当前位置:文档之家› 第五章实际流体动力学基础

第五章实际流体动力学基础

第五章实际流体动力学基础
第五章实际流体动力学基础

第五章-实际流体动力学基础

————————————————————————————————作者: ————————————————————————————————日期:

工程流体力学(水力学)闻德第五章-实际流体动力学基础课后答案

工程流体力学闻德课后习题答案 第五章 实际流体动力学基础 5—1设在流场中的速度分布为u x =2ax ,u y =-2ay ,a 为实数,且a >0。试求切应力τxy 、τyx 和附加压应力p ′x 、p ′y 以及压应力p x 、p y 。 解:0y x xy yx u u x y ττμ??? ?==+= ????? 24x x u p a x μμ?'=-=-?,24y y u p a y μμ?'=-=?, 4x x p p p p a μ'=+=-,4y y p p p p a μ'=+=+ 5-2 设例5-1中的下平板固定不动,上平板以速度v 沿x 轴方向作等速运动(如图 所示),由于上平板运动而引起的这种流动,称柯埃梯(Couette )流动。试求在这种流动情况下,两平板间的速度分布。(请将 d 0d p x =时的这一流动与在第一章中讨论流体粘性时的流动相比较) 解:将坐标系ox 轴移至下平板,则边界条件为 y =0,0X u u ==;y h =,u v =。 由例5-1中的(11)式可得 2d (1)2d h y p y y u v h x h h μ=- - (1) 当d 0d p x =时,y u v h =,速度u为直线分布,这种特殊情况的流动称简单柯埃梯流动或简单剪切流动。它只是由于平板运动,由于流体的粘滞性带动流体发生的流动。 当 d 0d p x ≠时,即为一般的柯埃梯流动,它是由简单柯埃梯流动和泊萧叶流动叠加而成,速度分布为 (1)u y y y p v h h h =-- (2) 式中2d ()2d h p p v x μ= - (3) 当p >0时,沿着流动方向压强减小,速度在整个断面上的分布均为正值;当p <0时,沿流动方向压强增加,则可能在静止壁面附近产生倒流,这主要发生p <-1的情况. 5-3 设明渠二维均匀(层流)流动,如图所示。若忽略空气阻力,试用纳维—斯托克斯方程和连续性方程,证明过流断面上的速度分布为2sin (2)2 x g u zh z ,单宽流量 3 sin 3 gh q 。

3 流体动力学基础

思考题及答案 一、选择 (1) 二、例题 (2) 三、问答 (14) 一、选择 问题:恒定流是: A、流动随时间按一定规律变化; B、流场中任意空间点的运动要素不随时间变化; C、各过流断面的速度分布相同; D、各过流断面的压强相同。 问题:非恒定流是: A、; B、; C、; D、。 问题:一元流动是: A、均匀流; B、速度分布按直线变化; C、运动参数是一个空间坐标和时间变量的函数; D、限于直线流动。 问题:均匀流是: A、当地加速度为零; B、迁移加速度为零; C、向心加速度为零; D、合加速度为零。 问题1:流速势函数存在的必要与充分条件是: A、平面无旋流动; B、理想流体平面流动; C、不可压缩流体平面流动; D、无旋流动。 问题2:设流速势函数j=xyz,则点B(1,2,1)处的速度u 为: B A、5; B、1; C、3; D、2。

判断:公式(3-14)与公式(3-16)两式形式完全相同,因此其应用条件也相同。 你的回答:对错 判断:土坝渗流中的流网网格一定是直线正方形网格。 你的回答:对错 二、例题 例1如图3-7,已知流速场为,其中C为常数,求流 线方程。 解:由式得 图3-7 积分得: 则: 此外,由得: 因此,流线为Oxy平面上的一簇通过原点的直线,这种流动称为平面点源流动(C>0时)或平

面点汇流动(C<0时) 例2已知平面流动 试求:(1)t=0时,过点M(-1,-1)的流线。 (2)求在t=0时刻位于x=-1,y=-1点处流体质点的迹线。解:(1)由式 (2)由式 得 得 得: 由t=0时,x=-1,y=-1得C 1=0, C 2 =0,则有: 将:t=0,x=-1,y=-1 代入得瞬时流线 xy=1 最后可得迹线为: 即流线是双曲线。 例3已知流动速度场为

实际流体动力学基础

第五章 实际流体动力学基础 5—1设在流场中的速度分布为u x =2ax ,u y =-2ay ,a 为实数,且a >0。试求切应力τxy 、τyx 和附加压应力p ′x 、p ′y 以及压应力p x 、p y 。 解:0y x xy yx u u x y ττμ??? ?==+= ????? 24x x u p a x μμ?'=-=-?,24y y u p a y μμ?'=-=?, 4x x p p p p a μ'=+=-,4y y p p p p a μ'=+=+ 5-2 设例5-1中的下平板固定不动,上平板以速度v 沿x 轴方向作等速运动(如图所示),由于上平板运动而引起的这种流动,称柯埃梯(Couette )流动。试求在这种流动情况下,两平板间的速度分布。(请将 d 0d p x =时的这一流动与在第一章中讨 论流体粘性时的流动相比较) 解:将坐标系ox 轴移至下平板,则边界条件为 y =0,0X u u ==;y h =,u v =。 由例5-1中的(11)式可得 2d (1)2d h y p y y u v h x h h μ=- - (1) 当d 0d p x =时,y u v h =,速度u为直线分布,这种特殊情况的流动称简单柯埃梯流动或简单剪切流动。它只是由于平板运动,由于流体的粘滞性带动流体发生的流动。 当d 0d p x ≠时,即为一般的柯埃梯流动,它是由简单柯埃梯流动和泊萧叶流动叠加而成,速度分布为 (1)u y y y p v h h h =-- (2) 式中2d ()2d h p p v x μ= - (3) 当p >0时,沿着流动方向压强减小,速度在整个断面上的分布均为正值;当p <0时,沿流动方向压强增加,则可能在静止壁面附近产生倒流,这主要发生p <-1的情况. 5-3 设明渠二维均匀(层流)流动,如图所示。若忽略空气阻力,试用纳维—斯托克斯方程和连 续性方程,证明过流断面上的速度分布为2 sin (2)2x g u zh z r q m = -,单宽流量3sin 3gh q r q m =。 解:(1)因是恒定 二维流动, 0y x z u u u t t t ???===抖?,u u x =,0y u =, 0z u =,由纳维——斯托克 斯方程和连续性方程可 得

第三章 流体动力学基础

第三章 流体动力学基础 习 题 一、单选题 1、在稳定流动中,在任一点处速度矢量是恒定不变的,那么流体质点是 ( ) A .加速运动 B .减速运动 C .匀速运动 D .不能确定 2、血管中血液流动的流量受血管内径影响很大。如果血管内径减少一半,其血液的流量将变为原来的( )倍。 A .21 B .41 C .81 D .161 3、人在静息状态时,整个心动周期内主动脉血流平均速度为0.2 m/s ,其内径d =2×10-2 m ,已知血液的粘度η =×10-3 Pa·S,密度ρ=×103 kg/m 3 ,则此时主动脉中血液的流动形态处于( )状态。 A .层流 B .湍流 C .层流或湍流 D .无法确定 4、正常情况下,人的小动脉半径约为3mm ,血液的平均速度为20cm/s ,若小动脉某部分被一硬斑阻塞使之变窄,半径变为2mm ,则此段的平均流速为( )m/s 。 A .30 B .40 C .45 D .60 5、有水在同一水平管道中流动,已知A 处的横截面积为S A =10cm 2 ,B 处的横截面积为 S B =5cm 2,A 、B 两点压强差为1500Pa ,则A 处的流速为( )。 A .1m/s B .2m/s C .3 m/s D .4 m/s 6、有水在一水平管道中流动,已知A 处的横截面积为S A =10cm 2 ,B 处的横截面积为S B =5cm 2 ,A 、B 两点压强之差为1500Pa ,则管道中的体积流量为( )。 A .1×10-3 m 3 /s B .2×10-3 m 3 /s C .1×10-4 m 3 /s D .2×10-4 m 3 /s 7、通常情况下,人的小动脉内径约为6mm ,血流的平均流速为20cm/s ,若小动脉某处被一硬斑阻塞而变窄,测得此处血流的平均流速为80cm/s ,则小动脉此处的内径应为( )mm 。 A .4 B .3 C .2 D .1 8、正常情况下,人的血液密度为×103 kg/m 3 ,血液在内径为6mm 的小动脉中流动的平均速度为20cm/s ,若小动脉某处被一硬斑阻塞而变窄,此处内径为4mm ,则小动脉宽处与窄处压强之差( )Pa 。 二、判断题

工程流体力学(水力学)闻德第五章-实际流体动力学基础课后答案

工程流体力学(水力学)闻德第五章-实际流体动力学基础课后答案

工程流体力学闻德课后习题答案 第五章 实际流体动力学基础 5—1设在流场中的速度分布为u x =2ax ,u y =-2ay ,a 为实数,且a >0。试求切应力τxy 、τyx 和附加压应力p ′x 、p ′y 以及压应力p x 、p y 。 解:0y x xy yx u u x y ττμ??? ?==+= ????? 24x x u p a x μ μ?'=-=-?,24y y u p a y μμ ?'=-=?, 4x x p p p p a μ '=+=-,4y y p p p p a μ'=+=+ 5-2 设例5-1中的下平板固定不动,上平板以速度v 沿x 轴方向作等速运动(如图所示),由于上平板运动而 引起的这种流动,称柯埃梯(Couette )流动。试求在这种流动情况下,两平板间的速度分布。 (请将d 0d p x =时的这一流动与在第一章中讨论流体粘性时的流动相比较) 解:将坐标系ox 轴移至下平板,则边界条件为 y =0,0X u u ==;y h =,u v =。 由例5-1中的(11)式可得 2 d (1)2d h y p y y u v h x h h μ=-- (1) 当d 0d p x =时,y u v h =,速度u为直线分布,这种特殊情况的流动称简单柯埃梯流动或简单剪切 流动。它只是由于平板运动,由于流体的粘滞性

带动流体发生的流动。 当d 0d p x ≠时,即为一般的柯埃梯流动,它是由简单柯埃梯流动和泊萧叶流动叠加而成,速度分布为 (1)u y y y p v h h h =-- (2) 式 中 2d () 2d h p p v x μ=- (3) 当p >0时,沿着流动方向压强减小,速度在整个断面上的分布均为正值;当p <0时,沿流动方向压强增加,则可能在静止壁面附近产生倒流,这主要发生p <-1的情况. 5-3 设明渠二维均匀(层流)流动,如图所示。若忽略空气阻力,试用纳维—斯托克斯方程和连续性方程,证明过流断面上的速度分布为 2sin (2) 2x g u zh z r q m =-,单宽流量 3 sin 3gh q r q m =。

翼型气动特性实验指导书2017版

《空气动力学》课程实验指导书 翼型压强分布测量与气动特性分析实验 一、实验目的 1 熟悉测定物体表面压强分布的方法,用多管压力计测出水柱高度,利用伯努利方程计算出翼型表面压强分布。 2 测定给定迎角下,翼型上的压强分布,并用坐标法绘出翼型的压强系数分布图。 3 采用积分法计算翼型升力系数,并绘制不同实验段速度下的升力曲线。 4 掌握实验段风速与电流频率的校核方法。 二、实验仪器和设备 (1) 风洞:低速吸气式二元风洞。实验段为矩形截面,高0.3米,宽0.3米。实验风速 20,30,40V ∞=/m s 。实验段右侧壁面的静压孔可测量实验段气流静压p ∞,实验段气 流的总压0p 为实验室的大气压a p 。 表2.1 来流速度与电流频率的对应(参考) 表2.2 翼型测压点分布表 上表面 下表面 (2) 实验模型:NACA0012翼型,弦长0.12米,展长0.09米,安装于风洞两侧壁间。模

型表面开测压孔,前缘孔编号为

0,上下翼面的其它孔的编号从前到后,依次为1、2、3 ……。(如表-2所示) (3) 多管压力计:压力计斜度90θ=,压力计标定系数 1.0K =。压力计左端第一测压管 通大气,为总压管,其液柱长度为I L ;左端第二测压管接风洞收缩段前的风洞入口侧壁静压孔,其液柱长度为IN L ;左端第三、四、五测压管接实验段右侧壁面的三个测压孔,取其液柱长度平均值为II L 。其余测压管分成两组,分别与上下翼面测压孔一一对应连接,并有编号,其液柱长度为i L 。这两组测压管间留一空管通大气,起分隔提示作用。 三、实验原理 测定物体表面压强分布的意义如下:首先,根据表面压强分布,可以知道物体表面上各部分的载荷分布,这是强度设计的基本数据;其次,根据表面压强分布,可以了解气流绕过物体时的物理特性,如何判断激波,分离点位置等。在某些风洞中(例如在二维风洞中,模型紧夹在两壁间,不便于装置天平),全靠压强分布来间接推算出作用在机翼上的升力或力矩。 测定压强分布的模型构造如下:在物体表面上各测点垂直钻一小孔,小孔底与埋置在模型内部的细金属管相通,小管的一端伸出物体外(见图1),然后再通过细橡皮管与多管压力计上各支管相接,各测压孔与多管压力计上各支管都编有号码,于是根据各支管内的液面升降高度,立刻就可判断出各测点的压强分布。多管压力计的原理与普通压力计相同,都是基于连通器原理,只是把多个管子装在同一架子上而已,这样就可同时观察多点的压强分布情况,为了提高量度的准确性,排管架的倾斜度可任意改变。

流体动力学基础

3 流体运动学基础 流体运动学主要讨论流体的运动参数(例如速度和加速度)和运动描述等问题。运动是物体的存在形式,是物体的本质特征。流体的运动无时不在,百川归海、风起云涌是自然界流体运动的壮丽景色。而在工程实际中,很多领域都需要对流体运动规律进行分析和研究。因此,相对于流体静力学,流体运动学的研究具有更加深刻和广泛的意义。 3.1 描述流体运动的二种方法 为研究流体运动,首先需要建立描述流体运动的方法。从理论上说,有二种可行的方法:拉格朗日(Lagrange)方法和欧拉(Euler)方法。流体运动的各物理量如位移、速度、加速度等等称为流体的流动参数。对流体运动的描述就是要建立流动参数的数学模型,这个数学模型能反映流动参数随时间和空间的变化情况。拉格朗日方法是一种“质点跟踪”方法,即通过描述各质点的流动参数来描述整个流体的流动情况。欧拉方法则是一种“观察点”方法,通过分布于各处的观察点,记录流体质点通过这些观察点时的流动参数,同样可以描述整个流体的流动情况。下面分别介绍这二种方法。 3.1.1拉格朗日(Lagrange)方法 这是一种基于流体质点的描述方法。通过描述各质点的流动参数变化规律,来确定整个流体的变化规律。无数的质点运动组成流体运动,那么如何区分每个质点呢?区分各质点方法是根据它们的初始位置来判别。这是因为在初始时刻(t =t 0),每个质点所占的初始位置(a,b,c )各不相同,所以可以据此区别。这就像长跑运动员一样,在比赛前给他们编上号码,在任何时刻就不至于混淆身份了。当经过△t 时间后,t = t 0+△t ,初始位置为a,b,c )的某质点到达了新的位置(x ,y ,z ),因此,拉格朗日方法需要跟踪质点的运动,以确定该质点的流动参数。拉格朗日方法在直角坐标系中位移的数学描述是: ?? ? ?? ===),,,(),,,(),,,(t c b a z z t c b a y y t c b a x x (3-1) 式中,初始坐标(a,b,c )与时间变量t 无关,(a,b,c,t )称为拉格朗日变数。类似地,对任一 物理量N ,都可以描述为: ),,,(t c b a N N = (3-2) 显然,对于流体使用拉格朗日方法困难较大,不太合适。 3.1.2欧拉(Euler)方法 欧拉方法描述适应流体的运动特点,在流体力学上获得广泛的应用。欧拉方法利用了流场的概念。所谓流场,是指流动的空间充满了连续的流体质点,而这些质点的某些物理量的分布在整个流动空间,形成物理量的场,如速度场、加速度场、温度场等,这些场统称为流场。通过在流场中不同的空间位置(x ,y ,z )设立许多“观察点”,对流体的流动情况进行观察,来确定经过该观察点时流体质点的流动参数,得到物理量随时间的函数(x ,y ,z,t ),(x ,y ,z,t )称为欧拉变数。欧拉方法在直角坐标系中速度的数学描述是:

工程流体力学闻德第五章_实际流体动力学基础课后答案

工程流体力学闻德课后习题答案 第五章 实际流体动力学基础 5—1设在流场中的速度分布为u x =2ax ,u y =-2ay ,a 为实数,且a >0。试求切应力τxy 、τyx 与附加压应力p ′x 、p ′y 以及压应力p x 、p y 。 解:0y x xy yx u u x y ττμ????==+= ????? 24x x u p a x μμ?'=-=-?,24y y u p a y μμ?'=-=?, 4x x p p p p a μ'=+=-,4y y p p p p a μ'=+=+ 5-2 设例5-1中的下平板固定不动,上平板以速度 v 沿x 轴方向作等速运动(如图所示),由于上平板运动而引 起的这种流动,称柯埃梯(Couette)流动。试求在这种流动情 况下,两平板间的速度分布。(请将d 0d p x =时的这一流动与在第一章中讨论流体粘性时的流动相比较) 解:将坐标系ox 轴移至下平板,则边界条件为 y =0,0X u u ==;y h =,u v =。 由例5-1中的(11)式可得 2d (1)2d h y p y y u v h x h h μ=-- (1) 当d 0d p x =时,y u v h =,速度u为直线分布,这种特殊情况的流动称简单柯埃梯流动或简单剪切流动。它只就是由于平板运动,由于流体的粘滞性带动流体发生的流动。 当d 0d p x ≠时,即为一般的柯埃梯流动,它就是由简单柯埃梯流动与泊萧叶流动叠加而成,速度分布为 (1)u y y y p v h h h =-- (2) 式中2d ()2d h p p v x μ=- (3) 当p >0时,沿着流动方向压强减小,速度在整个断面上的分布均为正值;当p <0时,沿流动方向压强增加,则可能在静止壁面附近产生倒流,这主要发生p <-1的情况. 5-3 设明渠二维均匀(层流)流动,如图所示。若忽略空气阻力,试用纳维—斯托克斯方程与连续性方程,证明过流断面上的速度分布为2sin (2)2x g u zh z r q m =-,单宽流量3 sin 3gh q r q m =。 解:(1)因就是恒定二维流

(完整版)流体力学基本练习题

流体力学基本练习题 一、名词解释 流体质点、流体的体膨胀系数、流体的等温压缩率、流体的体积模量、流体的粘性、理想流体、牛顿流体、不可压缩流体、质量力、表面力、等压面、质点导数、定常场、均匀场、迹线、流线、流管、流束、流量、过流断面(有效截面)、层流、湍流、层流起始段、粘性底层、水力光滑管、水力粗糙管、沿程阻力、局部阻力 二、简答题 1. 流体在力学性能上的特点。 2. 流体质点的含义。 3. 非牛顿流体的定义、分类和各自特点。 4. 粘度的物理意义及单位。 5. 液体和气体的粘度变化规律。 6. 利用欧拉平衡方程式推导出等压面微分方程、重力场中平衡流体的微分 方程。 7. 等压面的性质。 8. 不可压缩流体的静压强基本公式、物理意义及其分布规律。 9. 描述流体运动的方法及其各自特点 10. 质点导数的数学表达式及其内容。写出速度质点导数。 11. 流线和迹线的区别,流线的性质。 三、填空题、判断 (一)流体的基本物理性质 1. 水力学是研究液体静止和运动规律及其应用的一门科学。() 2. 当容器大于液体体积,液体不会充满整个容器,而且没有自由表面。() 3. 气体没有固定的形状,但有自由表面。() 4. 水力学中把液体视为内部无任何间隙,是由无数个液体质点组成的。()

5. 粘滞性是液体的固有物理属性,它只有在液体静止状态下才能显示出来,并且是引起液体能量损失的根源。() 6. 同一种液体的粘滞性具有随温度升高而降低的特性。() 7. 作层流运动的液体,相邻液层间单位面积上所作的内摩擦力,与流速梯度成正比,与液体性质无关。() 8. 惯性力属于质量力,而重力不属于质量力。() 9. 质量力是指通过所研究液体的每一部分重量而作用于液体的、其大小与液体的质量成比例的力. () 10. 所谓理想流体,就是把水看作绝对不可压缩、不能膨胀、有粘滞性、没有表面张力的连续介质。() 11. 表面力是作用于液体表面,与受力作用的表面面积大小无关。() 12. 水和空气的黏度随温度的升高而减小。() 13. 流体是一种承受任何微小切应力都会发生连续的变形的物质。() 14. 牛顿流体就是理想流体。() 15. 在一个大气压下,温度为4C时,纯水的密度为1000kg/m A3o () 16. 不同液体的黏滞性各不相同,同一液体的黏滞性是一常数。() 17. 水力学中,单位质量力是指作用在单位_____ 液体上的质量力。() A 面积 B 体积 C 质量 D 重量 18. 水力学研究的液体是一种_____ 、____ 、_____ 续质。() A 不易流动易压缩均质 B 不易流动不易压缩均质 C 易流动易压缩均质 D 易流动不易压缩均质 19. 不同的液体其粘滞性_____ ,同一种液体的粘滞性具有随温度 _________ 而降低的特性。() A 相同降低 B 相同升高 C 不同降低 D 不同升高 20. 动力粘滞系数的单位是:(B) 22 A N.s/m B N.s/m 2 C m 2/s D m/s 21. 下列说法正确的是:()

完整版工程流体力学水力学闻德第五章 实际流体动力学基础课后答案

工程流体力学闻德课后习题答案 第五章实际流体动力学基础 u x =2ax , U y =-2ay , a 为实数,且 a>0。试求切应力 T y 、 T x 和附加压应力p'x 、p y 以及压应力p x 、p y 。 解: xy yx u y u x 0 x y P x 2 u x x 4a P y u y 2 y 4a x y P x p P x p 4a P y P P y P 4a 5-2设例5 — 1中的下平板固定不动,上平板以速度 v 沿x 轴方向作等速运动 (如图所示),由于上平板运动而 引起的这种流动,称柯埃梯(Couette )流动。试求在这种 流动情况下,两平板间的速度分布。 (请将dp 0时的这 dx 一流动与在第一章中讨论流体粘性时的流动相比较) 解:将坐标系0X 轴移至下平板,则边界条件为 y =0, u X u 0 ; y h , u v 。 由例5— 1中的(11)式可得 u 红丄业丫(1 丫) h 2 dx h h 当dp 0时,u —v ,速度u 为直线分布,这种特殊情况的流动称简单柯埃梯流动或 dx h 简单剪切流动。它只是由于平板运动,由于流体的粘滞性带动流体发生的流动。 当 0时,即为一般的柯埃梯流动, 它是由简单柯埃梯流动和泊萧叶流动叠加而成, dx 速度分布为 当p >0时,沿着流动方向压强减小, 速度在整个断面上的分布均为正值; 当p V0时, 沿流动方向压强增加,则可能在静止壁面附近产生倒流,这主要发生 p V-1的情况. 5—3设明渠二维均匀(层流)流动,如图所示。若忽略空气阻力,试用纳维 一斯托克 斯方程和连续性方程,证明过流断面上的速度分布为 u x 二—g sinq (2zh- z 2),单宽流量 2m (1) 式中p —乎) 2 v dx (2) (3) 5—1设在流场中的速度分布为 r gh 3 3m sinq 。

流体动力学基础word版

第3章 流体动力学基础 一、单项选择题 1、当液体为恒定流时,必有( )等于零。 A .当地加速度 B.迁移加速度 C.向心加速度 D.合加速度 2、均匀流过流断面上各点的( )等于常数。 A.p B.z+g p ρ C. g p ρ+g u 22 D. z+g p ρ+g u 22 3、过流断面是指与( )的横断面。 A .迹线正交 B.流线正交 C.流线斜交 D.迹线斜交 4、已知不可压缩流体的流速场为Ux=f(y,z),Uy=f(x),Uz=0,则该流动为( )。 A.一元流 B.二元流 C.三元流 D.均匀流 5、用欧拉法研究流体运动时,流体质点的加速度a=( ). A. 22dt r d B.t u ?? C.(u ·▽)u D. t u ??+(u ·▽)u 6、在恒定流中,流线与迹线在几何上( )。 A.相交 B.正交 C.平行 D.重合 7、控制体是指相对于某个坐标系来说,( ). A .由确定的流体质点所组成的流体团 B.有流体流过的固定不变的任何体积 C.其形状,位置随时间变化的任何体积 D.其形状不变而位置随时间变化的任何体积. 8、渐变流过流断面近似为( ). A.抛物面 B.双曲面 C.对数曲面 D.平面 9、在图3.1所示的等径长直管流中,M-M 为过流断面,N-N 为水平面,则有( ). A.p1=p2 B.p3=p4 C.z1+g p ρ1 =z2+g p ρ2 D.z3+g p ρ3 =z4+g p ρ4 10、已知突然扩大管道突扩前后管段的管径之比 21d d =0.5, 则突扩前后断面平均流速之比v1:v2=( ). A. 4 B.2 C.1 D.0.5 11、根据图3.2 所示的三通管流,可得( )。 A .qv 1+qv 2=qv 3 B.qv 1-qv 2=qv 3 C.qv 1=qv 2+qv 3 D.qv 1+qv 2+qv 3=0 12、根据图3.3 所示的三通管流,可得( )。 A .qv 1+qv 2=qv 3 B.qv 1-qv 2=qv 3 C.qv 1=qv 2+qv 3 D.qv 1+qv 2+qv 3=0 13、测压管水头坡度Jp=( )。

流体力学讲义 第三章 流体动力学基础

第三章流体动力学基础 本章是流体动力学的基础。主要阐述了流体运动的两种描述方法,运动流体的基本类别与基本概念,用欧拉法解决运动流体的连续性微分方程、欧拉运动微分方程及N-S方程。此外,还阐述了无旋流与有旋流的判别,引出了流函数与势函数的概念,并且说明利用流网与势流叠加原理可解决流体的诸多复杂问题。 第一节流体流动的基本概念 1.流线 (1)流线的定义 流线(stream line)是表示某一瞬时流体各点流动趋势的曲线,曲线上任一点的切线方向与该点的流速方向重合。图3-1为流线谱中显示的流线形状。 (2)流线的作法: 在流场中任取一点(如图3-2),绘出某时刻通过该点的流体质点的流速矢量u1,再画出距1点很近的2点在同一时刻通过该处的流体质点的流速矢量u2…,如此继续下去,得一折线1234 …,若各点无限接近,其极限就是某时刻的流线。 流线是欧拉法分析流动的重要概念。 图3-1 图3-2 (3)流线的性质(图3-3) a.同一时刻的不同流线,不能相交。图3-3 因为根据流线定义,在交点的液体质点的流速向量应同时与这两条流线相切,即一个质点不可能同时有两个速度向量。 b.流线不能是折线,而是一条光滑的曲线。 因为流体是连续介质,各运动要素是空间的连续函数。 c.流线簇的疏密反映了速度的大小(流线密集的地方流速大,稀疏的地方流速小)。 因为对不可压缩流体,元流的流速与其过水断面面积成反比。 (4)流线的方程(图3-4) 根据流线的定义,可以求得流线的微分方程:图3-4

设d s为流线上A处的一微元弧长: u为流体质点在A点的流速: 因为流速向量与流线相切,即没有垂直于流线的流速分量,u和d s重合。 所以即 展开后得到:——流线方程(3-1) (或用它们余弦相等推得) 2.迹线 (1)迹线的定义 迹线(path line)某一质点在某一时段内的运动轨迹线。 图3-5中烟火的轨迹为迹线。 (2)迹线的微分方程 (3-2) 式中,u x,u y,u z均为时空t,x,y,z的函数,且t是自变量。图3-5 注意:流线和迹线微分方程的异同点。 ——流线方程 3.色线(colouring line) 又称脉线,是源于一点的很多流体质点在同一瞬时的连线。 例如:为显示流动在同一点投放示踪染色体的线,以及香烟线都是色线。图3-6 考考你:在恒定流中,流线、迹线与色线重合。 流线、迹线、色线的比较: 概念名 流线是表示流体流动趋势的一条曲线,在同一瞬时线上各质点的速度向量都与其相切,它描述了流场中不同质点在同一时刻的运动情况。

第5章 汽车空气动力学-5学时

第五章汽车空气动力学 第一节概述第二节汽车空气动力学基础 第三节汽车行驶时所受到的气动力和力矩第四节汽车外形与空气动力学特性的关系 第一节概述 一、研究目的 ?赋予轿车以高的空气动力性的车身造型,以降低空气阻力,提高行驶稳定性和降低空气动力噪声等 二、空气动力学研究的主要内容包括:1、汽车行驶过程中的气动力和力矩的研究2、汽车表面及周围的流谱和局部流场的分布研究3、发动机和制动装置的空气冷却问题的研究4、汽车内部自然通风和换气问题的研究 三、汽车空气动力学的研究手段理论分析 试验研究 数值模拟 随着计算机硬件和软件技术的发展和湍流理论的深入研究,使得计算机流体力学(CFD)在汽车设计和分析领域应用更加广泛。 目前国外应用较成功的商用CFD 软件有:?福特汽车公司的Start-CD;?Fluent公司的FLUENT;?CHAM公司的PHOENICES;?AEA Technology公司的CFX-4等。 第二节汽车空气动力学基础 一、空气的力学特性 空气具有可压缩、粘性和热传导性等性质。但是在实际研究中为了研究的方便,一般不考虑空气的压缩性,称为理想空气。1、流线和流谱 ?流线:空气流动的轨迹,即该假想曲线上任一点的切线方向与该时刻气流质点速度向量的方向相同。?流谱:在某一瞬时的流场中,许多流线的集合称为该时刻气流的流谱。通过流谱来描述气流流动的全貌。 2、流体流动的连续性 ?流体的流速与流管的截面积的关系常数 v Α=计算机计算得到的围绕车身廓形的空气流线 计算机计算得到的围绕车身廓形的空气流线3、伯努利方程式 ?伯努利方程式用来描述定常流的流动情况,说明静压和动压的关系:=常数 即为空气密度 为空气的流速,,=式中:动压222 1 :2 1 v p v v q 常数 q p ρρρ+=+

流体动力学基础[1]

流体力学基础 2008.9 (授课老师:河口海岸国家重点实验室丁平兴教授36学时,2学分) 一、流体力学的基本概念 1.1流体力学的研究对象 1.2流体力学的研究方法 1.3流体力学的应用 1.4流体的宏观性质 1.5如何学好这门课程 二、流体运动学 2.1 描写流体运动的两种方法 1.拉格朗日方法 2.欧拉方法 3.拉格朗日变数与欧拉变数之间的相互转换 4.两种描述方法的比较 2.2 轨迹与流线 1.轨迹 2.流线 3.轨迹与流线的联系与区别 2.3 连续方程 1.系统和控制体 2.用欧拉观点推导连续方程 3.用通量法推导连续方程 2.4 流体元(微团)的速度分解 2.5 有旋运动学 2.6 无旋运动及速度势 1.速度势 2.单连通与多连通 3.单连通中的速度势 4.不可压流体的无旋运动

三、理想流体运动学 3. 1 压强和压强梯度力 1.作用于流体上的力 2.压强 3.表面力的合力:压强梯度力3.2 理想流体运动方程式 1.欧拉型运动方程 2.状态方程 3.拉格朗日型运动方程 3.3 边界方程 1.初始条件 2.边界条件 3. 4 运动方程的积分定理 1.动量定理 2.能量定理 3.伯努利定理 4.拉格朗日积分 四、平面问题 4.1 流函数的定义及其性质 1.流函数的定义 2.流函数的一些性质 4.2复势与复速度 1.复势与复速度的定义 2.复势的几个性质 4.3 基本流动及组合原理 1.基本流动 2.基本流动的组合 4.4 平面壁镜像与圆定理 1.平面壁镜像 2.圆柱面的镜像-圆定理

五、粘性流体动力学 5.1 应力分析 1.应力 2.应力性质 5.2 Naiver-Stokes 方程 1.粘性流体的运动方程 2.直角坐标系中的N-S方程5.3 N-S方程的几个解析解 5.4 柯氏力场中的N-S方程 六、相似理论与量纲分析 6.1 相似理论 1.研究意义 2.相似律 6.2 量纲分析 1.基本概念 2.基本方法 七、边界层理论简介 7.1 基本概念 1.边界层概念 2.边界层特征 7.2 普朗特边界层方程 八、湍流运动简介 8.1 平均运动理论 1.雷诺实验 2.湍流的随机性 3.湍流的平均方法 4.湍流的基本方程-雷诺方程8.2普朗特混合长度理论

第三章水动力学基础

第三章水动力学基础 1、渐变流与急变流均属非均匀流。( ) 2、急变流不可能是恒定流。( ) 3、总水头线沿流向可以上升,也可以下降。( ) 4、水力坡度就是单位长度流程上的水头损失。( ) 5、扩散管道中的水流一定是非恒定流。( ) 6、恒定流一定是均匀流,非恒定流一定是非均匀流。( ) 7、均匀流流场内的压强分布规律与静水压强分布规律相同。( ) 8、测管水头线沿程可以上升、可以下降也可不变。( ) 9、总流连续方程v1A1 = v2A2对恒定流和非恒定流均适用。( ) 10、渐变流过水断面上动水压强随水深的变化呈线性关系。( ) 11、水流总是从单位机械能大的断面流向单位机械能小的断面。( ) 12、恒定流中总水头线总是沿流程下降的,测压管水头线沿流程则可以上升、下降或水平。( ) 13、液流流线和迹线总是重合的。( ) 14、用毕托管测得的点流速是时均流速。( ) 15、测压管水头线可高于总水头线。( ) 16、管轴高程沿流向增大的等直径管道中的有压管流,其管轴压强沿流向增大。( ) 17、理想液体动中,任意点处各个方向的动水压强相等。( ) 18、恒定总流的能量方程z1 + p1/g + v12 /2g = z2 +p2/g + v22/2g +h w1- 2 ,式中各项代表( ) (1) 单位体积液体所具有的能量;(2) 单位质量液体所具有的能量; (3) 单位重量液体所具有的能量;(4) 以上答案都不对。 19、图示抽水机吸水管断面A─A动水压强随抽水机安装高度h的增大而( ) (3) 不变(4) 不定 h1与h2的关系为( ) (1) h>h(2) h<h(3) h1 = h2(4) 无法确定 ( ) (1) 测压管水头线可以上升也可以下降(2) 测压管水头线总是与总水头线相平行 (3) 测压管水头线沿程永远不会上升(4) 测压管水头线不可能低于管轴线 22、图示水流通过渐缩管流出,若容器水位保持不变,则管内水流属( ) (3) 恒定非均匀流(4) 非恒定非均匀流 ( ) (1) 逐渐升高(2) 逐渐降低(3) 与管轴线平行(4) 无法确定 24、均匀流的总水头线与测压管水头线的关系是( ) (1) 互相平行的直线;(2) 互相平行的曲线;(3) 互不平行的直线;(4) 互不平行的曲线。

流体动力学基础

流体力学基础 2005.9 (授课老师:河口海岸国家重点实验室丁平兴教授36学时,2学分) 一、流体力学的基本概念 1.1流体力学的研究对象 1.2流体力学的研究方法 1.3流体力学的应用 1.4流体的宏观性质 1.5如何学好这门课程 二、流体运动学 2.1 描写流体运动的两种方法 1.拉格朗日方法 2.欧拉方法 3.拉格朗日变数与欧拉变数之间的相互转换 4.两种描述方法的比较 2.2 轨迹与流线 1.轨迹 2.流线 3.轨迹与流线的联系与区别 2.3 连续方程 1.系统和控制体 2.用欧拉观点推导连续方程 3.用通量法推导连续方程 2.4 流体元(微团)的速度分解 2.5 有旋运动学 2.6 无旋运动及速度势 1.速度势 2.单连通与多连通 3.单连通中的速度势 4.不可压流体的无旋运动

三、理想流体运动学 3. 1 压强和压强梯度力 1.作用于流体上的力 2.压强 3.表面力的合力:压强梯度力3.2 理想流体运动方程式 1.欧拉型运动方程 2.状态方程 3.拉格朗日型运动方程 3.3 边界方程 1.初始条件 2.边界条件 3. 4 运动方程的积分定理 1.动量定理 2.能量定理 3.伯努利定理 4.拉格朗日积分 四、平面问题 4.1 流函数的定义及其性质 1.流函数的定义 2.流函数的一些性质 4.2复势与复速度 1.复势与复速度的定义 2.复势的几个性质 4.3 基本流动及组合原理 1.基本流动 2.基本流动的组合 4.4 平面壁镜像与圆定理 1.平面壁镜像 2.圆柱面的镜像-圆定理

五、粘性流体动力学 5.1 应力分析 1.应力 2.应力性质 5.2 Naiver-Stokes 方程 1.粘性流体的运动方程 2.直角坐标系中的N-S方程5.3 N-S方程的几个解析解 5.4 柯氏力场中的N-S方程 六、相似理论与量纲分析 6.1 相似理论 1.研究意义 2.相似律 6.2 量纲分析 1.基本概念 2.基本方法 七、边界层理论简介 7.1 基本概念 1.边界层概念 2.边界层特征 7.2 普朗特边界层方程 八、湍流运动简介 8.1 平均运动理论 1.雷诺实验 2.湍流的随机性 3.湍流的平均方法 4.湍流的基本方程-雷诺方程8.2普朗特混合长度理论

相关主题
文本预览
相关文档 最新文档