当前位置:文档之家› 基于激光快速成型技术的金属粉末烧结工艺

基于激光快速成型技术的金属粉末烧结工艺

基于激光快速成型技术的金属粉末烧结工艺
基于激光快速成型技术的金属粉末烧结工艺

基于激光快速成型技术的金属粉末烧结工艺

罗新华,花国然

(南通工学院机械工程系,江苏南通

226007)

摘要:文章详细介绍了金属粉末快速成型的研究现状,分析了金属粉末选择性激光烧结的工艺特点,对这些工艺的影响因素进行了讨论。在实验基础上,得到了合理的铁基、镍基F105合金粉末的激光烧结工艺。关键词:选区激光烧结;金属零件;影响因素中图分类号:T H16;TG 665

文献标识码:A

文章编号:1671-5314(2004)03-0029-04

Metal Powder of Laser R a p id Protot yp in g and Manufacturin g B ased on

Sinterin g Technolo gy

LUO X in -hua ,HUA G uo -ran

(Nanton g Institute of T echnolo gy ,Nanton g 226007,China )

Abstracts :As a ke y technolo gy of ra p id p rotot y p in g and m anufacturin g (RP &M ),ra p id m anufacturin g of m etal p arts is a tar g et of RP &M.Based on the introduction of research status and techni q ue characteristic of selective laser sinterin g of m etal p owder which is one of the m ost im p ortant contents of ra p id p rotot y p in g technolo gy ,ex p erim ents on selective laser sinterin g of iron and nickel based on allo y p owder are done and effects of techni q ue p aram eters are studied s y stem aticall y .In the end ,ade q uate sinter 2in g p aram eters of p owder are derived and verified w ith sinterin g ex p erim ents.K e y w ords :selective laser sinterin g p rocess ;m etal Parts ;factor

基金项目:江苏省教育厅基金项目(03K JD460165),南通市科技局基金项目(Z2003)

作者简介:罗新华(1947-),男,江苏南通人,南通工学院机械工程系副教授,主要研究方向为激光快速成型技术、纳米技术。

快速制造(Ra p id M anufacturin g )金属零件一直受到国内外的广泛重视,是当今快速成型领域的一个重要研究方向[1-2]。到目前为止,用于直接成型金属材料、制备三维金属零件的技术主要有激光近形制造与金属粉末的选择性激光烧结技术。激光近形制造(LENS ),又称激光熔覆制造或熔滴制造,它将激光熔覆工艺与激光快速成型技术相结合,利用激光熔覆工艺逐层堆积累加材料,形成具有三维形状的三维结构。在该方面,美国的Aerom et 、德国的汉诺威激光中心以及清华大学激光加工研究中心等均进行了大量的研究,并得到了具有一定形状的三维实体零件。有异于激光近形制造,选择性激光烧结则有选择

地逐层烧结固化粉末金属得到三维零件。在这一领域,美国的DT M 、德国的汉诺威激光中心等进行了多元金属的烧结研究[3-5]。就选区激光烧结(S elective Laser S interin g ,S LS )而言,根据成型用金属粉末的不

同,人们又开发出多种工艺途径来实现金属零件的烧结成型,主要有三种途径:一是利用金属粉末与有

机粘结剂粉末共混粉体的间接烧结,金属粉末与有机粘结剂粉末均匀共混,烧结中,低熔点的粘结剂粉

末熔化并将高熔点的金属粉末粘结,形成原型(“

绿件”),经后处理,烧失粘结剂,形成“褐件”,最后通过金属熔渗工艺得到致密的金属件;二是利用金属混合粉末的直接烧结,其中一种粉末具有较低的熔点(如铜粉),另一种粉末熔点较高(如铁粉),烧结中低熔点的金属粉末铜熔化并将难熔的铁粉粘结在一起,这种方法同样需要较大功率激光器;三是利用单一成

分金属粉末的直接烧结,这种方法目前主要用于低熔点金属粉末的烧结,对熔点高的金属粉末,需采用大功率激光器。本文在实验的基础上,分别对上述的

第3卷第3期2004年9月

南通工学院学报(自然科学版)

Journal of Nanton g Institute of T echnolo gy (Natural S cience )

V ol.3N o.3

S e p .2004

南通工学院学报(自然科学版)

?30?2004年

间接和直接烧结成型工艺进行了初步的研究[6]。

1S LS的烧结原理

激光选择性烧结快速成型技术是使用激光束熔化或烧结粉末材料,利用分层的思想,把计算机中的CAD模型直接成型为三维实体零件。它的创新之处在于将激光、光学、温度控制和材料相联系。S LS烧结原理如图1所示,烧结过程可分为三部分:(1)首先在粉体床上铺一薄层粉体,并压实,可以根据需要,在激光烧结前进行预热;(2)激光照射粉体层,烧结粉体,形成所设计零件一层的形状;(3)粉体床下降一个薄层厚度的距离;重复上面的过程,直到原型零件完成。

S LS对粉末烧结的明显优势在于:(1)和其它的加工方法比较,能获得优良的材料性能,同时,它的加工材料范围比较宽(聚合物、金属、陶瓷、铸造砂等);(2)易于实现液相烧结,烧结周期比较短;(3)比传统的烧结方法更易得到密实的以粉末金属为原料的产品;(4)工艺比较简单,烧结路线、烧结温度便于控制。

2金属零件间接烧结的工艺过程

图2为基于小功率激光烧结快速成型设备RAP-II的金属零件快速制造的工艺过程简图。由图可知,主要分三个阶段:一是利用快速成型技术的RP原型件(“绿件”)的制作,该部分的关键在于如何选用合理的粉末配比和加工工艺参数实现原型件的制作。试验表明,对RP原型件成型来说,混合粉体中环氧树脂粉末比例高,有利于其准确致密成型,成型质量高。但环氧树脂粘结剂含量过高,金属粉末含量过低,则会出现褐件制作时的烧失“塌陷”现象和金属熔渗时出现局部渗不足现象。可见,粉末材料配比

将严重影响原型件及褐件的制作质量,而且两阶段对配比的要求相互矛盾。原则上必须兼顾绿件成型所需的最少粘结剂成分,同时又不致因过高而导致褐件难以成型。实际加工中,环氧树脂与金属粉末的比例一般控制在1:5与1:3之间。同时,影响激光烧结快速成型原型件质量的烧结参数很多,如粉末材料的物性、扫描间隔、扫描层厚、激光功率以及扫描速度等。实验表明,对于小功率激光器的激光烧结快速成型系统RAP-II,激光功率可调范围很小,激光功率对烧结性能的影响可以归结到扫描速度上,而扫描速度的选择必须兼顾加工效率、烧结过程与烧结质量的要求。较低的扫描速度,可以保证粉末材料的充分熔化,获得理想的烧结致密度;但是,扫描速度过低,材料熔化区获得的激光能量过多,容易引起“爆破飞溅”现象,出现烧结表面“疤痕”,且熔化区内易出现材料“炭化”,从而降低烧结表面质量。为保证加工层面之间与扫描线之间的牢固粘结,采用的扫描间隔不宜过大。实际加工中,烧结线间、层面间应有少许重叠,方可获得较好的烧结质量。扫描层厚也是激光烧结成型的一个重要参数,它的选择,也与激光烧结成型的烧结质量密切相关。扫描层厚度必须小于激光束的烧结深度,使正烧结的新层与已烧结层能牢固地粘连在一起,形成致密的烧结体,但过小的扫描层厚度,会增加烧结应力,损坏已烧结层面,烧结效果反而降低,因此,扫描层厚选择必须适当,才能保证获得较好的烧结质量。总的来说,工艺参数的选取不仅要保证层面之间、烧结线之间的牢固粘结,还应该保证粉末材料的充分熔化,即烧结实体中不应存在“夹生”现象,应保证烧结成型各工艺参数的互相匹配。同时,尽量做到粉末材料不炭化,烧结过程平稳。在此基础上尽可能采用较大的工艺参数,提高加工效率。二是“褐件”的制作,关键在于探索如何烧失原型件中的有机杂质,获得具有相对准确形状和强度的金属结构体。褐件制作时需经过两次烧结过程,烧结温度和时间是主要的影响因素。应控制合适的烧结温度和时间,随着粘结剂烧失的同时,使金属粉末颗粒间发生微熔粘结,从而保证原型件不致塌陷。三是金属熔渗阶段,关键在于选用合适的熔渗材料及工艺,以获得较致密的最终金属零件。原型件烧结完成后,经过二次烧结与三次烧结,得到一个具有一定强度与硬度、内部具有疏松性“网状连通”结构的“褐件”。这些都是金属熔渗工艺的有利条件。试验表明,

合适的熔渗材料对形成金属件的致密

?31?罗新华,等:基于激光快速成型技术的金属粉末烧结工艺

性有较大影响。所选渗入金属必须比“褐件”中金属的熔点低,以保证在较低温度下渗入。

采用上述工艺过程进行了金属零件的快速制造试验。试验中采用金属铁粉末、环氧树脂粉末、固化剂粉末混合,其体积比为67%、16%、17%;在激光功率40W下,取扫描速度170mm/s,扫描间隔在0.2mm左右,扫描层厚为0.25mm时烧结。后处理二次烧结时,控制温度在800℃,保温1h;三次烧结时温度1080℃,保温40m in;熔渗铜时温度1120℃,熔渗时间40m in。所成型的金属齿轮零件如图3所示。

3直接烧结成型工艺

图4为基于较大功率的激光烧结金属零件快速制造的工艺过程简图。由图可知,成型过程明显缩短,无需间接烧结时复杂的后处理阶段。但必须有较大功率的激光器,以保证直接烧结过程中金属粉末的直接熔化。因而,直接烧结中激光参数的选择,被烧结金属粉末材料的熔凝过程及控制是烧结成型中的关键。

激光功率是激光直接烧结工艺中的一个重要影响因素。功率越高,激光作用范围内能量密度越高,材料熔化越充分,同时烧结过程中参与熔化的材料就越多,形成的熔池尺寸也就越大,粉末烧结固化后易生成凸凹不平的烧结层面,激光功率高到一定程度,激光作用区内粉末材料急剧升温,能量来不及扩散,易造成部分材料甚至不经过熔化阶段直接汽化,产生金属蒸汽。在激光作用下该部分金属蒸汽与粉末材料中的空气一道在激光作用区内汇聚、膨胀、爆破,形成剧烈的烧结飞溅现象,带走熔池内及周边大量金属,形成不连续表面,严重影响烧结工艺的进行,甚至导致烧结无法继续进行。同时这种状况下的飞溅产物也容易造成烧结过程的“夹杂”。光斑直径是激光烧结工艺的另外一个重要影响因素。总的来说,在满足烧结基本条件的前提下,光斑直径越小,熔池的尺寸也就可以控制得越小,越易在烧结过程中形成致密、精细、均匀一致的微观组织。同时,光斑越细,越容易得到精度较好的三维空间结构,但是光斑直径的减小,预示着激光作用区内能量密度的提高,光斑直径过小,易引起上述烧结飞溅现象。扫描间隔是选择性激光烧结工艺的又一个重要影响因素,它的合理选择对形成较好的层面质量与层间结合,提高烧结效率均有直接影响。同间接工艺一样,合理的扫描间隔应保证烧结线间、层面间有少许重叠[7-8]。

在激光连续烧结成形过程中,整个金属熔池的凝固结晶是一个动态的过程。随着激光束向前移动,在熔池中金属的熔化和凝固过程是同时进行的。在熔池的前半部分,

固态金属不断进入熔池处于熔化

南通工学院学报(自然科学版)

?32?2004年状态,而在熔池的后半部分,液态金属不断脱离熔池

而处于凝固状态。由于熔池内各处的温度、熔体的流

速和散热条件是不同的,在其冷却凝固过程中,各处

的凝固特征也存在一定的差别。对多层多道激光烧

结的样品,每道熔区分为熔化过渡区和熔化区。熔化

过渡区是指熔池和基体的交界处,在这区域内晶粒

处于部分熔化状态,存在大量的晶粒残骸和微熔晶

粒,它并不是构成一条线,而是一个区域,即半熔化

区。半熔化区的晶粒残骸和微熔晶粒都有可能作为在凝固开始时的新晶粒形核核心。对N i基金属粉末烧结成形的试样分析表明:在熔化过渡区其主要机制为微熔晶核作为异质外延,形成的枝晶取向沿着固—液界面的法向方向。熔池中除熔化过渡区外,其余部分受到熔体对流的作用较强,金属原子迁移距离大,称为熔化区。该区域在对流熔体的作用下,将大量的金属粉末粘接到熔池中,由于粉末颗粒尺寸的不一致(粉末的粒径分布为15~130μm),当激光功率不太大时,小尺寸粉末颗粒可能完全熔化,而大尺寸粉末颗粒只能部分熔化,这样在熔化区中存在部分熔化的颗粒,这部分的颗粒有可能作为异质形核核心;当激光功率较高时,能够完全熔化熔池中的粉末,在这种情况下,该区域主要为均质形核。在激光功率较小时,容易形球,且形球对烧结成形不利,因此对N i基金属粉末烧结成形通常采用较大的功率密度,其熔化区其主要为均质形核,形成等轴晶。

根据上述分析,进行了N i基F105合金粉末的激光烧结试验。试验中激光功率900W,光斑直径0.8mm,扫描间隔0.6mm,扫描速度1.2m/m in,粉层厚度0.1mm,成型的块体金属零件如图5所示。

4结论

基于小功率激光烧结系统,采用间接烧结工艺,可以实现金属零件的快速烧结成型。但成型过程中影响质量的因素较多,必须统筹兼顾、合理选取,才能获得高质量的成型零件。镍基F105粉末的选择性激光烧结实验表明,直接烧结中激光参数的选择,被烧结金属粉末材料的熔凝过程及控制是烧结成型中的关键。合理的烧结工艺和参数,是获得内部组织致密、均匀、精细、表面质量较好的金属制件的保证。

参考文献:

[1]K ruth J P,Leu M C,Naka g aw a T.Pro g ress in additive

m anufacturin g and ra p id p rotot y p in g[J].Annals of CIRP,1998, 47(2):525-540.

[2]W ohlers T.Ra p id Protot y p in g&T oolin g State of the Industr y

[C].S econd International C onference on Ra p id Protot y p in g&

Ra p id M anufacturin g,Bei j in g,China,2002.

[3]罗新华,花国然.快速原型制造技术的应用及进展[J].

机械制造,1998,(3):7-9.

[4]A g arw ala M,Bourell D,Beam an J.Direct S elective Laser

S interin g of M etals[J].Ra p id Protot y p in g Journal,1995,1(1): 26-36.

[5]杨森,钟敏霖,张庆茂,等.激光快速成型金属零件的新

方法[J].激光技术,2001,25(4):254-257.

[6]Hua G uoran,Huan g Y inhui,Zhao Jianfen g,et al.Researches on

the ra p id m anufacturin g of m etal p arts[J].Journal of S outh-

E ast Universit y,2002,18(2):123-127.

[7]花国然,黄因慧,赵剑锋,等.激光熔渗纳米Al2O3复合陶

瓷涂层组织和性能研究[J].中国有色金属学报,2004,14

(2):199-203.

[8]王家金.激光加工技术[M].北京:中国计量出版社,1992,

63-

66.

几种常见快速成型工艺的比较

几种快速成型方式的比较 几种常见快速成型工艺的比较 在快速领域里一直站主导地位快速成型工艺主要包括:FDM, SLA, SLS, LOM等工艺,而这几种工艺又各有千秋,下面我们在主 要看一下这几种工艺的优缺点比较: FDM(fused deposition Modeling)丝状材料选择性熔覆快速原型工艺是一种不依靠激光作为成型能源、而将各种丝材(如工程塑料、聚碳酸酯)加热熔化进而堆积成型方法,简称丝状材料选择性熔覆. 原理如下:加热喷头在计算机的控制下,根据产品零件的截面轮廓信息,作平面运动,热塑性丝状材料由供丝机构送至热熔喷头,并在喷头中加热和熔化成半液态,然后被挤压出来,有选择性的涂覆在工作台上,快速冷却后形成一层大约0.127mm厚的薄片轮廓。一层截面成型完成后工作台下降一定高度,再进行下一层的熔覆,好像一层层画出截面轮廓,如此循环,最终形成三维产品零件。 这种工艺方法同样有多种材料可供选用,如工程塑料;聚碳酸酯、工程塑料PPSF: 以及ABS 与PC的混合料等。这种工艺干净,易于操作,不产生垃圾,并可安全地用于办公环境,没有产生毒气和化学污染的危险。适合于产品设计的概念建模以及产品的形状及功能测试。专门开发的针对医用的材料ABS-i: 因为其具有良好的化学稳定性,可采用伽码射线及其他医用方式消毒,特别适合于医用。 FDM快速原型技术的优点是: 制造系统可用于办公环境,没有毒气或化学物质的污染;1次成型、易于操作且不产生垃圾;独有的水溶性支撑技术,使得去除支撑结构简单易行,可快速构建瓶状或中空零件以及一次成型的装配结构件; 原材料以材料卷的形式提供,易于搬运和快速更换。 可选用多种材料,如各种色彩的工程塑料以及医用ABS等 快速原型技术的缺点是:成型精度相对国外先进的SLA工艺较低,最高精度、成型表面光洁度不如国外 SLA:成型速度相对较慢光敏树脂选择性固化是采用立体雕刻(Stereolithography)原理的一种工艺的简称,是最早出现的一种快速成型技术。在树脂槽中盛满液态光敏树脂,它在紫外激光束的照射下会快速固化。成型过程开始时,可升降的工作台处于液面下一个截面层厚的高度,聚焦后的激光束,在计算机的控制下,按照截面轮廓的要求,沿液面进行扫描,使被扫描区域的树脂固化,从而得到该截面轮廓的树脂薄片。然后,工作台下降一层

MIM金属粉末注射成形工艺介绍与对比

1 一、MIM 概念及工艺流程 金属粉末注射成形是传统粉末冶金技术与塑料注射成形技术相结合的高新技术,是小型复杂零部件成形工艺的一场革命。它将适用的技术粉末与粘合剂均匀混合成具有流变性的喂料,在注射机上注射成形,获得的毛坯经脱脂处理后烧结致密化为成品,必要时还可以进行后处理 生产工艺流程如下 配料→混炼→造粒→注射成形→化学萃取→高温脱粘→烧结→后处理→成品 二、MIM 技术特点 金属粉末注射成形结合了粉末冶金与塑料注射成形两大技术的优点,突破了传统金属粉末模压成形工艺在产品形状上的限制,同时利用塑料注射成形技术能大批量、高效率生产具有复杂形状的零件:如各种外部切槽、外螺纹、锥形外表面、交叉通孔、盲孔、凹台、键销、加强筋板,表面滚花等 ·MIM 技术的优点 a.直接成形几何形状复杂的零件,通常重量0.1~200g b.表面光洁度好、精度高,典型公差为±0.05mm c.合金化灵活性好,材料适用范围广,制品致密度达95%~99%,内部组织均匀,无内应力和偏析 d.生产自动化程度高,无污染,可实现连续大批量清洁生产 ·MIM 与精密铸造成形能力的比较 ·MIM 与其他成形工艺的比较

三、MIM常用材质 四、几种MIM材料的基本性能 五、MIM产品典型应用领域 航空航天业:机翼铰链、火箭喷嘴、导弹尾翼、涡轮叶片芯子等 汽车业:安全气囊组件、点火控制锁部件、涡轮增压器转子、座椅部件、刹车装置部件等 电子业:磁盘驱动器部件、电缆连接器、电子封装件、手机振子、计算机打印头等 军工业:地雷转子、枪扳机、穿甲弹心、准星座、集束箭弹小弹等 日用品:表壳、表带、表扣、高尔夫球头和球座、缝纫机零件、电动玩具零件等 机械行业:异形铣刀、切削工具、电动工具部件、微型齿轮、铰链等 医疗器械:牙矫形架、剪刀、镊子、手术刀等 六、适合材质 不锈钢Fe合金Fe-Ni-Co合金钨钛合金工具钢高速钢硬质合金氧化铝氧化锆 2

金属粉末注射成型工艺讲解

新疆农业大学机械交通学院 2015-2016 学年一学期 《金属工艺学》课程论文 2015 年 12 月 班级机制136 学号220150038 姓名侯文娜 开课学院机械交通学院任课教师高泽斌成绩__________

金属粉末注射成型工艺概论 作者:侯文娜指导老师:高泽斌 摘要:金属注射成形时一种从塑料注射成形行业中引申出来的新型粉末冶金近净成型技术,这种新的粉末冶金成型方法称作金属注射成型。 关键词:金属粉末注射成型 一:金属粉末注射成型的概念和原理、 粉末冶金不仅是一种材料制造技术,而且其本身包含着材料的加工和处理,它以少无切削的特点越来越受到重视,并逐步形成了自身的材料制备工艺理论和材料性能理论的完整体系。现代粉末冶金技术不仅保持和大大发展了其原有的传统特点(如少无切削、少无偏析、均匀细晶、低耗、节能、节材、金属非金属及金属高分子复合等),而且已发展成为支取各种高性能结构材料、特种功能材料和极限条件工作材料、各种形状复异型件的有效途径。近年来,粉末冶金技术最引人注目的发展,莫过于粉末注射成型(MIN)迅速实现产业化,并取得突破性进展。 金属注射成型(Metal injection Molding),简称MIM,是传统的粉末冶金工艺与塑料成型工艺相结合的新工艺,是集塑料成型工艺学、高分子化学、粉末冶金工艺学和金属材料学等多学科交叉的产物,是粉末冶金和精密陶瓷成型加工领域中的新技术,利用磨具可注射成型,快速制造高密度、高精度、复杂形状的结构零件,能够快速准确的将设计思想转变为具有一定结构、功能特性的制品,并可直接批量生产出零件,是制造技术行业一次新的变革。 其注射机理为:通过注射将金属粉末与粘结剂的混合物以一定的温度,速度和压力注入充满模腔,经冷却定型出模得到一定形状、尺寸的预制件,再脱出预制件中的粘结剂并进行烧结,可得到具有一定机械性能的制件。其成型工艺工艺流程如下:金属粉末,有机粘接剂—混料—成型—脱脂—烧结—后处理—成品。 二:金属粉末注射成型工艺流程 2.1金属粉末的选择:首先根据产品的技术要求和使用条件选择粉末的种类,然后决定粉末颗粒尺寸。金属粉末注射成型所用的粉末颗粒尺寸一般在 0.5-20μm;从理论上讲,粉末颗粒越细,比表面积也越大,颗粒之间的内聚力也越大,易于成型和烧结。而传统的粉末冶金工艺则采用大于40μm的较粗粉末。粉末的选择要有利于混炼、注射形成、脱脂和烧结,而这往往是互相矛盾的,对于MIM的原料粉末要求很细,MIM原料粉末价格一般较高,有的升值达到传统PM 粉末价格的10倍,这是目前限制MIM技术广泛应用的一个关键因素,目前生产MIM用原料粉末的方法主要有超高压水雾化法、高压气体雾化法等。 2.2粘接剂;粘接剂是MIM技术的核心,在MIM中粘接剂具有增强流动性

金属粉末选择性激光烧结快速成型技术介绍

金属粉末选择性激光烧结快速成型技术介绍 介绍了选择性激光烧结技术的工作原理。简述了选择性激光烧结的三种典型金属粉末成型工艺。指出了选择性激光烧结技术成型金属零件所存在的一些问题和选择性烧结技术的发展前景。 1 引言 选择性激光烧结(以下简称SLS)技术最初是由美国德克萨斯大学奥斯汀分校的Carl Deckard于1989年在其硕士论文中提出的。后美国DTM公司于1992年推出了该工艺的商业化生产设备Sinter Sation。几十年来,奥斯汀分校和DTM公司在SLS领域做了大量的研究工作,在设备研制和工艺、材料开发上取得了丰硕成果。德国的EOS公司在这一领域也做了很多研究工作,并开发了相应的系列成型设备。 国内也有多家单位进行SLS的相关研究工作,如华中科技大学、南京航空航天大学、西北工业大学、中北大学和北京隆源自动成型有限公司等,也取得了许多重大成果,如南京航空航天大学研制的RAP-I型激光烧结快速成型系统、北京隆源自动成型有限公司开发的AFS 一300激光快速成型的商品化设备。 2 SLS技术的工作原理 选择性激光烧结是采用激光有选择地分层烧结固体粉末,并使烧结成型的固化层层层叠加生成所需形状的零件。其整个工艺过程包括CAD模型的建立及数据处理、铺粉、烧结以及后处理等。SLS技术的快速成型系统工作原理见图1。 整个工艺装置由粉末缸和成型缸组成,工作时粉末缸活塞(送粉活塞)上升,由铺粉辊将粉末在成型缸活塞(工作活塞)上均匀铺上一层,计算机根据原型的切片模型控制激光束的二维扫描轨迹,有选择地烧结固体粉末材料以形成零件的一个层面。粉末完成一层后,工作活塞下降一个层厚,铺粉系统铺上新粉.控制激光束再扫描烧结新层。如此循环往复,层层叠

几种常见的快速成型技术

几种常见的快速成型技术 一、FDM 丝状材料选择性熔覆(Fused Deposition Modeling)快速原型工艺是一种不依靠激光作为成型能源、而将各种丝材加热溶化的成型方法,简称FDM。 丝状材料选择性熔覆的原理室,加热喷头在计算机的控制下,根据产品零件的截面轮廓信息,作X-Y平面运动。热塑性丝状材料(如直径为1.78mm的塑料丝)由供丝机构送至喷头,并在喷头中加热和溶化成半液态,然后被挤压出来,有选择性的涂覆在工作台上,快速冷却后形成一层大约0.127mm厚的薄片轮廓。一层截面成型完成后工作台下降一定高度,再进行下一层的熔覆,好像一层层"画出"截面轮廓,如此循环,最终形成三维产品零件。 这种工艺方法同样有多种材料选用,如ABS塑料、浇铸用蜡、人造橡胶等。这种工艺干净,易于操作,不产生垃圾,小型系统可用于办公环境,没有产生毒气和化学污染的危险。但仍需对整个截面进行扫描涂覆,成型时间长。适合于产品设计的概念建模以及产品的形状及功能测试。由于甲基丙烯酸ABS(MABS)材料具有较好的化学稳定性,可采用加码射线消毒,特别适用于医用。但成型精度相对较低,不适合于制作结构过分复杂的零件。 FDM快速原型技术的优点是: 1、制造系统可用于办公环境,没有毒气或化学物质的危险。 2、工艺干净、简单、易于材作且不产生垃圾。 3、可快速构建瓶状或中空零件。 4、原材料以卷轴丝的形式提供,易于搬运和快速更换。 5、原材料费用低,一般零件均低于20美元。 6、可选用多种材料,如可染色的ABS和医用ABS、PC、PPSF等。 FDM快速原型技术的缺点是: 1、精度相对国外SLA工艺较低,最高精度0.127mm。 2、速度较慢。 二、SLA 光敏树脂选择性固化是采用立体雕刻(Stereolithography)原理的一种工艺,简称SLA,也是最早出现的、技术最成熟和应用最广泛的快速原型技术。 在树脂液槽中盛满液态光敏树脂,它在紫外激光束的照射下会快速固化。成型过程开始时,可升降的工作台处于液面下一个截面层厚的高度,聚焦后的激光束,在计算机的控制下,按照截面轮廓的要求,沿液面进行扫描,使被扫描区域的树脂固化,从而得到该截面轮廓的塑料薄片。然后,工作台下降一层薄片的高度,以固化的塑料薄片就被一层新的液态树脂所覆盖,以便进行第二层激光扫描固化,新固化的一层牢固的粘结在前一层上,如此重复不已,知道整个产品成型完毕。最后升降台升出液体树脂表面,即可取出工件,进行清洗和表面光洁处理。 光敏树脂选择性固化快速原型技术适合于制作中小形工件,能直接得到塑料产品。主要用于概念模型的原型制作,或用来做装配检验和工艺规划。它还能代替腊模制作浇铸模具,以及作为金属喷涂模、环氧树脂模和其他软模的母模,使目前较为成熟的快速原型工艺。 SLA快速原型技术的优点是: 1、需要专门实验室环境,维护费用高昂。 2、系统工作相对稳定。 3、尺寸精度较高,可确保工件的尺寸精度在0.1mm(但,国内SLA精度在0.1——0.3mm之间,并且存在一定的波动性)。 4、表面质量较好,工件的最上层表面很光滑,侧面可能有台阶不平及不同层面间的曲面不平。 5、系统分辨率较高。

MIM(金属粉末注塑成型)技术介绍

MIM(金属粉末注塑成型)技术介绍 MIM是将现代塑料注射成形技术引入粉末冶金领域而形成的一种全新的金属零部件近净成形加工技术,是近年来粉末冶金学科和工业领域中发展十分迅猛的一项高新技术。MIM的工艺步骤是:首先选取符合MIM要求的金属粉末与有机粘结剂在一定温度条件下采用适当的方法混合成均匀的喂料,然后经制粒后在加热塑化状态下用注射成形机注入模具型腔内获得成形坯,再经过化学或溶剂萃取的方法脱脂处理,最后经烧结致密化得到最终产品。 MIM产品的特点: 1、零部件几何形状的自由度高,能像生产塑料制品一样,一次成形生产形状复杂的金属零部件; 2、MIM产品密度均匀、光洁度好,表面粗糙度可达到Ra 0.80~1.6μm,重量范围在0.1~200g。尺寸精度高(±0.1%~±0.3%),一般无需后续加工; 3、适用材料范围宽,应用领域广,原材料利用率高,生产自动化程度高,工序简单,可实现连续大批量生产; 4、产品质量稳定、性能可靠,制品的相对密度可达95%~99%,可进行渗碳、淬火、回火等热处理。产品强度、硬度、延伸率等力学性能高,耐磨性好,耐疲劳,组织均匀; 国际上普遍认为MIM技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“21世纪最热门的零部件的成形技术”。 MIM技术优势

MIM 与传统粉末冶金相对比 MIM可以制造复杂形状的产品,避免更多的二次机加工。 MIM 产品密度高、耐蚀性好、强度高、延展性好。 MIM 可以将2个或更多PM产品组合成一个MIM产品,节省材料和工序。MIM与机械加工相对比 MIM 设计可以节省材料、降低重量。 MIM 可以将注射后的浇口料重复破碎使用,不影响产品性能,材料利用率高。 MIM通过模具一次成形复杂产品,避免多道加工工序。 MIM可以制造难以机械加工材料的复杂形状零件。 MIM 与精密铸造相对比 MIM 可以制造薄壁产品,最薄可以做到0.2mm。 MIM 产品表面粗糙度更好。 MIM更适宜制细盲孔和通孔。 MIM 大大减少了二次机加工的工作量。 MIM可以快速的大批量、低成本制造小型零件。 MIM材料范围 常用MIM材料应用领域:

3D打印快速成型技术

特种加工论文 题目3D打印快速成型技术 姓名 专业 班级 学号

3D打印快速成型技术 摘要: 本文主要介绍了特种加工中3D打印快速成型技术,首先介绍它的加工原理,然后分析它的特点、加工方式,然后说明其在实际生产中的主要应用以及发展方向。 关键词:特种加工技术,3D打印快速成型,特点,应用。 Abstract: This article mainly introduced the special processing of 3 d printing rapid prototyping technology, introduces its processing principle, and analyzes its characteristics, processing methods, and then explain the main application in practical production and the development direction. Key words:Special processing technology, 3 d printing rapid prototyping, characteristics, application. 一、引言 3D打印(3D PRINTING )即3D打印技术,又3D打印制造是20世纪80年代才兴起的一门新兴的技术,是21世纪制造业最具影响的技术之一。随着计算机与网络技术的发展,信息高速公路加快了科技传播的速度,产品的生命周期越来越短,企业之间的竞争不再只是质量和成本上的竞争,而更重要的是产品上市时间的竞争。因此,通过计算机仿真和3D打印增加产品的信息量,以便更快的完成设计及其制造过程,将产品设计和制造过程的时间周期尽量缩短,防止投产后发现问题造成不可挽回的损失。 3D打印技术是由CAD模型直接驱动的快速制造复杂形状的三维实体的技术总称。简单的讲,3D打印制造技术就是快速制造新产品首版样件的技术,它可以在没有任何刀具、模具及工装夹具的情况下,快速直接的实现零件的单件生产。该技术突破了制造业的传统模式,特别适合于新产品的开发、单件或少批量产品试制等。它是机械工程、计算机CAD、电子技术、数控技术、激光技术、材料科学等多学科相互渗透与交叉的产物。它可快速,准确地将设计思想转变为具有一定功能的原型或零件,以便进行快速评估,修改及功能测试,从而大大缩短产品的研制周期,减少开发费用,加快新产品推向市场的进程。 自从美国3D公司在1987年推出世界上第一台商用快速原形制造设备以来,快速原形技术快速发展。投入的研究经费大幅增加,技术成果丰硕。原形化系统产品的销量高速增长。在这方面美国,日本一直处于领先地位,我国在这方面起步较晚,但是奋起直追,开展研究并取得一定成果,国内也有些成熟的产品问世,他们正在各种生产领域上发挥着作用。 二、打印系统的工作原理 3D打印技术是一种逐层制造技术,它采用离散/堆积成型原理,其过程是:先得到所需零件的计算机三维曲面或实体模型;然后根据工艺要求,将其按一定厚度进行分层,将原来的三维模型变成二维平面信息,即离散过程;再将分层后的数据进行一定的处理,加入加工参数,产生数控代码;在微机控制下,数控系

金属粉末注射成型技术

编订:__________________ 单位:__________________ 时间:__________________ 金属粉末注射成型技术 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-3132-56 金属粉末注射成型技术 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 金属粉末注射成型技术(Metal Powder Injection Molding,简称MIM)是将现代塑料喷射成形技术引入粉末冶金领域而形成的一门新型粉末冶金近净形成形技术。其基本工艺过程是:首先将固体粉末与有机粘结剂均匀混练,经制粒后在加热塑化状态下(~150℃)用喷射成形机注入模腔内固化成形,然后用化学或热分解的方法将成形坯中的粘结剂脱除,最后经烧结致密化得到最终产品。与传统工艺相比,具有精度高、组织均匀、性能优异,生产成本低等特点,其产品广泛应用于电子信息工程、生物医疗器械、办公设备、汽车、机械、五金、体育器械、钟表业、兵器及航空航天等工业领域。因此,国际上普遍认为该技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“当今最热门的零部件成形技术”和“21

快速成型技术总结

快速成型技术总结 《快速成型技术总结》是一篇好的范文,觉得应该跟大家分享,希望对网友有用。 篇一:快速成型总结报告快速成型总结报告一、快速成型技术的发展及原理快速成形技术(,简称)是二十世纪八十年代末九十年代初兴起并迅速发展起来的新的先进制造技术是由模型直接驱动的快速制造任意复杂形状三维物理实体的技术总称,其基本过程是:首先设计出所需零件的计算机三维模型(数字模型、模型),然后根据工艺要求,按照一定的规律将该模型离散为一系列有序的单元,通常在向将其按一定厚度进行离散(习惯称为分层),把原来的三维模型变成一系列的层片;再根据每个层片的轮廓信息,输入加工参数,自动生成数控代码;最后由成形机成形一系列层片并自动将它们联接起来,得到一个三维物理实体。 快速成型技术的原理:快速成型技术()的成型原理是基于离散-叠加原理而实现快速加工原型或零件这里所说的快速加工原型是指能代表一切性质和功能的实验件,一般数量较少,常用来在新产品试制时作评价之用而这里所说的快速成型零件是指最终产品,已经具有最佳的特性,功能和经济性二、快速成型技术的分类快速成型技术-分类快速成型技术根据成型方法可分为两类:基于激光及其他光源的成型技术(),例如:光固化成型()、最全面的范文写作网站分层实体制造()、选域激光粉末烧结()、形状沉积成型()等;基于喷射的成型技术(),

例如:熔融沉积成型()、三维印刷()、多相喷射沉积()。 下面对其中比较成熟的工艺作简单的介绍。 技术是基于液态光敏树脂的光聚合原理工作的。 这种液态材料在一定波长和强度的紫外光照射下能迅速发生光聚合反应,分子量急剧增大,材料也就从液态转变成固态。 、(光固化成型)工作原理:液槽中盛满液态光固化树脂激光束在偏转镜作用下,能在液态表而上扫描,扫描的轨迹及光线的有无均由计算机控制,光点打到的地方,液体就固化。 成型开始时,工作平台在液面下一个确定的深度.聚焦后的光斑在液面上按计算机的指令逐点扫描,即逐点固化。 当一层扫描完成后.未被照射的地方仍是液态树脂。 然后升降台带动平台下降一层高度,已成型的层面上又布满一层树脂,刮板将粘度较大的树脂液面刮平,然后再进行下一层的扫描,新周化的一层牢周地粘在前一层上,如此重复直到整个零件制造完毕,得到一个三维实体模型。 方法是目前快速成型技术领域中研究得最多的方法.也是技术上最为成熟的方法。 工艺成型的零件精度较高,加工精度一般可达到,原材料利用率近%。 但这种方法也有白身的局限性,比如需要支撑、树脂收缩导致精度下降、光固化树脂有一定的毒性等。

金属成型新工艺:MIM(金属粉末注射成型)工艺详细介绍

金属成型新工艺:MIM(金属粉末注射成型)工艺详细介绍 小编备注:结合国内目前MIM现状补充了一些资料。转载请注明文章来源:金属注射成型网https://www.doczj.com/doc/c915461007.html, 1 MIM是一种近净成形金属加工成型工艺 MIM (Metal injection Molding )是金属注射成形的简称。是将金属粉末与其粘结剂的增塑混合料注射于模型中的成形方法。它是先将所选金属粉末与粘结剂进行混炼,然后将混合料进行制粒再注射成形所需要的形状胚料,然后通过高温烧结,得到具有强度的金属零件。 2 MIM工艺流程步骤 MIM流程结合了注塑成型设计的灵活性和精密金属的高强度和整体性,来实现极度复杂几何部件的低成本解决方案。MIM流程分为四个独特加工步骤(混合、成型、脱脂和烧结)来实现零部件的生产,针对产品特性决定是否需要进一步的机械加工或进行表面处理. 混合

精细金属粉末和热塑性塑料、石蜡粘结剂按照精确比例进行混合。混合过程在一个专门的混合设备中进行,加热到一定的温度使粘结剂熔化。大部分情况使用机械进行混合,直到金属粉末颗粒均匀地涂上粘结剂冷却后,形成颗粒状(称为原料),这些颗粒能够被注入模腔。 CNPIM备注:混炼是MIM工艺中非常重要的一道工序。目前混炼有几种体系,不同的添加剂,后面对应需要不同的脱脂方法将添加剂去除。最常用的蜡基和塑基,分别对应热脱脂和催化脱脂。 成型 注射成型的设备和技术与注塑成型是相似的。颗粒状的原料被送入机器加热并在高压下注入模腔。这个环节形成(green part)冷却后脱模,只有在大约200°c的条件下使粘结剂熔化(与金属粉末充分融合),上述整个过程才能进行,模具可以设计为多腔以提高生产率。模腔尺寸设计要考虑金属部件烧结过程中产生的收缩。每种材料的收缩变化是精确的、已知的。 脱脂

MIM金属粉末注塑成型技术介绍

MIM(金属粉末注塑成型)技术介绍 ?????MIM是将现代塑料注射成形技术引入粉末冶金领域而形成的一种全新的金属零部件近净成形加工技术,是近年来粉末冶金学科和工业领域中发展十分迅猛的一项高新技术。MIM的工艺步骤是:首先选取符合MIM要求的金属粉末与有机粘结剂在一定温度条件下采用适当的方法混合成均匀的喂料,然后经制粒后在加热塑化状态下用注射成形机注入模具型腔内获得成形坯,再经过化学或溶剂萃取的方法脱脂处理,最后经烧结致密化得到最终产品。? MIM产品的特点:? ????1、零部件几何形状的自由度高,能像生产塑料制品一样,一次成形生产形状复杂的金属零部件;? ????2、MIM产品密度均匀、光洁度好,表面粗糙度可达到Ra0.80~1.6μm,重量范围在0.1~200g。尺寸精度高(±0.1%~±0.3%),一般无需后续加工;?? ????3、适用材料范围宽,应用领域广,原材料利用率高,生产自动化程度高,工序简单,可实现连续大批量生产;? ????4、产品质量稳定、性能可靠,制品的相对密度可达95%~99%,可进行渗碳、淬火、回火等热处理。产品强度、硬度、延伸率等力学性能高,耐磨性好,耐疲劳,组织均匀;? 国际上普遍认为MIM技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“21世纪最热门的零部件的成形技术”。?

MIM与传统粉末冶金相对比? ?MIM可以制造复杂形状的产品,避免更多的二次机加工。? ?MIM产品密度高、耐蚀性好、强度高、延展性好。? ?MIM可以将2个或更多PM产品组合成一个MIM产品,节省材料和工序。? MIM与机械加工相对比? ??MIM设计可以节省材料、降低重量。 ???MIM可以将注射后的浇口料重复破碎使用,不影响产品性能,材料利用率高。???MIM通过模具一次成形复杂产品,避免多道加工工序。 ???MIM可以制造难以机械加工材料的复杂形状零件。? MIM与精密铸造相对比? ?MIM可以制造薄壁产品,最薄可以做到0.2mm。? ?MIM产品表面粗糙度更好。? ?MIM更适宜制细盲孔和通孔。? ?MIM大大减少了二次机加工的工作量。? ?MIM可以快速的大批量、低成本制造小型零件。? MIM材料范围 常用MIM材料应用领域:?

Hinge部件工艺_金属粉末注射成形

金属粉末注射成形(MIM) 作者: yowelu 时间: 2009-9-8 11:58 一套完美的转轴和铰链总成部件,是由多个关键零组件互相密切配合而成,其中涉及到诸如扭力、寿命试验、耐震测试、落地测试、材料性能、零组件制造工艺的选择等各项性能要求,我认为在以上各项中,尤其以零组件的材质与制造工艺的选择尤为重要,材质可以保证一定的机械性能,而合适的制造工艺即可以经济的进行大批量生产,又可以保证零件的高精度。在这里,我要着重介绍转轴核心零件的制造工艺--金属粉末注射成形(Metal Injection Molding,简称MIM),MIM近年已发展为粉末冶金中重要的一环并稳定地成长,是一种结合了塑料注射及粉末冶金优点的成型技术,此制程将微细的金属粉末与高分子黏结剂混合加热后,得到具流动性的射料,再经由注射机的注射成型,获得的成形坯经过脱脂处理后烧结致密化成为最终成品,即可以自动化、大量地生产尺寸精密、且具三维形状复杂的小型工件;此制程大大的减少了传统金属加工的繁复程序与成本费用,因此在某些工业应用上具有一定的竞争优势,目前已广泛应用于机械、电子、通讯、汽车、钟表、光电、武器、医疗器械…

MIM工艺设计指南: 与其他加工工艺比较: 与其他制程相对成本分析

MIM制程: 金属粉末射出成形 (Metal Injection Molding,简称MIM)近年已发展为粉末冶金产业中重要之一环并稳定地成长,是一种结合了塑胶射出及粉末冶金优点之近淨成形技术,被誉为“国际最热门的金属零部件制备技术”之一。此制程将极微细之金属粉末与有机黏结剂混炼加热后,得到具有流动性之射料,经由射出机射入模具中成形,成形后的生胚,需经过脱脂的过程把先前混入的黏结剂脱除,再经由真空烧结后即可得到密度95%以上之高致密度、高强度的产品。MIM的产品极为适用于精密复杂机械零件或高附加价值的外观产品上。此外MIM制程大大的减少传统金属加工的繁复程序与成本费用,因批次生产之方式大大提高了生产效率并有效地降低了量产时的成本。 MIM制品: MIM制程在金属材料体系中广泛适用,原则上可以制成粉末的金属材料都可以用于MIM 制程,但低熔点金属(如:铝、镁、锌等)常用于压铸。目前上海三展新材料科技有限公司不但拥有专业研发设计能力,还具备了量产的纯熟制造技术,尤其在不锈钢系列、铁系合金等两大材料的量产能力与品质,皆能获得客户满意与信赖,更可以随时接单、量产,提供客户客制化的服务。 1、MIM技术具有塑胶注射工艺容易制备三维结构复杂的金属零部件的优点,可以实现多个简单零件一体化。如图示: 2、MIM技术可方便的采用一模多穴模具,成形效率高,模具使用寿命长,更换调整模具方便快捷,特别适合于大批量生产,产品性能一致性好,注射料可反复利用,材料利用率达98%以上,从而大大提高了生产效率降低了生产成本。 3、MIM技术使用极微细的金属粉末(粒径:0.5~20μm),注射毛坯经由液相烧结收缩致密化得到的最终零件理论密度可达95%以上,尺寸精度高,可以与锻造、铸造、机加工等材料相媲美,特别是动力学性能优良;最终零件各部位的密度一致,即各向同性,具有极佳的表面光洁度。 选择何种金属成形加工工艺,零件的复杂性和生产产量是两个主要决定因素。MIM技术在高精确度、三维结构复杂度和量产性上独占优势。对于零件设计者,应尽可能考虑减

金属粉末选区激光烧结技术

金属粉末选区激光烧结技术 摘要:激光快速成型技术是集计算机辅助设计、激光熔覆、快速成型于一体的先进制造技术,是传统加工成形方法的重要补充。介绍了金属粉末激光快速成型技术的研究现状和发展前景。 关键词:金属粉末, 选择性激光烧结, 快速成型技术 金属粉末选区激光烧结技术(Selective laser sintering以下简称SLS)是一种快速成型技术(Rapid Prototyping Technology-RPT)属于先进制造技术范畴,机械工程学科非传统加工工艺(或称为特种加工)。是近年来迅速发展起来的一门高新技术,是光学、电子、材料、计算机等多学科的集成。SLS 技术最初是由美国德克萨斯大学奥斯汀分校的Carl Deckard于1989 年研制成功。可以自动迅速地从三维CAD模型直接制得形状复杂的金属零件或模型,其制造方法主要包括选择性激光烧结(SLS) 和激光熔覆制造两种技术。 1、选择性激光烧结(SLS) 技术 (1)SLS原理 选择性激光烧结是采用激光有选择地分层烧结固体粉末,并使烧结成形的固化层层层叠加,生成所需形状的零件。首先由CAD产生零件模型,并用分层切片软件对其进行处理,获得各截面形状的信息参数,作为激光束进行二维扫描的轨迹;由激光发出的光束在计算机的控制下,根据几何形体各层截面的坐标数据有选择地对材料粉末层进行扫描,在激光辐照的位置上粉末烧结在一起,一层烧结完成后,再铺粉进行下一层扫描烧结,新的一层和前一层自然地烧结在一起,最终生成三维形状的零件。 (2)SLS的特点 ①SLS 过程与零件复杂程度无关,具有高度的柔性,在计算机的控制下可方便迅速地制作出传统加工方法难以实现的复杂形状的零件,是真正的自由制造。 ②产品的单价几乎与批量无关,特别适合于单件、小批量零件的生产。 ③生产周期短,从CAD 设计到零件的加工完成只需几小时到几十小时,整个生产过程数字化,可随时修正、随时制造。这一特点使其特别适合于新产品的开发。 ④与传统工艺方法相结合,可实现快速铸造、快速模具制造等功能,为传统制造方法注入了新的活力。 ⑤材料范围宽,任何受热粘结的粉末材料都有用作SLS原材料的可能性。 2、激光涂覆(熔覆)制造技术 (1)激光涂覆制造技术的原理 激光涂覆制造技术也称近形技术(LENS),是在激光熔覆技术和快速原型技术的基础上发展起来的一种新技术。首先由CAD 产生零件模型,用分层切片软件进行处理,获得各截面形状的信息参数,作为工作台进行移动的轨迹参数。工作台在计算机的控制下根据几何形体各层截面的坐标数据进行移动的同时,用激光涂覆的方法将材料进行逐层堆积,最终形成具有一定外形的三维实体零件。 (2)激光涂覆制造技术的特点

1111《快速成形技术》预测试题1

复习提纲 1.喷涂距离:指喷抢的喷嘴到基体或过度基模表面的距离。 2.喷涂角度:指喷嘴气流轴线与喷涂基模之间的夹角。 3.遮蔽效应:指喷嘴气流轴线与喷涂基模之间的夹角(喷涂角度)小于45°时产生的效应。 4.近似处理:指用无数个三角形去等效一个三维几何实体,所以只能是无限接近,近似得到实体。(用无数个三角形平面来代替曲面) 5.后固化:指用很强的紫外激光照射刚成形的原型件,是其充分固化。 1.快速成型技术建立的理论基础:新材料技术、计算机技术、数控技术、激光技术。 2.快速成型的全过程包括三个阶段:前处理、自由成形、后处理。 3.光固化成型工艺中用来刮去每层多余树脂一的装置是刮刀。 4.用于FDM的支撑的类型为:水溶性支撑和易剥离性支撑。 5.熔融沉积制造工艺原材料供应系统包括:、、。 6.叠层实体制造工艺涂布工艺包括涂布形状和涂布厚度。 7. FDM快速成形的系统组成包括硬件系统、软件系统、供料系统。。 8. LOM技术原型制作过程主要有热变形和湿变形。两种变形。 1、叠层实体制造工艺常用激光器为(D )。 A、氦-镉激光器; B、氩激光器; C、Nd:YAG激光器; D、CO2激光器。 2、四种成型工艺不需要激光系统的是(D )。 A、SLA; B、LOM; C、SLS; D、FDM。 3、四种成型工艺不需要支撑结构系统的是(C )。 A、SLA; B、LOM; C、SLS; D、FDM。 4、光固化成型工艺树脂发生收缩的原因主要是(D )。 A、树脂固化收缩; B、热胀冷缩; C、范德华力导致的收缩; D、树脂固化收缩和热胀冷缩。 5、就制备工件尺寸相比较,四种成型工艺制备尺寸最大的是(B )。 A、SLA; B、LOM; C、SLS; D、FDM。 6、四种成型工艺中,可生产金属件的是(C)。 A、SLA; B、LOM; C、SLS; D、FDM。 8、就制备工件成本相比较,四种成型工艺制备成本最大的是(A)。 A、SLA; B、LOM; C、SLS; D、FDM。 9、在电弧喷涂工艺中喷涂角度最佳的是(C )。 A、0°; B、45°; C、90°; D、180°。 10、下列模具制造工艺中,只能生产塑料件的工艺是(B)。 A、环氧树脂工艺; B、硅橡胶模具制造工艺; C、电弧喷涂工艺; D、低熔点金属模工艺。 1、SLS周期长是因为有预热段和后冷却时间。(对) 2、SLA过程有后固化工艺,后固化时间比一次固化时间短。(错) 3、SLS工作室的气氛一般为氧气气氛。(错) 4、SLS在预热时,要将材料加热到熔点以下。(对) 5、LOM胶涂布到纸上时,涂布厚度厚一点效果会更好。(错) 6、FDM中要将材料加热到其熔点以上,加热的设备主要是喷头。(对) 7、影响电弧喷涂模具生产产品质量好坏主要部分是金属喷涂层。(错)

金属粉末注射成型技术.

金属粉末注射成型(Metal Powder Injection Molding,简称MIM技术是将现代塑料注射成型技术引入粉末冶金领域而形成的一门新型粉末冶金近净成形技术。其基本工艺过程是:首先将固体粉末与有机粘结剂均匀混练,经制粒后在加热塑化状态下(~150℃用注射成型机注入模腔内固化成型,然后用化学或热分解的方法将成型坯中的粘结剂脱除,最后经烧结致密化得到最终产品。与传统工艺相比,MIM具有精度高、组织均匀、性能优异、生产成本低等特点,其产品广泛应用于电子信息工程、生物医疗器械、办公设备、汽车、机械、五金、体育器械、钟表业、兵器及航空航天等工业领域。国际上普遍认为该技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“当今最热门的零部件成形技术”和“21世纪的成形技术”。 MIM技术由美国加州Parmatech公司于1973年发明,八十年代初欧洲许多国家以及日本也都投入极大精力开始研究该技术,并使其得到迅速推广,特别是在八十年代中期该技术实现产业化以来,更获得了突飞猛进的发展,产量每年都以惊人速度递增。到目前为止,美国、西欧、日本等十多个国家和地区有一百多家公司从事该工艺技术的产品开发、研制与销售工作。日本在竞争上十分积极,并且表现突出,许多大型株式会社均参与MIM工艺的推广应用,这些公司包括太平洋金属、三菱制钢、川崎制铁、神户制钢、住友矿山、精工-爱普生、大同特殊钢等。目前日本有四十多家专业从事MIM产业的公司,其MIM产品的销售总值早已超过欧洲并直追美国。MIM技术已成为新型制造业中最为活跃的前沿技术领域,是世界冶金行业的开拓性技术,代表着粉末冶金技术发展的主方向。 金属粉末注射成型技术是塑料成型工艺学、高分子化学、粉末冶金工艺学和金属材料学等多学科渗透与交叉的产物,利用模具可注射成型坯件并通过烧结快速制造高密度、高精度、三维复杂形状的结构零件,能够快速、准确地将设计思想物化为具有一定结构、功能特性的制品,并可直接批量生产出零件,是制造技术行业一次新的变革。该工艺技术不仅具有常规粉末冶金工艺工序少、无切削或少切削、经济效益高等优点,而且克服了传统粉末冶金工艺制品材质不均匀、机械性能低、薄壁成型困难、结构复杂等缺点,特别适合于大批量生产小型、复杂以及具有特殊要求的金属零件。

国内外典型的激光烧结粉末

国内外典型的激光烧结粉末 2013.07.06

理论上讲,所有受热后能相互粘结的粉末材料或表面覆有热塑(固)性粘结剂的粉末材料都能用作SLS材料。 要求: 粉末材料有良好的热塑(固)性, 一定的导热性, 粉末经激光烧结后要有一定的粘结强度; 粉末的粒度不宜过大,否则会降低成型件质量;SLS材料还应有较窄的“软化-固化”温度范围,

几种典型的粉末烧结快速成型材料 1、蜡粉 (1)用途:烧结制作蜡型,精密铸造金属零件。 (2)传统的熔模精铸用蜡(烷烃蜡、脂肪酸蜡等),其熔点较低,在60℃左右,烧熔时间短,烧熔后没有残留物,对熔模铸造的适应性好,且成本低廉。 (3)但存在以下缺点: ?对温度敏感,烧结时熔融流动性大,使成型不易控制; ?成型精度差,蜡模尺寸误差为±0.25mm; ?蜡模强度较低,难以满足具有精细、复杂结构铸件的要求;?粉末的制备十分困难。

2、聚苯乙烯(PS)、聚碳酸酯、工程塑料(ABS) (1)特点: 聚苯乙烯(P S)属于热塑性树脂,熔融温度100℃,受热后可熔化、粘结,冷却后可以固化成型,而且该材料吸湿率很小,仅为0.05%,收缩率也较小,其粉料经过改性后,即可作为激光烧结成型用材料。 (2)用途: 烧结成型件经不同的后处理工艺具有以下功能:第一,结合浸树脂工艺,进一步提高其强度,可作为原型件及功能零件。第二、经浸蜡后处理,可作为精铸蜡模使用,通过熔模精密铸造,生产金属铸件。

3、尼龙粉末(PA) (1)用途: 粉末粒径小,制作模型精度高,用于CAD数据验证;因为具有足够的强度可以进行功能验证。 (2)特点: 烧结温度—粉末熔融温度180℃; 烧结制件不需要特殊的后处理,即可以具有49MPa的抗拉伸强度。 (3)其它:尼龙粉末烧结快速成型过程中,需要较高的预热温度,需要保护气氛,设备性能要求高。

快速成型的原理及应用

题目:1、快速成型原理是什么?其技术有何特点? 2、按制造工艺原理分,快速成型工艺主要分成哪几类? 3、简述快速成型技术有哪些应用? 4、典型的快速成型工艺有哪几种?试分析成型工艺的特点。 5、反求工程的基本含义是什么?应用在那几个方面? 6、结合课程知识点,谈谈快速成型技术对新产品设计的作用。

1、快速成型原理是什么?其技术有何特点? 快速成型原理 RP系统可以根据零件的形状,每次制做一个具有一定微小厚度和特定形状的截面,然后再把它们逐层粘结起来,就得到了所需制造的立体的零件。当然,整个过程是在计算机的控制下,由快速成形系统自动完成的。不同公司制造的RP系统所用的成形材料不同,系统的工作原理也有所不同,但其基本原理都是一样的,那就是"分层制造、逐层叠加"。这种工艺可以形象地叫做"增长法"或"加法"。 每个截面数据相当于医学上的一张CT像片;整个制造过程可以比喻为一个"积分"的过程。 RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。RP技术的基本原理是:将计算机内的三维数据模型进行分层切片得到各层截面的轮廓数据,计算机据此信息控制激光器(或喷嘴)有选择性地烧结一层接一层的粉末材料(或固化一层又一层的液态光敏树脂,或切割一层又一层的片状材料,或喷射一层又一层的热熔材料或粘合剂)形成一系列具有一个微小厚度的的片状实体,再采用熔结、聚合、粘结等手段使其逐层堆积成一体,便可以制造出所设计的新产品样件、模型或模具。自美国3D公司1988年推出第一台商品SLA快速成形机以来,已经有十几种不同的成形系统,其中比较成熟的有SLA、SLS、LOM和FDM等方法。其成形原理分别介绍如下: (1)SLA快速成形系统的成形原理: 成形材料:液态光敏树脂; 制件性能:相当于工程塑料或蜡模; 主要用途:高精度塑料件、铸造用蜡模、样件或模型。 (2)SLS快速成形系统的成形原理: 成形材料:工程塑料粉末; 制件性能:相当于工程塑料、蜡模、砂型; 主要用途:塑料件、铸造用蜡模、样件或模型。 (3)LOM快速成形系统的成形原理: 成形材料:涂敷有热敏胶的纤维纸; 制件性能:相当于高级木材; 主要用途:快速制造新产品样件、模型或铸造用木模。 (4)FDM快速成形系统的成形原理: 成形材料:固体丝状工程塑料; 制件性能:相当于工程塑料或蜡模; 主要用途:塑料件、铸造用蜡模、样件或模型。 快速原形技术的特点: (1)、自由成型制造:自由成型制造也是快速成型技术的另外一个用语。作为快速成型技术的特点之一的自由成型制造的含义有两个方面:一是指无需要使用工模具而制作原型或零件,由此可以大大缩短新产品的试制周期,并节省工

金属粉末的激光快速成型技术

金属粉末的激光快速成型技术 姓名: 班级: 学号:

金属粉末的激光快速成型技术 金属粉末激光快速成形技术,又称激光直接金属快速成形技术,它是在快速原型RP(RapidPrototyping)技术和激光熔覆技术基础上发展起来的一项先进制造技术,能将计算机生成的三维模型直接制造出来,实现结构复杂、高性能金属零件的无模具快速成形。该技术不仅可用于直接快速制造具有一定机械强度、能承受较大力学载荷的金属零件,也可用于零件上具有复杂形状、一定深度制造缺陷、误加工或服役损伤的修复和再制造,以及大量投产前的设计修改,显著地缩短了产品研发周期、降低生产成本,同时能提高材料的利用率、降低能耗. 快速成型技术(RP,RapidPrototyping)是从1987年开始发展起来的一种先进制造技术。该技术最初用来制造铸造用模型,后来发展到制造原型零件,主要用于模型或零件的直观检验,其关键是要求形状准确,而对其力学性能没有太高的要求,所采用的成型材料主要有液体光敏树脂、蜡、纸等替代材料。目前,美国、日本、德国已相继开发出多种快速成型技术,如液体光敏树脂固化、熔融沉积成型、实体叠层制造、分层固化、选择性激光烧结、3D喷射印刷等技术。该技术在无需任何硬质工模具的情况下,可直接从计算机三维设计制造出实体零件,在机械制造等众多领域已得到广泛应用。 近年来,快速成型技术有了新的发展,已开始在金属材料、的制备上得到应用, 其主要目标是快速制造出满足使用性能的致密的金属零件。传统的快速成型方法成型金属零件时,多采用树脂包覆的金属粉末作为原材料,通过激光扫描使树脂熔化将金属粉末固结在一起;也可采用喷射粘结剂的方法将松散的金属粉末粘结成型。在成型后要经过脱粘、浸渗塑料、低熔点金属或铜来加强,可制成镶块用在塑料注射模和压铸模中。如脱粘后经热等静压处理也可制成致密金属零件,但难以保证零件的尺寸精度。目前,金属零件的快速成型方法主要有间接激光烧结、直接激光烧结和液滴喷射沉积,其中直接激光烧结技术是目前快速制备致密金属零件的主要技术。 快速成型技术是一种基于离散/堆积成型原理的新型数字化成型技术。该技术利CAD软件设计出零件的三维实体模型,然后根据具体工艺要求,按照一定的厚度对模型进行分层切片处理,将其离散化为一系列二维层面,再对二维层面信息进行数据处理并加入加工参数,生成数控代码输入成型机,控制成型机的运动顺序完成各层面的成型

相关主题
文本预览
相关文档 最新文档