当前位置:文档之家› 现代生物技术在环境污染治理的应用

现代生物技术在环境污染治理的应用

现代生物技术在环境污染治理的应用
现代生物技术在环境污染治理的应用

浅析现代生物技术在环境污染治理的应用

摘要:现代生物技术是在分子生物学基础上建立的创建新的生物类型或新生物机能的实用技术,是现代生物科学和工程技术相结合的产物,对解决当今的环境污染问题具有很强的实用价值。本文主要介绍了现代生物技术的起源发展、应用、局限及发展趋势。重点介绍了现代生物技术在水污染、固体废弃物和土壤污染处理的应用。

关键词:现代生物技术环境污染应用局限趋势

Abstract: Modern biotechnology is established on the basis of molecular biology to create a new type of organism or a new biological function of practical techniques. combining modern biological science and engineering technology, and it has a strong practical value to solve today's environmental problems . This paper describes the origins of modern biotechnology development, application, limitations and trends. Highlights of modern biotechnology in water pollution, solid waste and soil pollution treatment applications.

Keywords:Modern biotechnology Environmental Pollution Application Limitation Tendency

1 前言

当前,环境保护工作已经成为全社会关注的热点问题。随着我国工业化进程的不断加速和社会发展水平的不断提高,环境污染的程度不断加深,这给环境保护工作带来了十分严峻的考验,以往单纯的环境治理方式已经无法适应当前的实际需要。生物技术以其实用性和环保性的特征,正在越来越多地被应用于环境保护工作之中。运用现代生物技术进行环境保护研究取得的新成果,包括运用基因工程减少作物的化肥施用量改善植物吸收重金属的能力、消除除草剂污染源、生产可降解塑料以及新型基因工程杀虫剂的开发,从而起到保护生态环境的作用。在环境污染治理中,作为一种技术手段,现代生物技术具有高效性,反应条件温和等优点,它对环境污染的治理和修复发挥了巨大作用,为废水以及固体废物处

理及再利用提供了一条十分有效的途径,运用现代生物技术预防和治理环境污染,改善生态环境,具有巨大的潜力和优势。

2 现代生物技术的发展概况

2.1定义

现代生物技术即生物工程,是以重组DNA技术和细胞融合技术为基础,包括基因工程、细胞工程、酶工程和发酵工程等四大体系组成的现代高新技术。自20世纪70年代初,以DNA重组技术和淋巴细胞杂交瘤技术的发明和应用为标志的现代生物技术诞生以来,迄今已走过了近30年的发展历程。由于现代生物技术对解决人类面临的重大问题如:粮食、健康、环境和能源等将开辟广阔的前景,因此越来越为各国政府和企业界所关注,与信息、新材料和新能源技术并列成为影响国计民生的四大科学技术支柱,是21世纪高新技术产业的先导。

2.2 起源发展

现代生物技术和古代利用微生物的酿造技术和近代的发酵技术有发展中的联系,但又有质的区别。古老的酿造技术和近代的发酵技术只是利用现有的生物或生物机能为人类服务,而现代的生物技术则是按照人们的意愿和需要创造全新的生物类型和生物机能,或者改造现有的生物类型和生物机能,包括改造人类自身,从而造福于人类。现代生物技术生物工程,是人类在建立实用生物技术中从必然王国走走向自由王国、从等待大自然的恩赐转向主动向大自然索取的质的飞跃。

现代生物技术是在分子生物学发展基础上成长起来的。1953年,美国科学家沃森和英国科学家克里克用X-衍射法搞清了遗传的物质基础核酸的结构,从而使揭开生命秘密的探索从细胞水平进入了分子水平,对于生物规律的研究也从定性走向了定量。在现代物理学和化学的影响和渗透下,一门新的科学分子生物学诞生了。在以后的十多年内,分子生物学发展迅速,取得许多重要成果,特别是科学家们破译了生命遗传密码,并在1966年编制了一本地球生物通用的遗传密码"辞典"。遗传密码辞典将分子生物学的研究迅速推进到实用阶段。1970年,

科拉纳等科学家完成了对酵母丙氨酸转移RNA的基因的人工全合成。1971年美国保罗·伯格用一种限制性内切酶,打开一种环状DNA分子,第一次把两种不同DNA联结在一起。1973年,以美国科学家科恩为首的研究小组,应用前人大量的研究成果,在斯坦福大学用大肠杆菌进行了现代生物技术中最有代表性的技术――基因工程的第一个成功的实验。他们在试管中将大肠杆菌里的两种不同质粒(抗四环素和抗链霉素)重组到一起,然后将此质粒引进到大肠杆菌中去,结果发现它在那里复制并表现出双亲质粒的遗传信息。1974年,他们又将非洲爪蛙的一种基因与一种大肠杆菌的质粒组合在一起,并引入到另一种大肠杆菌中去。结果,非洲爪蛙的基因居然在大肠杆菌中得到了表达(“表达”是指该基因在大肠杆菌内能合成生长激素抑制因子),并能随着大肠杆菌的繁衍一代一代地传下去。

现代生物技术是一个复杂的技术群。基因工程仅是现代生物技术中具有代表性的一种,它的特征是在分子水平上创造或改造生物类型和生物机能。此外,在染色体、细胞、组织、器官乃至生物个体水平上也可进行创造或改造生物类型和生物机能的工程,例如染色体工程、细胞工程、组织培养和器官培养、数量遗传工程等,这些,也属于现代生物技术的范畴。而为这些工程服务的一些新工艺体系,如现代发酵工程、酶工程、生物反应器工程等,同样被纳入了现代生物技术的系统。

2.3 环境生物技术

环境生物技术是21世纪国际生物技术的又一热点领域。人类赖以生存的环境,由于人类活动自身造成的各种污染(包括工业废水、废气、各种废弃物、有毒化学物质、声、光、电磁和放射性物质等)对环境生态的破坏,已成为威胁人民健康、制约经济发展的严重问题。

治理环境污染,改善人类生活环境的质量已经成为人类共同努力的长期任务。生物技术在环境治理上发挥着不可替代的作用。环境生物技术不是1个新概念,过去用微生物处理工业废水就属于这一类研究。美国更把环境生物技术作为21世纪生物技术6个主要研究领域之一,美国培育的基因工程“超级菌”,几小时就可降解自然菌种需1年才能降解的水上浮油;日本将嗜油酸单孢杆菌的耐汞

基因转入腐臭单孢杆菌,使该菌株既能有效处理环境汞污染,又能将汞回收利用。

2.4 现代生物技术的特点

生物是构成生态系统的要素,生态系统内物质循环主要是依靠生物过程来完成的。科技的发展也充分证明生物技术是环境保护的理想武器,这一技术在解决环境问题过程中所显示的独特功能和显着优越性充分体现在它是一个纯生态过程[8]。生物技术在处理环境污染物方面具有速度快、消耗低、效率高、成本低、反应条件温和以及无二次污染等显着优点,受到了高度重视。随着生物技术研究的进展和人们对环境问题认识的深入,人们已越来越意识到,现代生物技术的发展,为从根本上解决环境问题提供了希望。

目前生物技术应用于环境保护中主要是利用微生物。生物技术已是环境保护中应用最广的、最为重要的单项技术,其在水污染控制、大气污染治理、有毒有害物质的降解、清洁可再生能源的开发、废物资源化、环境监测、污染环境的修复等环境保护的各个方面,发挥着极为重要的作用。应用环境生物技术处理污染物时,最终产物大都是无毒无害的、稳定的物质,如二氧化碳、水和氮气。利用生物方法处理污染物通常能一步到位,避免了污染物的多次转移。特别是现代生物技术的发展,尤其是基因工程、细胞工程和酶工程等生物高技术的飞速发展和应用,大大强化了上述环境生物处理过程,使生物处理具有更高的效率[3]。美国环保局(EPA)在评价环境生物技术时也指出“生物治理技术优于其他新技术的显着特点在于其是污染物消除技术而不是污染物分离技术”

由于大部分有机污染物适于作为生物过程反应物(底物),其中一些有机污染物经生物过程处理后可转化成沼气、酒精、生物蛋白等有用物质,生物处理方法也常是有机废物资源化的首选技术。生物过程是以酶促反应为基础的,作为催化剂的酶是一种活性蛋白。生物反应过程通常是在常温、常压下进行的。

酶对底物有高度的特异性,生物转化技术的效率高,副产物少,这与常常需要高温、高压条件的化工过程相比,反应条件大大简化,因而消耗低,效果好、过程稳定、操作简便。用生物过程代替化学过程可以降低生产活动的污染水平,有利于实现工艺过程生态化或无废生产,真正实现清洁生产的目标。生物处理技术除易于大规模处理外,还可利用天然水体或土壤作为污染物处理场所。另外,

生物技术的产品或副产品基本上都是可以较快生物降解的,并且都可以作为一种营养源加以利用。用生物制品代替一切可以取代的化学药物、化石能源、人工合成物等,有助于把人类活动产生的环境污染降至最低程度[6]。生物是构成生态系统的要素,生态系统内物质循环主要是依靠生物过程来完成的。

利用环境生物技术可治理用其他方法难以处理的环境介质,即用生物修复技术净化环境,使受污染的宝贵资源如水资源(包括地面水和地下水)、土壤等得以重新利用,同时还可进一步强化环境的自净能力。

环境生物技术不仅单纯适用于环境污染治理,如今已相当广泛地应用于环境监测,尤其是以生物传感器为核心的环境生物监测技术,可在线在位迅速地提供环境质量参数,成为环境质量预报和报警中的重要组成部分[4]。

3 现代生物技术在环境污染治理方面的应用

3.1现代生物技术水污染治理的应用

3.1.1 污水的生物净化

污水的生物净化是利用微生物自身的生命活动过程对污水中的有毒物质进行转移和转化,从而使污水得到净化的处理方法。目前,污水生物净化技术发展迅速,好氧法、厌氧生物法以及生物发酵法已趋于成熟,本文只简单介绍其中几种方法:

3.1.1.1 固定化微生物技术固定化微生物技术是70年代末由固定化酶技术发展起来的,它是指通过物理或化学的手段将游离的微生物固定在限定的空间区域使其保持活性并可反复利用的一项生物技术。其可以被用来处理一般高浓度有机废水、印染废水、含氮废水、难降解有机废水及其他废水等,一些具有特异性的优势菌种不断得到改造或创造,将这些高效专性菌如脱色菌、脱氮、脱磷菌假单胞菌等进行固定化后,菌体密度提高,大大提高了处理效率,尤其是对难降解有毒物质有明显优势。

3.1.1.2 生物强化处理技术生物强化处理技术是为了提高废水处理的效果,而向废水中投加从自然界中筛选的优势菌种或通过基因组合技术产生的高效菌种,以去除某一种或某一类有害物质。主要作用方式有:直接投加特效降解微

生物,废水中的微生物可以附着在载体上形成高效生物膜或以游离的状态存在;引入生物强化制剂,主要用于处理城市污水,有机物的去除率可以得到显著提高,固体物质的产生会减少、硝化作用得以增强,从而提高污水脱氮脱磷效果;固定化生物强化技术,将特定的微生物封闭在高分子网络载体内,使菌体脱落少、活性高,从而提高优势微生物浓度,增加了其在生物处理器中的存留时间。

3.1.1.3 生物反应器技术生物反应器技术,是现代生物技术发展的一个主要方向。生物反应器是利用酶或生物体(如微生物)所具有的生物功能,在体外进行生化反应的装置系统,其有利于微生物附着生长形成生物膜,供气或供给的其他反应条件优越,污染物具有充分的时间与微生物接触,有利于增强微生物的分解代谢能力。

3.2现代生物技术在固体废弃物污染防治的应用

固体废弃物是人类生产和生活过程中产生的副产品,处理的目的是使其无害化、减量化和资源化。要综合考虑各种因素,才能确定符合环境、经济和社会效益的处理方法。目前国外固体废弃物的处理方法经过多年的实践和比较,正向资源化、综合处理的方向发展,如固体废弃物堆肥的土地利用、城市生活垃圾填埋等。

固体废弃物堆肥化处理堆肥化是将要堆腐的有机物料与填充料按一定比例混合,在合适的水份、通气条件下,使微生物繁殖并降解有机质,从而产生高温,杀死其中的病原菌及杂草种子,使有机物达到稳定化,可包括好氧堆肥和厌氧堆肥。目前多采用好氧堆肥高温堆肥,其堆体温度高50一65℃,可以最大限度地杀灭病原菌,同时对有机质的降解速度快。不同堆肥技术的主要区另寸在于维持堆体物料均匀及通气条件所使用的技术手段,堆肥系统的分类大同小异,根据技术的复杂程度可分为条垛式、通气静态垛式及发酵仓式系统。

条垛式堆肥系统是最简单的一种,将堆肥物料以条垛式堆置,通过定期翻堆来实现堆体中的有氧状态,从而提供堆体中的微生物群降解有机质的氧气需求。该堆肥系统尽管技术水平低,却具有设备简单、投资成本相对较低、堆肥易于干燥、填充剂易于筛分和回用、堆腐时间较长而产品的稳定性相对较好等优点但该系统占地面积大,需要大量的翻堆机械通气静态垛系统相对于条垛式系统能有效地确保堆体达到高温条件,不同之处在于堆肥过程中不进行物料的翻堆,而通过

鼓风机使堆体保持好氧状态。该技术的关键是通气系统,包括鼓风机和通气管路。管路可以是固定式或可移动式的,管材可以是重复使用或可生物降解的。该系统具有设备投资相对较低、温度及通气条件能得到更好地控制、产品稳定性好、能更有效地杀灭病原菌及控制臭味、堆腐时间相对较短、填充剂用量少、占地面积相对较小等优点但堆肥易受气候条件影响。

发酵仓式系统是使物料在部分或全部封闭的容器内,控制通气和水分条件,使物料进行生物降解和转化。与上述两类系统的根本区别是该系统是在一个或几个容器内进行,是高程度化的机械化和自动化。堆肥的整个工艺包括通风、温度控制、水分控制、无害化控制及堆肥的腐熟等几个方面。该系统按物料的流向可划分为水平流向反应器和竖直流向反应器,前者包括旋转仓式和搅动仓式,后者包括搅动固定床式及包裹仓式。相对于条垛式、通气静态垛式系统,发酵仓系统具有设备占地面积小、能够进行很好的过程控制水、气、温、堆肥过程不受气候条件影响、能够对废气进行统一回收处理而防止二次污染及对热量进行回收利用等优点但其设备投资大、运行维护费用高、堆肥周期短、堆肥产品会有潜在的不稳定性。条垛式堆肥系统在美国和加拿大等具有足够土地面积的国家使用比例较高。年,美国条垛式堆肥系统占个堆肥项目的,加拿大98个运行的堆肥厂中,个是条垛式堆肥系统通气静态垛系统在美国使用最为普遍,的堆肥厂属于通气静态垛系统,年增长的40个堆肥厂中,34个为通气静态垛系统,占增长量的发达国家发酵仓系统使用较普遍,法国目前多个堆肥厂中,多采用滚筒式发酵系统,美国发酵仓系统占川。城市生活垃圾的卫生填埋是城市生活垃圾处置的一项重要手段。垃圾填埋场实际是一个庞大的生物反应器,在不同的垃圾降解阶段,微生物群落的种类及作用不同。在好氧降解阶段,好氧菌和真菌起主要作用,兼性厌氧菌在兼性厌氧阶段起主导作用,专性厌氧水解发酵菌、专性厌氧产乙酸菌、专性厌氧产甲烷菌和纤维素分解菌等则是厌氧降解时期的主要菌种。如果适当地控制条件,使不同分解阶段起主导作用的微生物优先大量繁殖,对于促进垃圾降解和加速填埋场稳定化过程都是非常有利的,如根据细菌繁殖的特点适应期、加速期、对数期、减速期、静止期及衰亡期,在垃圾填埋作业时,加人一定量的陈垃圾或厌氧活性污泥及对新鲜垃圾进行细菌接种,可以缩短细菌的适应期,加速垃圾的降解。另外在垃圾填埋时,对底层垃圾进行好氧堆肥预处理,也能达到同样

的效果。由于垃圾填埋场稳定化是一个较长的过程,垃圾组成、垃圾水分含量、垃圾预处理、填埋操作方式、填埋场的水文气象条件、渗滤液的值及微生物种群等诸多因素都直接影响到填埋场的稳定化过程。所以需要全面考察填埋场稳定化的影响因素,研究其稳定化过程,以达到减轻或消除填埋场的危害和确保其最大限度地安全再利用。

3.3污染土壤的生物修复与治理

目前工业的迅速发展,大量的人造化学物质排放入环境中,对资源和环境构成越来越严重的破坏。化石燃料的开采和使用,工业三废的排放,农村化肥和农药的大量使用,给我们赖以生存的环境造成了难以估量的污染。

3.3.1 重金属污染是造成土壤污染的主要污染物

(1)植物修复。植物修复是一种利用植物去除和消减污染物的环境治理技术,是一种新兴的绿色生物修复技术,能在不破坏土壤生态环境、保持土壤结构和微生物的状况下,通过植物的根系直接将大量的重金属吸收,从土壤中移去从而修复被污染的土壤,它是环境污染治理的重要手段。

(2)微生物修复。微生物修复是利用微生物(细菌、藻类和酵母等)的生物活性对重金属的亲和吸附或转化为低毒产物,从而降低重金属的污染程度。

3.3.2 使用化学杀虫剂也会造成土壤污染给农作物使用化学杀虫剂等,在防止病虫草害的同时,也造成了土壤污染严重,破坏了生态平衡,影响了农业的可持续发展,威胁着人类的身心健康。目前,利用生物技术降解农药,有多种方法,具体如下:

(一)利用微生物降解农药:土壤中的微生物,包括细菌、真菌、放线菌和藻类等,其中细菌类对农药分解起主要作用,其可以利用自身生化上的多种适应能力,诱发突变菌株,例如假单胞菌对敌敌畏;曲霉菌、镰孢霉菌对敌百虫;芽孢杆菌、曲霉、青霉、假单胞杆菌、瓶型酵母等对甲胺磷。通过微生物的作用,把环境中的有机污染物转化为CO2和H2O等无毒无害或毒性较小的其他物质。且这种降解途径彻底,一般不会带来副作用。

(二)共代谢作用:共代谢作用是指微生物在有它可利用的唯一碳源存在时,

对它原来不能利用的物质也能分解代谢的现象。通过共代谢作用,即微生物从其他化合物获得碳源和能源后,将农药转化为可代谢的中间产物,甚至完全降解。能进行共代谢反应的微生物,细菌有假单胞菌属、不动杆菌属、诺卡氏菌属、芽孢杆菌属、分枝杆菌属、甲基弯曲菌属和节杆菌属等;真菌有青霉属和丝核菌属等。

(三)推广使用生物农药:生物农药,在传统意义上主要是指可以用来防治病、虫、草等有害生物的生物活体,利用细菌、病毒、真菌、线虫及拮抗微生物等来控制病虫草害的制剂。其具有安全、无毒、不污染环境等特点,目前已得到国内外农药行业的高度重视。现今,我国对生物农药的研发创制已出具规模,主要研制的农药品种有B.t.杀虫剂、农用抗生素、植物源农药、转基因植物、病毒类农药、真菌类农药、植物生长调节类农药等。随着生物技术、生物化学工程的不断进步,生物农药以其高效、广谱、对人畜安全及与生态环境相容等优势,将成为农药市场上的主流产品,值得推广使用。

4 现代生物技术局限性及发展趋势

4.1 发展问题及局限性

现代生物技术的广泛应用为人类社会带来了美好的前景,它在为人类解决大量实际问题的同时,也有可能带来一些不利的影响,产生社会问题。

4.1.1转基因生物产品可能会对人体健康产生影响

当人体食入转基因食品,就有可能出现过敏反应。目前已经出现了饮用转基因大豆豆浆过敏、转基因西红柿导致过敏、坚果作为基因被导入其他生物引起人体过敏等现象。在进行转基因作物实验时,较为常见的标记基因是使用抗生素抗性基因来充当,这也有可能让人体对抗生素的耐药性增加。食用转入生长激素的转基因食品,可能会对人体的正常生长发育产生影响,而这些影响往往需要通过较长时间的观测才能被发现。转基因微生物有可能会与其他生物进行遗传物质交换,这样就会增强有害生物的危害性或产生新的有害生物,导致疾病流行。4.1.2转基因生物可以破坏生态环境和影响生物多样性

运用现代生物技术生产出抗旱、抗盐碱、抗病毒、抗害虫作物的同时,可能会导致生物多样性遭到破坏,甚至一些物种会灭绝,还可能会加速土壤侵蚀和沙漠化。当转基因植物中的某种抗性基因通过杂交转移到其野生或半驯化种中去,结果就是这些植物的杂草化特性将在特定条件下增强,破会生态环境。一部分具有抗虫性的转基因植物,不仅能对害虫产生毒害,还会对一些有益生物产生不良影响。这些含有抗虫性的转基因植物还可能因为其抗虫性而大量生存下来,在数量上将超过同一区域其他物种,导致这个区域的生物群落遭到破坏。当转基因植物大面积种植时,由于转基因植物病毒载体使用可能导致病毒基因在全部细胞中普遍存在,它的重组风险比普通植物要高出许多,将会出现难以预料的问题。

4.1.3生物武器已经成为对全人类生命健康的巨大威胁

在以往使用生物武器的战争中,其杀伤力之大让人触目惊心。生物武器具有致病性强、使用简单、传染途径多、污染面积大、危害时间长以及不易被发现等特点。目前生物武器已发展到了基因武器阶段。基因武器可以根据人类不同种群的基因特征来选择杀伤对象,这种武器对敌方有杀伤,而对己方没有任何影响。这样的武器甚至有可能“安静”地消灭一些种群。国际《禁止生物武器公约》于1975年3月生效,中国于1984年11月15日加入该公约。该公约在禁止和销毁生物武器、防止生物武器扩散等方面起着不可替代的重要作用。

4.2 发展趋势

现代生物技术已经成为高技术领域的核心,其应用领域也越来越广泛。酶催化技术、转基因动植物、基因治疗、物种基因库、克隆技术等正在深刻改变着人类社会生产与消费、环境与发展、健康与长寿、伦理与道德、军事与科技、人与自然等一系列传统观念。目前,现代生物技术的应用已经进入产业化阶段。

随着人类基因组序列图绘制成功,基因研究就进入了后基因组时代。后基因组主要研究基因的多态性和功能基因组学。基因组中的差异就是多态性,其中最普遍的是单核苷酸多态性,“是指特定碱基位置上出现不同碱基的现象,其频率大约是0.1%,所以人类基因组中大约有300 万个多态性位点”。基因多态性主要研究方法有DNA 测序或再测序以及多态性遗传标记等。功能基因学是以全面研究基因功能为中心,并结合基因功能解决生物医学中的基础和应用问题,这

些功能直接或间接与基因转录有关。包括转录组学、蛋白质组学、药物基因组学和疾病基因组学。快速发展的基因技术,广泛应用到了医疗卫生领域的各个层面,基因导入疗法在临床领域的运用不断完善。可能成为人类“器官库”的转基因动物,将对人类器官移植进行供给。在转基因植物的研究方面也有了重大突破,大量的抗病毒、抗虫、耐干旱、耐盐碱农作物已到了产业化阶段,这将给农业产业结构的调整带来深远的影响。

生物芯片技术是近些年来在现代生物技术领域中快速发展起来的一项新技术,是指通过微加工和微电子技术在固体芯片表面构建微型生物化学分析系统。它的主要目的是快速、准确、大量地实现对生命机体的组织、蛋白质、细胞、糖类、核酸以及其他生物组分的检测。生物芯片主要分为DNA 芯片、蛋白质芯片、组织芯片和芯片实验室四大类。生物芯片技术中最早实现商品化发展最成熟的就是DNA 芯片,它是根据核酸探针互补杂交技术理论研制出来的。现阶段主要采用化学的方法处理固相基质,再把蛋白质分子或DNA 片段按顺序排列在片基上来制备DNA 芯片。检测细胞基因表达水平的基因表达谱芯片和检测基因图片的DNA 芯片是目前比较完善的产品。蛋白质芯片是将蛋白质按一定顺序固定于滴定板、滤膜和载玻片等载体上成为检测用的芯片。蛋白质芯片可以比现有技术更快更准的识别特定蛋白质表达物、开展蛋白质水平的药物筛选、揭示蛋白激酶的作用以及测定血清中的小分子物质含量,可以应用在遗传性疾病和癌症的诊断和疗效判定。组织芯片是将数量众多的个体标志物按顺序排列在一张玻片上进行筛选分析,为成千上万的候选基因中筛选到与某个疾病类型特异相关个体标志物提供了新的手段。组织芯片的应用主要有进行乳腺癌、前列腺癌、肾癌、肺癌、肝癌、膀胱癌、结直肠癌等肿瘤分子标志物研究。芯片实验室是“指把生物和化学等领域中所涉及的样品制备、生物与化学反应、分离、检测等基本操作单元集成或基本集成一块几平方厘米的芯片上,用以完成不同的生物或化学反应过程,并对其产物进行分析的技术”。芯片实验室是生物芯片技术发展的终极目标,其潜在应用范围包括临床检测、环境监测、空间生物学、高效筛选、现场分析、高效DNA 检测、生物战争试剂测试等。

生物能源是指通过加工转化含有大量能源的生物,生产出生物燃料和生物电能等二次能源。生物燃料是指由生物提取或组成的气体燃料、固体燃料和液体燃

料,主要产物有甲醇和乙醇。生物电能是通过燃烧快速生长的生物来产生电能。生物能源不仅可以解决能源短缺的问题,还可以在一定程度上改善环境污染,主要表现为能源植物在生长过程中释放氧气吸收二氧化碳,减少二氧化碳在空气中的含量,另外生物燃料的燃烧较为干净,在自然界中可以更好地进行分解。大力发展生物能源产业是经济与环境和谐共进的重要途径。

人造生命是指从其他生命体中提取基因,建立新染色体,随后将其嵌入已经被剔除了遗传密码的细胞之中,最终由这些人工染色体控制这个细胞,发育变成新的生命体。2007 年10 月8 日,美国科学家C·文特尔(Craig Venter)宣布他已经在实验室成功地制造出一个合成的人造染色体。2010 年,世界首例人造生命诞生,命名为“辛西娅”(Synthia),这个单细胞细菌完全是由人造基因控制的。这个新的生命体是在实验室里制造出来,不是进化来的。人造生命不同于克隆,两者间有着质的区别,克隆是通过现有遗传信息“复制”生命,而人造生命是通过核苷等组成DNA 的基本要素来创造新的生命。人造生命的研究对于探索生命起源的问题有着重大的意义。

生物信息学是综合运用生物学、物理学、数学、计算机科学和信息技术等学科的理论方法,来研究解决生物信息的一门交叉学科。主要包括基因组信息的研究、存储、显示、处理、模拟和解释,氨基酸和核苷酸序列分析,物理图谱和基因遗传的处理,发现新基因和预测蛋白质结构等。当今社会发展迅速,伴随着不断扩大和完善的全球通讯网络系统,现代生物技术的研究、开发和应用也渐渐加快,生物信息学技术将会更加发达。

5 结语

综上所述,现代生物技术是环境保护广泛应用和十分重要的技术,其在污水的生物净化、工业清洁生产、工业废弃物、城市生活垃圾的处理、有毒有害物质的降解、废物资源化、环境生物监测、环境修复和污染严重的工业企业的清洁生产等方面发挥着重要的作用。随着全球范围内对环境保护的高度重视和越来越严厉的环境法,市场对环境生物技术的需求会越来越广泛,且随着现代生物技术的不断发展,在未来的社会发展中,运用现代生物技术预防和治理环境污染,改善生态环境具有巨大的潜力和优势。

参考文献

[1]刘艳丽.现代生物技术在生态环境及污染治理中的应用[J].煤矿现代化,2009,04:48-49.

[2]冯宝荣,苏宏智,李友平.现代生物技术在水污染控制中的应用[J].污染防治技术,2010,03:71-73+90.

[3]赵淑兰.浅议现代生物技术在环境保护工作中的应用[J].科技信息,2010,16:436.

[4]林海.现代生物技术在环境保护中的应用[J].中国高新技术企业,2010,19:74-75.

[5]介晓坤,姚杰.浅述现代生物技术在环境污染治理中的发展及应用[A]..中国环境保护优秀论文集(2005)(下册)[C].:,2005:3.

[6]吴会中,戴长虹,宋祖伟.现代生物技术在废水处理中的应用进展[J].环境污染治理技术与设备,2003,05:56-59.

[7]介晓坤,姚杰.浅述现代生物技术在环境污染治理中的发展及应用[J].辽宁城乡环境科技,2005,06:45-46.

[8]黄春洁,黄翔峰,胡爱军.环境保护中的现代生物技术[J].净水技术,2003,04:10-12+24.

[9]王秀英,盛铭军,武周虎.环境生物技术在污染治理方面的应用[J].青岛建筑工程学院学报,2005,01:41-44.

[10]郭祥,钟成华,王涛,周晓琴,苏翔.环境生物技术在污染治理中的研究进展[J].三峡环境与生态,2012,02:32-35.

[11]吴善兵.现代生物技术在环境保护中的应用研究进展[J].现代农业科技,2012,17:216-217+219.

[12]金文彪,李秀珍,宋莉晖.生物技术在油气田环境污染治理中的应用[J].油气田环境保护,1996,03:23-25.

生物技术的发展历程

生物技术的发展历程及重要意义 姓名:××※ 学院:××※ 专业:××※ 学号:××※

生物技术的发展历程及重要意义 生物技术被是一项高新技术,世界各国都很重视,它被广泛应用于医药卫生、农林牧渔、轻工、食品、化工和能源等领域,促进传统产业的技术改造和新兴产业的形成,对人类社会生活将产生深远的革命性的影响。生物技术对于提高综合国力,迎接人类所面临的诸如食品短缺、健康问题、环境问题及经济问题的挑战是至关重要的;生物技术是现实生产力,也是具有巨大经济效益的潜在生产力,它将是21 世纪高技术革命的核心内容。生物技术产业是21 世纪的支柱产业,许多国家都将生物技术确定为增长国力和经济实力的关键性技术之一。我国政府同样把生物技术列为高新技术之一并组织力量攻关。 生物技术可分为传统生物技术和现代生物技术。现代生物技术是从传统生物技术发展而来的。传统的生物技术是指旧有的制造酱、醋、酒、面包、奶酪、酸奶及其他食品的传统工艺;现代生物技术则是指20 世纪70 年代末80 年代初发展起来的,以现代生物学研究成果为基础,以基因工程为核心的新兴学科。 一、生物技术的发展历程 1、传统生物技术的产生 传统生物技术应该说从史前时代起就一直为人们所开发和利用,以造福人类。在石器时代后期,我国人民就会利用谷物造酒,这是最早的发酵技术。在公兀前221 年,周代后期,我国人民就能制作豆腐、酱和醋,并一直沿用至今。公元10 世纪,我国就有了预防天花

的活疫苗;到了明代,就已经广泛地种植痘苗以预防天花。16 世纪,我国的医生已经知道被疯狗咬伤可传播狂犬病。在西方,苏美尔人和巴比伦人在公元前6000 年就已开始啤酒发酵。埃及人则在公元前4000 年就开始制作面包。1676 年荷兰人Leeuwen Hoek(1632—1723)制成了能放大170~300 倍的显微镜并首先观察到了微生物。19 世纪60 年代法国科学家Pasteur(1822—1895)首先证实发酵是由微生物引起的,并首先建立了微生物的纯种培养技术,从而为发酵技术的发展提供了理论基础,使发酵技术纳入了科学的轨道。到了20 世纪20 年代,工业生产中开始采用大规模的纯种培养技术发酵化工原料丙酮、丁醇。20 世纪50 年代,在青霉素大规模发酵生产的带动下发酵工业和酶制剂工业大量涌现。发酵技术和酶技术被广泛应用于医药、食品、化工、制革和农产品加工等部门。20 世纪初,遗传学的建立及其应用,产生了遗传育种学,并于20 世纪60年代取得了辉煌的成就,被誉为“第一次绿色革命”。细胞学的理论被应用于生产而产生了细胞工程。在今天看来,上述诸方面的发展,还只能被视为传统的生物技术,因为它们还不具备高技术的诸要素。 2、现代生物技术的发展 现代生物技术是以20 世纪70 年代DNA 重组技术的建立为标志的。1944 年Avery 等阐明了DNA 是遗传信息的携带者。1953 年Watson 和Crick 提出了DNA 的双螺旋结构模型,阐明了DNA 的半保留复制模式,从而开辟了分子生物学研究的新纪元。由于一切生命活动都是由包括酶和非酶蛋白质行使其功能的结果,所以遗传信

选修三现代生物技术专题全套课后答案

选修3现代生物科技专题 专题1基因工程 1.1DNA重组技术的基本工具 (一)思考与探究 1.限制酶在DNA的任何部位都能将DNA切开吗?以下是四种不同限制酶切割形成的DNA片段: (1) …CTGCA (2) …AC (3) GC… …G …TG CG… (4)…G (5) G… (6) …GC …CTTAA ACGTC……CG (7) GT… (8)AATTC… CA… G… 你是否能用DNA连接酶将它们连接起来? 答: 2和7能连接形成…ACGT… …TGCA…; 4和8能连接形成…GAATTC… …CTTAAG…; 3和6能连接形成…GCGC… …CGCG…; 1和5能连接形成…CTGCAG… …GACGTC…。 2.联系你已有的知识,想一想,为什么细菌中限制酶不剪切细菌本身的DNA? 提示:迄今为止,基因工程中使用的限制酶绝大部分都是从细菌或霉菌中提取出来的,它们各自可以识别和切断DNA上特定的碱基序列。细菌中限制酶之所以不切断自身DNA,是因为微生物在长期的进化过程中形成了一套完善的防御机制,对于外源入侵的DNA可以降解掉。生物在长期演化过程中,含有某种限制酶的细胞,其DNA分子中或者不具备这种限制酶的识别切割序列,或者通过甲基化酶将甲基转移到所识别序列的碱基上,使限制酶不能将其切开。这样,尽管细菌中含有某种限制酶也不会使自身的DNA被切断,并且可以防止外源DNA的入侵(本题不要求学生回答的完全,教师可参考教师用书中的提示,根据学生的具体情况,给予指导。上述原则也应适用于其他章节中有关问题的回答。)。 3.天然的DNA分子可以直接用做基因工程载体吗?为什么?

现代生物技术与应用

染色体工程技术 在小麦品质改良中的应用及社会意义 摘要:本文报告了染色体工程在小麦品质改良中的方法,在理论研究与育种实践上的应用。论述了染色体工程在小麦品质改良和生产实践中所体现出来的社会意义。 关键词:染色体工程,小麦,类型变化,实践 正文: 染色体操作(chromosome manipulation)是按设计有计划削减、添加和代换同种或异种染色体的方法和技术。也称为染色体操作。染色体工程一词,虽然在20世纪70年代初才提出。其实早在30年代,美国西尔斯(E.R.Sears)及其学生就已开始研究,但当时局限于小麦,定义为:在小麦中利用缺体或单体材料,对个别染色体或染色体片断进行替代或转移的工程谓之“染色体工程”。 植物染色体工程从50年代的兴起迄今约30余年的历史,但运用这一技术在改造 植物的遗传性方面却显示了它强大的力量,表现在创造崭新的遗传资源,培育突破性新 品种和合成新物种等方面取得的重大进展。 目前对基因操作的主要方法有:有性杂交、染色体代换、易位、添加、染色体显微切割和微克隆、PCR扩增等。 现代小麦育种十分注意栽培品种的类型变化,期望它们优质、高产、抗病、矮秆。我们知道,在小麦近缘种属中,存在着小麦栽培品种所没有的优质、抗病基因。在常规的杂交程序中,栽培品种与野生种之间,因染色体组不同,在多数情况下染色体不能配对,其基因很难进行重。细胞遗传学家已经研究出一套方法,将异种变异性应用于小麦育种实践。这些方法包括染色体附加、染色体代换、染色体易位等。用这些方法实现了小麦染色体附加、代换、易位和部分同源染色体间的重组。 (一)麦外源染色体的添加 普通小麦附加系的系统研究工作开始于1940年,07mara把3个不同的黑麦染色体分别附加到小麦中。1960年Evans~Jenkins得到了所有7个黑麦染色体的双体附加系。之后,Sears把小伞山羊草的染色体附加到小麦中;Joppa等(1978)用一种新方法得到了具有15对染色俸的硬粒小麦双单体(3D,4D,5D)附加系;Islam(1978)把6个大麦染色体分烈跗加到小麦中。有人还把顶芒山羊草和冰草的一些种的染色体附加到小麦中。

现代生物技术与社会发展。

现代生物技术在环境保护中的应用和前景 摘要:随着人口的大量增长和经济的快速发展,自然资源的消耗量也急剧增长,在这个过程中,也产生了很大污染,使人类的生存环境遭到了威胁。针对我国目前生态环境状况,论述了现代生物技术在治理环境污染,保护生态环境中的应用和发展前景。 关键词:现代生物技术环境保护应用前景 一.我国生态环境现状 目前我国由于工业“三废”污染、农用化肥和农药的污染以及废弃塑料和农用地膜的污染,严重的影响了我国的生态环境,使得水污染日益加剧,水资源严重短缺,全国600多个城市中已有一半城市缺水,农村则有8 000万人和6 000万头牲畜饮水困难;土壤污染严重,耕地面积锐减,近10年来每年流失的土壤总量达50亿t,土地荒漠化日益加剧;森林覆盖面积下降,草场退化,每年减少森林面积达2 500万亩;人们的身体健康受到严重威胁,疾病发病率急剧上升。因此,加大环境保护和环境治理力度,加快应用高新技术,如现代生物技术来控制环境污染和保持生态平衡,提高环境质量已成为环保工作者的工作重点。二.现代生物技术与环境保护 现代生物技术是以DNA分子技术为基础,包括微生物工程,细胞工程,酶工程,基因工程等一系列生物高新技术的总称。现代生物技术不仅在农作物改良、医药研究、食品工程方面发挥着重要作用,而且也随着日益突出的环境问题在治理污染、环境生物监测等方面发挥着重要的作用。自20 世纪 80年代以来生物技术作为一种高新技术,已普遍受到世界各国和民间研究机构的高度重视,发展十分迅猛。与传统方法比较,生物治理方法具有许多优点。 1.生物技术处理垃圾废弃物是降解破坏污染物的分子结构,降解的产物以及副产物,大都是可以被生物重新利用的,有助于把人类活动产生的环境污染减轻到最小程度,这样既做到一劳永逸,不留下长期污染问题,同时也对垃圾废弃物进行了资源化利用。 2.利用发酵工程技术处理污染物质,最终转化产物大都是无毒无害的稳定物质,

2019高考:《现代生物科技专题》高考试题汇编

《现代生物科技专题》高考试题汇编 1、(2011海南卷)【生物——选修3:现代生物科技专题】(15分) 回答有关基因工程的问题: (1).构建基因工程表达载体时,用不同类型的限制酶切割DNA后,可能产生粘性末端,也可能产生末端。若要在限制酶切割目的基因和质粒后使其直接进行连接,则应选择能使二者产生(相同,不同)粘性末端的限制酶。 (2).利用大肠杆菌生产人胰岛素时,构建的表达载体含有人胰岛素基因及其启动子等,其中启动子的作用是提供。在用表达载体转化大肠杆菌时,常用处理大肠杆菌,以利于表达载体进入。为了检测胰岛素基因是否转录出了mRNA,可用标记的胰岛素基因片段作探针与mRNA杂交,该杂交技术称为。为了检测胰岛素基因转录的mRNA 是否翻译成,常用抗原-抗体杂交技术。 (3).如果要将某目的基因通过农杆菌转化法导入植物细胞,先要将目的基因插入农杆菌Ti质 粒的中,然后用该农杆菌感染植物细胞,通过DNA重组将目的基因插入植物细胞的上。 2、(2011全囯Ⅰ卷)【生物——选修3:现代生物科技专题】(15分) 现有一生活污水净化处理系统,处理流程为“厌氧沉淀池→曝光池→兼氧池→植物池”,其中植物池中生活着水生植物、昆虫、鱼类、蛙类等生物。污水经净化处理后,可用于浇灌绿地。回答问题: (1).污水流经厌氧沉淀池、曝气池和兼氧池后得到初步净化。在这个过程中,微生物通过呼吸将有机物分解。 (2).植物池中,水生植物、昆虫、鱼类、蛙类和底泥中的微生物共同组成了(生态系统、群落、种群)。在植物池的食物网中,植物位于第营养级。植物池中所有蛙类获得的能量最终来源于所固定的。 (3).生态工程所遵循的基本原理有整体性、协调与平衡、和等原理。(4).一般来说,生态工程的主要任务是对进行修复,对造成环境污染和破坏的生产方式进行改善,并提高生态系统的生产力。 3、(2012海南卷)【生物——选修3:现代生物科技专题】(15分) 已知甲种农作物因受到乙种昆虫危害而减产,乙种昆虫食用某种原核生物分泌的丙种蛋白质后死亡。因此,可将丙种蛋白质基因转入到甲种农作物体内,使甲种农作物获得抗乙种昆虫危害的能力。回答下列问题: (1).为了获得丙种蛋白质的基因,在已知丙种蛋白质氨基酸序列的基础上,推测出丙种蛋白质的序列,据此可利用方法合成目的基因。获得丙中蛋白质的基因还可用、方法。 (2).在利用上述丙中蛋白质基因和质粒载体构建重组质粒的过程中,常需使用酶和酶。 (3).将含有重组质粒的农杆菌与甲种农作物的愈伤组织共培养,筛选出含有丙种蛋白质的愈伤组织,由该愈伤组织培养成的再生植株可抵抗的危害。 (4).若用含有重组质粒的农杆菌直接感染甲种农作物植株叶片伤口,则该植株的种子 (填“含有”或“不含”)丙种蛋白质基因。 4、(2012全囯Ⅰ卷)【生物——选修3:现代生物科技专题】(15分) 根据基因工程的有关知识,回答下列问题:· (1).限制性内切酶切割DNA分子后产生的片段,其末端类型有和。(2).质粒运载体用EcoRⅠ切割后产生的片段如下: 为使运载体与目的基因相连,含有目的基因的DNA除可用EcoRⅠ切割外,还可用另一种限制性内切酶切割,该酶必须具有的特点是 。 (3).按其来源不同,基因工程中所使用的DNA连接酶有两类,即DNA连接酶和DNA连接酶。 (4).反转录作用的模板是,产物是。若要在体外获得大量反转录产物,常采用技术。 (5).基因工程中除质粒外,和也可作为运载体。(6).若用重组质粒转化大肠杆菌,一般情况下,不能直接用未处理的大肠杆菌作为受体细胞,原因是。

现代生物技术的应用与展望

现代生物技术的应用与展望 姓名:班级:学号: 摘要:参阅大量文献资料对近年来生物技术在农业、医药业、社会科学等中的应用进展进行了综述。从改革传统农业结构,解决食品短缺问题的应用、深入基因研究,解决健康长寿问题、运用现代生物技术,解决环境污染问题等内容出发,指明了生物技术现代科学发展中的应用前景。 关键词:生物技术基因医学健康农业 Abstract: a large number of literature on recent biotechnology in agriculture, medicine and industry, social science and application were reviewed in this paper. From the reform of traditional agriculture structure, to solve food shortage problem, in-depth application of genetic research, solve the longevity and health problems, use of modern biological technology, solve the problem of environmental pollution and other content, pointed out the biological technology of modern science and application prospects. 现代生物技术也可称之为生物工程,是以重组DNA技术和细胞融合技术为基础,利用生物体(或者生物组织、细胞及其组分)的特性和功能,设计构建具有预期性状的新物种或新品系,以及与工程原理相结合进行加工生产,为社会提供商品和服务的—个综合性技术体系。其内容包括基因工程、细胞工程、酶工程、发酵工程和蛋白质工程。现代生物技术的诞生以2O世纪7O年代初DNA重组技术和淋巴细胞杂交瘤技术的发明和应用为标志,迄今已走过了30多年的发展历程。实践证明现代生物技术对解决人类面临的粮食、健康、环境和能源等重大问题方面开辟了无限广阔的前景,受到了各国政府和企业界的广泛关注,与微电子技术、新材料技术和新能源技术并列为影响未来国计民生的四大科学技术支柱,是2l世纪高新技术产业的先导。可以预测,生物技术的应用与发展将导致生产体系与经济结构的飞跃变化,甚至可能引发一次新的工业革命,对人类社会的生产、生活各方面必将产生全面而深刻的影响。 1 改革传统农业结构,解决食品短缺问题 现代生物技术在农业中最突出的应用是利用转基因技术,将目的基因导入动、植物体内,对家畜、家禽及农作物进行品种改良,从而获得高产、优质、抗病虫害的转基因动植物新品种,达到充分提高资源利用效率,降低生产成本的目的。经过长期不断的努力,现代农业生物技术已取得重大突破,不仅从根本上改变了传统农作物的培育和种植,也为农业生产带来了新一轮的革命,并将在解决目前人类所面临的粮食危机、环境恶化、资源匮乏、效益衰减等方面发挥巨大作用。 1.1 提高农产品的产量与质量农作物病虫害是造成农业产量下降的主要原因之一,因而利用转基因技术把抗病、抗虫基因导入农作物中,使之可避免或减少病虫害。近年来,抗黄杆菌的水稻、抗除草剂的大豆、抗病毒病的甜椒、抗腐能力强与耐贮性高的番茄等转基因植物开始进入市场,提高了产量,增加了效益;根据人类的需要,还可把特定基因导入植物体,可达到改良农产品品质的目的,如高含量必需氨基酸的马铃薯,高蛋白质含量的大豆等;此外还可利用生物技术破坏水果细胞壁纤维酶,保证猕猴桃、桃、西红柿等水果成熟但不变软而提高水果的保鲜度,便于水果的运输。从1996年到2o02年,转基因农作物在全球的种植面积从170万ha扩大到5810万ha,即增加35倍,显示了现代农业生物技术强大的生命

现代生物制药技术现状及发展趋势探讨

现代生物制药技术现状及发展趋势探讨 通常研究人员会将各个领域的学科进行综合,对他们进行进一步的探索和深究,这样可以研制出许多新的药物,用于解决医学尚不能解决的疾病问题。因此,可以有效地延长人们的生命,使人们的生活质量提高了。另外,也可以使人们的生活环境得到改善,减少对人类的影响。研究出来的新的技术将会加快医学对药物的快速鉴定,将传统的医学技术和药物进行深入研究后发现的新的医学技术,将会非常利于制药业的发展,前景也会非常的广阔。 标签:生物制药技术;发展现状;医学技术 1 引言 与世界上一些发达国家的生物制药业相比较下,我国的生物制药工业起步还是比较晚的,发展也相对而言比较滞后。不过,我国的市场非常的庞大和完善,在这种背景的影响下,我国生物制药业也将会面临着可观的发展前景。另一方面,政府一直关注在生物制药这一领域,并给于了政策和经济上的扶持。所以,未来我国的生物制药业将会是国家经济发展的非常重要的行业。在传统的发展情形中,我国生物制药业已经取得了相当好的成绩。但是,目前正处于一个发展平稳期,所以目前的问题是我国生物制药业面领着一个非常严峻的考验,若想突破这一瓶颈,得到更加美好的发展,就应该乐观的面对这样的考验,对问题进行深度和广度的研究,并解决问题。也只有这样,我国生物制药行业才会取得更加美好的成绩。 2 生物制药的原理和技术 对于“生物制药”这一名词,或许大家会感到陌生,简单的理解,就是利用生物的活体进行生产药物的方法。有时候也可以利用转基因的动物或植物的活体来作为反应器,进而加工药物。比如利用转基因的玉米活体来作为生物反应器,生产人源抗体。但是生物制药具体指,用微生物学,医学,化学,生物学等不同学科领域所包含的原理和技术方法,来制造出能够治疗,诊断或者预防的药物产品。之所以大家对生物制药感到陌生是因为生物制药是一种新的技术,不过生物制药行业的发展非常迅速,规模也在逐渐扩大。生物制药的发展已经经历了半个世纪左右,在这几十年的发展中,生物制药技术组成是DNA重组,现在是抗体,基因工程和细胞工程,为人类的健康做出了非常大的贡献。到目前为止,生物制药依然是医学领域最高的技术水平,专家预测,未来会有非常好的发展空间。我国的生物制药技术起步相对比较晚,因此与国际的领先水平存在着一定的差距,但我国正在加大这个领域的投入,并且建立生物制药基地。以我国目前的药物生产情况来看,将近百分之五十以上的药物属于生物制药,生物制药简单的操作和高效率,经济成本低的特点将会有良好的市场发展空间。 3 生物药物的分类

生物:《现代生物科技专题》书本知

选修3 一、基因工程 1、(a)基因工程的诞生 (一)基因工程的概念 基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA重组技术。 2、(a)基因工程的原理及技术 原理:基因重组 技术:(一)基因工程的基本工具 1.“分子手术刀”——限制性核酸内切酶(限制酶) (1)来源:主要是从原核生物中分离纯化出来的。 (2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。 (3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。 2.“分子缝合针”——DNA连接酶 DNA连接酶)的比较: (1)两种DNA连接酶(E·coliDNA连接酶和T 4 ①相同点:都缝合磷酸二酯键。 噬菌体,只能将双链DNA片段互补的黏性末端之间的②区别:E·coliDNA连接酶来源于T 4 磷酸二酯键连接起来;而T DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低。 4 (2)与DNA聚合酶作用的异同:DNA聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键。DNA连接酶是连接两个DNA片段的末端,形成磷酸二酯键。 3.“分子运输车”——载体 (1)载体具备的条件:①能在受体细胞中复制并稳定保存。②具有一至多个限制酶切点,供外源DNA片段插入。③具有标记基因,供重组DNA的鉴定和选择。 (2)最常用的载体是质粒,它是一种裸露的、结构简单的、独立于细菌染色体之外,并具有自我复制能力的双链环状DNA分子。 (3)其它载体:噬菌体的衍生物、动植物病毒 (二)基因工程的基本操作程序 第一步:目的基因的获取 1.目的基因是指:编码蛋白质的结构基因。 2.原核基因采取直接分离获得,真核基因是人工合成。人工合成目的基因的常用方法有反转录法_和化学合成法_。 3.PCR技术扩增目的基因 (1)原理:DNA双链复制 (2)过程:第一步:加热至90~95℃DNA解链;第二步:冷却到55~60℃,引物结合到互补DNA链;第三步:加热至70~75℃,热稳定DNA聚合酶从引物起始互补链的合成。 第二步:基因表达载体的构建 1.目的:使目的基因在受体细胞中稳定存在,并且可以遗传至下一代,使目的基因能够表达和发挥作用。 2.组成:目的基因+启动子+终止子+标记基因 (1)启动子:是一段有特殊结构的DNA片段,位于基因的首端,是RNA聚合酶识别和结合的部位,能驱动基因转录出mRNA,最终获得所需的蛋白质。 (2)终止子:也是一段有特殊结构的DNA片段,位于基因的尾端。 (3)标记基因的作用:是为了鉴定受体细胞中是否含有目的基因,从而将含有目的基因的细胞筛选出来。常用的标记基因是抗生素基因。 第三步:将目的基因导入受体细胞_ 1.转化的概念:是目的基因进入受体细胞内,并且在受体细胞内维持稳定和表达的过程。 2.常用的转化方法:

现代生物技术在环境保护方面的应用

现代生物技术在环境保护方面的应用 地质学院勘查技术与工程申玉龙201101171223 摘要:应用现代生物技术进行环境保护拥有许多优点,人们已意识到,现代生物技术的发展,为从根本上解决环境问题提供了希望。 正文:现代生物技术是以DNA分子技术为基础,包括微生物工程,细胞工程,酶工程,基因工程等一系列生物高新技术的总称。现代生物技术不仅在农作物改良、医药研究、食品工程方面发挥着重要作用,而且也随着日益突出的环境问题在治理污染、环境生物监测等方面发挥着重要的作用。自20 世纪80年代以来生物技术作为一种高新技术,已普遍受到世界各国和民间研究机构的高度重视,发展十分迅猛。 目前生物技术应用于环境保护中主要是利用微生物,少部分利用植物作为环境污染控制的生物。生物技术已是环境保护中应用最广的、最为重要的单项技术,其在水污染控制、大气污染治理、有毒有害物质的降解、清洁可再生能源的开发、废物资源化、环境监测、污染环境的修复和污染严重的工业企业的清洁生产等环境保护的各个方面,发挥着极为重要的作用。应用环境生物技术处理污染物时,最终产物大都是无毒无害的、稳定的物质,如二氧化碳、水和氮气。利用生物方法处理污染物通常能一步到位,避免了污染物的多次转移,因此它是一种消除污染安全而彻底的方法。特别是现代生物技术的发展,尤其是基因工程、细胞工程和酶工程等生物高技术的飞速发展和应用,大大强化了上述环境生物处理过程,使生物处理具有更高的效率,更低的成本和更好的专一性,为生物技术在环境保护中的应用展示了更为广阔的前景。 与传统方法比较,生物治理方法具有许多优点。1 .生物技术处理垃圾废弃物是降解破坏污染物的分子结构,降解的产物以及副产物,大都是可以被生物重新利用的,有助于把人类活动产生的环境污染减轻到最小程度,这样既做到一劳永逸,不留下长期污染问题,同时也对垃圾废弃物进行了资源化利用。 2. 利用发酵工程技术处理污染物质,最终转化产物大都是无毒无害的稳定物质,如二氧化碳、水、氮气和甲烷气体等,常常是一步到位,避免污染物的多次转移而造成重复污染,因此生物技术是一种既安全又彻底消除污染的手段。. 3.生物技术是以酶促反应为基础的生物化学过程,而作为生物催化剂的酶是一种活性蛋白质,其反应过程是在常温常压和接近中性的条件下进行的,所以大多数生物治理技术可以就地实施,而且不影响其他作业的正常进行,与常常需要高温高压的化工过程比较,反应条件大大简化,具有设备简单、成本低廉、效果好、过程稳定、操作简便等优点。 所以,当今生物技术已广泛应用于环境监测、工业清洁生产、工业废弃物和城市生活垃圾的处理,有毒有害物质的无害化处理等各个方面。 污染土壤的生物修复 重金属污染是造成土壤污染的主要污染物。重金属污染的生物修复是利用生物(主要是微生物、植物)作用,削减、净化土壤中重金属或降低重金属的毒性。其原理是:通过生物作用(如酶促反应)改变重金属在土壤中的化学形态,使重金属固定或解毒,降低其在土壤环境中的移动性和生物可利用性,通过生物吸收、代谢达到对重金属的削减、净化与固定作用。污染土壤的生物修复过程可以增加土壤有机质的含量,激发微生物的活性,由此可以改善土壤的生态结构,这将有助于土壤的固定,遏制风蚀、水蚀等作用,防止水土流失。 白色污染的消除 废弃塑料和农用地膜经久不化解,估计是形成环境污染的重要成分。据估计我国土壤、沟河中塑料垃圾有百万吨左右。塑料在土壤中残存会引起农作物减产,若再连续使用而不采

基因工程(现代生物技术)应用前景与发展

基因工程的发展现状及前景 摘要: 从20世纪70年代初发展起来的基因工程技术,经过30多年来的进步与发展,已成为生物技术的核心内容。许多科学家预言,生物学将成为21世纪最重要的学科,基因工程及相关领域的产业将成为21世纪的主导产业之一近年来随着生物工程技术的发展,许多基因工程抗体陆续问世。基因工程研究和应用范围涉及农业、工业、医药、能源、环保等许多领域。 关键字: 基因工程;基因工程抗体;前景;现状;发展 一、基因工程介绍 1、基本定义 生物学家于20世纪50年代发现了DNA的双螺旋结构,从微观层面更进一步认识了人类及其他生物遗传的物质载体,这是人类在生物研究方面的一次重大突破。60年代以后,科学家开始破译生物遗传基因的遗传密码,简单地说,就是将控制生物遗传特征的每一种基因的核苷酸排列顺序弄清楚。在搞清楚某些单个基因的核苷酸排列顺序基础上,进而进行有计划、大规模地对人类、水稻等重要生物体的全部基因图谱进行测序和诠释。美国从1991年起,准备用15年时间完成人体基因组测序计划。[5] 基因工程(Genetic engineering)原称遗传工程。从狭义上讲,基因工程是指将一种或多种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物体(受体)内,使之按照人们的意愿遗传并表达出新的性状。因此,供体、受体和载体称为基因工程的三大要素,其中相对于受体而言,来自供体的基因属于外源基因。除了少数RNA病毒外,几乎所有生物的基因都存在于DNA 结构中,而用于外源基因重组拼接的载体也都是DNA分子,因此基因工程亦称为重组DNA技术(DNA recombination)。另外,DNA重组分子大都需在受体细胞中

高中生物现代生物技术专题及经典例题解析

现代生物技术专题及经典例题解析 二、考点解读: 本讲知识属于现代生物科技及能够联系并应用于生产、生活实际中的技术。近几年的江苏、上海、广东各地的高考题中多次涉及本知识点的考题。概念题的题型一般多为选择题,与生产紧密相关的题及实验设计题多以非选择题形式出现。 生物工程也叫生物技术,是生物科学与工程技术有机结合而兴起的一门综合性科学技术。包括基因工程、细胞工程、胚胎工程等一系列的现代生物技术,关于基因工程、细胞工程、胚胎工程的材料题是近年来高考的热门知识点。通过对近2年江苏高考题的分析,本部分内容2007年约占26分,2008年约占33分,由此可以看出,本部分属于高考的重点内容之一。复习时要重视生物新技术在生产生活实践中的应用,重视各工程之间的相互关系,这既是科技发展热点课题之一,也是考试命题热点之一。利用已学过的基因工程、细胞工程、胚胎工程知识,对三大生物工程的联系加以融会贯通,提高分析综合与解决实际问题的能力。建议在复习过程中通过案例探究的方法,来提高学生的能力,可以选择现代生物科技的热点信息作为载体,将生物工程问题及必修中的相关知识融为一体,编制成简答题让学生进行训练,从而达到关注社会热点、激发兴趣、巩固知识、提升能力的目的。 三、主干知识整合 (一)基因工程知识小结 1、基因工程的工具 (1)限制性内切酶:生物体内有一类酶,它们能将外来的DNA切断,即能够限制异源DNA 的侵入并使之失去活力,但对自己的DNA却无损害作用,这样可以保护细胞原有的遗传信息。由于这种切割作用是在DNA分子内部进行的,故名限制性内切酶(限制酶)。限制性内切酶是基因工程中最常用的切割工具。科学家已从原核生物中分离出了许多种限制酶,其中一类可

国内外生物技术发展现状

国内外生物技术发展概况 (2010-10-21 18:00:05) (一)国内外生物技术发展动态 1、国际生物技术发展现状生物技术是近 20 年来发展最为迅猛的高新技术,越来越广泛地应用于农业、医药、轻工食品、海洋开发、环境保护及可再生生物质能源等诸多领域,具有知识经济和循环经济特征,对提升传统产业技术水平和可持续发展能力具有重要影响。近 10 年来,生物技术获得突破性发展,生物技术产业产值以每 3 年增长 5 倍的速度递增,以生物技术为重点的第四次产业革命正在兴起,预计到 2020 年,全球生物技术市场将达到 30,000 亿美元。在发达国家,生物技术已成为新的经济增长点,其增长速度大致是 25%-30%,是整个经济增长平均数的 8-10 倍。在生物技术制药领域,包括基因工程药物、基因工程疫苗、医用诊断试剂、活性蛋白与多肽、微生物次生代谢产物、药用动植物细胞工程产品以及现代生物技术生产的生物保健品等研究成果迅速转化为生产力,其中与基因相关的产业发展最强劲。全球医药生物技术产品占生物技术产品市场的 70%以上,占药物市场的 9% 左右,以高于全球经济增长 5 个百分点的速度快速发展,仅单克隆抗体市场销售额就达 40 亿美元。农业生物技术产业已经成为各国政府未来农业发展的战略重点,应用基因工程、细胞工程等高新技术培育的农林牧渔新品种、兽用疫苗、新型作物生长调节剂及病虫害防治产品、高效生物饲料及添加剂等已推广运用,产生了巨大的经济效益。 1996 年,全球转基因作物才 170 万公顷,以后逐年直线上升,到 2004 年已经达到 8100 万公顷,8 年间全球转基因作物种植面积增加近 48 倍。照此增长速度预计 2010 年世界范围内 50%的耕地将种植转基因作物,2020 年将增至 80%。尤其是抗虫、抗除草剂转基因作物的推广,大幅度提高劳动生产率并减少化学农药施用量,经济效益极为显著。全球转基因作物市场价值 1995 年仅 7500 万美元, 1997 年达 6.7 亿美元,2002 年为 45.2 亿美元,预计到2010 年将达 200 亿美元。本文章来自生物科学博览网站,欢迎您的光临食品生物技术产业产值约占生物产业总产值的 15-20%,目前国际市场上以生物工程为基础的食品工业产值已达 2500 亿美元左右,其中转基因食品市场的销售额 2010 年将达到 250 亿美元。此外,保健食品行业是全球性的朝阳产业,市场增长迅速。环境生物技术是生物技术、工程学、环境学和生态学交叉渗透形成的新兴边缘学科,是 21 世纪国际生物技术的一大热点。环境生物技术兼有基础科学和应用科学的特点,在环境污染治理与修复、自然资源可持续再生等方面发挥着日益重要的作用。能源生物技术主要目标是利用生物质能源。生物质能一直是人类赖以生存的重要能源,是仅次于煤炭、石油和天然气而居世界能源消费总量第四位的能源。目前,全球储量为亿吨,相当于 640 亿吨石油。许多国家都制定了相应的开发研究计划,如日本的阳光计划、印度的绿色能源工程、美国的能源农场和巴西的酒精能源计划等,主要是开发生物柴油和生物乙醇汽油。尽管生物质液化燃料开发还处于初级阶段,市场份额还不大,但由于岂疫有环保和再生性特点,前景非常广阔。 2.国内生物技术发展现状我国政府一直把生物技术作为重点支持的战略高技术领域,提出了“加强源头创

高中生物选修三知识点 现代生物技术专题

选修3 基因工程的概念 基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA重组技术。 (一)基因工程的基本工具 1.“分子手术刀”——限制性核酸内切酶(限制酶) (1)来源:主要是从原核生物中分离纯化出来的。 (2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。 (3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。 2.“分子缝合针”——DNA连接酶 (1)两种DNA连接酶(E·coliDNA连接酶和T4-DNA连接酶)的比较: ①相同点:都缝合磷酸二酯键。 ②区别:E·coliDNA连接酶来源于大肠杆菌,只能将双链DNA片段互补的黏性末端之间的 磷酸二酯键连接起来;而T4DNA连接酶能缝合两种末端,但连接平末端的之间的 效率较低。 (2)与DNA聚合酶作用的异同: DNA聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键。DNA连接酶 (1)载体具备的条件:①能在受体细胞中复制并稳定保存。 ②具有一至多个限制酶切点,供外源DNA片段插入。 ③具有标记基因,供重组DNA的鉴定和选择。 (2)最常用的载体是质粒,它是一种裸露的、结构简单的、独立于细菌染色体之外,并具有自我复制能力的双链环状DNA分子。 (3)其它载体:λ噬菌体的衍生物、动植物病毒 (二)基因工程的基本操作程序 第一步:目的基因的获取 1.目的基因是指:编码蛋白质的结构基因。 2.原核基因采取直接分离获得,真核基因是人工合成。人工合成目的基因的常用方法有反 转录法_和化学合成法_。 3.PCR技术扩增目的基因 (1)PCR的含义:是一项在生物体外复制特定DNA片段的核酸合成技术。 (2)目的:获取大量的目的基因 (3)原理:DNA双链复制 (4)过程:第一步:加热至90~95℃DNA解链为单链; 第二步:冷却到55~60℃,引物与两条单链DNA结合; 第三步:加热至70~75℃,热稳定DNA聚合酶从引物起始进行互补链的合成。 (5)特点:指数(2n)形式扩增

现代生物技术在医药领域的应用

河南工业大学 现代生物技术导论 -- 生物技术在医药领域的应用 姓名: 学号: 2 专业:

生物技术在医药领域的应用 在医药领域,生物技术在预防、诊断和治疗影响人类健康的重大疾病方面发挥了重要作用,并由此形成了高速成长的生物医药产业,这是目前为止生物技术最大的应用领域。生物医药产业最发达的国家是美国。第一家运用现代生物技术的制药公司--美国的Cetus公司,创建于1971年。到目前为止,美国生物制药业已有数百家公司,正在开发数千种药品。随着生物技术新药开发数量的增长,生物技术药品研

发费用的增长速度将比其他药品更快。生物技术药物的销售增长率趋势是2003年到2010年每年增长12-15%,随着更多的生物技术药品进入市场,销售增长率会增加得越来越快。生物技术药品已涉足于200 多种疾病,其研究多数是针对癌症治疗,在传染性疾病、神经性疾病、心血管疾病、呼吸系统疾病、爱滋病、自体免疫性疾病、皮肤病等其他疾病方面的研究力量相当。总览生物技术在生物制药领域的发展新趋势,主要有以下几方面: 1、个性化药品 个性化药物是指适合于某一特

定病人的药物。新技术的开发将使治疗方法产生了巨大的进步,使个性化药物的运用成为可能。生物技术使得我们能够区别遗传物质形成过程中的细微差异,了解每个病人在治疗效果、药物敏感性和副反应发生方面的差异。如果知道一个人会对某个药物产生怎样的反应和如何代谢,医生就能在治疗前确定病人用什么药合适。 这些进步对医药产生了很大影响,制药企业可以生产更有效的药物。知道了药物对哪些人疗效好且副反应少,临床实验就可以在疗效好且副反应少的人中进行,医生就

现代生物技术的发展与前景

在当今世界各国纷纷建立以基因为核心的知识产权保护,抢占21世纪国际生物技术制高点的新形势下,参加北京“国际周”现代农业高层论坛的专家呼吁,要密切关注现代农业生物技术领域日益显现的研究成果商品化、研究方式规模化和基因资源争夺白热化的趋势,在即将到来的生物世纪里,真正占据自己的位置。 农业生物技术的主要研究内容包括:增强农作物以及畜禽鱼的抗性、品质改良、提高产量和生产具有特殊用途的物质等。其中以转基因作物的研究和运用最为重要,发展最快。根据统计资料,到2000年,全世界转基因作物推广面积达4420万公顷,比1996年增长了25倍;种植转基因作物的国家从1996年的6个增加到2000年的13个。这其中美国的转基因作物种植面积最广,达到了3030万公顷,占68%;其次为阿根廷,1000万公顷,占23%;加拿大300万公顷,占7%;我国为50万公顷,占1%。根据有关专家的看法,现代农业生物技术的最新发展趋势表现为:——研究成果商品化产业化进程加速。目前,农业生物技术作为一项高新技术产业在发达国家业已形成,并处于一个高速发展时期。有关专家预测,本世纪生物技术产品在国际贸易中的份额将达到10%以上,而现代农业生物技术又将占相当的比重。世界银行下属机构预测世界范围内转基因作物产业的交易额为2000年20亿美元,2005年60亿美元,2010年200亿美元;国际农业生物技术应

用机构(ISAAA)的预测则分别为30亿美元、80亿美元和280亿美元。 ——研究方式集约化、规模化明显。在政府以及公共机构对现代农业生物技术进行投资研究的同时,众多私有企业也开始注意到这一领域将是继计算机和网络技术之后的又一个潜力巨大的经济增长点,私人公司已逐步成为农业生物技术的研究主体。以美国为例,民营机构1992年对这一领域的投资为5.95亿美元,而1999年则达到15亿美元。与此同时,世界范围内出现了生物技术企业领域的兼并和收购狂潮,并购金额从1997年的12.37亿美元陡然升至1999年的138亿美元。一些资产过百亿美元的巨型跨国公司由此形成,过去分散的研究基地也随之向集中化规模化发展。 据业内人士分析,促成公司并购的原因,一方面是为合理利用资源、降低生产成本、优化人员组合,而更重要的原因,则是因为现代农业生物技术产业是一个高技术、高投入、高风险、长周期的产业,小公司在资金、技术、以及抗风险能力上均难以独立对农业生物技术产品进行研发和推广。只有强强联手的大型现代农业生物技术企业才能有效占领市场,与其它企业抗衡。 ——基因资源争夺呈白热化。在商业利益驱使下,发达国家各主要生物技术公司对生物资源及其知识产权展开了激烈争夺,其核心就是对基因的争夺。谁掌握了基因,谁就掌握了生物技术的制高点,就掌握了未来竞争的主动权。有专家称,转基因植物技术知识产权很可能就是未来国际贸易中市场准入、贸易壁垒问题产生的主要原因。

选修三《现代生物技术专题》必背知识点(人教版)

生物选修三易考知识点背诵 专题1 基因工程 1.基因工程:又名或 操作环境:;操作对象:;操作水平: 基本过程: 特点:;本质(原理): 2.基因工程的基本工具 Ⅰ.“分子手术刀”—— (1)来源:主要是从中分离纯化出来的。 (2)功能:能够识别,并且使 · 断开。 (3)结果:产生的DNA片段末端——。 (4)要获得某个特定性状的基因必须要用限制酶切几个切口可产生几个黏性末端 Ⅱ.“分子缝合针”—— (1)两种DNA连接酶(和)的比较: ①相同点:都缝合键。 ②区别:前者来源于,只能连接;而后者来源于, 能连接,但连接平末端的之间的效率较低。 ; (2)与DNA聚合酶作用的区别:DNA聚合酶只能将加到已有的核苷酸片段 的末端,形成磷酸二酯键。DNA连接酶是连接的末端,形成磷酸二酯键。Ⅲ.“分子运输车”——载体 (1)载体具备的条件: ①能在受体细胞中上,并随染色体DNA同步复 制; ②具有一至多个,供外源DNA片段插入; ③具有,供重组DNA的鉴定和选择。 (2)最常用的载体是,它是一种裸露的、结构简单的、独立于细菌拟核之外,并具有自我复制能力的。 (3)其它载体:

3.基因工程的基本操作程序 第一步: . (1)获取目的基因的方法:、、 (2)PCR技术 ①原理: ②条件:、、、 ③PCR技术与体内DNA复制的区别: a. PCR不需要酶;体内DNA复制需要; # b. PCR需要酶(即Taq酶),生物体内的聚合酶在高温时会变性; c. PCR一般要经历三十多次循环,而生物体内DNA复制受生物体遗传物质的控制。 (3)注意:构建基因文库需要哪些操作工具 第二步:——基因工程的核心 基因表达载体组成:+复制原点 (1):是一段有特殊的DNA片段,位于基因的首端,是识别和结合的部位,能驱动基因转录出mRNA。没有启动子,基因就不能转录。 (2):也是一段有特殊的DNA片段,位于基因的尾端,使转录终止。 (3)标记基因的作用:,常用的标记基因是。 第三步:将目的基因导入受体细胞 常用的转化方法: 《 (1)导入植物细胞:采用最多的方法是法,其次还有基因枪法和花粉管通道法等。 (2)导入动物细胞:最常用的方法是技术。此方法的受体细胞多是。 (3)将目的基因导入微生物细胞:原核生物作为受体细胞的原因是,最常用的原核细胞是大肠杆菌,其转化方法是:先用处理细胞,使其成为,有利于促进感受态细胞吸收DNA分子,完成转化过程。 注意:重组细胞导入受体细胞后,筛选含有基因表达载体受体细胞的依据是。第四步:

高中生物第二章第2节现代生物技术在育种上的应用导学案新人教版选修2

第2节现代生物技术在育种上的应用 1.描述转基因技术育种和细胞杂交育种等现代育种技术。 2.列举现代育种技术在实践中应用的实例,探讨其前景。 3.关注转基因生物及其产品引发的社会问题。 一、转基因技术育种 1.概念 转基因技术是指按照人们的意愿,把一种生物的某个______克隆出来,加以______和______,再转移到________生物的细胞里,从而______地改造生物的遗传性状。 2.内容 __________的制备和目的基因导入__________的过程。 3.操作流程 基因分离→目的基因→目的基因与________结合→目的基因导入__________→转化组织或细胞→植株再生→______与未转化的植株→筛选→________植株→移苗入土→选优。 二、转基因植物的实例 1.1983年第一例转基因植物——转基因______。 2.转基因________番茄。 3.转基因______作物:转________抗虫棉、抗虫玉米、抗虫杨树和抗虫甘蓝,转植物________抑制剂基因、转外源凝集素基因的转基因水稻、转基因棉。 4.抗________作物:抗除草剂玉米、油菜、大豆、棉等。 三、转基因动物的实例 1.1982年美国科学家将大鼠的______________注射到 小白鼠的受精卵中,获得第一只转基因“超级小鼠”。 2.动物转基因技术的应用:提高产仔数或产蛋数;提高______能力;研制乳腺____________;提高动物生长速率;改善肉的品质。 四、细胞杂交育种 1.细胞杂交 指将同类或不同类生物体的__________或体细胞,在一定的物理或化学条件下进行融合形成__________,再创造条件将__________培养成完整的杂种生物个体。 思考:粮食危机威胁着人类的生存,你能想办法培育如下图所示的马铃薯—番茄植株吗? 2.杂交过程

相关主题
文本预览
相关文档 最新文档