当前位置:文档之家› OpenGL及三维引擎介绍

OpenGL及三维引擎介绍

达尔ABAQUS三维无限元模型建立

达尔文档 分享知识传播快乐 ABAQUS三维无限元模型建立 本资料为原创 2017年7月达尔文档|DareDoc原创 本教程目的实现无限元单元的建立,从而用于无限元人工边界当中。 现以6m*6m*50m柱体为例,在其四周和底部建立一层无限单元。外层柱尺寸 12m*12m*56m,仅划分一层单元,内部柱体网格划分为1m*1m*1m。建立完后的模型如下图所示。 图1 外层无限元,有限元柱体和无限元-有限元模型 1.创建内部柱体和外部包裹柱体 在part模块中,建立Part-1和Part-2。先创建内部柱体part,在草图中建立一个 6m*6m的方框。 图2 草图中创建方形截面6*6 对截面进行拉伸,深度为50(图3)。同理,创建外部包裹柱体Part-2,截面尺寸为6*6,拉伸深度为56。 图3 拉伸深度及创建的part1 2.对两个柱体进行装配并切割 在装配模块中,将两个part进行装配。装配后,由于两者位置不对,需要将内部柱体的顶面与外部柱体顶面平齐,所以进行平移实例操作。平移完成后,用外部part 减去内部part,形成Part-3。 图4 装配效果图及平移后切割 图5 平移后两柱体位置,切割完成后模型 3.对包裹体切割,重新建立Part 为使后面能够顺利划分网格,需要对形成的Part-3进行切割,重新建立底部。先将part分割成四部分。可采用切割命令,使用三点切割体,如下图所示。 图6 切割part示意图 切割完毕后,底部块已经被切碎,需要通过“创建切削放样”进行删除,并重新建立。创建切削放样时建立两个截面,第一个截面为内部截面,按住shift键选择四个边完成,如图7所示,第二个截面为模型最底部正方形。两个截面创建完成后按确定按钮,底部便被切削去掉(图8左)。此时,模型底部需要根据形状填补,采用“创建实体放样”生成补块,过程与切削放样基本相同,需要注意创建时要勾选“保留内部边界”,否则后续网格不能划分(图8右)。 图6 切割完模型,对模型底部进行切削放样 图7 切削放样时选择的内外两个截面 图8 切削完毕后模型,创建实体放样 4.对无限元和有限元两部分进行装配,网格划分 在装配模块中,对Part-1和Part-3进行装配,装配完毕后进行合并,如图9。

Auto CAD三视图生成步骤

◆由三维实体生成三视图和轴测图简要步骤 1、将三维模型以二维线框显示。 2、进入图纸空间 可选择打印设备、图纸大小,或不选任何选项,按“确定”后,生成一个浮动视口。 删除该浮动视口。 重新设置四个浮动视口:主视、俯视、左视、西南轴测图。 3、创建实体轮廓线 方法见教材P284 4.创建实体轮廓,对四个视口的图形均进行创建实体轮廓的操作 自动生成PH-XX和PVX-X八个图层 4、调整显示在视口中视图的比例 命令:mvsetup↙ 输入选项 [对齐(A)/创建(C)/缩放视口(S)/选项(O)/标题栏(T)/放弃(U)]: s↙ (缩放视口:调整对象在视口中显示的缩放比例因子。缩放比例因子是边界在图纸空间中的比例和图形对象在视口中显示的比例之间的比率。)选择所有视口 设置视口缩放比例因子为:<统一(U)>: 5、将自动生成的前三个PH-XX图层的线型设置成dashed,并修改颜色。 将轴测图的PH-XX图层关闭(一般最后生成轴测图,因此是最后一个PH-XX 图层)。 6、关闭或冻结0层 7、绘制中心线、调整线型比例等 8、标注尺寸(与二维标注方式相同) ◆构建场景的简要步骤 注:所有尺寸仅用于方便作图,做作业时不必标注。 一、台阶 1、绘制台阶平面图,见图1

图1 2、实体拉伸命令制作台阶,相邻两个台阶的高度为25,如图2 图2、 3、布尔并集将各台阶合成一个实体,见图3 图3 二、制作建筑主体

1、新建UCS,如图4 图4 2、制作内空的长方体 (1)用实体长方体命令制作,尺寸长、宽、高为:800,800,450,见图5。 (2)在此长方体内再作长方体,尺寸:长、宽、高为700、700、450,见图6。(3)再用布尔差减去中间长方体。 图5

AutoCAD机械制图--由三维实体生成二维视图

第15章由三维实体生成二维视图 ◆15.1 概述 ◆15.2 由三维实体生成三视图 ◆15.3 由三维实体创建剖视图

15.1 概述基本视图:实体模型 在投影面投影所得到的图形称为基本视图,通常可分为主视图、俯视图、左视图、右视图、仰视图、后视图。图15-1所示的是三维零件图在各个方向的投影视图所得的效果。 (a) 三维视图 (b) 主视图(c) 后视图(d) 俯视图(e) 仰视图(f) 左视图(g) 右视图 图15-1 各个视图

剖视图:假想用一个剖切平面将三维实体剖开,移去观察者和剖面之间的部分,而将留下的部分向投影面投影,所得视图称为剖视图。 剖面图:也叫断面图,假想用剖切面将零件的某处切断,紧画出其断面的图形,称为剖切图。分为移出断面图和重合断面图。 图15-2是剖视图和剖面图的比较。 (a) 阶梯轴(b) 剖面图(c) 剖视图 图15-2 剖面图和剖视图

模型空间是为创建三维模型提供一个广阔的绘图区域,用户可以通过建立UCS,创建各种样式的模型并设置观察视点和消隐、渲染等操作。 而布局空间是用于创建最终的打印布局,是图形输出效果的布置,用户不能通过改变视点的方式来从其他角度观看图形。 它们的主要区别标志是坐标系图标。模型空间中,坐标系图标是一个反映坐标方向的坐标架,而布局空间中,坐标系图标则是三角板形状。利用布局空间可以把在模型空间中绘制的三维模型在同一张图纸上以多个视图的形式排列并打印出来,而在模型空间中则无法实现这一点。

15.2 由三维实体生成三视图 AutoCAD将三维实体模型生成三视图的方法大致有两种: 第一种方法是先使用VPORTS或MVIEW命令,在布局空间中创建多个二维视图视口,然后使用SOLPROF命令在每个视口中分别生成实体模型的轮廓线,以创建二维视图的三视图。 第二种方法是使用SOLVIEW命令后,在布局空间中生成实体模型的各个二维视图视口,然后使用SOLDRAW命令在每个视口中分别生成实体模型的轮廓线,以创建二维视图的三视图。下面分别介绍各个命令的使用。

AutoCAD三维图转成三视图

AutoCAD中由三维图转成三视图(二维图)——附视频文件 本文主要介绍利用AutoCAD2000强大的图纸布局功能,把用户已经绘制了三维模型生成三视图。当切换到图纸空间后,AutoCAD在屏幕上显示一张二维图纸,并自动创建一个浮动视口,在这个视口中显示出已经绘制的三维模型,可根据三维模型轻易地创建多种形式的布局。用户可以调整视口视点以获得所需的主视图,然后再用SOLVIEW命令生成其他视图,如正交视图、剖视图、斜视图等。 下面将通过实例来介绍由三维模型生成三视图的技巧,并着重介绍标准的主视图、左视图、俯视图、剖视图生成方法。 1.利用三维模型创建各视图的视口 1.1 主视图视口的创建 下一步中,我们将打开已经绘制好的三维模型。首先形成模型的主视图视口,并将它布置在“图纸”的适当位置。 1)打开磁盘上的文件“机架.dwg”。 2)从模型空间切换到图纸空间。单击图形绘图窗口底部的选项卡layout1,打开[Page Setup-Layout1]对话框,然后在“Paper size”下拉列表中设定图纸幅面为“ISO A2 (594.00×420.00mm)”,单击OK按钮,进入图纸空间。AutoCAD在A2图纸上自动创建一个视口。 注意:可以把浮动视口作为一个几何对象,因此能用MOVE、COPY、SCALE、STRETCH等命令及界标点编辑方式进行编辑。 3)选择浮动视口,激活它的界标点,并进入拉伸模式,然后调整好视口大小。单击状态栏的PAPER按钮,激活浮动视口,再执行下拉菜单View→Zoom→All或标准工具条中的??按钮,使模型全部显示在视口中,如图1所示。 4)设置“前视点”。执行下拉菜单View→3D Views命令,选择适当的视口方向,就可获得了主视图的视口,如图2所示。 1.2 左视图及俯视图视口的创建 下面根据主视图视口创建左视图及俯视图的视口。 1)执行下拉菜单Draw→Solids→Setup→View,或在Solids工具条??按钮,在命令状态行提示下,键入ortho或o。接下来指定视口的投影方向,如图3,选择浮动视口的A边(在创建俯视图视口时选择B边),同时出现一条十字橡皮线,然后拉动十字橡皮线在主视图的右边(在创建俯视图视口时在主视图的下边)单击一点指定左视图的位置。此时无须精确调整视图的位置,因为以后还可以再调整视图的位置。 2)下一步,确定视口的大小。如图3,单击左视图的左上方的任一位置点1处(在创建俯视图视口时单击点3处),再单击左视图的右下方的任一位置点2处(在创建俯视图视口时单击点4处)。 3)最后,输入视图名称为剖视图。键入回车结束命令。

“三维实体转三视图”的详细图解

下面是“三维实体转三视图”的详细图解: 1.要将二维实体用三视图来出图,首先要画好二维立体图。第一步,不管是像现在这样的着色图…… 2.还是像现在这样的消隐图……

3.都要转换到“二维线框”模式,原因是要显示所有线条,包括因阻挡但实际存在的线条,以备以后有用。 4.在正式转三视图之前,先把出图的纸张格式定好,包括纸张横式/竖式,是否黑白打印…… 5.打印设备设置

6.打印布局设置 7.点击“设置视图”命令,或在命令行中输入solview,这个命令在布局里创建每个视图放置可见线和隐藏经线的图层(设置视图命令)

8.界面自动转到而已窗口,删除自动生成的布局。方法:点击外围的框线,实线变虚,Delete就删除了,点击Esc键,退出刚才的命令。 9.界面变成了完全的空白,再点击“设置视图”按钮,这回是正式开始设置视图了。

10.在布局里,点击鼠标右键,弹出菜单。选择UCS 11.因第一个出现的是俯视图,一般是放在左下角,因此在布局1/4的左下角中部为视力中心。 第一选项,选默认(直接回车) 第二选项,不知道比例,直接回事即可。 第三选项,指定视图中心,在布局中大概位置点击一下(点击后,如果觉得位置不好,还可以进行一次选择,点击第2次)

12.指定视图中心(点击鼠标左键后),即出现俯视图,由于我们事先没有指定比例,因此出现的俯视图根据原三维图的大小,可能会很大,也许会很小。我们只要及时滚动鼠标的滚轮还调节大小,在调节大小的同时,还可以点击鼠标的左键来调整视图的中心位置。 13.调整完成后,点击鼠标的右键或回车,命令要求指定俯视图视口的大小,方法和画矩形一样,从一个角到对角。

三维建模要求规范-基本知识

实用标准文档三维建模规

城市三维建模是为城市规划、建设、运营、管理和数字城市建设提供技术服务的基础,是城市经济建设和社会发展信息化的基础性工作。城市三维模型数据是城市规划、建设与管理的重要基础资料。为了建设市三维地理信息系统,规市三维建筑模型的制作,统一三维模型制作的技术要求,及时、准确地为城市规划、建设、运营、管理和数字城市建设提供城市建筑三维模型数据,推进城市三维数据的共享,特制定本规。项目软件及数据格式 1、项目中使用的软件统一标准如下: 模型制作软件:3DMAX9 贴图处理软件:Photoshop 平台加载软件:TerraExplorer v6 普通贴图格式:jpg 透明贴图格式:tga 模型格式:MAX、X、XPL2 加载文件格式:shp 平台文件格式:fly 2、模型容及分类 城市建模主要包括建筑物模型和场景模型。 2.1、建筑物模型的容及分类

建筑物模型应包括下列建模容: 各类地上建筑物,包括:建筑主体及其附属设施。含围墙、台阶、门房、牌坊、外墙广告、电梯井、水箱以及踢脚、散水等。 各类地下建筑物,包括:地下室、地下人防工程等。 其他建(构)筑物,包括:纪念碑、塔、亭、交通站厅、特殊公益建(构)筑物以及水利、电力设施等。 全市建筑物模型分为精细模型(精模),中等复杂模型(中模),体块模型(白模)。市全市围主要大街、名胜古迹、标志性建筑等用精模表示,一般建筑物用中模表示,城中村、棚户区等用白模表示。 2.1.1、精细复杂度模型(精模) 2.1.1.1、定义:精细模型为,能准确表现建筑物的几何实体结构,能表现建筑物的诸多细节,对部分重要建筑景观进行重点准确制作表现的模型制作方式。 2.1.1.2、一般制作围:城市中主干道两旁的主要建筑物、主干路十字路口的主要建筑,电信、移动、金融中心大楼,火车站,重点政治、经济、文化、体育中心区建筑,包括标志性建筑物,城市中知名度高的名胜古迹、地标性建筑(如大雁塔、钟楼等)。 2.1.1.3、制作方式:精细制作,不仅能反映实际建筑的大小,整体结构,而且能反映建筑物的细节结构。贴图效果好,带光影效果。用户看上去感觉就是实际的建筑、真实度高。 2.1.2、中等复杂度模型(中模) 2.1.2.1、定义:为了保证大规模数字城市在平台上流畅运行,并能准确表现建筑物的几何实体结构,在不影响建筑物真实性几何结构的基础上,可以忽略部分实体结构,对部分建筑景观进行简单制作表现的模型制作方式。 2.1.2.2、一般制作围:城市中非主干道两旁的主要建筑物、城市临街小区居民楼和其

三视图自动生成机设计说明书

三视图自动生成机设计说明书 长春工程学院 2013年12月1日

目录 一、参赛人员基本信息 .................................................... - 1 - 二、创新构思与设计 ........................................................ - 1 - 1、设计目的.................................................................. - 1 - 2、创新构思.................................................................. - 2 - 三、设计方案 .................................................................... - 3 - 四、工作原理 .................................................................... - 4 - 1、机构原理说明.......................................................... - 4 - (1)旋转台的旋转机构 ......................................... - 4 - (2)齿轮传动组合机构 ......................................... - 4 - (3)传动及动力转向机构 ..................................... - 5 - (4)机械式开关机构 ............................................. - 5 - 2、控制原理示意图...................................................... - 6 - 五、样机主要零件设计图 ................................................ - 7 - 六、主要功能指标与应用前景......................................... - 9 - 1、功能指标.................................................................. - 9 - 2、应用前景.................................................................. - 9 - 七、实物照片 .................................................................. - 10 -

AutoCAD建立简单三维模型教程

AutoCAD的多文档设计环境,让非计算机专业人员也能很快掌握并使用。使用AutoCAD 进行二维绘图,对具有机械制图基础的人来说,是比较容易掌握的;但对三维建模,特别是自学者,却总觉得不知从何下手。本篇AutoCAD教程就教大家由三视图绘制三维实体图时的整个建模过程的步骤和方法。 一、分析三视图,确定主体建模的坐标平面 在拿到一个三视图后,首先要做的是分析零件的主体部分,或大多数形体的形状特征图是在哪个视图中。从而确定画三维图的第一步——选择画三维图的第一个坐标面。这一点很重要,初学者往往不作任何分析,一律用默认的俯视图平面作为建模的第一个绘图平面,结果很容易给后续建模造成混乱。 图1 此零件主要部分为几个轴线平行的通孔圆柱,其形状特征为圆,特征视图明显都在主视图中,因此,画三维图的第一步,必须在视图管理器中选择主视图,即在主视图下画出三视图中所画主视图的全部图线。

图2 此零件的特征图:上下底板-四边形及其中的圆孔,主体-圆筒及肋板等,都在俯视图,故应在俯视图下画出三视图中的俯视图。 下图是用三维图模画三维图,很明显,其主要结构的形状特征――圆是在俯视方向,故应首先在俯视图下作图。

图3 二、构型处理,尽量在一个方向完成基本建模操作 确定了绘图的坐标平面后,接下来就是在此平面上绘制建模的基础图形了。必须指出,建模的基础图形并不是完全照抄三视图的图形,必须作构型处理。所谓构型,就是画出各形体在该坐标平面上能反映其实际形状,可供拉伸或放样、扫掠的实形图。 如上文图1所示零件,三个圆柱筒,按尺寸要求画出图4中所示6个绿色圆。与三个圆筒相切支撑的肋板,则用多段线画出图4中的红色图形。其它两块肋板,用多段线画出图中的两个黄色矩形。

cad基础三维图形绘制教程

cad基础三维图形绘制教程 篇一:CAD三维绘图教程与案例,很实用 CAD 绘制三维实体基础 AutoCAD除具有强大的二维绘图功能外,还具备基本的三维造型能力。若物体并无复杂的外表曲面及多变的空间结构关系,则使用AutoCAD可以很方便地建立物体的三维模型。本章我们将介绍AutoCAD 三维绘图的基本知识。1、三维模型的分类及三维坐标系;2、三维图形的观察方法;3、创建基本三维实体;4、由二维对象生成三维实体; 5、编辑实体、实体的面和边; 11.1 三维几何模型分类 在AutoCAD中,用户可以创建3种类型的三维模型:线框模型、表面模型及实体模型。这3种模型在计算机上的显示方式是相同的,即以线架结构显示出来,但用户可用特定命令使表面模型及实体模型的真实性表现出来。 11.1.1线框模型(Wireframe Model) 线框模型是一种轮廓模型,它是用线(3D空间的直线及曲线)表达三维立体,不包含面及体的信息。不能使该模型消隐或着色。又由于其不含有体的数据,用户也不能得到对象的质量、重心、体积、惯性矩等物理特性,不能进行布尔运算。图11-1显示了立体的线框模型,在消隐模式下也看到后面的线。但线框模型结构简单,易于绘制。 11.1.2表面模型(Surface Model)

表面模型是用物体的表面表示物体。表面模型具有面及三维立体边界信息。表面不透明,能遮挡光线,因而表面模型可以被渲染及消隐。对于计算机辅助加工,用户还可以根据零件的表面模型形成完整的加工信息。但是不能进行布尔运算。如图11-2所示是两个表面模型的消隐效果,前面的薄片圆筒遮住了后面长方体的一部分。 图11-1线框模型1 图11-2表面模型 11.1.3 实体模型 实体模型具有线、表面、体的全部信息。对于此类模型,可以区分对象的内部及外部,可以对它进行打孔、切槽和添加材料等布尔运算,对实体装配进行干涉检查,分析模型的质量特性,如质心、体积和惯性矩。对于计算机辅助加工,用户还可利用实体模型的数据生成数控加工代码,进行数控刀具轨迹仿真加工等。如图11-3所示是实体模型。 图11-3实体模型 11.2三维坐标系实例——三维坐标系、长方体、倒角、删除面AutoCAD的坐标系统是三维笛卡儿直角坐标系,分为世界坐标系(WCS)和用户坐标系(UCS)。图11-4表示的是两种坐标系下的图标。图中“X”或“Y”的剪头方向表示当前坐标轴X轴或Y轴的正方向,Z轴正方向用右手定则判定。 世界坐标 图11-4表示坐标系的图标

cad三维立体图自动生成二维三视图插件

cad三维立体图自动生成二维三视图插件(DEFUN c:sa() (setq dcl_id (load_dialog "sanshi")) (new_dialog "sanshi" dcl_id) (action_tile "sansh_cf1" "(done_dialog 1)") (action_tile "sansh_cf2" "(done_dialog 2)") (action_tile "sansh_cf3" "(done_dialog 3)") (action_tile "sansh_cf4" "(done_dialog 4)") (action_tile "sansh_zds" "(done_dialog 5)") (setq sansh_done_id (start_dialog)) (if (> sansh_done_id 0) (progn (cond ((= 1 sansh_done_id) (sanshm_cf1) ) ((= 2 sansh_done_id) (sanshm_cf2) ) ((= 3 sansh_done_id) (sanshm_cf3) ) ((= 4 sansh_done_id) (sanshm_cf4) ) ((= 5 sansh_done_id)

(sanshm_zds) ) ) ) ) (princ) ) ;; ;;;-------------------------------------------------------- ;;;函数: CF1 ;;;-------------------------------------------------------- ;;;编制日期:2009.03.27 ;;;修改日期:2011.07.28 ;;;编制者 :曾敏辉 ;;;说明:本函数将复制并旋转对象为右视 ;;;-------------------------------------------------------- (DEFUN sanshm_CF1( / en entgrp oldort pt1 pt2 ss) (PRINC "\n 复制并旋转对象为右视") (setvar "cmdecho" 0) (setq oldort (getvar "orthomode")) (princ "\n 请选择主视图对象:") (SETQ ENTGRP (SSGET))

第3章 创建基本三维模型

第三章创建基本三维模型 【本章导读】 本章为读者介绍一下在3ds Max 中创建基本三维模型的知识。基本三维模型包括标准基本体和建筑对象三类,标准基本体是3ds Max 中最基本且常用的三维模型(如长方体、球体、圆柱体等),拓展基本体是由标准基本体通过圆角、切角等处理获得的稍微复杂的三维模型(如切角长方体、切角圆柱体、纺锤体等),建筑对象是建筑领域常用的三维模型(如门、窗户、楼梯等),这些都是创建复杂三维模型的基础。 【本章内容提要】 创建标准基本体 创建拓展基本体 创建建筑对象 3.1 创建标准基本体 使用3ds Max 9“几何体”创建面板“标准基本体”分类中的工具按钮可以创建一些最基本的三位对象。下面以实训的形式介绍一下这些基本三位对象的创建方法。实训1 制作地球仪——创建圆柱体、圆锥体、管状体和球体 【实训目的】 掌握创建圆柱体、圆锥体、管状体和球体的方法。【操作步骤】步骤1?单击“创建”面板的“几何体”按钮,打开“几何体”创建面板(启动3ds Max 9后,默认打开该面板);然后单击“标准基本体”分类中的“球体”按钮,在打开“创建方法”卷展栏中设置创建方法为“中心”,如图3-1左图和中图所示。 步骤2?在透视图中单击并拖动鼠标,到适当位置后释放左键,确定球体半径的大小,至此就玩成了球体的创建,如图3-2所示。 步骤3?打开“修改”面板,在“参数”卷展栏中设置球体否认半径为“180”,分段数为“32”(分段数越高,球体表面越光滑),并选中“平滑”复选框(控制是否对球体的表面进行平滑处理),如图3-2所示。 .提示. 步骤4?单击“几何体”创建面板“标准基本体”分类中的“圆柱体”按钮,在打开的“创建方法”卷展栏中设置创建方法为“中心”,如图3-5左侧两图所示。 步骤5?在透视图中单击并拖动鼠标,到适当位置释放左键,确定圆柱体半径的大小;然后向上移动鼠标,到适当位置后单击确定圆柱体否认高度,至此就完成了圆柱体的创建,如图3-5右侧两图所示 步骤6?打开“修改”面板,在“参数”卷展栏中设置圆柱体的半径为“10”,高度为“430”,然后调整其位置,作为地球仪的转轴,如图3-6所示。

(2020年编辑)CAD绘制三维实体教程+例题

CAD 绘制三维实体基础 AutoCAD 除具有强大的二维绘图功能外,还具备基本的三维造型能力。若物体并无复杂的外 表曲面及多变的空间结构关系,则使用AutoCAD 可以很方便地建立物体的三维模型。本章我们将介绍AutoCAD 三维绘图的基本知识。 11.1 三维几何模型分类 在AutoCAD 中,用户可以创建3种类型的三维模型:线框模型、表面模型及实体模型。这3 种模型在计算机上的显示方式是相同的,即以线架结构显示出来,但用户可用特定命令使表面模型及实体模型的真实性表现出来。 11.1.1线框模型(Wireframe Model) 线框模型是一种轮廓模型,它是用线(3D 空间的直线及曲线)表达三维立体,不包含面及体 的信息。不能使该模型消隐或着色。又由于其不含有体的数据,用户也不能得到对象的质量、重心、体积、惯性矩等物理特性,不能进行布尔运算。图11-1显示了立体的线框模型,在消隐模式下也看到后面的线。但线框模型结构简单,易于绘制。 11.1.2 表面模型(Surface Model ) 表面模型是用物体的表面表示物体。表面模型具有面及三维立体边界信息。表面不透明,能遮 1、三维模型的分类及三维坐标系; 2、三维图形的观察方法; 3、创建基本三维实体; 4、由二维对象生成三维实体; 5、编辑实体、实体的面和边; 1、建立用户坐标系; 2、编辑出版三维实体。 讲授8学时 上机8学时 总计16学时

挡光线,因而表面模型可以被渲染及消隐。对于计算机辅助加工,用户还可以根据零件的表面模型形成完整的加工信息。但是不能进行布尔运算。如图11-2所示是两个表面模型的消隐效果,前面的薄片圆筒遮住了后面长方体的一部分。 11.1.3 实体模型 实体模型具有线、表面、体的全部信息。对于此类模型,可以区分对象的内部及外部,可以对它进行打孔、切槽和添加材料等布尔运算,对实体装配进行干涉检查,分析模型的质量特性,如质心、体积和惯性矩。对于计算机辅助加工,用户还可利用实体模型的数据生成数控加工代码,进行数控刀具轨迹仿真加工等。如图11-3所示是实体模型。 11.2 三维坐标系实例——三维坐标系、长方体、倒角、删除面 AutoCAD 的坐标系统是三维笛卡儿直角坐标系,分为世界坐标系(WCS )和用户坐标系(UCS )。图11-4表示的是两种坐标系下的图标。 图中“X ”或“Y ”的剪头方向表示当前坐标轴X 轴或Y 轴图11-1 线框模型 图11-2 表面模型 图11-3 实体模型

cad三维建模基础教程

cad三维建模基础教程 cad三维建模基础教程: 11.1三维几何模型分类 在AutoCAD中,用户可以创建3种类型的三维模型:线框模型、表面模型及实体模型。这3种模型在计算机上的显示方式是相同的,即以线架结构显示出来,但用户可用特定命令使表面模型及实体模 型的真实性表现出来。 11.1.1线框模型(WireframeModel) 线框模型是一种轮廓模型,它是用线(3D空间的直线及曲线)表 达三维立体,不包含面及体的信息。不能使该模型消隐或着色。又 由于其不含有体的数据,用户也不能得到对象的质量、重心、体积、惯性矩等物理特性,不能进行布尔运算。图11-1显示了立体的线框 模型,在消隐模式下也看到后面的线。但线框模型结构简单,易于 绘制。 11.1.2表面模型(SurfaceModel) 表面模型是用物体的表面表示物体。表面模型具有面及三维立体边界信息。表面不透明,能遮挡光线,因而表面模型可以被渲染及 消隐。对于计算机辅助加工,用户还可以根据零件的表面模型形成 完整的加工信息。但是不能进行布尔运算。如图11-2所示是两个表 面模型的消隐效果,前面的薄片圆筒遮住了后面长方体的一部分。 11.1.3实体模型 实体模型具有线、表面、体的全部信息。对于此类模型,可以区分对象的内部及外部,可以对它进行打孔、切槽和添加材料等布尔 运算,对实体装配进行干涉检查,分析模型的质量特性,如质心、 体积和惯性矩。对于计算机辅助加工,用户还可利用实体模型的数 据生成数控加工代码,进行数控刀具轨迹仿真加工等。如图11-3所 示是实体模型。

11.2三维坐标系实例——三维坐标系、长方体、倒角、删除面 AutoCAD的坐标系统是三维笛卡儿直角坐标系,分为世界坐标系(WCS)和用户坐标系(UCS)。图11-4表示的是两种坐标系下的图标。 图中“X”或“Y”的剪头方向表示当前坐标轴X轴或Y轴的正方向,Z轴正方向用右手定则判定。 世界坐标系 缺省状态时,AutoCAD的坐标系是世界坐标系。世界坐标系是唯 一的,固定不变的,对于二维绘图,在大多数情况下,世界坐标系 就能满足作图需要,但若是创建三维模型,就不太方便了,因为用 户常常要在不同平面或是沿某个方向绘制结构。如绘制图11-5所示 的图形,在世界坐标系下是不能完成的。此时需要以绘图的平面为 XY坐标平面,创建新的坐标系,然后再调用绘图命令绘制图形。 用户坐标系 任务:绘制实体。 目的:通过绘制此图形,学习长方体命令、实体倒角、删除面命令和用户坐标系的建立方法。 知识的储备:基本绘图命令和对象捕捉、对象追踪的应用。 绘图步骤分解: 1.绘制长方体 调用长方体命令: 实体工具栏: 下拉菜单:[绘图][实体][长方体] 命令窗口:BOX' AutoCAD提示: 指定长方体的角点或[中心点(CE)]<0,0,0>:在屏幕上任意点单击

三维建模规范-基本知识.介绍

三维建模规范

城市三维建模是为城市规划、建设、运营、管理和数字城市建设提供技术服务的基础,是城市经济建设和社会发展信息化的基础性工作。城市三维模型数据是城市规划、建设与管理的重要基础资料。为了建设市三维地理信息系统,规范市三维建筑模型的制作,统一三维模型制作的技术要求,及时、准确地为城市规划、建设、运营、管理和数字城市建设提供城市建筑三维模型数据,推进城市三维数据的共享,特制定本规范。项目软件及数据格式 1、项目中使用的软件统一标准如下: 模型制作软件:3DMAX9 贴图处理软件:Photoshop 平台加载软件:TerraExplorer v6 普通贴图格式:jpg 透明贴图格式:tga 模型格式:MAX、X、XPL2 加载文件格式:shp 平台文件格式:fly 2、模型内容及分类 城市建模主要包括建筑物模型和场景模型。 2.1、建筑物模型的内容及分类 建筑物模型应包括下列建模内容: 各类地上建筑物,包括:建筑主体及其附属设施。含围墙、台阶、门房、牌坊、外墙广告、电梯井、水箱以及踢脚、散水等。 各类地下建筑物,包括:地下室、地下人防工程等。 其他建(构)筑物,包括:纪念碑、塔、亭、交通站厅、特殊公益建(构)筑物以及水利、电力设施等。 全市建筑物模型分为精细模型(精模),中等复杂模型(中模),体块模型(白模)。市全市范围主要大街、名胜古迹、标志性建筑等用精模表示,一般建筑物用中模表示,城中村、棚户区等用白模表示。 2.1.1、精细复杂度模型(精模) 2.1.1.1、定义:精细模型为,能准确表现建筑物的几何实体结构,能表现建筑物的诸多细节,对部分重要建筑景观进行重点准确制作表现的模型制作方式。

CityEngine使用模板创建三维城市

CityEngine使用模板创建三维数字城市 易智瑞(中国)信息技术有限公司 2012年5月

版权声明 本文档版权为Esri中国信息技术有限公司所有。未经本公司书面许可,任何单位和个人不得以任何形式摘抄、复制本文档的部分或全部,并以任何形式传播。 制定及修订记录 版本完成日期编写/修订纪要编写者备注 1.0 201 2.1.18 新建甘鑫平于强

CityEngine使用模板创建 三维数字城市 应用模板可以很好的指导大家使用GIS数据创建地图,三维场景和应用。这些模板可以用来当作创造类似的地图和场景基础。三维设计是CityEngine一个重要的优势,这对于城市规划是非常有用的。 通过如下三节内容全面介绍借助模板如何使用ArcGIS和CityEngine完成三维数字城市的创建与规划: 1)二维数据转化为三维数据; 2)创建三维数字城市; 3)三维数字城市规划设计; 1二维数据转化为三维数据 ArcGIS提供了ArcScene和ArcGlobe两种应用程序,二维数据可以以三维的形式进行可视化展示。然而,一般采用设置图层的“Base Heights”属性实现。 某些情况下,把二维几何图形转化为贴附地形表面的三维要素是非常必要的。这样,当你想使用这些要素和地表交互或者进行空间分析的时候会更具有真实性。 如下的操作步骤描述了如何使用三维数据并结合地形数据来创建三维贴附地形的三维要素,模板中使用的数据是虚拟城市模板的一部分。 数据下载地址:https://www.doczj.com/doc/c916807023.html,/s/30Oyr。 1.1 打开2Dto3D.sxd文档 在“2Dto3D\Maps and GDBs”下启动2Dto3D.sxd文档。

三维立体图转换成二维图

三维立体图转换成二维图 1.三维实体画好以后,可以观赏,也可以截成图片,固然漂亮、直观,但很多信息传递不到。因此,只有把 三维实体转成三视图,才是最实用的,可以反映三维实体的各个部位的详细信息。而怎样才能将所画好的三维实体用三视图的形式表达出来,是很多绘图者比较头疼的事情。在平面里参照三维实体一步步地画,固然可以画出,但既费时又费力,且往往容易遗漏很多信息。那么,能否在AutoCAD 中将三维实体直接转换成三视图呢?答案是肯定的。 2.下面我就详细介绍这样的操作——三维实体转三视图。 3.在转换的过程中,要用到2 个命令……“设置视图(solview)”、“设置图形(soldraw)”,这2 个命令在 CAD的各个版本中都有,是通用的。在AutoCAD2007 版及以后的版本中,还可以用“平面摄影 (flatshot)” 来制作三视图,我也刚接触,在研究后,再告知大家。 4.下面是“三维实体转三视图”的详细图解:本例为AutoCAD 实例教程,今天我们将学习通过运用AutoCAD 的“平面摄影(flatshot)”命令将三维模型转为三视图的方法,本实例适用于AutoCAD 2007 以上版本,希望能给朋友们带来帮助。 5.在AutoCAD2007 版及以后的各个版本中,还可以用“平面摄影(flatshot)”命令来进行三维实体到三视图 转换,这个转换过程是在“模型”里转换,这就给很多的后续操作带来了方便,如绘制“剖视图”、“截面图”、“转向图”等等。经过本人(shaonx)一段时间的研究试验,总结了一套转换的方法,自我感觉基本上还是成功的,因此特意做了本教程,以飨广大的网友。 6.希望本教程会给大家带来方便。下面,就是用“平面摄影(flatshot)”命令来进行从三维实体到三视图转 换的一种、也是最基础的方法,我使用CAD2008 进行操作的: 7.打开CAD,大家看到如下图的界面工具条的放置有点怪,这是为了使绘图的窗口界面最大化,便于大家看 的清楚。最上面的“建模”工具条,到后面还要换成“标准”工具条。最下面的命令行,就省略了。先画好三维实体或者打开已经画好的三维实体,可以是线框图、或消隐图、也可以是着色图(2007 版以上中的“真实”或“概念”),我这里为了讲解的清楚,使用了“概念”。在三维实体上,我们先要有一个空间概念,即三维实体在转成三视图后的“俯视”、“前视”和“左视”的方向, 8.按照刚才的三个视图的定位,以前视图的方向为基准,用“复制”命令,将三维实体往左边复制一个,注意, 要打开“正交(也可以按F8)”,复制的这个,在以后转成的三视图里,作为“俯视图”。以一起复制。注意,还是要打开“正交(也可以按F8)”,复制后的这2 个,在以后转成的三视图里,将作为“前视图”和“左视图”。

CAD三维建立模型的方法

CAD三维建立模型的方法 如何利用这些平面图来建立三维模型,是很多人关心的。所以,我想谈谈我的看法。 提起AutoCAD,我就会想起天天趴在计算机前用它画图的日子,主要是二维的工程图。如果提到三维图形,我们也许更习惯于用3D STUDIO MAX或VIZ等软件,可是你是否想过,用AutoCAD来完成大部分的三维基础建模工作,象3D STUDIO MAX和3D STUDIO VIZ这样的软件,更多地用于后期的材质和渲染处理?我觉得这种流程值得研究,其实AutoCAD的精确建模功能是很强的,不利用很可惜,而且它对计算机的硬件资源的要求也相对较低,更适合大量的建模工作;但因为它的渲染功能不好恭维,所以我们还是需要3D STUDIO MAX。好了,让我们看看如何开始我们的AutoCAD 3D,它不象想象的那么难,如果你已非常熟悉AutoCAD的平面绘图功能,那么你也许只需要熟悉一下AutoCAD 3D的操作环境。下面我给大家举个例子: 我们所要建立的是一个三层的建筑物的三维模型,如果我们已经有了各层的平面设计图,那么就可以分别对各层进行建模,然后再对各层进行装配完成工作了。具体步骤如下: 中是建筑物的第一层的平面设计图,首先我们得将它拉伸成图2的三维模型,我们用Viewpoint 选项选择一个轴侧视图,这样会直观一些,然后再选择要拉伸的平面线段,给这些线段一个三维坐标,也就是我们通过它们的厚度属性即Z轴的厚度来获得一个立体。具体操作,在选择物体后,从Object_Properties工具条中选择Properties选项,在弹出的Modify Polyline对话框中选择Thickness属性项,并给予它一个具体的厚度值(如输入一个4000mm),然后点击OK退出,你会发现左图中的平面图形变为立体模型了。 图1 图2

CAD三维实体绘制详细教程+例题

CAD 绘制三维实体基础 1、三维模型的分类及三维坐标系; 2、三维图形的观察方法; 3、创建基本三维实体; 4、由二维对象生成三维实体; 5、编辑实体、实体的面和边; 1、建立用户坐标系; 2、编辑出版三维实体。 讲授8学时 上机8学时 总计16学时 AutoCAD除具有强大的二维绘图功能外,还具备基本的三维造型能力。若物体并无复杂的外表曲面及多变的空间结构关系,则使用AutoCAD可以很方便地建立物体的三维模型。本章我们将介绍AutoCAD三维绘图的基本知识。 11.1 三维几何模型分类 在AutoCAD中,用户可以创建3种类型的三维模型:线框模型、表面模型及实体模型。这3种模型在计算机上的显示方式是相同的,即以线架结构显示出来,但用户可用特定命令使表面模型及实体模型的真实性表现出来。 11.1.1线框模型(Wireframe Model) 线框模型是一种轮廓模型,它是用线(3D空间的直线及曲线)表达三维立体,不包含面及体的信息。不能使该模型消隐或着色。又由于其不含有体的数据,用户也不能得到对象的质量、重心、体积、惯性矩等物理特性,不能进行布尔运算。图11-1显示了立体的线框模型,在消隐模式下也看到后面的线。但线框模型结构简单,易于绘制。 11.1.2 表面模型(Surface Model) 表面模型是用物体的表面表示物体。表面模型具有面及三维立体边界信息。表面不透明,能遮

挡光线,因而表面模型可以被渲染及消隐。对于计算机辅助加工,用户还可以根据零件的表面模型形成完整的加工信息。但是不能进行布尔运算。如图11-2所示是两个表面模型的消隐效果,前面的薄片圆筒遮住了后面长方体的一部分。 11.1.3 实体模型 实体模型具有线、表面、体的全部信息。对于此类模型,可以区分对象的部及外部,可以对它进行打孔、切槽和添加材料等布尔运算,对实体装配进行干涉检查,分析模型的质量特性,如质心、体积和惯性矩。对于计算机辅助加工,用户还可利用实体模型的数据生成数控加工代码,进行数控刀具轨迹仿真加工等。如图11-3所示是实体模型。 11.2 三维坐标系实例——三维坐标系、长方体、倒角、删除面AutoCAD的坐标系统是三维笛卡儿直角坐标系,分为世界坐标系(WCS)和用户坐标系(UCS)。图11-4表示的是两种坐标系下的图标。图中“X”或“Y”的剪头方向表示当前坐标轴X轴或Y 图11-1 线框模型 图11-2 表面模型 图11-3 实体模型

CAD怎么将三维立体图转换为三视图

CAD怎么将三维立体图转换为三视图 1,你已画好了立体图(立体图必须是实体的),把立体图调到你想要的那个视图(前视,俯视,左视及三维等轴测都可以) 2,点布局1(也就是进去步局),布局的视图保特和模型的视图一样(也就是说模型里是前视,布局里也是前视) 3,命令菜单栏点绘图>建模>设置>轮廓(注CAD以前的版本“建模”为“实体”),点了命令后在步局里选中立体图然后连续按4次空格键(在按空格键时你也可以仔细看看命令栏的提示) 4,点模型(就是回到模型面板),这个时候立体图就多了一层线条图了,同时图层里面多了两个以PH-BB PV-1BB命名的图层,然后你把这两个图层以外的全部图层锁定(也就是说只打开这两个图层,其它图层全都锁定) 5,如果视图是平面视图(比如前视,俯视,左视)的话你就直接“复制ctrl+c”复制整个立体图,然后新建“ctrl+n”一个图形样板,在这个新建的图形样板里“粘贴ctrl+v” 6,如果视图是轴测图那么你就要调ucs坐标了,键入命令ucs空格后输v空格视图就变成了平面视图,然后再“复制ctrl+c”到另一个图形样板里“粘贴ctrl+v” 7,在新建的图形样板里粘贴后,你会发现粘贴的图那些理论上看不到的线条也存在,你只需选中他删除就行了(因为复制过来的两个图层一个是立体图可见线,另一个是立体图理论上不可见的线条),而后的图形是一个整体,如果想自己编辑的话,只要把这个图炸闪就行 8,一次只能一个视图,N个视图的话你就要循环这几个步骤N次,其实都很简单 proe三维图如何转化为二维图,用CAD打开 我会用CAD,会用PROE画三维图,但从来没有在二者之间相互转化过。 现在三维图已经画好,如何转成二维的?说一下大概步骤就行,谢谢 要用到工程图,新建绘图类型,把你的三维模型添加进去,转化成三视图,然后保存副本,格式为dwg 然后用cad打开它就可以了 再次求CAD三维图形转化成二维图形的过程具体的步骤说一下!!跪求了!! 问题补充: CAD 图形啊!!!!实体图形随便一个立体图转化成二维的就是CAD软件自己可以转化的,我忘记怎末转化了。身边也没书!!!QQ 指导更好76837356!!

相关主题
文本预览
相关文档 最新文档