当前位置:文档之家› 2019-2020学年高三数学总复习 9.5 几何概型及互斥事件的概率教学案 新人教版必修1.doc

2019-2020学年高三数学总复习 9.5 几何概型及互斥事件的概率教学案 新人教版必修1.doc

2019-2020学年高三数学总复习 9.5 几何概型及互斥事件的概率教学案 新人教版必修1.doc
2019-2020学年高三数学总复习 9.5 几何概型及互斥事件的概率教学案 新人教版必修1.doc

2019-2020学年高三数学总复习 9.5 几何概型及互斥事件的概率教

学案 新人教版必修1

一、知识导学

1. 对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.

一般地,在几何区域 D 中随机地取一点,记事件“该点落在其内部一个区域d内”为事件A,则事件A 发生的概率

P(A)= 的测度

的测度D d . 这里要求D 的测度不为0,其中“测度”的意义依D 确定,当D 分别是线段、平面图形和立体图形时,相应的“测度”分别是长度、面积和体积等

2.互斥事件:不可能同时发生的两个事件.

如果事件A 、B 、C ,其中任何两个都是互斥事件,则说事件A 、B 、C 彼此互斥. 当A ,B 是互斥事件时,那么事件A +B 发生(即A ,B 中有一个发生)的概率,等于事件A ,B 分别发生的概率的和.

P (A +B )=P (A )+P (B ).

如果事件A 1、A 2、…、A n彼此互斥,那么事件A 1+A 2+…+A n发生(即A 1、A 2、…、A n中有一个发生)的概率,等于这n个事件分别发生的概率的和.

3.对立事件:其中必有一个发生的两个互斥事件.事件A 的对立事件通常记着A . 对立事件的概率和等于1.

P (A )=1-P (A )

4.相互独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件.

当A ,B 是相互独立事件时,那么事件A ?B 发生(即A ,B 同时发生)的概率,,等于事件A ,B 分别发生的概率的积.

P (A ?B )=P (A )?P (B ).

如果事件A 1、A 2、…、A n相互独立,那么事件A 1?A 2?…?A n发生(即A 1、A 2、…、A n同时发生)的概率,等于这n个事件分别发生的概率的积.

5.独立重复试验

如果在1次试验中某事件发生的概率是P ,那么在n次独立重复试验中这个试验恰好发生k次的概率

k n k k n n k P C k P --=)1()(

二、疑难知识导析

1.对互斥事件、对立事件的理解:

从集合角度看,事件A 、B 互斥,就是它们相应集合的交集是空集(如图1);事件A 、B 对立,就是事件A 包含的结果的集合是其对立事件B 包含的结果的补集(如图2).

“互斥事件”与“对立事件”都是就两个事件而言的,互斥事件是不可能同时发生的两个事件,而对立事件是其中必有一个发生的互斥事件,因此,对立事件必须是互斥事件,但互斥事件不一定是对立事件,也就是说“互斥”是“对立”的必要但不充分的条件.

根据对立事件的意义,(A +A )是一必然事件,那它发生的概率等于1,又由于A 与A 互斥,于是有P (A )+P (A )=P (A +A )=1,从而有P (A )=1-P (A ).当某一事件的概率不易求出或求解比较麻烦,但其对立事件的概率较容易求出时,可用此公式,转而先求其对立事件的概率.

2.对相互独立事件的理解:

相互独立事件是针对两个事件而言的,只不过这两个事件间的关系具有一定的特殊性,即其中一个事件是否发生对另一个事件发生的概率没有影响.若A 、B 两事件相互独立,则A 与B 、A 与B 、A 与B 也都是相互独立的.

3.正确理解A ?B 与A +B 的关系:设A 、B 是两个事件,则A ?B 表示这样一个事件,它的发生表示A 与B 同时发生;而A +B 表示这一事件是在A 或B 这两个事件中,至少有一个发生的前提下而发生的.公式P (A +B )=P (A )+P (B )与P (A ?B )=P (A )?P (B )的使用都是有前提的.

一般情况下,P (A +B )=1-P (B A +)

=P (A )+P (B )-P (A ?B )

它可用集合中的韦恩图来示意.

三、经典例题导讲

[例1] 从0,1,2,3这四位数字中任取3个进行排列,组成无重复数字的三位数,求排成的三位数是偶数的概率.

错解:记“排成的三位数是偶数”为事件A ,

P (A )=34

2312A A A =21. 错因:上述解法忽略了排成的三位数首位不能为零.

正解:记“排成的三位数的个位数字是0”为事件A ,“排成的三位数的个位数字是2”为事件B ,且A 与B 互斥,则“排成的三位数是偶数”为事件A +B ,于是

P (A +B )=P (A )+P (B )=231323A A A +23132212A A A A =9

5. [例2] 从1,2,3,…,100这100个数中,随机取出两个数,求其积是3的倍数的概率

.

错解:从1,2,3,…,100这100个数中,随机取出两个数,其积是3的倍数,则须所取两数至少有一个是3的倍数. 记事件A 为任取两整数相乘为3的倍数,则

P (A )=50332100

199133=C C C 错因: 这里相关的排列组合问题没有过关.

正解:基本事件数有2100C 种.在由1到100这100个自然数中,3的倍数的数组成的集合M

中有33个元素,不是3的倍数组成的集合N 中有67个元素,事件A 为任取两整数相乘为3

的倍数,分两类:(1)取M 中2个元素相乘有233C 种;(2)从集合M 、N 中各取1个元素

相乘有167

133C C 种.因为这两类互斥,所以 P (A )=150832100

167133233=+C C C C . [例3] 在房间里有4个人,问至少有两个人的生日是同一个月的概率是多少?

解:由于事件A “至少有两个人的生日是同一个月”的对立事件A 是“任何两个人的生日都不同月”.因而 至少有两个人的生日是同一个月的概率为:

P (A )=1-P (A )=1-441212

A =1-96419655=. [例4] 某单位6名员工借助互联网开展工作,每个员工上网的概率都是0.5(相互独立).求(1)至少3人同时上网的概率;(2)至少几人同时上网的概率小于0.3?

解:(1)至少3人同时上网的概率等于1减去至多2人同时上网的概率,即

1-6065.0C -6165.0C -6265.0C =1-32

21641561=++. (2)6人同时上网的概率为64

15.0666=C <0.3; 至少5人同时上网的概率为6665.0C +64

75.0656=

C <0.3; 至少4人同时上网的概率为6665.0C +6565.0C +32115.0646=C >0.3. 故至少5人同时上网的概率小于0.3.

[例5]设甲、乙两射手独立地射击同一目标,他们击中目标的概率分别为0.9、0.8,求:

(1)目标恰好被甲击中的概率;(2)目标被击中的概率.

解:设事件A 为“甲击中目标”,事件B 为“乙击中目标”.

由于甲、乙两射手独立射击,事件A 与B 是相互独立的,

故A 与B 、A 与B 也是相互独立的.

(1)目标恰好被甲击中,即事件A B 发生.

P (A ·B )=P (A )×P (B )=0.9×(1-0.8)=0.18.

∴目标恰好被甲击中的概率为0.18.

(2)目标被击中即甲、乙两人中至少有1人击中目标,即事件A ·B 、A ·B 、A ·B 发生.

由于事件A ·B 、A ·B 、A ·B 彼此互斥,

所以目标被击中的概率为

P (A ·B +A ·B +A ·B )=P (A ·B )+P (A ·B )+P (A ·B )

=P (A )·P (B )+P (A )·P (B )+P (A ·B )

=0.9×0.2+0.1×0.8+0.9×0.8=0.98.

评注:运用概率公式求解时,首先要考虑公式的应用前提.本题(2)也可以这样考虑:排除甲、乙都没有击中目标.因为P (A ·B )=P (A )·P (B )=0.1×0.2=0.02.

所以目标被击中的概率为

1-P (A ·B )=1-0.02=0.98.

[例6]某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格” ,两部分考核都是“合格”则该课程考核“合格”,甲、乙、丙三人在理论考核中合格的概率分别为0.9,0.8,0.7;在实验考核中合格的概率分别为0.8,0.7,0.9,所有考核是否合格相互之间没有影响.

(1)求甲、乙、丙三人在理论考核中至少有两人合格的概率;

(2)求这三人课程考核都合格的概率.(结果保留三位小数)

解: 记“甲理论考核合格”为事件A 1,“乙理论考核合格”为事件A 2,“丙理论考核合格”为事件A 3,“甲实验考核合格”为事件B 1,“乙实验考核合格”为事件B 2,“丙实验考核合格”为事件B 3.

(1)记“理论考核中至少有两人合格”为事件C.

则P (C )=P (A 1 A 2 3A +A 1 2A A 3+1A A 2 A 3+A 1 A 2 A 3)

=P (A 1 A 2 3A )+P (A 1 2A A 3)+P (1A A 2 A 3)+P (A 1 A 2 A 3)

=0.9×0.8×0.3+0.9×0.2×0.7+0.1×0.8×0.7+0.9×0.8×0.7

=0.902

(2)记“三人该课程考核都合格”为事件D.

则P (D )=P [(A 1·B 1)·(A 2·B 2)·(A 3·B 3)]

=P (A 1·B 1)·P (A 2·B 2)·P (A 3·B 3)

=P (A 1)·P (B 1)·P (A 2)·P (B 2)·P (A 3)·P (B 3)

=0.9×0.8×0.8×0.8×0.7×0.9

≈0.254

所以,理论考核中至少有两人合格的概率为0.902;

这三人该课程考核都合格的概率为0.254。

四、典型习题导练

1. 从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是( )

A .至少有1个黑球,都是黑球

B .至少有1个黑球,至少有1个红球

C.恰有1个黑球,恰有2个红球D.至少有1个黑球,都是红球

2.取一个边长为2a的正方形及其内切圆,随机向正方形内丢一粒

豆子,求豆子落入圆内的概率.

3.某小组有男生6人,女生4人,现从中选出2人去开会,求至少有

1名女生的概率.

4.设有编号分别为1,2,3,4,5的五封信,另有同样编号的五个信封,

现将五封信任意装入五个信封,每个信封装入一封信,试求至少有两封信配对的概率. 5.某班级有52个人,一年若按365天计算,问至少有两个人的生日在同一天的概率为多大?6.九个国家乒乓球队中有3个亚洲国家队,抽签分成甲、乙、丙三组(每组3队)进行预赛,试求:(1)三个组各有一个亚洲国家队的概率;(2)至少有两个亚洲国家队分在同一组的概率.

互斥事件及其概率

第7课互斥事件及其概率 【考点导读】 1.了解互斥事件及对立事件的概念,能判断某两个事件是否是互斥事件,进而判断它们是否是对立. 2.了解互斥事件概率的加法公式,了解对立事件概率之和为1的结论,会利用相关公式进行简单的概率计算. 【基础练习】 1.两个事件互斥是这两个事件对立的必要不充分条件(充分不必要、必要不充分、充要条件、既不充分 也不必要) 2.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是③ . ①至少有1个白球,都是红球②至少有1个白球,至多有1个红球 ③恰有1个白球,恰有2个白球④至多有1个白球,都是红球 3.从 个同类产品(其中 个是正品, 个是次品)中任意抽取

个的必然事件是④ . ① 个都是正品②至少有 个是次品③ 个都是次品④至少有 个是正品 4.从一批羽毛球产品中任取一个,质量小于4.8 g的概率是0.3,质量不小于4.85 g的概率是0.32,那么质量在[4.8,4.85)g范围内的概率 是 0.38 . 5.甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率为90%,则甲、乙二人下成和棋的概率为 50% . 【范例解析】 例1.从一堆产品(其中正品与次品都多于2件)中任取2件,观察正品件数与次品件数,判断下列每件事件是不是互斥事件,如果是,再判断它们是不是对立事件. (1)恰好有1件次品恰好有2件次品; (2)至少有1件次品和全是次品; (3)至少有1件正品和至少有1件次品; (4)至少有1件次品和全是正品.

解:依据互斥事件的定义,即事件A与事件B在一定试验中不会同时发生知:(1)恰好有1件次品和恰好有2件次品不可能同时发生,因此它们是互斥事件,但它们不是对立事件,同理可以判断:(2)(3)中的2个事件不是互斥事件,也不是对立事件.(4)中的2个事件既是互斥事件也是对立事件 点评解决此类问题,应结合互斥事件和对立事件的定义. 例2.某射手在一次射击训练中,射中10环、9环、8环、7环的概率分别为0.21,0.23,0.25,0.28,计算该射手在一次射击中: (1)射中10环或9环的概率; (2)少于7环的概率. 解:(1)该射手射中10环与射中9环的概率是射中10环的概率与射中9环的概率的和,即为P=0.21+0.23=0.44. (2)射中不少于7环的概率恰为射中10环、9环、8环、7环的概率的和,即为0.21+0.23+0.25+0.28=0.97,而射中少于7环的事件与射中不少于7环的事件为对立事件,所以射中少于7环的概率为P=1-0.97=0.03. 例3 一盒中装有各色小球共12只,其中5个红球、4个黑球、2个白球、1个绿球.现从中随机取出1球,求: (1)取出1球是红球或黑球的概率; (2)取出1球是红球或黑球或白球的概率. 解:记事件A1={任取一球为红球},A2={任取一球为黑球},A3={任取一球为白球}, A4={任取一球为绿球},则

2019高考数学概率:几何概型

几何概型 【考点梳理】 1.几何概型的定义 如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型. 2.几何概型的两个基本特点 (1)无限性:在一次试验中可能出现的结果有无限多个. (2)等可能性:每个试验结果的发生具有等可能性. 3.几何概型的概率公式 P (A )= 构成事件A 的区域长度面积或体积 试验的全部结果所构成的区域长度面积或体积 . 【考点突破】 考点一、与长度(角度)有关的几何概型 【例1】(1)在长为12 cm 的线段AB 上任取一点C ,现作一矩形,邻边长分别等于线段AC , CB 的长,则该矩形的面积大于20 cm 2的概率为( ) A .16 B .13 C .23 D .45 (2)如图所示,四边形ABCD 为矩形,AB =3,BC =1,在∠DAB 内作射线AP ,则射线AP 与线段BC 有公共点的概率为________. [答案] (1) C (2) 1 3 [解析] (1)设|AC |=x ,则|BC |=12-x ,所以x (12-x )>20,解得2

P ′在C ''B 上发生”. 又在Rt△ABC 中,易求∠BAC =∠B ′AC ′=π 6 . 故所求事件的概率P = C D l l ''B 'B =π6·1π2 ·1=13 . 【类题通法】 1.解答几何概型问题的关键在于弄清题中的考查对象和对象的活动范围,当考查对象为点,且点的活动范围在线段上时,用“线段长度”为测度计算概率,求解的核心是确定点的边界位置. 2.当涉及射线的转动,扇形中有关落点区域问题时,应以角对应的弧长的大小作为区域度量来计算概率.事实上,当半径一定时,曲线弧长之比等于其所对应的圆心角的弧度数之比. 【对点训练】 1.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( ) A .1 3 B .12 C .23 D .34 [答案] B [解析] 如图,7:50至8:30之间的时间长度为40分钟,而小明等车时间不超过10分钟是指小明在7:50至8:00之间或8:20至8:30之间到达发车站,此两种情况下的时间长度之和为20分钟,由几何概型概率公式知所求概率为P =2040=1 2 .故选 B. 2.如图所示,在等腰直角三角形ABC 中,过直角顶点C 在∠ACB 内部任作一条射线CM ,与 AB 交于点M ,则AM

人教版高中数学必修三 第三章 概率几何概型知识与常见题型梳理

几何概型知识与常见题型梳理 基本知识 1.几何概型的定义 如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型. 2.几何概型的概率公式 P(A)=积) 的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A . 3.几何概型的特点 (1)试验中所有可能出现的结果(基本事件)有无限多个;(2)每个基本事件出现的可能性相等. 4.几何概型与古典概型的比较 一方面,古典概型具有有限性,即试验结果是可数的;而几何概型则是在试验中出现无限多个结果,且与事件的区域长度(或面积、体积等)有关,即试验结果具有无限性,是不可数的.这是两者的不同之处.另一方面,古典概型与几何概型的试验结果都具有等可能性,这是两者的共性. 通过以上对几何概型的基本知识点的梳理,我们不难看出其要点是:要抓住几何概型具有无限性和等可能性这两个特点,无限性是指在一次试验中,基本事件的个数可以是无限的,这是区分几何概型与古典概型的关键所在;等可能性是指每一个基本事件发生的可能性是均等的,这是解题的基本前提.因此,用几何概型求解的概率问题跟古典概型的基本思路是相同的,同属于“比例法”,即随机事件A 的概率可以用“事件A 包含的基本事件所占的图形的长度、面积(体积)和角度等”与“试验的基本事件所占总长度、面积(体积)和角度等”之比来表示. 常见题型 1.长度之比类型 例1 小赵欲在国庆60周年之后从某车站乘车外出考察,已知该站发往各站的客车均每小时一班,求小赵等车时间不多于10分钟的概率. 分析 因为客车每小时一班,而小赵在0~60分钟之间任何一个时刻到车站等车是等可能的,所以他在哪个时间段到站等车的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件,且属于几何概型中的长度类型. 解 设A={等待的时间不多于10分钟},我们所关心的事件A 恰好是到站等车的时刻位于[50,60]这一时间段内,而事件的总体是整个一小时,即60分钟.因此,由几何概型的概率公式,得P(A)= 605060-=61,即小赵等车时间不多于10分钟的概率为6 1. 例2 在长为12 cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,求这个正方 形的面积介于36 cm 2 与81 cm 2之间的概率. 分析 正方形的面积只与边长有关,因此,此题可以转化为在12 cm 长的线段AB 上任取一点M ,求使得AM 的长度介于6 cm 与9 cm 之间的概率. 解 记“面积介于36 cm 2 与81 cm 2之间”为事件A ,事件A 的概率等价于“长度介于 6cm 与9 cm 之间”的概率,所以有P(A)= 9612-=14. 小结 本题的难点不在于几何概型与古典概型的区别,而是将正方形的面积关系转化为边长的关系,从而将问题归为几何概型中的长度类型,这是本题的关键所在.同时,本题也体现了数学上的化归思想的作用. 2.面积、体积之比类型 例3 在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成

人教版高中数学必修三 习题:第三章3.3几何概型

第三章 3.3 几何概型 3.3.1 几何概型 3.3.2 均匀随机数的产生 A 级 基础巩固 一、选择题 1.下列关于几何概型的说法中,错误的是( ) A .几何概型是古典概型的一种,基本事件都具有等可能性 B .几何概型中事件发生的概率与它的位置或形状无关 C .几何概型在一次试验中可能出现的结果有无限多个 D .几何概型中每个结果的发生都具有等可能性 解析:几何概型和古典概型是两种不同的概率模型. 答案:A 2.有下列四个游戏盘,将它们水平放稳后,向上面扔一颗小玻璃球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( ) 解析:A 中奖概率为38,B 中奖概率为14,C 中奖概率为13,D 中奖概率为1 3. 答案:A 3.在400毫升自来水中有一个大肠杆菌,今从中随机取出2毫升水样放到显微镜下观察,则发现大肠杆菌的概率为( ) A .0.008 B .0.004 C .0.002 D .0.005 答案:D 4.在2016年春节期间,3路公交车由原来的每15分钟一班改为现在的每10分钟一班,在车站停1分钟,则乘客到达站台立即乘上车的概率是( ) A.110 B.19 C.111 D.9 10 解析:记“乘客到达站台立即乘上车”为事件A ,则A 所占时间区域长度为1分钟,而整个区域的时间长度为10分钟,故由几何概型的概率公式,得P (A )=110 . 答案:A

5.在腰长为2的等腰直角三角形内任取一点,则该点到此三角形的直角顶点的距离小于1的概率为( ) A.π16 B.π8 C.π4 D. π2 解析:该点到此三角形的直角顶点的距离小于1,则此点落在以直角顶点为圆心、1为半径的14圆内.所以所求的概率为14 π12 ×2×2=π8 . 答案:B 二、填空题 6.在正方体ABCD -A 1B 1C 1D 1内随机抽取一点,则该点在三棱锥A 1-ABC 内的概率是________. 解析:P =VA 1-ABC VABCD -A 1B 1C 1D 1=1 6 . 答案:1 6 7.某人对某台的电视节目进行了长期的统计后得出结论,他任意时间打开电视机看该台节目时,看不到广告的概率为 9 10 ,那么该台每小时约有________分钟的广告. 解析:60×??? ?1-910=6(分钟). 答案:6 8.有一根长度为3 m 的绳子,拉直后在任意位置剪断,那么剪得的两段的长度都不小于1 m 的概率是________. 解析:从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3 m 的绳子上的任意一点. 如上图,记“剪得两段的长都不小于1 m ”为事件A .把绳子三等分,于是当剪断位置处在中间一段上时,事件A 发生.由于中间一段的长度等于绳长的1 3,于是事件A 发生的概率 P (A )=13 . 答案:1 3 三、解答题 9.一海豚在水池中自由游弋,水池为长30 m 、宽20 m 的长方形,求此刻海豚嘴尖离岸边不超过2 m 的概率.

概率(古典高考一轮复习概率、条件概率、离散型随机变量)(理科)

一、学习目标: 1. 了解事件、频率、概率的基本概念.理解古典概率与条件概率的特征、互斥事件与独立事件的含义、互斥事件与对立事件的区别,并能进行简单的概率计算. 2. 理解随机变量、离散型随机变量的分布列的含义及性质,并能求出离散型随机变量的分布列及数学期望(均值)与方差. 3. 了解模拟方法(几何概型)及二项分布的内容,超几何分布的特征及其简单应用. 4. 了解正态分布的概念、正态曲线的形状、正态分布中的参数含义. 二、重点、难点: 重点: 1. 概率的计算(古典概率、几何概率、条件概率、互斥事件和独立事件的概率) 2. 求离散型随机变量的分布列、均值、方差. 难点: 1. 互斥事件与对立事件的区别. 2. 古典概型与几何概型的区别. 三、考点分析: 从近几年的新课标的高考命题来看,对古典概率、条件概率、互斥事件的概率、独立事件的概率、概率的应用、离散型随机变量的分布列的性质等基础知识的考查常以选择、填空题的形式出现,题目难度小.同时新课标高考中常将对古典概率、条件概率、互斥事件的概率、独立事件的概率、离散型随机变量的分布列、期望、方差等内容结合在一起考查,题型多为解答题.此类问题在新课标高考的考查中属中档题. 一、古典概型与互斥事件 1. 频率与概率:频率是事件发生的概率的估计值. 2. 古典概率计算公式:P (A )=1P(A 0n m A ≤≤=),试验的基本事件总数包含的事件数事件. 集合的观点:设试验的基本事件总数构成集合I ,事件A 包含的事件数构成集合A ,则 I A ?. 3. 古典概型的特征:(1)每次试验的结果只有一个基本事件出现;(2)试验结果具有

高中数学 第三章 概率 几何概型的类型及解法知识素材 北师大版必修3

几何概型的类型及解法 几何概型是一种特殊的概率模型,下面结合例题介绍它的类型及其解题方法。 一、与长度有关的几何概型 若一次试验中所有可能结果和某个事件A 包含的结果(基本事件)都对应一个长度,如线段长、时间区间、距离、路程等,那么需要求出各自相应的长度,然后运用几何概型的计算公式即可求出事件A 发生的概率。 例1 某人睡觉醒来,发现钟表停了,他打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率。 分析 假设他在0~60分钟之间任何一个时刻打开收音机是等可能的。因为电台每隔1小时报时一次,他在哪个时间段打开收音机的概率只与这时间段的长度有关,因此,需要求出各自相应的时间“长度”,然后用几何概型公式求解。 解 设事件A ={等待时间不超过10分钟},我们关心的事件A 恰好是打开收音机的时刻位于[50,60]之间,它的区间长度为10;电台每隔1小时报时一次,它的区间长度为60,由几何概型的计算公式得()P A = 605060-=16。即“他等待的时间不多于10分钟的概率”为16 。 评注 解决此类问题的关键是确定他在哪个时间段打开收音机的概率只与这时间段的长度有关,把它转化为与“长度”有关的几何概型。 二、与角有关的几何概型 若一次试验中所有可能结果和某个事件A 包含的结果(基本事件)都对应一个角,那么需要求出各自相应的角度,然后运用几何概型的计算公式即可求出事件A 发生的概率。 例 如图1所示,在直角坐标系内,射线OT 落在60的终边上,任作一条射线

OA ,求射线OA 落在xOT ∠内的概率。 分析 过O 作射线OA 是随机的,射线OA 落在任何位置都是等可能的,落在xOT ∠内的概率只与xOT ∠的大小有关,符合几何概型的条件。 解 设事件A ={射线OA 落在xOT ∠内},事件A 的“几何度量”是60,而坐标平面的“几何度量”为360,所以由几何概率公式,得()P A =60360=16 。 评注 解此题的关键是找到事件A ={射线OA 落在xOT ∠内}的“几何度量”是60,以及坐标平面的“几何度量”为360。 三、与面积有关的几何概型 如果每个基本事件可以理解为从某个特定的几何区域内随机地取一点,某个随机事件的发生理解为恰好取到上述区域内的某个指定区域内的点,且该区域中每一个被取到的机会都一样,这样的概率模型就可以用几何模型来解。并且,这里的区域可以用面积表示,然后利用几何概型的公式求解。 例3 两人约定在20:00到21:00之间相见,并且先到者必须等迟到者40分钟方可离去,如果两人出发是各自独立的,在20:00到21:00各时刻相见的可能性是相等的,求两人在约定时间内相见的概率。 分析 设两人分别在x 时和y 时到达约见地点,要使两人能在约定时间范围内相见,当且仅当x y -≤23 。两人到达约定地点的所有时刻(x ,y )的可能结果可用图2中的单位正方形内(包括边界)的点表示,而两人能在约定的时间内相见的所有可能结果可用图2中的阴影部分(包括边界)表示,因此可求出两人在约定时间内相见的概率。 解 设两人分别在x 时和y 时到达约见地点,要使两人在能在约定时间范围内相见,当且仅当x y -≤23 。如图2所示,根据题意,得两人在约定时间内相见的概

高中数学完整讲义——概率_古典概型与几何概型1.古典概型

高中数学讲义 版块一:古典概型 1.古典概型: 如果一个试验有以下两个特征: ⑴有限性:一次试验出现的结果只有有限个,即只有有限个不同的基本事件; ⑵等可能性:每个基本事件发生的可能性是均等的. 称这样的试验为古典概型. 2.概率的古典定义: 随机事件A 的概率定义为()P A = A 事件包含的基本事件数 试验的基本事件总数 . 版块二:几何概型 几何概型 事件A 理解为区域Ω的某一子区域A ,A 的概率只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关,满足此条件的试验称为几何概型. 几何概型中,事件A 的概率定义为()A P A μμΩ =,其中μΩ表示区域Ω的几何度量, A μ表示区域A 的几何度量. 题型一 基础题型 【例1】 在第136816,,,,路公共汽车都要依靠的一个站(假设这个站只能停靠一辆汽车),有一 位乘客等候第6路或第16路汽车.假定当时各路汽车首先到站的可能性都是相等,则首先 到站正好是这位乘客所需求的汽车的概率等于____ 【例2】 (2010崇文一模) 从52张扑克牌(没有大小王)中随机的抽一张牌,这张牌是J 或Q 或K 的概率为_______. 【例3】 (2010上海卷高考) 从一副混合后的扑克牌(52张)中随机抽取1张,,事件A 为“抽得红桃K”,事件B 为“抽得为黑桃”,则概率()P A B = (结果用最简分数表示). 典例分析 知识内容 板块一.古典概型

高中数学讲义 【例4】 (2010湖北高考) 投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰于向上的点数是3”为事件B ,则事件A ,B 中至少有一件发生的概率是 A .512 B .12 C .712 D .3 4 【例5】 甲、乙、丙三人随意坐下一排座位,乙正好坐中间的概率为( ) A .12 B .1 3 C .14 D .16 【例6】 甲、乙、丙三人在3天节日中值班,每人值班1天,则甲紧接着排在乙后面值班的概率是 ( ) A .16 B . 14 C .1 3 D .12 【例7】 今后三天每一天下雨的概率都为50%,这三天恰有两天下雨的概率为多少? 【例8】 某学生做两道选择题,已知每道题均有4个选项,其中有且只有一个正确答案,该学生随 意填写两个答案,则两个答案都选错的概率为 . 【例9】 现有8名奥运会志愿者,其中志愿者123,,A A A 通晓日语,123,,B B B 通晓俄语,12,C C 通 晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. ⑴求1A 被选中的概率; ⑵求1B 和1C 全被选中的概率.

2019-2020年高中数学第3章概率3.4互斥事件及其发生的概率自主练习苏教版必修

2019-2020年高中数学第3章概率3.4互斥事件及其发生的概率自主练习 苏教版必修 我夯基我达标 1.如果事件A、B互斥,A、B的对立事件分别为C、D,那么( ) A.A+B是必然事件.C+D是必然事件 C.C与D一定互斥.C与D一定不互斥 思路解析:如果事件A、B互斥,则它们的对立事件也互斥. 答案:C 2.一个射手进行一次射击,试判断下面四个事件中哪些是互斥事件. 事件A:命中的环数大于8; 事件B:命中的环数大于5; 事件C:命中的环数小于4; 事件D:命中的环数小于6. 思路解析:互斥事件是指不能同时发生的两个事件.命中的环数大于8与命中的环数小于4及命中的环数小于6不能同时发生;命中的环数大于5与命中的环数小于4也不能同时发生. 答案:事件A与C,事件A与D,事件B与C分别为互斥事件. 3.同时掷3枚硬币,那么互为对立事件的是( ) A.至少有一次正面和最多有一次正面.最多有一次正面和恰有两次正面C.不多于一次正面和至少两次正面.至少有两次正面和恰有一次正面 思路解析:两个互斥事件必有一个发生,则称这两个事件为对立事件.也就是说,对立事件首先是互斥事件;至少有一次正面和最多有一次正面不是互斥事件;最多有一次正面和恰有两次正面也不是互斥事件及至少有两次正面和恰有一次正面. 答案:C 4.从一堆产品(其中正品与次品的个数都大于2)中任取两个,下列每对事件是对立事件的是( ) A.恰好有2个正品与恰好有2件次品 B.至少有1件正品与至少有1件次品C.至少1件次品与全是正品 D.至少1件正品与全是正品 思路解析:对立事件首先是互斥事件,且这两个事件中必有一个发生,它们的和事件是必然事件.恰好有2个正品与恰好有2件次品是互斥事件,但它们的和事件不是必然事件;至少有1件正品与至少有1件次品不是互斥事件;至少有1件正品与全是正品也不是互斥事件. 答案:C 5.某人打靶,连续射击2次,事件“至少有1次中靶”的对立事件是( ) A.至多有1次中靶 B.2次都中靶 C.2次都不中靶 D.只有1次中靶 思路解析:“至少有1次中靶”说明连续射击2次,中靶1次或2次,它的反面是2次都不中靶. 答案:C 6.有一道难题,甲能解出的概率是0.1,乙能解出的概率是0.2.现甲、乙两人共同独立地解此题,该难题被解出来的概率是0.1+0.2=0.3吗?为什么? 思路解析:利用概率的加法公式的前提是这些事件是彼此互斥的事件,否则就不能利用

高中数学几何概型

第6讲几何概型 一、选择题 1.在区间[-2,3]上随机选取一个数x,即x≤1,故所求的概率为() A.4 5 B. 3 5 C. 2 5 D. 1 5 解析在区间[-2,3]上随机选取一个数x,且x≤1,即-2≤x≤1,故所求的 概率为P=3 5. 答案 B 2.如图所示,半径为3的圆中有一封闭曲线围成的阴影区域,在圆 中随机扔一粒豆子,它落在阴影区域内的概率是1 3,则阴影部分的 面积是() A.π 3 B.π C.2π D.3π 解析设阴影部分的面积为S,且圆的面积S′=π·32=9π.由几何概型的概率, 得S S′= 1 3,则S=3π. 答案 D 3.(2015·山东卷)在区间[0,2]上随机地取一个数x,则事件“-1≤log1 2? ? ? ? ?x+ 1 2 ≤1”发生的概率为() A.3 4 B. 2 3 C. 1 3 D. 1 4 解析由-1≤log1 2? ? ? ? ? x+ 1 2≤1, 得1 2≤x+ 1 2≤2, 解得0≤x≤3 2,所以事件“-1≤log1 2 ? ? ? ? ? x+ 1 2≤1”发生的 概率为3 2 2= 3 4,故选A. 答案 A

4.(2017·东北师大附中检测)若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是( ) A.π2 B.π4 C.π6 D.π8 解析 设质点落在以AB 为直径的半圆内为事件A ,则P (A )=阴影面积长方形面积 = 12π×121×2=π 4. 答案 B 5.在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD -A 1B 1C 1D 1 内随机取一点P ,则点P 到点O 的距离大于1的概率为( ) A.π12 B.1-π12 C.π6 D.1-π6 解析 设“点P 到点O 的距离大于1”为事件A . 则事件A 发生时,点P 位于以点O 为球心,以1为半径的半球的外部. ∴V 正方体=23=8,V 半球=43π·13×12=2 3π.∴P (A )=23-23π2 3 =1-π12. 答案 B 6.已知△ABC 中,∠ABC =60°,AB =2,BC =6,在BC 上任取一点D ,则使△ABD 为钝角三角形的概率为( ) A.16 B.13 C.12 D.23 解析 如图,当BE =1时,∠AEB 为直角,则点D 在线段BE (不包含B ,E 点)上时,△ABD 为钝角三角形;当BF =4 时,∠BAF 为直角,则点D 在线段CF (不包含C ,F 点)上时,△ABD 为钝角

2020版高考数学一轮复习教程学案第81课互斥事件及其发生的概率 Word版含解析

第80课第课互斥事件及其发生的概率 . 理解互斥事件与对立事件的概念,能判断两个事件是否是互斥事件、对立事件. . 了解两个互斥事件概率的加法公式,了解对立事件概率之和为的结论. . 能用互斥事件的概率加法公式计算一些事件的概率. . 阅读:必修第~页. . 解悟:①读懂互斥事件、对立事件的定义;②归纳出互斥事件、对立事件的特征;③重解课本例题,体会方法. . 践习:在教材空白处,完成本节习题. 基础诊断 . 根据多年气象统计资料,某地月日下雨的概率为,阴天的概率为,则该日晴天的概率为. 解析:设事件“某地月日下雨”为事件,“某地月日阴天”为事件,“某地月日晴天”为事件,由题意可得事件,,为互斥事件,所以()+()+()=.因为()=,()=,所以()=. . 一个人在打靶中连续射击次,事件“至少有次中靶”的对立事件是次都不中靶. . 将两枚均匀的正六面体的骰子各掷一次,出现点数之和不小于的概率是. 解析:将两枚均匀的正六面体骰子各掷一次,则基本事件的总数是×=,且每个基本事件都是等可能的.出现点数之和不小于的基本事件有(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),共有种,所以出现点数之和不小于的概率为==. . 从装有只红球,只白球的袋中任意取出只球,有事件:①“取出只红球和只白球”与“取出只红球和只白球”;②“取出只红球和只白球”与“取出只红球”;③“取出只红球”与“取出只球中至少有只白球”;④“取出只红球”与“取出只白球”. 其中是对立事件的有③.(填序号) 解析:从袋中任意取只球,可能的情况有“只红球”“只红球、只白球”“只红球、

创新设计2020高考数学一轮复习排列组合与概率(课件+随堂演练)打包下载6几何概型doc高中数学

创新设计2020高考数学一轮复习排列组合与概率(课件+随堂演练)打包下载6几何概型doc 高中 数学 一、选择题 1.函数f (x )=x 2-x -2,x ∈[-5,5],那么任取一点x 0∈[-5,5],使f (x 0)≤0的概率是( ) A .1 B.2 3 C.310 D.25 解析:将咨询题转化为与长度有关的几何概型求解,当x 0∈[-1,2]时,f (x 0)≤0.那么所求概率P =2-(-1)5-(-5)=3 10. 答案:C 2. (2018·福建福州)为了测算如右图阴影部分的面积,作一个边长为6的正方形将其包含在内,并向正方形内随机投掷800个点,恰有200个点落在阴影部分内,据此,可估量阴影部分的面积是( ) A .12 B .9 C .8 D .6 解析:正方形面积为36,阴影部分面积为200 800×36=9. 答案:B 3. 如下图,设M 是半径为R 的圆周上一个定点,在圆周上等可能地任取一点N ,连结MN ,那么弦MN 的长超过 R 的概率为( ) A.15 B.14 C.13 D.12

解析:在圆上过圆心O 作与OM 垂直的直径CD ,那么MD=MC= ,当点N 不在半 圆弧上时,MN> ,故所求的概率P(A)= . 答案:D 4.(2018·高考改编题)在区间[-1,1]上随机取一个数x ,那么 sin πx 4的值介于-12与2 2 之间的 概率为( ) A.14 B.13 C.23 D.56 解析:在区间[-1,1]上随机取一个数x ,要使sin πx 4的值介于-12与22之间,需使-π6≤ πx 4 ≤π4,即-23≤x ≤1,其区间长度为5 3,由几何概型公式知所求概率为532=56,应选D. 答案:D 二、填空题 5. (2018·安徽合肥模拟)某人随机地在如右图所示正三角形及其外接圆区域内部投针(不包括三角形边界及圆的边界),那么针扎到阴影区域(不包括边界)的概率为________. 解析:设正三角形边长为a ,那么外接圆半径r =32a ·23=33 a . ∴概率P =34a 2π ????33a 2=33 4π. 答案:33 4π 6. 如右图所示,在直角坐标系内,射线OT 落在60°角的终边上,任作一条射线OA ,求

苏教版必修3高一数学7.4.1互斥事件及其发生的概率练习

第9课时7.4.1 互斥事件及其发生的概率(1) 分层训练 1、某人在打阿靶中,连续射击2次,至少有1次中靶的对立事件是( ) A 、两次都中靶 B 、到多有一次中靶 C 、两次都不中靶 D 、只有一次中靶 2、某产品分甲、乙、丙三个等级,其中乙、丙两等级均属次品,若生产中出现乙级产品的概率为0.03,丙级产品的概率为0.01,则对成品抽查一件,恰好是正品的概率为( ) A 、0.99 B 、0.98 C 、0.97 D 、0.96 3、甲乙两人下棋,甲获胜的概率为0.2,两人下成和棋的概率为0.35,那么甲不输的概率为( ) A 、0.2 B 、0.35 C 、0.55 D 、0.65 4、一个盒内放有大小相同的10个小球,其中有5个红球、3个绿球、2个白球,从中任取2个球,至少有一个绿球的概率是( ) A 、 152 B 、158 C 、157 D 、5 2 5、某人进行射击表演,已知其击中10环的概 率0.35,击中9环的概率为0.30,中8环的概率是0.25,现准备射击一次,问击中8环以下(不含8环)的概率是多少? 6、若A 表示四件产品中至少有一件是废品的事件,B 表示废品不少于两件的事件,试问对立事件A 、B 各表示什么? 拓展延伸 7、已知盒子中有散落的棋子15粒,其中6粒是黑子,9粒是白子,已知从中取出2粒都是黑子的概率是7 1 ,从中取出2粒都是白子的概率是 35 12 ,现从中任意取出2粒恰好是同一色的概率是多少? 8、四位同学各人写好一张贺卡,集中起来每人从中抽取一张,试求都抽不到自己所写卡片的概率。 9、某医院一天内派出医生下乡医疗,派出医生人 求:(1)派出医生至多2人的概率; (2)派出医生至少2人的概率. 本节学习疑点: 7.4.1随机事件及其概率(1)

高中数学学案:互斥事件及其发生的概率

高中数学学案:互斥事件及其发生的概率 1. 理解互斥事件与对立事件的概念,能判断两个事件是否是互斥事件、对立事件. 2. 了解两个互斥事件概率的加法公式,了解对立事件概率之和为1的结论. 3. 能用互斥事件的概率加法公式计算一些事件的概率. 1. 阅读:必修3第112~117页. 2. 解悟:①读懂互斥事件、对立事件的定义;②归纳出互斥事件、对立事件的特征;③重解课本例题,体会方法. 3. 践习:在教材空白处,完成本节习题. 基础诊断 1. 根据多年气象统计资料,某地6月1日下雨的概率为0.45,阴天的概率为0.20,则该日晴天的概率为0.35. 解析:设事件“某地6月1日下雨”为事件A,“某地6月1日阴天”为事件B,“某地6月1日晴天”为事件C,由题意可得事件A,B,C为互斥事件,所以P(A)+P(B)+P(C)=1.因为P(A)=0.45,P(B)=0.2,所以P(C)=0.35. 2. 一个人在打靶中连续射击2次,事件“至少有1次中靶”的对立事件是2次都不中靶. 3. 将两枚均匀的正六面体的骰子各掷一次,出现点数之和不小于8的概率是5 12. 解析:将两枚均匀的正六面体骰子各掷一次,则基本事件的总数是6×6=36,且每个基本事件都是等可能的.出现点数之和不小于8的基本事件有(2,6),(3,5),(3,6),(4,4),(4,5),(4,6),(5,3),(5,4),(5,5),(5,6),(6,2),(6,3),(6,4),(6,5),(6,6),共有15种,所以出 现点数之和不小于8的概率为P=15 36= 5 12. 4. 从装有5只红球,5只白球的袋中任意取出3只球,有事件:①“取出2只红球和1只白球”与“取出1只红球和2只白球”;②“取出2只红球和1只白球”与“取出3只红球”; ③“取出3只红球”与“取出3只球中至少有1只白球”;④“取出3只红球”与“取出3只白球”. 其中是对立事件的有③.(填序号) 解析:从袋中任意取3只球,可能的情况有“3只红球”“2只红球、1只白球”“1只红

人教新课标A版高中数学必修3第三章概率3.3几何概型同步测试D卷

人教新课标A版高中数学必修3 第三章概率 3.3几何概型同步测试D卷 姓名:________ 班级:________ 成绩:________ 一、单选题 (共15题;共30分) 1. (2分) (2016高二上·定州期中) 在平面区域内随机取一点,则所取的点恰好满足x+y≤ 的概率是() A . B . C . D . 2. (2分)(2017·湘潭模拟) 如图所示的阴影部分是由x轴,直线x=1及曲线y=ex﹣1围成,现向矩形区域OABC内随机投掷一点,则该点落在阴影部分的概率是() A . B . C . D . 3. (2分)如图,在半径为1的圆内有四段以1为半径的相等弧,现向园内投掷一颗豆子(假设豆子不落在线上),则恰好落在阴影部分的概率为()

A . B . C . D . 4. (2分)(2017·葫芦岛模拟) 设f(x)=. ,直线x=0,x=e,y=0,y=1所围成的区域为M,曲线y=f(x)与直线y=1围成的区域为N,在区域M内任取一个点P,则点P在区域N内概率为() A . B . C . D . 5. (2分) (2017高一上·深圳期末) 为了测算如图阴影部分的面积,作一个边长为6的正方形将其包含在内,并向正方形内随机投掷800个点,已知恰有200个点落在阴影部分内,据此,可估计阴影部分的面积是() A . 12 B . 9

D . 6 6. (2分) (2018高一下·伊通期末) 已知定义在上的偶函数在上单调递增,若 ,则不等式成立的概率是() A . B . C . D . 7. (2分) (2016高一下·揭阳开学考) 在区间[﹣1,1]上任取两个实数x,y,则满足不等式的概率为() A . B . C . D . 8. (2分) (2016高二上·抚州期中) 如图面积为4的矩形ABCD中有一个阴影部分,若往矩形ABCD投掷1000个点,落在矩形ABCD的非阴影部分中的点数为400个,试估计阴影部分的面积为()

苏教版必修3高一数学7.4.2互斥事件及其发生的概率练习

第10课时7.4.2 互斥事件及其发生的概率(2) 分层训练 1、先后抛掷两颗骰子,设出现的点数之和是12,11,10的概率依次是123,,P P P ,则( ) A .123P P P =< B .123P P P << C .123P P P <= D .321P P P =< 2、已知直线36y x =-+与4y x =-+,现将一个骰子连掷两次,设第一次得的点数为x ,第二次得的点数为y ,则点(x ,y )在已知直线下方的概率为_____________. 3、 某工厂为节约用电,规定每天的用电量指标为1000千瓦时,按照上个月的用电记录,30天中有12天的用电量超过指标,若第二个月仍没有具体的节电措施,则该月的第一天用电量超过指标的概率为_______________. 4、抛掷一粒骰子,观察掷出的点数,设事件A 为出现奇数,事件B 为出现2点,已知P (A )= 21,P (B )=6 1 ,求出现奇数点或2点的概率之和. 5、在房间里有4个人.问至少有两个人的生日是同一个月的概率是多少? 拓展延伸 6、在一只袋子中装有7个红玻璃球,3个绿玻璃球.从中无放回地任意抽取两次,每次只取一个.试求: (1)取得两个红球的概率; (2)取得两个绿球的概率; (3)取得两个同颜色的球的概率; (4)至少取得一个红球的概率. 7、.某单位36人的血型类别是:A 型12人,B 型10人,AB 型8人,O 型6人.现从这36人中任选2人,求此2人血型不同的概率. 8、一场篮球比赛到了最后5分钟,甲队比乙队少得5分.若甲队全投3分球,则有8次投篮机会.若甲队全投2分球,则有3次投篮机会.假设甲队队员投3分球的命中率均为0.6,投2分球的命中率均为0 .8,并且甲队加强防守,不给乙队投篮机会.问全投3分球与全投2分球这两种方案中选择哪一种甲队获胜的概率较大? 本节学习疑点: 7.4.2随机事件及其概率(2)

最新高考-2018年高考数学概率统计的解题技巧 精品

第八讲 概率统计的解题技巧 【命题趋向】概率统计命题特点: 1.在近五年高考中,新课程试卷每年都有一道概率统计解答题,并且这五年的命题趋势是一道概率统计解答题逐步增加到一道客观题和一道解答题;从分值上看,从12分提高到17分;由其是实施新课标考试的省份, 增加到两道客观题和一道解答题.值得一提的是此累试题体现了考试中心提出的“突出应用能力考查”以及“突出新增加内容的教学价值和应用功能”的指导思想,在命题时,提高了分值,提高了难度,并设置了灵活的题目情境,如测试成绩、串联并联系统、计算机上网、产品合格率、温度调节等,所以在概率统计复习中要注意全面复习,加强基础,注重应用. 2.就考查内容而言,用概率定义(除法)或基本事件求事件(加法、减法、乘法)概率,常以小题形式出现;随机变量取值-取每一个值的概率-列分布列-求期望方差常以大题形式出现.概率与统计还将在选择与填空中出现,可能与实际背景及几何题材有关. 【考点透视】 1.了解随机事件的发生存在着规律性和随机事件概率的意义. 2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率. 3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率. 4.会计算事件在n 次独立重复试验中恰好发生k 次的概率. 5. 掌握离散型随机变量的分布列. 6.掌握离散型随机变量的期望与方差. 7.掌握抽样方法与总体分布的估计. 8.掌握正态分布与线性回归. 【例题解析】 考点1. 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P (A )=) ()(I card A card =n m ; 等可能事件概率的计算步骤: ① 计算一次试验的基本事件总数n ; ② 设所求事件A ,并计算事件A 包含的基本事件的个数m ; ③ 依公式()m P A n =求值; ④ 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B ); 特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的 概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”: ① 求概率的步骤是:

高中数学:几何概型 (25)

课后作业(二十二) (时间45分钟) 学业水平合格练(时间25分钟) 1.用随机模拟方法求得某几何概型的概率为m ,其实际概率的大小为n ,则( ) A .m >n B .m

4.设一直角三角形两直角边的长均是区间[0,1]上的随机数,则斜边的长小于1的概率为( ) A.12 B.34 C.π4 D.3π16 [解析] 设两直角边分别为x ,y ,则x ,y 满足x ∈[0,1],y ∈[0,1], 则P (x 2+y 2 <1)=π4. [★答案★] C 5.如图所示,在墙上挂着一块边长为16 cm 的正方形木块,上面画了小、中、大三个同心圆,半径分别为2 cm,4 cm,6 cm ,某人站在3 m 之外向此板投镖,设镖击中线上或没有投中木板时不算,可重投,记事件A ={投中大圆内}, 事件B ={投中小圆与中圆形成的圆环内}, 事件C ={投中大圆之外}. (1)用计算机产生两组[0,1]内的均匀随机数,a 1=RAND ,b 1=RNAD. (2)经过伸缩和平移变换,a =16a 1-8,b =16b 1-8,得到两组[-8,8]内的均匀随机数. (3)统计投在大圆内的次数N 1(即满足a 2+b 2<36的点(a ,b )的个数),投中小圆与中圆形成的圆环次数N 2(即满足4

高三数学互斥事件有一个发生的概率

高三数学互斥事件有一个发生的概率 、课互斥事件有一个发生的概率 、教学目标:了解互斥事件的意义,会用互斥事件的概率加法公式计算一些事件的概率. 三、教学重点: 互斥事件的概念和互斥事件的概率加法公式. 四、教学过程: (一) 主要知识: 仁互斥事件的概念: ___________________________________________________________ 2 .对立事件的概念: _________________________________________________________ 3 ?若 代B 为两个事件,则 A B 事件指 ______________________________ . 若A,B 是互斥事件,则 P(A B) ____________________________ . (二) 主要方法: 1 ?弄清互斥事件与对立事件的区别与联系; 2.掌握对立事件与互斥事件的概率公式; (三) 基础训练: 1?某产品分甲、乙、丙三个等级,其中乙、丙两等级为次品,若产品中出现乙级品的概率 为0.03,出 现丙级品的概率为 0.01,则在成品中任意抽取一件抽得正品的概率为 ( ) (A )0.04 (B )0.96 (C )0.97 (D )0.99 2.下列说法中正确的是 ( ) (A) 事件A 、B 中至少有一个发生的概率一定比 A 、B 中恰有一个发生的概率大 (B) 事件A 、B 同时发生的概率一定比事件 A 、B 恰有一个发生的概率小 (C) 互斥事件一定是对立事件,对立事件不一定是互斥事件 (四) 例题分析: 例1.袋中有5个白球,3个黑球,从中任意摸出 4个,求下列事件发生的概率: (1) 摸出2个或3个白球;(2)至少摸出1个白球;⑶至少摸出1个黑球. 3. (D) 互斥事件不一定是对立事件,对立事件 一盒内放有大小相同的 10个球,其中有 球,其中至少有1个绿球的概率为 2 8 (A ) (B )- -定是互斥事件 5个红球,3个绿球,2个白球,从中任取 ( 2 (C)5 4. 在5件产品中,有3件一等品和2件二等品, 5. (A)都不是一等品 (C)至少有一件一等品 今有光盘驱动器50个,其中一级品45个, 为 C 53 (A )荷 C 50 C 3 (C)1 - C 5 C 50 7 (D)- 15 从中任取2件,那么以—为概率的事件是( 10 (B)恰有一件一等品 (D)至多一件一等品 二级品5个,从中任取3个,出现二级品的概率 ( ) C 5 c ; c ; (B)」3 - C 50 (D )C 5C 45 C 5 C 45

相关主题
文本预览
相关文档 最新文档