为0.8~1.0MPa),随后打开充氮手阀和歧管压力计高压侧手 动阀,即开始充氮打压; 3、打压结束,一次关闭歧管压力计高压侧手动阀、充氮手阀及氮气瓶总阀; 4、用肥皂水检查各处(主要是循环回路中的各个管接口和焊接口处)有无泄漏; 5、无泄漏将氮气排空。 三、系统抽真空 1、利用软管将歧管压力计高压侧与真空泵手阀进行连接; 2、打开真空泵手阀、歧管压力计高压侧手动阀,并开启真空泵摁钮,开始抽真空作业; 3、抽真空的延续时间应在1h以上,延续时间较长为好,真空度要求为-0.1MPa; 4、抽真空结束,关闭真空泵,卸下歧管压力计高压侧耐压软管。 四、充注制冷剂(R22) 1、用耐压软管将歧管压力计低压侧与制冷剂罐连接; 2、此时首先进行软管空气的排空,将软管与歧管压力计低压侧连接处拧松,并打开制冷剂罐的阀 门,此时在软管与歧管压力计低压侧连接处拧松处听到嘶嘶声,当看到有白色气体出现,此时关闭制冷剂罐阀门,此时利用制冷剂将管内空气排空; 3、因经抽真空后,系统内已成真空状态,此时只需加大歧管压力计低压侧手动阀开度,制冷剂自 行压入系统中,直至低压表充注压力达到0.5MPa即可; 4、若系统中制冷剂仍不足,需要继续充注,此时开启制冷系统,利用压缩机产生高压,继续进行 制冷剂充注,直至低压表充注压力达到0.1~0.2MPa即可; 5、充注结束,关闭歧管压力计低压侧手动阀、制冷剂罐阀门; 6、充制冷剂量的判断:①根据蒸发器出口温度要求,查取相应制冷剂对应的饱和压力值,根据低 压表来判断制冷剂量;②手感法:对比蒸发器出口与压缩机出口管两处温度,当压缩机出口管温度略高于蒸发器出口温度(大约7℃)即可;对比蒸发器进口管温度与蒸发器出口管温度,两者存在较大温差,进口管温低于出口管温,并运行一段时间进口管出现结露即可。 五、卸下耐压软管,各仪器工具归位。

冰箱充注制冷剂的比较法教学

谈谈电冰箱充注制冷剂的比较法教学 【摘要】电冰箱制冷效果的好坏在很大程度上取决于所充注的制冷剂是否合适,大部分学生对电冰箱制冷系统准确地充注制冷剂感到难以掌握,采用比较法来进行对电冰箱充注制冷剂的项目教学,可以达到比较理想的效果。 【关键词】制冷效果综合观察法 笔者从事《电冰箱、空调器原理与维修》的课程教学多年,在“电冰箱制冷系统维修”的教学中,发现学生对其中的管道加工、焊接、清洗、抽真空、检漏等工艺都能较快地掌握好,但大部分学生对电冰箱制冷系统准确充注制冷剂的操作都感到难以掌握。而在电冰箱的制冷系统维修中,电冰箱制冷效果的好坏在很大程度上取决于所充注的制冷剂是否合适。当制冷剂充注量过多,会导致电冰箱蒸发器温度升高、冷凝压力增大、压缩机轴功率增大,压缩机运转率提高;还可能出现冷凝器积液过多,自动停机时,液态态制冷剂在冷凝器末端和过滤器中的蒸发吸热,造成热能损耗。这些因素都将使电冰箱性能下降,耗电量增加且制冷量变小。当系统中制冷剂充注不足时,则会造成蒸发器末端的过热度提高,温度升高,结霜不满,从而使蒸发器的产冷量减少,使压缩机运转率提高,耗电量增大,也会使蒸发器蒸发量不足,导致压缩机吸气压力过低,冷量减少并可能使压缩机过热。所以制冷剂的准确充注是电冰箱制冷系统维修过程中的非常重要环节。 电冰箱制冷系统充注制冷剂的方法主要有定量充注法和综合观

察法。定量充注法是利用专用的制冷剂加液器按电冰箱铭牌上规定的制冷剂注入量进行充注制冷剂。综合观察法是在没有制冷剂定量的情况下,将压力表装在压缩机的吸气检修口中,一边充注,一边观察及测量,根据制冷系统主要部件的温度及状态的变化综合判断制冷剂的充注量的准确性。 考虑到上门维修携带称量工具的因素及四大件(压缩机、冷凝器、蒸发器、毛细管)老化对制冷剂用量的影响,笔者认为定量充注法对上门维修不太适用,因为一般用户都是习惯于维修人员上门服务,对于上门维修来说携带称量工具不太现实,还有就是定量充注法注重的是制冷剂充注的重量,综合观察法强调的是制冷的效果,所以综合观察法更为准确、更为适用。 由于电冰箱制冷系统相对于空调机制冷系统来说,制冷剂的用量相对更加少,维修后的电冰箱如果采用R12或R134A作为制冷剂,其充注量一般不超过200克,如采用R600A(异丁烷)作为制冷剂,其充注量更少,为80克以下;而制冷剂的充注量要力求准确、误差不能超过规定充注量的5%。因此对电冰箱制冷剂充注的精度要求要比空调器制冷剂充注的精度要求高出很多的,充注的时候稍有不慎,就可能造成充注量过多或过少,使到学生在电冰箱制冷系统维修实操过程中,进行到充注制冷剂实际操作时候就总是缩手缩脚,觉得很难准确地充注。为了让学生能更快掌握好冰箱制冷剂充注的操作,笔者根据自已多年的教学经验,觉得采用比较法来进行对电冰箱充注制冷剂的项目教学,学生是比较容易接受。通过指导学生将不同剂量的制冷

制冷剂与充注基础知识

制冷剂与充注基础知识 制冷剂是在制冷系统中不断循环并通过其本身的状态 变化以实现制冷的工作物质。制冷剂,又称:制冷工质,一些地区俗称:雪种。原理:制冷剂在蒸发器内吸收被冷却介质(水或空气等)的热量而汽化,在冷凝器中将热量传递给周围空气或水而冷凝。它的性质直接关系到制冷装置的制冷效果、经济性、安全性及运行管理,因而对制冷剂性质要求的了解是不容忽视的。1.低压高温制冷剂:冷凝压力Pk≤2~3kg/cm(绝对),T0>0℃,如R11(CFCl3),其T0=23.7℃。这类制冷剂适用于空调系统离心式制冷压缩机中。通常30℃时,Pk≤3.06kg/㎝。2.中压中温制冷剂:冷凝压力PkT0>-60℃。如R717、R12、R22等,这类制冷剂一般用于普通单级压 缩和双级压缩的活塞式制冷压缩机中。3.高压低温制冷剂:冷凝压力Pk≥20kg/cm(绝对),T0≤-70℃。如R13(CF3Cl)、R14(CF4)、二氧化碳、乙烷、乙烯等,这类制冷剂适用于复迭式制冷装置的低温部分或-70℃以下的低温装置中。制 冷剂的命名方法:(1)无机化合物-无机化合物的简写符号规 定为R7()。括号代表一组数字,这组数字是该无机物分子量的整数部分。(2)卤代烃和烷烃类-烷烃类化合物的分子通式 为CmH2m+2;卤代烃的分子通式为 CmHnFxClyBrz(2m+2=n+x+y+z),它们的简写符号规定为

R(m-1)(n+1)(x)B(z)。(3)非共沸混合制冷剂-非共沸混合制冷剂的简写符号为R4()。括号代表一组数字,这组数字为该制冷剂命名的先后顺序号,从00开始。(4)共沸混合制冷剂- 共沸混合制冷剂的简写符号为R5()。括号代表一组数字,这组数字为该制冷剂命名的先后顺序号,从00开始。(5)环烷烃、链烯烃以及它们的卤代物-写符号规定:环烷烃及环烷烃的卤代物用字母“RC”开头,链烯烃及链烯烃的卤代物用字母“R1”开头。(6)有机制冷剂-则在600序列任意编号共沸化合物:两种(或几种)液体形成的恒沸点混合物称为共沸混合物。(对于绝大多数液体与液体混合而成的溶液,他们的组成成分都保持着各自的沸点.但是对于少数几种溶液混合后,他们的混合液会具有统一的沸点,一旦两种或多种液体混合后出现了共同的沸点,就称此混合液为共沸溶液。通常共沸溶液的沸点低于构成此溶液的任一组分的沸点)常用制冷剂:混配制冷剂表—非共沸类:空调设备冲注氟利昂:注意事项:空调停电12小时以上:启动空调时,必须先使曲轴箱加热器得电预热,预热时间以系统充注冷媒量每公斤冷媒不少于1小时,目的是将曲轴箱内冷冻油中混有的液体冷媒蒸发,避免压缩机吸入液体冷媒,引起液压缩。充注操作工具:操作工具连接:压力表的连接与排空;温度计感温头的位置;钳形电流表测压缩机的电流;重量计称充注前冷媒的重量。调试工具的检验:温度计:减少大气压力:冷媒充注过少:

R22、R410a冷媒充注

R22、R410a冷媒充注

R22、R410a冷媒充注冷媒的特性 冷媒R-22R-407C R-410A 分子式CHCLF2CH2F2/CHF2CF3/CF3CH2 F CH2F2/CHF2CF 3 分子量86.586.272.6 沸点(℃)-40.8-43.7-52.7 临界温度 (℃) 9687.372.5 临界压力 (kPa) 497448164949.6 临界密度 (kg/m3) 512.82515.78500.0 液体密度 (kg/m3) 120811711107 气体密度 (kg/m3) 38.2837.6853.84 液体比热 (kj/kg·K) 1.212 1.483 1.637 气体比热 (kj/kg·K) 0.76040.9328 1.027潜热(kj/kg)233.7249.73256.68 液体导热系数(W/m·K )0.0872 5 0.092140.1025 气体导热系数(W/m·K )0.0112 2 0.012800.01266 液体粘度(μ poise) 180816961314 气体粘度(μ poise) 126.5123.5128.8

ODP0.0500 GWP0.370.380.46 表中R410A蒸发潜热和蒸汽密度较大,压缩机单位排气体积的能力大,为避免系统设计点的偏离导致的效率低下,需要缩小压缩机的排气体积,更改压缩机汽缸。 在P-h图上,R410A冷媒的运转冷凝压力约为R22的1.5倍,设计时需要考虑相关构成部品的耐压性。(均为标准工况下)。 注意事项 空调停电12小时以上: 启动空调时,必须先使曲轴箱加热器得电预热,预热时间以系统充注冷媒量每公斤冷媒不少于1小时,目的是将曲轴箱内冷冻油中混有的液体冷媒蒸发,避免压缩机吸入液体冷媒,引起液压缩。 充注操作工具及连接 压力表(组合表阀) 数字温度表 钳形电流表 重量计 冷媒R-22 操作工具连接

相关主题
文本预览
相关文档 最新文档