当前位置:文档之家› 武大线性代数2012期末考试题及答案

武大线性代数2012期末考试题及答案

武大线性代数2012期末考试题及答案
武大线性代数2012期末考试题及答案

课程考核试题卷 ( A 卷)

试卷编号

( 2011 至 2012学年 第__2_学期 )

课程名称: 线性代数A 考试时间:110分钟 课程代码: 7100059 试卷总分: 100 分 考试形式: 闭卷 学生自带普通计算器: 否

一、单项选择题(每小题3分,共15分)

1、A 和B 均为n 阶矩阵,且222()2A B A AB B -=-+,则必有( )

A A E =;

B B E =;

C A B =.

D AB BA =。 2、设A 是方阵,如有矩阵关系式AB=AC ,则必有( )

A. A =0

B. B ≠C 时A=0

C. A ≠0时B=C

D. |A|≠0时B=C

3、设A 是s n ?矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是( )

A.A 的行向量组线性无关

B.A 的列向量组线性无关

C.A 的行向量组线性相关

D.A 的列向量组线性相关 4、若1x 是方程=AX B 的解,2x 是方程=AX O 的解,则()是方程=AX B 的解(c R ∈)

A.12x cx +

B. 12cx cx +

C. 12cx cx -

D. 12cx x + 5、设矩阵A 的秩为r ,则A

中( )

A.所有r -1阶子式都不为0

B.所有r -1阶子式全为0

C.至少有一个r

阶子式不等于0 D.所有r 阶子式都不为0

二、填空题(每小题3分,共15分)

1、已知向量T )4,2,3,1(=α与T k k )2,3,1,(--=β正交,则=k _.

2、1

1101-?? ???

= .

3、设3阶矩阵A 的行列式|A |=8,已知A 有2个特征值-1和4,则另一特征值为 .

4、如果21,X X 都是方程O X A n n =?的解,且21X X ≠,则=?n n A ;

5、设向量组123100130121T T T (,,),(,,),(,,)==-=-ααα线性 (填相关或无关)

三、(10分)计算行列式

3112513420111

5

3

3

------.

四、(10分)已知2()41f x x x =+-,120210002A -??

?

= ? ???

,求()f A 。

五、(10分)求齐次线性方程组123412341

2342350

3240230

x x x x x x x x x x x x ??

???-++=-++-=--++=的一个基础解系及其

通解.

六、(12分)判定二次型22212

3121323444f x x x x x x x x x =---++-的正定性,并求 该二次型的秩。

七、(10分)求向量组:11211α??????=??????--,22521α??????=??????-,33574α????

??=??????

--,416179α??

????=??????-的秩及一

个极大线性无关组,并将其余向量通过该极大线性无关组表示出来.

八、(12分)已知矩阵相似与??

??

?

?????=??????????=,00030000300011011x B A (1)求x ;

(2)求可逆矩阵P ,使得1P AP B -=。

九、(6分)设3阶矩阵A 的特征值为2(二重),-4,求1

12A -*??

- ?

??

一、单项选择题(每小题3分,共15分)

评分标准:选对得3分,不选或选错得0分

1、D ;

2、D ;

3、D ;

4、A ;

5、C

二、填空题(每小题3分,共15分): 评分标准:填对得3分,不填或填错得0分

1、24;

2、;1101-??

?

??

3、-2;

4、0;

5、无关

三、计算行列式(12分)

1、原式=4; …………10分 四、(10分) 解

2340430004A --??

?=- ?

???

………4分

4804840008A -??

?= ?

???

………………8分

()012012000011f A -?? ?= ? ???033123110??

?=- ?

???

…………10分

五、(12分)

解:齐次线性方程组的系数矩阵A 为:123412341

2342350

3240230

x x x x x x x x x x x x ??

???-++=-++-=--++=

2315123110113124~0777~0111123107770000A ----??????

? ? ?=------ ? ? ?

? ? ?---??????

…4分

一般解为:134

234

3344

x x x x x x x x x x =-??=+??=??=? (3x 为自由未知量) ……………………6分

故齐次线性方程组的通解为X 1212

1111=k +k (k )1001k -???? ? ?

? ? ? ? ? ?????

为常数…………10分 六、(12分)

解:二次型对应的矩阵为

122212221A -??

?=-- ?

?--??

………4分

110-=-<; ………2分

123021-=-<- ………2分

12

2

2121302

21

---=-<-- ………2分 所以矩阵的秩为3,即二次型的秩为3 2分

七、(10分)

解:向量组对应的矩阵为

1234123110502556011

0()~12717000111490000αααα-???? ? ?-

? ?= ? ?-- ?

?---????

………3分 所以矩阵的秩为3 6分

所以124,,ααα为一组极大无关组 8分

3125ααα=-+ ………10分

八、(8分)

解:解:(1)、由于

A 与

B 相似,则()()tr A tr B =。因为()5tr A =,()3tr B x =+,

则2x =。 ………4分

(2)、因为B 的特征值为2,3,0321===λλλ,所以A 的特征值为

2,3,0321===λλλ。

当10λ=时,它对应的特征向量为T a )0,1,1(1-= 当对于23λ=时,它对应的特征向量为T a )1,0,0(2= 当32λ=时,它对应的特征向量为T a )0,1,1(3=。

取()123101,,101010P a αα??

?==- ? ???

,则1

P AP B -=。 ……… 12分

九、(6分)

证明:1

12A -*??- ?

??

=-8()

1

1

2

A

-*=-= ……6分

2015年武汉大学线性代数考研真题

2015年线性代数 一、 ①证明?? ????-C B C A A 可逆的充要条件是AB 可逆 ②若??????-C B C A A 可逆,求出?? ????-C B C A A 的逆。 二、r b A r A r b ==≠),()(,0,b Ax =的所有解集合为S,证明: ①S 中包含1+-r n 个线性无关的向量121,...,+-r n ηηη。 ②ξ是S 中元素充要条件是存在)1...,2,1(,+-=r n i k i , 111=∑+-=r n i i k ,使得 ∑+-==1 1r n i i i k ηξ 三、已知A 为实正交矩阵,det(A)=1,证明存在正交矩阵P ,使得 21cos ,cos sin 0sin cos 00 01 332211'-++=??????????-=a a a AP P θθθθθ 其中。 四、以下有关矩阵秩的命题在数域F 上判断正误,如正确请说明理由,如不正确请举例说明。 (1)、若)()(B r A r =,则()()* *B r A r = (2)、若())(B r AB r =,则)()(BC r ABC r = (3)、)()('AA r A r = (4)、若一个对称矩阵的秩为r ,则有一个非0 的r 阶主子式。 五、A 是n 阶实对称矩阵,其正负惯性指数分别是q p ,, AX X x f ')(=,记{} n f R x x f x N ∈==,0)(|,证明: (1)、包含于f N 的线性空间维数至多是),max(q p n - (2)、若w 是n R 的一个线性子空间,将二次型限定w 在中,得到的正负惯性指数分别是p1,q1,则有q q p p ≤≤11,。

《线性代数》习题集(含答案)

《线性代数》习题集(含答案) 第一章 【1】填空题 (1) 二阶行列式 2a ab b b =___________。 (2) 二阶行列式 cos sin sin cos αα α α -=___________。 (3) 二阶行列式 2a bi b a a bi +-=___________。 (4) 三阶行列式x y z z x y y z x =___________。 (5) 三阶行列式 a b c c a b c a b b c a +++=___________。 答案:1.ab(a-b);2.1;3.()2 a b -;4.3 3 3 3x y z xyz ++-;5.4abc 。 【2】选择题 (1)若行列式12 5 1 3225x -=0,则x=()。 A -3; B -2; C 2; D 3。 (2)若行列式11 1 1011x x x =,则x=()。 A -1 , B 0 , C 1 , D 2 ,

(3)三阶行列式2 31 503 2012985 23 -=()。 A -70; B -63; C 70; D 82。 (4)行列式 000 000 a b a b b a b a =()。 A 4 4 a b -;B () 2 2 2a b -;C 4 4 b a -;D 44 a b 。 (5)n 阶行列式0100 0020 0001000 n n - =()。 A 0; B n !; C (-1)·n !; D () 1 1!n n +-?。 答案:1.D ;2.C ;3.A ;4.B ;5.D 。 【3】证明 33()by az bz ax bx ay x y z bx ay by az bz ax a b z x y bz ax bx ay by az y z x ++++++=++++ 答案:提示利用行列式性质将左边行列式“拆项”成八个三阶行列式之和,即得结果。 【4】计算下列9级排列的逆序数,从而确定他们的奇偶性: (1)134782695;(2)217986354;(3)987654321。 答案:(1)τ(134782695)=10,此排列为偶排列。 (2)τ(217986354)=18,此排列为偶排列。 (3)τ(987654321)=36,此排列为偶排列。 【5】计算下列的逆序数: (1)135 (2n-1)246 (2n );(2)246 (2n )135 (2n-1)。 答案:(1) 12n (n-1);(2)1 2 n (n+1) 【6】确定六阶行列式中,下列各项的符号:

武汉大学2014年线性代数真题解答

武汉大学2014年线性代数真题解答 一.由12001 30000 20 010A ?? ? ?= ? ? -?? ,且1 1[()*]6122A BA AB E -=+,求B . 二.计算011121 211n n n n n n s s s s s s x D s s s x -+-= ,其中12k k k k n s x x x =++ .

三.有121,,,,s s αααα+ ,且1 ,1,,i i i s t i s βαα+=+= , 证明如果12,,,s βββ 线性无关,则121,,,s ααα+ 必定线性无关.

四.线性空间V 定义的第(3),(4)条公理,即 (3)任意的V α∈,存在0V ∈,使00ααα+=+=; (4)任意的V α∈,存在V β∈,使0αββα+=+=. 证明他们的等价条件为:任意的,V αβ∈,存在x V ∈,使x αβ+=. 五.设()n sl F 是()M F 上,A B 矩阵满足AB BA -生成的子空间,证明

2dim(())1n sl F n =- . 六.设数域K 上的n 维线性V 到m 维线性上的所有线性映射组成空间(,')k Hom V V ,证明(1)(,')k Hom V V 是线性空间; (2)(,')k Hom V V 的维数为mn . 七.已知013210 1010101n n n c c F c c c ----?? ?- ? ? = ?- ? ?- ? ?-? ? , (1)求F 的的特征多项式()f x 与最小的项式()m x ; (2)求所有与F 可交换的矩阵.

线性代数试题及答案.

线性代数(试卷一) 一、 填空题(本题总计20分,每小题2分) 1. 排列7623451的逆序数是_______。 2. 若 122 21 12 11 =a a a a ,则=1 6 030322211211 a a a a 3。 已知n 阶矩阵A 、B 和C 满足E ABC =,其中E 为n 阶单位矩阵,则CA B =-1。 4. 若A 为n m ?矩阵,则非齐次线性方程组AX b =有唯一解的充分要条件是 _________ 5. 设A 为86?的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为_ _2___________. 6. 设A为三阶可逆阵,??? ? ? ??=-1230120011 A ,则=*A 7。若A为n m ?矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是 8.已知五阶行列式1 23453 2011 11111 2 1403 54321=D ,则=++++4544434241A A A A A 9。 向量α=(2,1,0,2)T -的模(范数)______________ 。 10。若()T k 11=α与()T 121-=β正交,则=k

二、选择题(本题总计10分,每小题2分) 1。 向量组r ααα,,,21 线性相关且秩为s ,则(D) A.s r = B.s r ≤ C.r s ≤ ? D .r s < 2. 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A (A) A.8? B.8- C. 34?? D.3 4- 3.设向量组A 能由向量组B 线性表示,则( d ) A.)()(A R B R ≤ B.)()(A R B R < C.)()(A R B R = D.)()(A R B R ≥ 4. 设n 阶矩阵A 的行列式等于D ,则 () * kA 等于_____。c )(A *kA )(B *A k n )(C *-A k n 1)(D *A 5。 设n 阶矩阵A ,B 和C ,则下列说法正确的是_____. )(A AC AB = 则 C B =)(B 0=AB ,则0=A 或0=B )(C T T T B A AB =)()(D 22))((B A B A B A -=-+ 三、计算题(本题总计60分.1-3每小题8分,4-7每小题9分) 1。 计算n 阶行列式22221 =D 22222 22322 2 12 2 2-n n 2 222 . 2.设A 为三阶矩阵,* A 为A 的伴随矩阵,且2 1= A ,求* A A 2)3(1--. 3.求矩阵的逆 111211120A ?? ?=- ? ???

武汉大学2005-2006线性代数试题(工科54学时)

武汉大学数学与统计学院 2005-2006学年第一学期《线性代数》A 卷(供工科54学时用) 学院 专业 学号 姓名 注 所有答题均须有详细过程,内容必须写在答题纸上,凡写在其它地方一律无效。 一、计算题(每题5分,6题共30分): 1.设111111111-?? ?=-- ? ?--?? A ,当 1 n 是不小于的整数时,计算n A . 2.设二阶方阵A 满足方程O I A A =+-232 ,求A 所有可能的特征值. 3.求二次型213232221321)()()(),,(x x x x x x x x x f ++-++=的秩. 4.已知阶矩阵 (2)n ≥,且非奇异,求** ()A . 5.设A 是三阶实对称矩阵,其对应的二次型的正负惯性指数均为1,且满足 0+==E A E A -, 计算A I 323+. 6. 设n 阶向量T x x )00(,,,, =α,矩阵T n I A αα-=,且T n x I A αα+=-1,求实数x . 二、解答题(3题共45分,每题15分) 1.设10102016A a ?? ? = ? ??? ,且()2R A =,满足 ,求a 和 . 2.已知2222 54245λλλ--?? ?=-- ? ?---??A ,121λ?? ? = ? ?--?? b ,就方程组=AX b 无解、有唯一解、有无穷多解诸情形,对λ值进行讨论,并在有无穷多解时,求出其通解. 3、设二次型222 123123122331(,,)222=++---f x x x x x x x x x x x x , (1).求出二次型f 的矩阵A 的全部特征值; (2).求可逆矩阵P ,使AP P 1 -成为对角阵; (3).计算m A (m 是正整数). 三、证明题和讨论题(2题共25分): 1.(10分)设 是阶实方阵, (1).当为奇数且I AA T =及 时, 证明:0=-A I . (2).当 m 为给定任意正整数且O I A m =+)(时, 证明:A 可逆. 2.(15分)对线性空间3 R 中的向量组A :123,,ααα和B :123,,βββ,讨论下面的问题: (1).向量组B 是否能成为3 R 中的基?能否用A 线性表示B ?如果可以,试求出由123,,ααα到 123,,βββ的过渡矩阵P ,其中 1100α?? ?= ? ??? 2110α?? ?= ? ??? 3111α?? ?= ? ???;111β?? ?= ? ???a 2112β?? ?= ? ?-??a 3110β-?? ?= ? ??? ,且a 为实数. (2).若112321233123(22), (22), (22), βαααβαααβααα=+-=-+=--k k k k 是非零实数, (a )给出向量组123,,βββ线性无关的一个充要条件,并证明之;

(完整版)线性代数试题和答案(精选版)

线性代数习题和答案 第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出の四个选项中只有 一个是符合题目要求の,请将其代码填在题后の括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ?? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是Aの伴随矩阵,则A *中位于(1,2)の元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵Aの行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0の数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0の数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0の数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0の数λ1,λ2,…,λs和不全为0の数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵Aの秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误の是() A.η1+η2是Ax=0の一个解 B.1 2 η1+ 1 2 η2是Ax=bの一个解

武汉大学2002-2003线性代数试题(54工)

备用试题 武汉大学数学与统计学院2002-2003学年第2学期 《线性代数》试题 (工科54学时) 姓名 学号 班号 专业 成绩 说明:一共九道题目,第一至第四题每题10分,第五至第九题每题12分。 一、设四阶行列式D = 1 0370121 34031 2 2 1 ---- 1)、求D 的代数余子式A 12; 2)、求A 11-2A 12+2A 13-A 14 。 二、求满足A 2=A 的一切二阶矩阵。 三、设A = 111212122212 ...................... n n n n n n a b a b a b a b a b a b a b a b a b ????? ???? ? ? ?????? ,(0 ,1,2,...,i j a b i j n ≠=,),求()R A 四、已知向量组1α,2α,3α线性无关,令1123βααα=-+,21232βααα=++, 312323βααα=-+,讨论向量组123, , βββ的线性相关性。 五、设线性方程组为 2 3112131 23 1222322 31323 3323 1 42434 x a x a x a x a x a x a x a x a x a x a x a x a ?++=? ++=?? ++=??++=? , 1) 如果1234, , , a a a a 两两不相等,问所给方程组是否有解? 2) 如果1324, (0)a a k a a k k ==-≠==,且已知12ββ,是该方程组的两个特解,其中: T T 12(1, 1, 1)(1, 1, 1)ββ==--,,试写出此方程组的通解。 六、设三阶方阵A 的三个特征值为1,0,1321-=λ=λ=λ,A 的属于321,,λλλ的特征向量依次为 ???? ? ??=????? ??=????? ??=520,210,002321ααα, 求方阵A 。 七、已知二次型123(, , )f x x x =22 2312132343448x x x x x x x x -+-+ 1) 写出二次型f 的矩阵A ; 2)用正交变换把二次型f 化为标准型。 八、证明三个平面123:, :, :x cy bz y az cx z bx ay πππ=+=+=+相交于一直线的充要条件为 2 2 2 21a b c abc +++= 九、给定3R 的基?????===.)1,1,1(,)0,1,2(,)1,0,1(3 21ξξξ 和 ??? ??--=-=-=). 1,1,2(,)1,2,2(,)1,2,1(321ηηη若定义线性变换)3,2,1(,)(==T i i i ηξ, 试求: 1)求由基321,,ξξξ到基321,,ηηη的过渡矩阵X ; 2)求T 关于基321,,ξξξ的变换矩阵A 。

线性代数试题及答案。。

第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有 一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ? ? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2η1+1 2 η2是Ax=b的一个解 C.η1-η2是Ax=0的一个解 D.2η1-η2是Ax=b的一个解 9.设n阶方阵A不可逆,则必有()

线性代数期末考试试题(含答案)

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. A.B 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( ) (A )任意r 个列向量线性无关

武汉大学2003-2004线性代数试题(54工)

备用试题 武汉大学数学与统计学院2003-2004学年第1学期 《线性代数》试题 (工科54学时) 姓名 学号 班号 专业 成绩 说明:一共九道题目,第一至第四题每题10分,第五至第九题每题12分。 一、计算n 阶行列式D = 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 a a a a ????????????????????? ??? 的值 。 二、若矩阵A 和B 满足关系:2242A B A B A =+-。其中A = 12 3012001?? ? ? ??? ---,求矩阵B 。 三、给定矩阵A = ?????? ? ??------11011111100222021110,求()R A 。 四、已知1(1 0 2 3)α=, ,,,2(1 1 3 5)α=,,,,3(1 1 2 1)a α=+,-,,,4(1 2 4 8)a α=+,,,, 且(1 1 +3 5)b β=,,,, 1) a b , 为何值时,β不能表示成1α,2α,3α,4α的线性组合? 2)、 a b , 为何值时,β有1α,2α,3α,4α的唯一线性表达式?并写出该表达式。 五、若A ,B 是同阶可逆矩阵,请证明()AB B A ***=,其中A *是A 的伴随矩阵,()A B *和B *具同样意义。 六、求线性方程组?????=++=++=++43322 321 321321x x x x x x x x x 的通解。 七、已知1,1,-1是三阶实对称矩阵A 的三个特征值,向量T 1(1, 1, 1)α=,T 2(2, 2, 1)α=是A 的 对应于121λλ==的特征向量, 1) 能否求得A 的属于31λ=-的特征向量?若能,请求出该特征向量,若不能,也请说明理由。 2) 能否由此求得实对称阵A ?若能则请求之,若不能则请说明理由。 八、设222 (,,)2422f x y z x y z axy yz =++++为正定二次型,试确定实数a 的最大取值范围。 九、给定3R 的基?????===.)1,0,0(,)0,1,0(,)0,0,1(321ξξξ 和 ?????--=-=-=).1,1,2(,)1,2,2(,)1,2,1(321ηηη若定义线性变换)3,2,1(,)(==T i i i ηξ, 试求: 1)求由基321,,ξξξ到基321,,ηηη的过渡矩阵X ; 2)求T 关于基321,,ηηη的变换矩阵A 。

线性代数试卷及答案

《 线性代数A 》试题(A 卷) 试卷类别:闭卷 考试时间:120分钟 考试科目:线性代数 考试时间: 学号: 姓名: 题号 一 二 三 四 五 六 七 总 分 得分 阅卷人 一.单项选择题(每小题3分,共30分) 1.设A 经过初等行变换变为B ,则( ).(下面的(),()r A r B 分别表示矩阵,A B 的秩)。 () A ()()r A r B <; () B ()()r A r B =; ()C ()()r A r B >; () D 无法判定()r A 与()r B 之间的关系。 2.设A 为 (2)n n ≥阶方阵且||0A =,则( )。 () A A 中有一行元素全为零; () B A 有两行(列)元素对应成比例; () C A 中必有一行为其余行的线性组合; () D A 的任一行为其余行的线性组合。 3. 设,A B 是n 阶矩阵(2n ≥), AB O =,则下列结论一定正确的是: ( ) () ;A A O B O ==或 ()AX B B 的每个行向量都是齐次线性方程组=O 的解. ();C BA O = ()()().D R A R B n +≤ 4.下列不是n 维向量组12,,...,s ααα线性无关的充分必要条件是( ) () A 存在一组不全为零的数12,,...,s k k k 使得1122...s s k k k O ααα+++≠;

() B 不存在一组不全为零的数12,,...,s k k k 使得1122...s s k k k O ααα+++= 12(),,...,s C ααα的秩等于s ; 12(),,...,s D ααα中任意一个向量都不能用其余向量线性表示 5.设n 阶矩阵(3)n ≥1...1................1a a a a a a A a a a ?? ? ? ?= ? ? ???,若矩阵A 的秩为1n -,则a 必为( )。 ()A 1; () B 11n -; () C 1-; () D 11 n -. 6.四阶行列式 1 1 2 2334 4 0000 000 a b a b b a b a 的值等于( )。 ()A 12341234a a a a b b b b -; ()B 12341234a a a a b b b b +; () C 12123434()()a a b b a a b b --; () D 23231414()()a a b b a a b b --. 7.设A 为四阶矩阵且A b =,则A 的伴随矩阵* A 的行列式为( )。 ()A b ; () B 2b ; () C 3b ; () D 4b 8.设A 为n 阶矩阵满足23n A A I O ++=,n I 为n 阶单位矩阵,则1 A -=( ) () n A I ; ()3n B A I +; ()3n C A I --; ()D 3n A I + 9.设A ,B 是两个相似的矩阵,则下列结论不正确的是( )。 ()A A 与B 的秩相同; ()B A 与B 的特征值相同; () C A 与B 的特征矩阵相同; () D A 与B 的行列式相同;

武汉大学2004年线性代数解答

武汉大学 2004年攻读硕士学位研究生入学考试试题 科目:高等代数 科目代码:804 一、设A 为3阶矩阵,*A 为其伴随矩阵,1det 2 A = ,求11 det(()10*)3 A A --.(10分) 二、计算n 阶行列式12 121 21 2 00 n n n n n a a a a a a a a D a a a a ++++= ++ ,其中0,1,2,,j a j n ≠= .(10分) 三、设A 为m n ?矩阵,A 的秩()R A Y =,证明存在m Y ?矩阵B 和Y n ?矩阵C 且 ()()R B R C Y ==,使A BC =.(10分) 四、已知322,22A E B A A E ==-+,证明B 可逆,并求出其逆.(15分) 五、A 为n 阶矩阵,*A 为其A 的伴随矩阵,证明:1det *(det )n A A -=.(20分) 六、设,A B 都是n 阶正定矩阵,证明: (1) A B 的特征值全大于零;(10分) (2) 若AB BA =,则A B 是正定矩阵.(5分) 七、求矩阵1111m n A ??? ?= ? ?? ? (即A 中的每个元素都为1)的最小多项式.(15分) 八、设V 是复数域上的n 维线性空间,,f g 是V 的线性变换,且fg gf =,证明: (1)如果λ是f 的特征值,那么V λ(λ的特征子空间)是g 的不变子空间;(8分) (2),f g 至少有一个公共的特征向量.(7分) 九、设A 为n 阶方阵,证明:如果()()R A R A E n +-=,则A 可对角化.(20分) 十、 设,A B 是数域K 上的m n ?矩阵,且()()R A R B =(()R A 是矩阵A 的秩)。设齐次线性方程组 0A X =和0B X =的解空间分别是,U V 。证明存在K 上的n 阶可逆矩阵T ,使得 ()()f y T y y U =?∈是U 到V 的同构映射.(20分)

(完整版)线性代数试卷及答案详解

《线性代数A 》试题(A 卷) 试卷类别:闭卷考试时间:120分钟考试科目:线性代数考试时间:学号:姓名:

《线性代数A》参考答案(A卷)一、单项选择题(每小题3分,共30分) 二、填空题(每小题3分,共18分)

1、 256; 2、 132465798?? ? --- ? ???; 3、112 2 112 21122 000?? ?- ? ?-?? ; 4、 ; 5、 4; 6、 2 。 三. 解:因为矩阵A 的行列式不为零,则A 可逆,因此1X A B -=.为了求1A B -,可利用下列初等行变换的方法: 2312112 01012 010******* 12101 141103311033102321102721 002781 002780 11410 101440 10144001103001103001103---?????? ? ? ? -??→-??→-- ? ? ? ? ? ?--? ?? ?? ?-?????? ? ? ? ??→--??→-??→-- ? ? ? ? ? ??????? ―――――(6分) 所以1 278144103X A B -?? ?==-- ? ??? .―――――(8分) 四.解:对向量组12345,,,,ααααα作如下的初等行变换可得: 12345111 4 3111431132102262(,,,,)21355011313156702262ααααα--???? ? ? ----- ? ? = → ? ? --- ? ? ? ?---???? 11 1 431 2 12011310 1131000000 0000000000 0000--???? ? ? ---- ? ? →→ ? ? ? ? ? ?? ???――――(5分) 从而12345,,,,ααααα的一个极大线性无关组为12,αα,故秩 12345{,,,,}ααααα=2(8分)

线性代数试题及答案[1]

(试卷一) 一、 填空题(本题总计20分,每小题2分) 1. 排列7623451的逆序数是_______。 2. 若 122 21 1211=a a a a ,则=1 6 030 32221 1211 a a a a 3. 已知n 阶矩阵A 、B 和C 满足E ABC =,其中E 为n 阶单位矩阵,则 CA B =-1 。 4. 若A 为n m ?矩阵,则非齐次线性方程组AX b =有唯一解的充分要条件是 _________ 5. 设A 为86?的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为 __2___________。 6. 设A 为三阶可逆阵,???? ? ? ?=-12 30120011 A ,则=* A 7.若A 为n m ?矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是 8.已知五阶行列式1 2 3 4 5 3201111111 2 1403 54321=D ,则=++++4544434241A A A A A 9. 向量α=(2,1,0,2)T -的模(范数)______________。 10.若()T k 11 =α与()T 12 1 -=β正交,则=k 二、选择题(本题总计10分,每小题2分) 1. 向量组r ααα,,,21 线性相关且秩为s ,则(D) A.s r = B.s r ≤ C.r s ≤ D.r s < 2. 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A (A) A.8 B.8- C. 3 4 D.3 4-

3.设向量组A 能由向量组B 线性表示,则( d ) A.)()(A R B R ≤ B.)()(A R B R < C.)()(A R B R = D.)()(A R B R ≥ 4. 设n 阶矩阵A 的行列式等于D ,则 () * kA 等于_____。c )(A * kA )(B * A k n )(C * -A k n 1 )(D *A 5. 设n 阶矩阵A ,B 和C ,则下列说法正确的是_____。 )(A AC AB = 则 C B = )(B 0=AB ,则0=A 或0=B )(C T T T B A AB =)( )(D 22))((B A B A B A -=-+ 三、计算题(本题总计60分。1-3每小题8分,4-7每小题9分) 1. 计算n 阶行列式2 222 1 = D 2 222 2 22322 2 122 2-n n 222 2 。 2.设A 为三阶矩阵,* A 为A 的伴随矩阵,且2 1= A ,求* A A 2) 3(1 --. 3.求矩阵的逆 1112 1112 0A ?? ?=- ? ?? ? 4. 讨论λ为何值时,非齐次线性方程组21231231 231 x x x x x x x x x λλλλλ?++=? ++=??++=? ① 有唯一解; ②有无穷多解; ③无解。 5. 求下非齐次线性方程组所对应的齐次线性方程组的基础解系和此方程组的通解。 ??? ??=++=+++=+++5 221322431 43214321x x x x x x x x x x x 6.已知向量组() T 32 01 1=α、() T 53 1 12=α、 () T 13 11 3-=α、

武汉大学2004-2005线性代数试题(54工)

备用试题 武汉大学数学与统计学院2004-2005学年第2学期 《线性代数》试题 (工科54学时) 姓名 学号 班号 专业 成绩 一、 是非题(本题满分12分,每小题4分.请在正确命题前的括号内填上“√”,否则填上“×”) ( ) 1)设A 是n m ?实矩阵,x 为1?n 实矩阵,则?=0Ax A T 0=Ax ; ( ) 2)设向量321,,βββ都可由向量21,αα线性表示,则321,,βββ线性相关; ( ) 3)设n 阶方阵A 满足022=--E A A ,则A 和E A 2+皆可逆; 二、填空题(本题满分12分,每空4分.将正确结果填入题中横线上的空白处). 1)排列7564132的逆序数为 ; 2)设A 是3阶矩阵,R(A) = 2,若矩阵B =???? ? ??201010101,则R(AB) = _______; 3)设B A ,为可逆方阵,则=???? ??-1O B A O . 三、(10分)求矩阵A =?????? ? ??------11011111100222021110的秩。 四、(10分)若向量αm 是向量 121, ,, m ααα- 的线性组合,但不是122, ,, m ααα- 的线 性组合,证明:αm -1是122, , , m ααα- , αm 的线性组合。 五、(10分)设1λ、2λ和3λ是三阶实对称矩阵A 的三个不同的特征值,其中 T 1) 3 1, 1, (ξ=、T 2) 5, 4, (ξa = 依次是A 的属于特征值1λ、2λ的特征向量,求实常数a 以及3λ所对应的特征向量。 六、(15分)就λ取值讨论?? ???=++++=+-+=+++λλλλλλλλλ3)3()1(32)1(2)3(321321321x x x x x x x x x 的解的情况,在有无穷多解时, 求出其通解。 七、(10分)设A 为三阶矩阵,A *是A 的伴随矩阵,则 1 ()2()0 ()1R A R A R A *=?=? =? ,试证明之。 八、(12分) 已知二次型为)0(2332),(3 21232221321>+++=a x x a x x x x x x f ,且通过正交变换可将f 化为标准形:2 3222152y y y f ++=。 1)求参数a; 2)写出该二次型的矩阵,并求它的秩; 3)写出该二次型的标准形所用正交变换P . 九、(12分)给定3R 的两个基?????===.)1,7,3(,)3,3,2(,)1,2,1(321ξξξ 和 ?????-===).6,1,1(,)1,2,5(,)4,1,3(3 21ηηη试求: 1)求由基321,,ξξξ到基321,,ηηη的过渡矩阵X ; 2)写出向量α在两基下的坐标变换公式。

线性代数试题及答案。。

第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一 个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1。设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B。-(m+n) C。 n-m D。 m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于( ) A。 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ?? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3。设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A*中位于(1,2)的元素是( ) A。–6 B。 6 C. 2 D. –2 4。设A是方阵,如有矩阵关系式AB=AC,则必有() A。A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B。 2 C. 3 D. 4 6。设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则( ) A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C。有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2—β2)+…+λs(αs—β s)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λs αs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中( ) A.所有r—1阶子式都不为0 B.所有r—1阶子式全为0 C。至少有一个r阶子式不等于0 D。所有r阶子式都不为0 8。设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是( ) A。η1+η2是Ax=0的一个解B。1 2 η1+ 1 2 η2是Ax=b的一个解

(完整版)历年全国自考线性代数试题及答案

浙02198# 线性代数试卷 第1页(共25页) 全国2010年7月高等教育自学考试 试卷说明:在本卷中,A T 表示矩阵A 的转置矩阵;A *表示A 的伴随矩阵;R (A )表示矩阵A 的秩;|A |表示A 的行列式;E 表示单位矩阵。 1.设3阶方阵A=[α1,α2,α3],其中αi (i=1,2,3)为A 的列向量, 若|B |=|[α1+2α2,α2,α3]|=6,则|A |=( )A.-12 B.-6 C.6 D.12 2.计算行列式 =----3 23 2 020005 1020203 ( )A.-180 B.-120C.120 D.180 3.设A =? ? ? ???4321,则|2A *|=( )A.-8 B.-4C.4 D.8 4.设α1,α2,α3,α4都是3维向量,则必有 A. α1,α2,α3,α4线性无关 B. α1,α2,α3,α4线性相关 C. α1可由α2,α3,α4线性表示 D. α1不可由α2,α3,α4线性表示 5.若A 为6阶方阵,齐次线性方程组Ax =0的基础解系中解向量的个数为2,则R (A )=( )A .2 B 3C .4 D .5 6.设A 、B 为同阶矩阵,且R (A )=R (B ),则( )A .A 与B 相似 B .|A |=|B | C .A 与B 等价 D .A 与B 合同 7.设A 为3阶方阵,其特征值分别为2,l ,0则|A +2E |=( )A .0 B .2C .3 D .24 8.若A 、B 相似,则下列说法错误..的是( )A .A 与B 等价 B .A 与 B 合同C .|A |=|B | D .A 与B 有相同特征 9.若向量α=(1,-2,1)与β= (2,3,t )正交,则t =( )A .-2 B .0C .2 D .4 10.设3阶实对称矩阵A 的特征值分别为2,l ,0,则( )A .A 正定 B .A 半正定C .A 负定 D .A 半负定 二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。错填、不填均无分。 1l.设A =??? ? ? ?????-421023,B =??????--010112,则AB =________. 12.设A 为3阶方阵,且|A |=3,则|3A -l |=________. 13.三元方程x 1+x 2+x 3=0的结构解是________. 14.设α=(-1,2,2),则与α反方向的单位向量是______. 15.设A 为5阶方阵,且R (A )=3,则线性空间W ={x |Ax =0}的维数是______. 16.设A 为3阶方阵,特征值分别为-2,21 ,l ,则|5A -1|=_______. 17.若A 、B 为同阶方阵,且Bx =0只有零解,若R (A )=3,则R (AB )=________. 18.二次型f (x 1,x 2,x 3)=21x -2x 1x 2+2 2x -x 2x 3所对应的矩阵是________.

相关主题
文本预览
相关文档 最新文档