当前位置:文档之家› 测量问题的数学模型

测量问题的数学模型

测量问题的数学模型
测量问题的数学模型

测量问题的数学模型

中图分类号:g62 文献标识码:a 文章编号:1007-0745(2008)08-0117-02

培养学生的数学应用意识是数学教学的重要目标之一。如何让学生更加了解抽象变幻、高深莫测的数学,并从中感受到数学发现、数学应用的乐趣,成为教学工作的一大难点。而传统教学中黑板加粉笔的简单传授模式已不能够激发学生数学学习的热情与兴趣,我们更加呼吁让学生走出课堂、应用数学的实践活动的到来!

解斜三角形是中学数学的重要内容。利用三角形的边角关系,来求出未知边长的长度,体现了数学转化的思想。下面,我们用几何画板作为教学工具,将实际问题转化为数学模型,培养学生的建模能力,并将其应用于实际测量。

多媒体课件的开发就充分做到把动画、声音、色彩、图形等具体感观信息结合一起,从而提高学生的知识获取率。而几何画板作为数学应用软件的一个重要组成部分,在教学中显得尤具魅力。下面就个人的具体教学案例阐述几何画板的简单应用。

一、几何画板介绍:几何画板是一个简易图形处理计算工具。它在立体几何与平面解析几何中有着广泛应用。本课程设计利用几何画板的图形处理功能与数据处理技巧,帮助学生提高理解与实践动手能力。

二、教学目标:培养学生利用正弦定理、余弦定理处理三角形边角关系的能力;提高学生数学应用能力增长数学应用意识,了解并

如何检测一个数学模型的合理性

如何检测一个数学模型的合理性 为了得到正确的结论、在进行系统分析、预测和辅助决策时,必须保证模型能够准确地反映实际系统并能在计算机上正确运行。因此,必须对模型的有效性进行评估。模型有效性评估主要包括模型确认和模型验证两部分内容:模型确认考察的是系统模型(所建立的模型)与被仿真系统(研究对象)之间的关系,模型验证考察的则是系统模型与模型计算机实现之间的关系。 对于一个具体的建模项目来说,模型有效性评估贯穿于研究的始终。必须指出,模型实际上是所研究的系统的一种抽象表述形式,要验证一个模型是否百分之百有效是极其困难的,也是没有实际意义的。另外,模型是否有效是相对于研究目的以及用户需求而言的。在某些情况下,模型达到60%的可信度使可满足要求;而在另外一些情况下,模型达到99%都可能是不满足的。 模型有效性的概念出现在20世纪60年代,随着计算机仿真技术在各个学科和工程领域的普遍应用,模型有效性问题日益受到人们的关注。1967年,美国兰德公司的fishman和Kivtat明确指出,模型有效性研究可划分为两个部分:模型的确认(validation)和验证(verification)。这一观点被国际仿真学界普遍采纳。模型确认指通过比较在相同输入条判和运行环境下模型与实际系统输出之间的一致性,评价模型的可信度或可用性。模型验证则是判断模型的计算机实现是否正确。 尽管确认和验证在各文献中的定义不尽相同,但对于二者之间的区别,专家的看法却是基本一致的。简单地说,模型确认强调理论模型与实际系统之间的一致性,模型验证则强调当前模型与计算机程序之间的一致性。在有些文献中也采用工程技术人员容易接受的“校模”和“验模”两个术语来分别代替“确认”和“验证”。模型的确认和验证与建模的关系见图8.5。 在图8.5中,“问题实体”指被建模的对象,如系统、观念、政策、现象等。“理论模型”是为达到某种特定的研究目的而对问题实体进行的数学/逻辑描述。“计算机模型”(computerized Model)是理论模型在计算机上的实现。 通过“分析与建模”活动可以建立理论模型。计算机模型的建立需通过“编程及实现”这一步骤来完成。经过仿真“实验”即可得到关于问题实体的结果。 模型确认包括理论模型有效性确认、数据有效性确认和运行有效性确认三部分内容,其中运行有效性确认是模型确认的核心。 图8.5 确认和验证与建模的关系 1)理论模型有效性确认

matlab电力系统潮流计算

华中科技大学 信息工程学院课程设计报告书题目: 电力系统潮流计算 专业:电气工程及其自动化 班级: 学号: 学生姓名: 指导教师: 2015年 11 月 10 日

2015年11月12日

信息工程学院课程设计成绩评定表

摘要 电力系统稳态分析包括潮流计算和静态安全分析。本文主要运用的事潮流计算,潮流计算是电力网络设计与运行中最基本的运算,对电力网络的各种设计方案及各种运行方式进行潮流计算,可以得到各种电网各节点的电压,并求得网络的潮流及网络中的各元件的电力损耗,进而求得电能损耗。本位就是运用潮流计算具体分析,并有MATLAB仿真。 关键词:电力系统潮流计算 MATLAB仿真

Abstract Electric power system steady flow calculation and analysis of the static safety analysis. This paper, by means of the calculation, flow calculation is the trend of the power network design and operation of the most basic operations of electric power network, various design scheme and the operation ways to tide computation, can get all kinds of each node of the power grid voltage and seek the trend of the network and the network of the components of the power loss, and getting electric power. The standard is to use the power flow calculation and analysis, the specific have MATLAB simulation. Key words: Power system; Flow calculation; MATLAB simulation

数学建模-鱼模型测量

鱼模型测量 数学089班王敬华丘创权黄建其 摘要 分析题目可得知只有三组数据:身长,胸围,重量。需要得出的是用身长和胸围去表示重量,我们可以先分析这三组数据,在综合考虑它们之间会有什么关系? 首先看身长与重量的关系,可以得到它们大体上是正相关的关系,再看一下胸围和重量的关系也是正相关的,因此我们可以得到重量与身长,胸围两者的关系是正相关的。 在这里我们把鱼比拟成一个类似于两个有共同底面的圆锥,所以我们建立一个以圆锥体的底面周长、两个高之和分别为鱼的胸围、鱼长。并且可以用MATLAB 进行拟合求解。根据拟合数据的所得的鱼模型函数来估计出:当鱼的长度和胸围分别为40.2cm、26.3cm时鱼的重量为904.3g。 一、问题的提出 鱼的重量和鱼的长度和胸围有关。现有一种鱼,并且测量得到其中8条鱼长度、胸围和重量(胸围指鱼身的最大周长)如下表: 试建立模型按照测量的长度和胸围来估计鱼的重量。现有一条鱼的长度和胸围分别为40.2cm和26.3cm,请用你的模型计算出这条鱼的重量。 二、问题分析 分析题目可得知只有三组数据:身长,胸围,重量。需要得出的是用身长和胸围去表示重量,我们可以分析这三组数据,在综合考虑它们之间会有什么关系? 首先看身长与重量的关系,可以得到它们大体上是正相关的关系,再看一下胸围

和重量的关系也是正相关的,因此我们可以得到重量与身长,胸围两者的关系应该都是正相关的关系。并且可以用MATLAB进行拟合求解。 三、模型假设 1、假设这些数据测量的是同一种鱼,且密度是不变的。 2、假设鱼的最大周长指的是胸围 3、假设都是在同一条件下测量 4、假设模型建立在理想状态下其它的影响因素忽略不计 四、符号意义 W代表重量L代表身长C代表胸围P表示密度 五、模型建立与求解 对于同一种鱼不妨认为其整体形状是相似的,密度也大体相同,把鱼的形状看作类似于两个有共同底面的圆锥所构成,其中鱼的最大周长为胸围, 那么有W=P*S*H/3=P*L*C^2/(12PI())=KX (其中K=P/(12PI()),X=L*C^2) 因此我们可以得到如下的表格数据 依照上面的假设和定义,我们可以构造如下模型:

数学模型考试试卷

1.“商人怎样安全过河”模型中状态随决策变化的规律是 k k k k d s s )1(1-+=+。(允许决策模型) 1、2、“公平的席位分配”模型中的Q 值法计算公式是 )1(2+= i i i i n n p Q 。 3、“存贮模型”的平均每天的存贮费用计算公式为 =)(T C 221rT c T c + ,当= T r c c 21 2时, )(T C 最小。 4、LINGO 中,表示决策变量x 是0-1变量的语句是 @gin(x) 。 5、一阶自治微分方程 ()x f x =&的平衡点是指满足 ()0f x = 的点,若 '()0f x < 成立,则其平衡点是稳定的。 6、市场经济中的蛛网模型中,只有当 f K < g K 时,平衡点 0P 才是稳定的。 7、“传染病模型”中SIS 模型是指被传染者康复以后,还有可能再次感染该传染病。 8、传送系统的效率模型中,独立地考虑每个钩子被触到的概率为p ,则共有n 个钩子的系统中,一周期内被触到k 个 钩子的概率为 (1)k k n k n C p p -- 。 9、我们所建立的“人口指数增长”模型是根据微分方程rt e x t x 0)(= 建立的。我们所建立的“人口阻滞增长”模型是 根据微分方程 )1(m x x rx dt dx -= 建立的。 10、“商人怎样安全过河”模型中,从初始状态到终止状态中的每一步决策都是集合D 中的元素 。 11、建立起的“录像机计数器的用途”模型bn an t +=2中的参数a 和b 可用 数值积分 方法求得。 12、“双层玻璃的功效”模型中,建筑规范一般要求双层玻璃的间隙约为玻璃厚度的1/2 。“双层玻璃的功效”模型中,按建筑规范实施的双层玻璃可节能 97 % 。 13、“传染病模型”中所未涉及的模型是SIS 模型. 14、下列正则链和吸收链的说法中,错误的是 吸收链存在唯一极限状态概率。 15、“人口阻滞增长”模型是在“指数增长模型”的前提下, 假设人口增长率是人口数量的减函数 。 16、“人口阻滞增长”模型中,当人口数 =)(t x 2/m x 时,人口增长率最大;当人口数=)(t x m x 时,人口增长率为0。 17、“录像带计数器的读数”多种方法建立的模型都是n v rk n v wk t ππ222 + = 。“录像机计数器的用途”模型中,计数 器的读数 的增长速度越来越慢 。 18、“双层玻璃的功效”模型中,所依据的基本物理公式是 = Q d T k ?。 19、“经济增长模型”中,衡量经济增长的指标有 总产值的增长 、 单位劳动力产值的增长 。 “经济增长模型”中,要保持总产值 )(t Q 增长,即要求。 0>dt dQ 20、“传染病模型”中SIR 模型是指被传染者康复以后具有免疫性, 不再感染该传染病。 21. 存贮模型的优化目标是 平均每天费用最小。

大气污染指数与气象参数数学模型

大气污染指数与气象参数数学模型 1.问题重述 大气是指包围在地球外围的空气层,是地球自然环境的重要组成部分之一。人类生活在大气里,洁净大气是人类赖于生存的必要条件。一个人在五个星期内不吃饭或5天内不喝水,尚能维持生命,但超过5分钟不呼吸空气,便会死亡。随着地球上人口的急剧增加,人类经济增长的急速增大,地球上的大气污染日趋严重,其影响也日趋深刻,如由于一些有害气体的大量排放,不仅造成局部地区大气的污染,而且影响到全球性的气候变化。因此,加强大气质量的监测和预报是非常必要。目前对大气质量的监测主要是监测大气中2SO 、2NO 、悬浮颗粒物(主要为PM10)等的浓度,研究表明,城市空气质量好坏与季节及气象条件的关系十分密切。 附件给出城市A 、B 、C 、D 、E 、F 从2003年3月1日至2010年9月14日测量的污染物含量及气象参数的数据。 请运用数学建模的方法对下列问题作出回答: 1.找出各个城市2SO 、2NO 、PM10之间的特点,并将几个城市的空气质量进行排序。 2.对未来一周即2010年9月15日至9月21日各个城市的2SO 、2NO 、PM10以及各气象参数作出预测。 3.分析空气质量与气象参数之间的关系。 4.就空气质量的控制对相关部门提出你的建议。 2.问题分析 本题为生活中的实际问题,层层递进式提出四个问题,分别需要对空气污染 因素以及气象参数进行分析求解。第一问为评价性问题,先从城市内部个污染物特点出发,再到城市之间空气质量进行比较。第二问是预测性问题,通过对给出的数据进行分析,预测各项参数之后的趋势。第三问是寻找关联性问题,要求找出空气质量与气象参数之间的关系。第四问为开放型问题,可通过之前得出的结论或者相关文章及模型提出建议。 2.1 问题1 通过查阅资料,运用已有的API 对各个城市的各项污染指标进行计算,得出各个污染指数API 月平均的折线图,观察,得出各城市各项指标的特点。鉴于求解城市API 时有一定的误差,故选择综合评价模型,对数据进行标准化处理之后,确定动态加权函数,对模型进行求解,排名。检验模型后确定结论的合理性。 2.2 问题2 预测模型主要有灰色预测,时间序列等模型。由所给数据以及问题可知该预测模型为时间序列。随机选取气象参数之一气温(tem )为例进行分析,先通过SPSS 软件得到其时序图,观察其走势,对其做平稳化处理。然后以最小BIC 为标准,构造模型,进一步应用SPSS 软件求解,得出各项参数,并预测出2010年9月15日至2010年9月21日的数据。其余各城市各污染物浓度以及气象参数应用类似方法进行求解。最后,由于F 城市所提供数据与需要预测日期相隔较

实验一 控制系统的数学模型

实验一 控制系统的数学模型 一 实验目的 1、学习用MATLAB 创建各种控制系统模型。 2、掌握传递函数模型、零-极点增益模型以及连续系统模型与离散系统模型之间的转化,模型的简化。 二 相关理论 1传递函数描述 (1)连续系统的传递函数模型 连续系统的传递函数如下: ? 对线性定常系统,式中s 的系数均为常数,且a1不等于零,这时系统在MATLAB 中 可以方便地由分子和分母系数构成的两个向量唯一地确定出来,这两个向量分别用num 和den 表示。 num=[b1,b2,…,bm,bm+1] den=[a1,a2,…,an,an+1] 注意:它们都是按s 的降幂进行排列的。 tf ()函数可以表示传递函数模型:G=tf(num, den) 举例: num=[12,24,0,20];den=[2 4 6 2 2]; G=tf(num, den) (2)零极点增益模型 ? 零极点模型实际上是传递函数模型的另一种表现形式,其原理是分别对原系统传递 函数的分子、分母进行分解因式处理,以获得系统的零点和极点的表示形式。 K 为系统增益,zi 为零点,pj 为极点 在MATLAB 中零极点增益模型用[z,p,K]矢量组表示。即: z=[z1,z2,…,zm] p=[p1,p2,...,pn] K=[k] zpk ()函数可以表示零极点增益模型:G=zpk(z,p,k) (3)部分分式展开 ? 控制系统常用到并联系统,这时就要对系统函数进行分解,使其表现为一些基本控 制单元的和的形式。 ? 函数[r,p,k]=residue(b,a)对两个多项式的比进行部分展开,以及把传函分解为微 分单元的形式。 ? 向量b 和a 是按s 的降幂排列的多项式系数。部分分式展开后,余数返回到向量r , 极点返回到列向量p ,常数项返回到k 。 ? [b,a]=residue(r,p,k)可以将部分分式转化为多项式比p(s)/q(s)。 11 211121......)()()(+-+-++++++++==n n n n m n m m a s a s a s a b s b s b s b s R s C s G ))...()(())...()(()(2121n m p s p s p s z s z s z s K s G ------=22642202412)(23423++++++=s s s s s s s G

高斯赛德尔法潮流计算

高斯——赛德尔法潮流计算 潮流计算高斯——赛德尔迭代法(Gauss一Seidel method)是求解电力系统潮流的方法。潮流计算高斯——赛德尔迭代法又分导纳矩阵迭代法和阻抗矩阵迭代法两种。前者是以节点导纳矩阵为基础建立的赛德尔迭代格式;后者是以节点阻扰矩阵为基础建立的赛德尔迭代格式。高斯——赛德尔迭代法这是数学上求解线性或非线性方程组的一种常用的迭代方法。 本实验通过对电力网数学模型形成的计算机程序的编制与调试,获得形成电力网数学模型:高斯---赛德尔法的计算机程序,使数学模型能够由计算机自行形成,即根据已知的电力网的接线图及各支路参数由计算程序运行形成该电力网的节点导纳矩阵和各节点电压、功率。通过实验教学加深学生对高斯---赛德尔法概念的理解,学会运用数学知识建立电力系统的数学模型,掌握数学模型的形成过程及其特点,熟悉各种常用应用软件,熟悉硬件设备的使用方法,加强编制调试计算机程序的能力,提高工程计算的能力,学习如何将理论知识和实际工程问题结合起来。 高斯---赛德尔法潮流计算框图

[1]系统节点的分类 根据给定的控制变量和状态变量的不同分类如下 ①P、Q节点(负荷节点),给定Pi、Qi求Vi、Si,所求数量最多; ②负荷节点,变电站节点(联络节点、浮游节点),给定P Gi、Q Gi的发电机 节点,给定Q Gi的无功电源节点; ③PV节点(调节节点、电压控制节点),给定P i、Q i求Q n、S n,所求数量 少,可以无有功储备的发电机节点和可调节的无功电源节点; ④平衡节点(松弛节点、参考节点(基准相角)、S节点、VS节点、缓冲节 点),给定V i,δi=0,求P n、Q n(V s、δs、P s、Q s)。 [2]潮流计算的数学模型 1)线性的节点电压方程YV=I 根据S=V错误!未找到引用源。可得非线性的节点电压方程(错误!未找到引用源。为I的共轭) YV=I=错误!未找到引用源。=错误!未找到引用源。

数学建模中的图论方法

数学建模中的图论方法 一、引言 我们知道,数学建模竞赛中有问题A和问题B。一般而言,问题A是连续系统中的问题,问题B是离散系统中的问题。由于我们在大学数学教育内容中,连续系统方面的知识的比例较大,而离散数学比例较小。因此很多人有这样的感觉,A题入手快,而B题不好下手。 另外,在有限元素的离散系统中,相应的数学模型又可以划分为两类,一类是存在有效算法的所谓P类问题,即多项式时间内可以解决的问题。但是这类问题在MCM中非常少见,事实上,由于竞赛是开卷的,参考相关文献,使用现成的算法解决一个P类问题,不能显示参赛者的建模及解决实际问题能力之大小;还有一类所谓的NP问题,这种问题每一个都尚未建立有效的算法,也许真的就不可能有有效算法来解决。命题往往以这种NPC问题为数学背景,找一个具体的实际模型来考验参赛者。这样增加了建立数学模型的难度。但是这也并不是说无法求解。一般来说,由于问题是具体的实例,我们可以找到特殊的解法,或者可以给出一个近似解。 图论作为离散数学的一个重要分支,在工程技术、自然科学和经济管理中的许多方面都能提供有力的数学模型来解决实际问题,所以吸引了很多研究人员去研究图论中的方法和算法。应该说,我们对图论中的经典例子或多或少还是有一些了解的,比如,哥尼斯堡七桥问题、中国邮递员问题、四色定理等等。图论方法已经成为数学模型中的重要方法。许多难题由于归结为图论问题被巧妙地解决。而且,从历年的数学建模竞赛看,出现图论模型的频率极大,比如: AMCM90B-扫雪问题; AMCM91B-寻找最优Steiner树; AMCM92B-紧急修复系统的研制(最小生成树) AMCM94B-计算机传输数据的最小时间(边染色问题) CMCM93B-足球队排名(特征向量法) CMCM94B-锁具装箱问题(最大独立顶点集、最小覆盖等用来证明最优性) CMCM98B-灾情巡视路线(最优回路) 等等。这里面都直接或是间接用到图论方面的知识。要说明的是,这里图论只是解决问题的一种方法,而不是唯一的方法。 本文将从图论的角度来说明如何将一个工程问题转化为合理而且可求解的数学模型,着重介绍图论中的典型算法。这里只是一些基础、简单的介绍,目的在于了解这方面的知识和应用,拓宽大家的思路,希望起到抛砖引玉的作用,要掌握更多还需要我们进一步的学习和实践。

圆形工件正次品的检验模型 (数学建模)

圆形工件正次品的检验模型 1.摘要 2.问题重述与分析 某工件为圆形, 半径为100.1 , 超出此范围即为次品. 测量仪器自 mm mm 动在每个工件的圆周上测量36个数据. 假定测量出的二维数据(,) x y是足够精 i i 确的, 要求建立一个合理的检验正/次品的模型, 对每个工件的36个数据进行计算后给出判断. 工件半径的误差主要由制造工艺造成.工件不合格的原因可能是半径过大或过小(如图一),或是表面粗糙度过大(如图二). 图一图二 机械制造中对表面粗糙度的定义是无论用何种加工方法加工,在零件表面总会留下微细的凸凹不平的刀痕,出现交错起伏的峰谷现象,粗加工后的表面用肉眼就能看到,精加工后的表面用放大镜或显微镜仍能观察到.这就是零件加工后的表面粗糙度.国家规定表面粗糙度的参数由高度参数、间距参数和综合参数组成,其中高度参数有三个:轮廓的平均算术偏差(Ra),不平度平均高度(Rz),轮廓最大高度Ry.如无特殊要求,一般仅选用高度参数.推荐优先选用Ra值,因为Ra能充分反映零件表面轮廓的特征. 此值较大,工业上认为Ra大于6.3μm时,表面粗糙.但为了简化模型, 忽略表面粗糙度对本题的影响.假设所给数据相邻两点之间的轮廓曲线以这两点为极点.因此在分析中只针对给出的点作判定,而对在点与点连线过程中有可能出现的超出范围的情况不作考虑.如果工件合格,那么可以找到一个点P00 x y(称之 (,) 为近似圆心),使工件的圆周上的36个数据满足:36个点都在以近似圆心、半径满足大于9.9且小10.1的圆环上。从相反的角度考虑,如果这36个点都在一个圆环上,那么分别以这36个点为圆心、内外半径分别为9.9mm和10.1mm的所有圆环域的交集,便是满足条件的近似圆心的可行域。 3.模型假设 (1)假设圆形表面粗超程度一样。 (2)假设所给数据相邻两点之间的轮廓曲线以这两点为极点。 (3)假设每个工件的这36个点具有代表性。 4.符号说明 i:表示工件的序号;

数学建模中常见的十大模型

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MA TLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的

数学建模声音识别模型的建立与评价.

声音识别模型的建立与评价 【摘要】 声音识别是研发智能防盗门的重要环节,对正常和非正常开门(指盗窃开门等声音)的声音进行准确地识别变得尤为重要。本文对采集到的正常和非正常声音进行识别模型建立和评价。其主要方法是:利用80次声音数据,结合MATLAB 工具及分析计算,建立正常、非正常声音与数据y的均值、方差、短时平均能量均值、短时平均幅度均值、短时平均过零率均值和短时自相关函数均值之间的关系的BP神经网络模型。然后分析模型,确定目标函数t,1表示正常,0表示非正常,即对声音进行识别;又进行误差分析,达到误差要求时将80个数据代入函数,即为对声音模型进行验证与评价。 针对问题一,首先从80次声音数据入手,利用MATLAB的load函数载入到计算机内存,内存中变量有Fs和y等变量,其中Fs为采用频率,y为采用数据。再用sound函数,播放出声音信号,从听觉角度比较正常、非正常声音在响度和音调两方的差异。最后利用plot函数绘制出具体的声音波形图,从视觉角度比较声音的频率与振幅的不同效果。 针对问题二,采用合适的时域分析处理声音信号,找出和提取了最重要的特征向量是短时能量和平均幅度、短时平均过零率、短时自相关函数,并比较了它们在表达声音时的不同优越性和特点,用途。 针对问题三,用MATLAB计算出80个正常、非正常声音数据,y的均值、方差、短时平均能量均值、短时平均幅度均值、短时平均过零率均值和短时自相关函数均值,利用这些均值作为BP神经网络的输入数据p且对p进行转置。确定目标函数t,1表示正常,0表示非正常。进行多次训练达到误差要求,求解和分析模型结果,并对80组样本数据进行检验。最后对BP神经网络模型进行评价、改进及推广。 针对问题四,利用主成分分析(PCA)特征变换对参数进行优化,先在正常和非正常中分别随机选取声音组号,再将以上问题得到的对应特征参数均值进行PCA变换,获得新的特征参数f正和f非能够更具区分性,并用参数优化技术包括语音包络检测、Delta特征的引入,获得更好的声音识别率。 针对问题五,对于原始信号中有叠加一定幅度的白噪声,前期处理时为了达到优良的消噪效果,采用新兴方法小波去噪原理,先用所给函数得到如11.mat 的加白噪声的声音,运用MATLAB中的小波工具箱对含噪信号进行小波分解、阈值量化、小波重组,获得的去噪结果与原始信号效果比较,验证小波去噪的可靠性。 关键词:BP神经网络时域分析特征向量主成分分析小波去噪原理

水道测量数学建模

试卷编号: 河北联合大学轻工学院 知行书院

一、摘要: . 首先用matlab绘制出测量点的位置,然后绘制出水底地形图,对地形图经过进一步处理,得到效果更好的加强地形图,根据不同船只的吃水深度,从中可找出对应的危险水域。该模型的建立按照假设条件,根据实际的测量数据,找出要求求解的结果,对航运部门来说,根据该模型,可对不同吃水位的船只在海域设置不同的警示标记,减少事故的发生,创造一个相对安全的海域环境。 二、问题重述: 某海域上频繁地有各种吨位的船只经过。为保证船只的航行安全,有关机构在低潮时对水深进行了测量,下表是他们提供的测量数据: 水道水深的测量数据 其中(x, y)为测量点,z为(x, y)处的水深(英尺)。船的吨位可以用其吃水深度来反映,分为 4英尺、4.5英尺、5英尺和 5.5英尺 4 档。航运部门要在矩形海域(75,200)×(-50,150)上为不同吨位的航船设置警示标记。请根据测量的数据描述该海域的地貌,并绘制不同吨位的警示线,供航运部门使用。 提示:水深z可以看做是区域坐标(x, y)的函数z= z (x, y),测量数据只是它的部分取值。可绘制函数图象和等值线图,将不同吃水线标记图上 三、模型假设: 1、每个测量点的数据都影响着其他未知点的深度,且距离越近,影响越大; 2、海底无暗礁; 3、任意两个数据点之间深度的变化都影响着其他未知点的深度; 4、两个数据点深度的变化对某一未知点的影响沿两点连线传播。 四、模型分析与建立: 根据假设条件海底无暗礁,所以很自然地想到绘制海底地形图,进一步处理得到比较光滑的海底地形曲面图。根据海底地形的海拔高低以及不同船只的吃水深度,找到不同吨位船只的危险海域,达到很好的警示效果。 (一)、首先绘制出监测点在矩形区域对应的海域位置(如所示):

数学建模竞赛 基于多雷达目标定位的数学模型

基于多雷达目标定位的数学模型 (选作题号 A) 摘要 建立方程组把求雷达系统定位的最少雷达数量问题转化为以最少的方程个数n 使该方程组具有唯一解,得出结论:1、当雷达站点不共线布置时,只需要三部雷达便可实现定位;2、当所有雷达位于一直线上时,无论雷达数目是多少,均只能获得目标在x 或y 方向的坐标,不能完全定位。 对于问题二,我们采用微积分、概率论中的相关知识以及斜距离定位系统分析定位误差,建立了定位误差与测距误差和坐标误差的关系的微分方程模型。得到结果:采用三个雷达定位时,定位误差的期望值为0,方差与雷达的测距误差 r σ和坐标误差s σ成线性关系。 针对问题三,首先,建立了可选站址的定位算法模型,但此算法中雷达站址的选择具有局限性。最后我们从概率统计的角度建立了基于最小方差的考虑误差非线性规划定位算法模型,并在具体实施中对算法进行化简,较好地解决了问题中的三组数据目标定位,得出的相应目标飞行物坐标为(-25292,6292,24003),(-28138,4315,23941),(-25461,6217,23765),并通过对结果的误差比较,给出了影响误差的因素及算法的评价。 以问题二对定位精度的分析为基础,进一步通过对定位误差分析计算并参考有关资料,给出了如下一些控制精度的建议:1、 采用先进技术,减小测距误差和站点坐标误差;2、适当增加相邻雷达站间距离;3、合理布置雷达站点空间分布;4、适当增加雷达站的数量。 在完成所有模型的建立与求解之后,我们还对模型优劣进行了比较分析和评价,并提出了相应的改进和完善的方向,并把模型进行推广使用。 关键字: 目标定位 定位误差 微分方程 坐标误差

数据建模目前有两种比较通用的方式

数据建模目前有两种比较通用的方式1983年,数学建模作为一门独立的课程进入我国高等学校,在清华大学首次开设。1987年高等教育出版社出版了国内第一本《数学模型》教材。20多年来,数学建模工作发展的非常快,许多高校相继开设了数学建模课程,我国从1989年起参加美国数学建模竞赛,1992年国家教委高教司提出在全国普通高等学校开展数学建模竞赛,旨在“培养学生解决实际问题的能力和创新精神,全面提高学生的综合素质”。近年来,数学模型和数学建模这两个术语使用的频率越来越高,而数学模型和数学建模也被广泛地应用于其他学科和社会的各个领域。本文主要介绍了数学建模中常用的方法。 一、数学建模的相关概念 原型就是人们在社会实践中所关心和研究的现实世界中的事物或对象。模型是指为了某个特定目的将原型所具有的本质属性的某一部分信息经过简化、提炼而构造的原型替代物。一个原型,为了不同的目的可以有多种不同的模型。数学模型是指对于现实世界的某一特定对象,为了某个特定目的,进行一些必要的抽象、简化和假设,借助数学语言,运用数学工具建立起来的一个数学结构。 数学建模是指对特定的客观对象建立数学模型的过程,是现实的现象通过心智活动构造出能抓住其重要且有用的特征的表示,常常是形象化的或符号的表示,是构造刻画客观事物原型的数学模型并用以分析、研究和解决实际问题的一种科学方法。 二、教学模型的分类 数学模型从不同的角度可以分成不同的类型,从数学的角度,按建立模型的数学方法主要分为以下几种模型:几何模型、代数模型、规划模型、优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型等。 三、数学建模的常用方法 1.类比法 数学建模的过程就是把实际问题经过分析、抽象、概括后,用数学语言、数学概念和数学符号表述成数学问题,而表述成什么样的问题取决于思考者解决问题的意图。类比法建模一般在具体分析该实际问题的各个因素的基础上,通过联想、归纳对各因素进行分析,并且与已知模型比较,把未知关系化为已知关系,

压缩机电流检测数学模型

压缩机电流检测电路的数学模型 熊飞 摘要:本文以试验测试数据做为数学模型建立的依据,得到了电流互感器互感系数C 和检测电流I的关系,即C= f(I);并在此基础上,得到I/O口输入电压U与检测电流I、R14、R13之间的关系,即U=f(I,R14,R13)。运用软件:matlab,程序见附录。 ●压缩机电流检测电路 参数:I——压缩机检测电流 U——芯片I/O口输入电压 C——互感器互感系数 R13、R14——分压电阻 ●分析 1,电流互感器将大电流I转化为小电流I/C,可得到R6两端交流电压Uo=R6*Ii/C。 2,在经过整流二极管D10半波整流后,二极管D10的负极与地之间的直流电压V1=0.707*Uo-0.5V=0.707*R6*Ii/C-0.5V;减掉的0.5V为二极管上的压降。 3,芯片I/O口输入电压U= R13/(R13+R14)*V1。 4,按以上分析可以得到:芯片I/O口输入电压U= R13/(R13+R14)*(0.707*R6*I/C-0.5) 5,从理论公式中可以看出,电阻R13、R14、R6为定值,C值在实际中并不是常数,而是随检测电流I而变化的! ●关于的数学模型C=F(I)的建立 1,检测电流I从1A到30A变化,每次增加1A,记录下每次芯片I/O口输入电压U; 【电流互感起为0057W、R14=6.8K、R13=16K时的试验检测数据】 (I为压缩机检测电流,U为芯片I/O口输入电压)

2,依据以上测试值和理论计算公式U= R13/(R13+R14)*(0.707*R6*I/C-0.5),不同输入电流时,计算出电流互感起互感系数C【程序1】 2,根据以上测试数据,建立关于C=F(I)的函数关系 ①选用函数模型:C=K0+K1I+K2I2+…….+KnI n ②模型建立思想:n为函数阶次,当n从1变化到30时,观察实际值和理论值 的拟合度以及平方差dlt,当拟合度最佳且平方差dlt最小的时候,此时的函数为最佳拟合函数。 ③平方差dlt说明: 当电流为I1时,据试验测试数据计算得到的互感系数为C_A1,依据拟合模型C=F(I)计算得到的互感系数为C_L1,dlt1=( C_A1-C_L1)2,当电流从1到30A变化时,可以得到dlt1、dlt2 、dlt3 。。。。。。dlt30 , dlt=sqrt(dlt1 +dlt2 +dlt3…..+ dlt30), [sqrt表示为开平方]

教育测量:从数学模型到法学模型

教育测量:从数学模型到法学模型 谢小庆 (北京语言大学) 摘要:美国教育协会和美国国家教育测量学会共同组织编写的《教育测量》在业内被称为是“测量领域的《圣经》”。在2006年出版的《教育测量》(第4版)中,将图尔敏的论证模型作为效度研究的基本范式。这不仅是效度研究范式的转变,更标志着教育测量研究从数学模型向法学模型的转变。本文讨论了这种教育测量研究范式的转变。 关键词:测验考试教育测量图尔敏 效度研究是教育和心理测量研究领域中最重要的问题。美国教育协会(American Council on Education)和美国国家教育测量学会(National Council on Measurement in Education)共同组织编写的《教育测量(Educational Measurement)》在业内被称为“教育测量领域的《圣经》”。在2006年出版的《教育测量(第4版)》中,将图尔敏的证模型作为效度研究的基本范式。1在新的效度研究范式中,“理据(warrant)”成为核心概念,效度研究被视为一种通过构造理据系统、理据链条和理据网络而对效度进行的“论证(argument)”,效度研究被视为一种对测验分数做出普乐好(plausible)解释的过程。2,3作为一门学科,教育测量学已经走过了百余年的历史。在教育测量学的发展历史中基本的研究模型是数学模型,是借助数学工具改进教育评价的质量,从而提高教育评价的有效性、可靠性和公平性。百年间,教育测量研究的数学模型取得了很大的成绩,研究成果被广泛地应用于考试实践,既促进了教育的公平, 1Brennan, R. L., ed. : Educational measurement (4th edition), [C] Washington, DC: American Council on Education/Praeger,2006,第17-64页 2谢小庆,测验效度概念的新进展[J],考试研究,2013年第3期,2013,56-64页 3谢小庆,效度:从分数的合理解释到可接受解释[J],中国考试,2013年第7期,3-8页

血样的分组检验数学建模

问题一血样的分组检验 摘要:本文以血样分组检验为原型,通过建立数学模型,利用概率统计,数学期望值等知识对如何分组检验以及什么情况下需要进行分组检验作出了合理的解释。 关键词:血样分组检验,数学模型,概率统计, 数学期望值 具体问题 在一个很大的人群中通过血样检测普查某种疾病,假定血样为阳性的先验概率为p (通常p很小)。为减少检验次数,将人群分组,一组人的血样混合在一起化验。当某组的混合血样为阴性时,即可不经检验就判断该组每个人的血样都为阴性;而当某组的混合血样为阳性时,则可判断该组至少有一人血样为阳性,于是需要对该组的每个人在做化验。 (1)当p固定时(0.1%,…,1%,…)如何分组,即多少人一组,可使平均总检验数 最少,与不分组的情况比较。 (2)当p多大时不应分组检验。 (3)当p固定时如何进行二次分组(即把混合血样呈阳性的组再分成小组检验, 重复一次分组时的程序)。 (4)讨论其他分组方式,如二分法(人群一分为二,阳性组在一分为二,继续 下去),三分法等。 分析问题 本文对血样分组检验建立数学模型,目的就是要找到一种最佳的分组方案,对于一个数量固定的人群(假定人群数量为n 人),我们在决定哪一种分组方案最好或者需不需要分组时,可以引入数学平均值。 如果不分组,每个人都参加检验,则总共需要检验n次,每个人平均需要检验一次,如果分组后计算出每个人的平均检验次数小于1次,则认为分组比不分组好,需要分组,

反之,则不需要分组;在众多组合的分组中,哪一种分组计算出来的每个人的平均检验次数最小,则认为这种分组时最优的分组方案。这也是数学概率模型的基本思路。 在人群(数量很大)中进行血样检验,已知先验阳性率为p, 为减少检验次数将人群分组。若k人一组,当k份血样混在一起时,只要一份呈阳性,这组血样就呈阳性,则该组需人人检验;若一组血样呈阴性,则该组不需检验。 模型假设 结合本问题的实际情况,对该模型作出如下合理的假设: 1.人群数量总数为n人; 2.先验概率P在检验中为一常量,保持不变; 3.每个人检验一次是否阳性的概率相互独立,即每个人接受检验是互相独立事件,互不影响; 4.每次分组时都能达到平均分配,能分成m组,即m=n/k,m为正整数。 变量说明 根据提出的问题和模型假设,给出如下变量: n---- 被检验人群的总数; m----人群被分成的组数; k----每组的人数; k1----第二次分组时每组的人数; p---- 先验阳性概率; q=1- p----先验阴性概率; ξ----每个人需要检验的次数,为一随机变量; Eξ----ξ的期望值,每个人需要检验的平均次数。 模型建立 利用概率统计知识建立数学概率模型,由期望值知道,如果不分组,每个人都参加检验,每个人平均需要检验一次;如果分组,分组后计算出每个人的平均检验次数小于1次,则认为分组比不分组好,需要分组,反之,则不需要分组。 在众多组合的分组中,比较哪一种分组计算出来的每个人的平均检验次数最小,平

潮流计算简答题

潮流计算数学模型与数值方法 1. 什么是潮流计算潮流计算的主要作用有哪些 潮流计算,电力学名词,指在给定电力系统网络拓扑、元件参数和发电、负荷参量条件下,计算有功功率、无功功率及电压在电力网中的分布。 潮流计算是电力系统非常重要的分析计算,用以研究系统规划和运行中提出的各种问题。对规划中的电力系统,通过潮流计算可以检验所提出的电力系统规划方案能否满足各种运行方式的要求;对运行中的电力系统,通过潮流计算可以预知各种负荷变化和网络结构的改变会不会危及系统的安全,系统中所有母线的电压是否在允许的范围以内,系统中各种元件(线路、变压器等)是否会出现过负荷,以及可能出现过负荷时应事先采取哪些预防措施等。 2. 潮流计算有哪些待求量、已知量 (已知量:1、电力系统网络结构、参数 2、决定系统运行状态的边界条件 待求量:系统稳态运行状态 例如各母线上的电压(幅值及相角)、网络中的功率分布以及功率损耗等) 3. 潮流计算节点分成哪几类分类根据是什么 (分成三类:PQ 节点、PV 节点和平衡节点,分类依据是给定变量的不同) 4. 教材牛顿-拉夫逊法及有功-无功分解法是基于何种电路方程可否采用其它类型方程 答:基于节点电压方程,还可以采用回路电流方程和割集电压方程等。但是后两者不常用。 5. 教材牛顿-拉夫逊法是基于节点阻抗方程、还是基于节点导纳方程进行迭代计算的试阐述这两种方程的优点与缺点。 1.不能由等值电路直接求出 2.满秩矩阵内存量大 3.对角占优矩阵。。 节点导纳矩阵的特点:1.直观容易形成2.对称阵3.稀疏矩阵(零元素多):每一行的零元素个数=该节点直接连出的支路数。 6. 说出至少两种建立节点导纳矩阵的方法,阐述其中一种方法的原理与过程。 方法:1.根据自导纳和互导纳的定义直接求取2.运用一节点关联矩阵计算3.阻抗矩阵的逆矩阵 节点导纳矩阵的形成:1.对角线元素ii Y 的求解)1,,0(=≠==i j I i ii U i j U U I Y 【除i 外的其他节点接地,0=j U ,只在i 节点加单位电压值】解析ii Y 等于与i 节点直接相连的的所有支路导纳和2.互导纳),0,1(j k U U U I Y k j j i ij ≠===,ji ij Y Y =(无源网络导纳之间是对称的)解析:ij Y 等于j i ,节点之间直接相连的支路导纳的负值。 7. 潮流计算需要考虑哪些约束条件 答: 为了保证系统的正常运行必须满足以下的约束条件: 对控制变量

数学模型课后详细复习资料

数学模型作业 六道题 作业一 1.P56.8一垂钓俱乐部鼓励垂钓者将钓上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长): 解: 要求鱼的体重,我们利用质量计算公式:M=ρV。我们假定鱼池中是同一种鱼,于是可以近似地考虑其密度是相同的。至于鱼的体积问题,由于是同一种类,可以假定这种鱼在体型上是一致的。我们假设鱼的体积和鱼身长的立方成正比。即:V=k 1 L3,因此,模型为: 33 111 M V k l K L ρρ ===…………………………… 模型一 利用Eviews软件,用最小二乘法估计模型中的参数K 1 ,如下图1所示: 图1 从图1结果可以得到参数K 1 =0.014591,所以模型为: 3 1 M0.014591 L = 上述模型存在缺陷,因为它把肥鱼和瘦鱼同等看待。因此,有必要改进模型。如果只假定鱼的横截面是相似的,假设横截面积与鱼身最大周长的平方成正比, 即:V=k 2 d2L,因此,模型为: 身长 /cm 36.8 31.8 43.8 36.8 32.1 45.1 35.9 32.1 质量 /g 765 482 1162 737 482 1389 652 454 胸围 /cm 24.8 21.3 27.9 24.8 21.6 31.8 22.9 21.6

1 2 5 3 4 7 6 22222M V k d K d L L ρρ===……………………………… 模型二 利用Eviews 软件,用最小二乘法估计模型中的参数K 2,如下图2所示: 图2 从图2可以得到参数K 2=0. 032248,所以模型为: 22M 0.032248d L = 将实际数据与模型结果比较如表1所示: 实际数 据M 765 482 1162 737 482 1389 652 454 模型一M 1 727.165 469.214 1226.061 727.165 482.629 1338.502 675.108 482.619 模型二M 2 729.877 465.248 1099.465 729.877 482.960 1470.719 607.106 483.960 2.P131.2 一家出版社准备在某市建立两个销售代理点,向7个区的大学生售书,每个区的大学生数量(单位:千人)已经表示在图上。每个销售代理点只能向本区和一个相邻区的大学生售书,这两个代理点应该建在何处,才能使所能供应的大学生的数量最大?建立该问题的整数线性规划模型并求解。 解: 将大学生数量为34、29、42、21、56、18、71的区分别标号为1、2、3、4、5、6、7区,画出如下区域区之间的相邻关系: 记r 为第i 区的大学生人数,用0-1变量x ij =1表示(i ,j )区的大学生由

相关主题
文本预览
相关文档 最新文档