当前位置:文档之家› V3D三维成像测量技术引领车轮定位技术的发展方向

V3D三维成像测量技术引领车轮定位技术的发展方向

V3D三维成像测量技术引领车轮定位技术的发展方向
V3D三维成像测量技术引领车轮定位技术的发展方向

V3D三维成像测量技术引领车轮定位技术的发展方向

随着汽车技术不断发展,对于现代汽车,四轮定位关乎汽车的行驶安全性、驾驶的可操控性和舒适性、燃油的经济性,以及悬架系统部件和轮胎的使用寿命。广大汽车用户也不断认知汽车四轮定位的重要性。作为检测工具,四轮定位仪的技术水平直接关乎四轮定位的精确性、实用性、工作效率和使用寿命。

目前,全球最先进的四轮定位测量技术非V3D三维成像测量技术莫属。那么什么是“V3D”技术?它先进在哪里?为用户能带来哪些好处?这是业内人士和广大用户特别关心的问题。现在,让我们一起来揭开这个谜底。

1.V3D技术的由来

简单地讲,V3D是英文“Visualinerwith3DimensionImagingTechnology”的简写,意思是:三维成像技术可视定位仪。

1920年,美国有一位叫“JohnBean”的技术工程师,他注意到装满水的救火车由于负重使得车轮发生严重变形,轮胎严重磨损,受此现象启发,JohnBean先生想到:能否设计一个仪器,来测量和调整车轮的定位状态呢?经过艰苦探索,他发明了第一台车用四轮定位系统,并在以后的几十年中不断致力于四轮定位系统的研发和销售,这其中包括世界上第一台光学原理定位仪,第一台采用图形显示的定位仪,以及第一台应用计算机技术的定位仪。期间,“JohnBean”注册成为汽车维修设备的品牌。

早在1985年,“JohnBean”品牌为美国FMC公司所有,同年“JohnBean”品牌的研发人员在世界上率先提出了三维成像技

术的设计理念。但由于当时计算机性能的限制,没有形成产品。随着计算机计算能力的不断提高,终于在1995年形成了具有V3D技术的产品。因其技术的先进,1996年美国SNAPON(中文名:实耐宝)公司从FMC公司收购了“JohnBean”品牌。本世纪初最新研发的ULTRAVisualiner3D系列三维成像四轮定位系统,标志着四轮定位系统在技术上一次大的革新,极大地方便了用户的操作,并且更加精确。

2.V3D定位仪的技术原理

V3D的技术原理是革命性的,完全有别于传统定位仪。在此我们以美国“JohnBean”牌V3D定位仪为例,具体说明如下:

计算机主机+信息主板+高性能数字照相机+4个目标盘,构成V3D系统的基本元件,照相机的发光二极管不断发射固定频率的红外线,目标盘接收到光线后,将光线反射给照相机进行成像。照相机将所成图像与事先储存在电脑中的图像进行比较后,精确地计算出目标与相机间距离,再通过数据处理后,计算出车辆相关尺寸,得出相应四轮定位数据。

利用高技术的数码相机和专利的三维技术,计算出车辆每一个车轮的车轮平面、轮轴平面和车身平面(图1),车身平面是由每个车轮轮轴所在的中心点连接形成的。利用三个平面的几何关系确定车辆的四轮定位数据,并将这些数据与原厂数据进行比较,告知操作者需要调整的角度信息。

与传统的四轮定位技术不同,以往的四轮定位传感器必须配有电子元件,其中包括每一个车轮传感器中的电子重力传感器,因此必须不断确认车轮平面与所在举升机之间的位置关系。因此,对于传统四轮定位仪,要求整个举升机的平面要绝对的水平,操作人要特别关注整个标定的质量和精确度,而且标定的频率较高;每次进行定位操作时,安装在车轮上的传

感器必须进行正确的钢圈补偿(标定),否则不能确保四轮定位结果的准

确性。

2.V3D定位仪(图2)的技术特点

(1)照相机测量系统双照相机结合4个目标盘,提供革命性测量方式。

(2)目标盘装置目标盘无电子元器件,取代传统电子传感器,消除电路可能造成的故障。

(3)设备标定设备安装完成后仅需一次标定,过程简便,无需定期重复此工作。

(4)测量过程测量时,无需进行钢圈补偿,缩短了测量时间,提高了准确性。

(5)软件系统操作简便,2 min内可读取基本的四轮定位数据。

(6)保养维护维护保养简便易行,设备无需定期标定。

4.V3D定位仪的优势

(1)技术领先3D成像定位技术,在做车轮定位时不要求对目标盘调水平,其三维成像技术世界领先。

(2)快速 2 min内可完成目标盘安装和定位设定,并读取基本定位数据。

(3)精准三维数字成像定位技术,精确度达0.01°。

(4)高收益快速+精准=高效益,每天可完成更多的定位工作。

(5)易用友好、人性化的操作界面,加之照相机上的“VODI”定位辅助指示(图3),简便易用。

车辆方向指示器(V.O.D.I.TM) :使得操作人员无需移动定位仪机身,即可进行车轮定位;定位测量时操作人员无需看显示器画面,通过“VODI”可以更直观的方式进行定位操作。该功能为John Bean独有的专利功能。

易用的操作界面:只需简单地点击操作即可打开程序,引导操作人顺利完成车辆定位任务。

(6)动态调整车辆定位调整定位角度时,车轮可在转盘上进行,也可以将车轮升高离开转盘后进行动态调整。

(7)真正无线目标盘相当于反光板,与传统四轮定位仪比较,其上无电子传感器,无束角、倾角传感器等任何电子部件,无需任何线连接。

(8)无需定期标定定位台面和传感器定位基准面是由每个车轮轴轴线来确定,V3D定位仪对举升机台面没有绝对水平的要求(只要定位台面能保证安全即可),4个车轮可独立进行车轮定位。避免由于承载车辆平面自身平行度等问题所造成的测量结果偏差。V3D定位仪以目标盘取代了传统的传感器,不涉及传感器的标定工作。

(9)无需钢圈补偿从本质上讲,进行车轮定位测量的是车轮轴轴线的空间位置状态。对于传统的定位仪,通过钢圈补偿来确定钢圈平均平面,以此为基准间接测量轮轴轴线状态,其测量值有一定的误差;对于V3D定位仪,在进行车辆滚动测量时,照相机不断采集目标盘上的33个光斑(相互校验)所反射回来的数字信号,直接而精确地测定出车轮轮轴的状态。增加了测量的精确性,提高了操作效率。

(10)性价比优异当前,V3D定位仪正在着力开拓中国市场,产品性能不断推陈出新,同时产品却以较为低廉的价格销售,其性价比是非常好的,用户会感受到它的价值。

5.V3D技术的发展趋势

综上所述,V3D三维成像测量技术从测量基准和原理上使得测量值更为精确;强大而人性化的软件设计,突破了传统定位仪的功能;无与伦比的测量速度,为用户创造更多的效益。

当前,国内一些定位仪生产厂家正在研究V3D技术,以不断提高国内定位仪的性能和技术水平。相信,随着V3D技术的不断完善,中国的定位仪测量技术水平会不断提高。

智慧电厂定位、三维及人员定位技术

智慧电厂的本质是信息化与智能化技术在发电领域的高度发展与深度融合,体现在大数据、物联网、可视化、先进测量与智能控制等技术的系统化应用,主要特征是泛在感知、自适应、智能融合与互动化。在智能制造与智慧能源的发展框架下,智慧电厂与智能发电技术得到了快速发展,成为能源互联网技术发展的重要组成部分。 智慧电厂也称为智能电厂或智能电站,其技术核心是信息融合与智能发电技术,目前在水电、燃气轮机电厂及新能源电站均有不同程度的研究与应用,智能核电概念也已提出,但范围最广、复杂程度最高的常规燃煤火电厂的智能化发展才是智慧电厂研究与应用的最重要领域。智能发电是智能制造的一部分,而智能制造则是中国国家发展战略《中国制造2025》的主攻方向。智能制造的本质就是机器代人,通过人与智能化的检测、控制与执行系统实现对人类专家的替代,体现在生产制造过程的柔性化、智能化和高度协同化,将数据挖掘、遗传算法、神经网络和预测控制等先进的计算机智能方法应用于工程设计、生产调度、过程监控、故障诊断、运营管控等,实现生产过程与管理决策的智能化。 在发电厂智能化技术的系统性研究与应用方面,国内外都还处于起步阶段,国外研究重点更倾向于新能源发电,如旨在有效运用分布式发电资源的VPP(虚拟电厂)技术,可提高分布式发电的可控性。而对于常规火电厂,西门子、GE等部分制造厂商,则将关注重点集中在区域数据共享与可视化辅助运维技术的应用方面,尚未有系统性成果见诸于公开文献。国内在技术体系方面的研究进展较快,部分关键技术已逐步进入应用研究,自主研发的技术进步显著。 随着计算机运算能力与软件应用水平提高,大范围的三维空间设计建模成为可能。通过三维空间定位,实现设备、管道、仪表取样点及隐蔽工程信息可视化。基于UWB技术的三维定位结合巡检人员智能终端,借助图像识别与无线通信技术,实时关联缺陷管理数据库,可实现现场设备的智能巡检与自动缺陷管理。借助设备与人员定位,还可同时实现智能安防与区

(完整word版)三维激光扫描测量技术及其在测绘领域的应用

三维激光扫描测量技术及其在测绘领域的应用 三维信息获取技术,也称为三维数字化技术。它研究如何获取物体表面空间坐标,得到物体三维数字化模型的方法。这一技术广泛应用于国民经济和社会生活的许多领域,如在自动化测控系统中,可以测微小、巨大、不规则等常规方法难以测量物体。 随着信息技术研究的深入及数字地球、数字城市、虚拟现实等概念的出现,人们对空间三维信息的需求更加迫切。基于测距测角的传统工程测量方法,在理论、设备和应用等诸多方面都已相当成熟,新型的全站仪可以完成工业目标的高精度测量,GPS可以全天候、一天24小时精确定位全球任何位置的三维坐标,但它们多用于稀疏目标点的高精度测量。随着传感器、电子、光学、计算机等技术的发展,基于计算机视觉理论获取物体表面三维信息的摄影测量与遥感技术成为主流,但它在由三维世界转换为二维影像的过程中,不可避免地会丧失部分几何信息,所以从二维影像出发理解三维客观世界,存在自身的局限性。因此,上述获取空间三维信息的手段难以满足应用的需求,如何快速、有效地将现实世界的三维信息数字化并输入计算机成为解决这一问题的瓶颈。三维激光测量技术的出现和发展为空间三维信息的获取提供了全新的技术手段,为信息数字化发展提供了必要的生存条件。20世纪90年代,随着三维激光扫描测量装置在精度、速度、易操作性、轻便、抗干扰能力等性能方面的提升及价格的逐步下降,它在测绘领域成为研究的热点,应用领域不断扩展,逐步成为快速获取空间实体三维模型的主要方式之一。

使用国产地面激光扫描仪扫描的输电线三维模型 三维激光扫描测量技术的特点 三维激光扫描测量技术克服了传统测量技术的局限性,采用非接触主动测量方式直接获取高精度三维数据,能够对任意物体进行扫描,且没有白天和黑夜的限制,快速将现实世界的信息转换成可以处理的数据。它具有扫描速度快、实时性强、精度高、主动性强、全数字特征等特点,可以极大地降低成本,节约时间,而且使用方便,其输出格式可直接与CAD、三维动画等工具软件接口。目前,生产三维激光扫描仪的公司有很多,它们各自的产品在测距精度、测距范围、数据采样率、最小点间距、模型化点定位精度、激光点大小、扫描视场、激光等级、激光波长等指标会有所不同,可根据不同的情况如成本、模型的精度要求等因素进行综合考虑之后,选用不同的三维激光扫描仪产品。

光学非接触式三维测量技术

光学三维测量技术及应用 摘要:随着现代科学技术的发展,光学三维测量已经在越来越广泛的领域起到了重要作用。本文主要对接触式三维测量和非接触式三维测量进行了介绍。着重介绍了光学三维测量技术的各种实现方法及原理。最后对目前光学三维测量的应用进行了简单介绍。 1 引言 随着科学技术和工业的发展,三维测量技术在自动化生产、质量控制、机器人视觉、反求工程、CAD/CAM以及生物医学工程等方面的应用日益重要。传统的接触式测量技术存在测量时间长、需进行测头半径的补偿、不能测量弹性或脆性材料等局限性,因而不能满足现代工业发展的需要。。 光学测量是光电技术与机械测量结合的高科技。光学测量主要应用在现代工业检测。借用计算机技术,可以实现快速,准确的测量。方便记录,存储,打印,查询等等功能。 光学三维测量技术是集光、机、电和计算机技术于一体的智能化、可视化的高新技术,主要用于对物体空间外形和结构进行扫描,以得到物体的三维轮廓,获得物体表面点的三维空间坐标。随着现代检测技术的进步,特别是随着激光技术、计算机技术以及图像处理技术等高新技术的发展,三维测量技术逐步成为人们的研究重点。光学三维测量技术由于非接触、快速测量、精度高的优点在机械、汽车、航空航天等制造工业及服装、玩具、制鞋等民用工业得到广泛的应用。 2 三维测量技术方法及分类 三维测量技术是获取物体表面各点空间坐标的技术,主要包括接触式和非接触式测量两大类。如图1所示。 图1 三维测量技术分类

2.1 接触式测量 物体三维接触式测量的典型代表是坐标测量机(CMM,Coordinate Measuring Machine)。CMM是一种大型精密的三坐标测量仪器[1],它以精密机械为基础,综合应用电子、计算机、光学和数控等先进技术,能对三维复杂工件的尺寸、形状和相对位置进行高精度的测量。 三坐标测量机作为现代大型精密、综合测量仪器,有其显著的优点,包括:(1)灵活性强,可实现空间坐标点测量,方便地测量各种零件的三维轮廓尺寸及位置参数;(2)测量精度高且可靠;(3)可方便地进行数字运算与程序控制,有很高的智能化程度。 早期的坐标测量机大多使用固定刚性测头,它最为简单,缺点也很多[2]。主要为(1)测量时操作人员凭手的感觉来保证测头与工件的接触压力,这往往因人而异且与读数之间很难定量描述;(2)刚性测头为非反馈型测头,不能用于数控坐标测量机上;(3)必须对测头半径进行三维补偿才能得到真实的实物表面数据。针对上述缺陷,人们陆续开发出各种电感式、电容式反馈型微位移测头,解决了数控坐标测量机自动测量的难题,但测量时测头与被测物之间仍存在一定的接触压力,对柔软物体的测量必然导致测量误差。另外测头半径三维补偿问题依然存在。三维测头的出现可以相对容易地解决测头半径三维补偿的难题,但三维测头仍存在接触压力,对不可触及的表面(如软表面,精密的光滑表面等)无法测量,而且测头的扫描速度受到机械限制,测量效率很低,不适合大范围测量。 2.2 非接触式测量 非接触式测量技术是随着近年来光学和电子元件的广泛应用而发展起来的,其测量基于光学原理,具有高效率、无破坏性、工作距离大等特点,可以对物体进行静态或动态的测量。此类技术应用在产品质量检测和工艺控制中,可大大节约生产成本,缩短产品的研制周期,大大提高产品的质量,因而倍受人们的青睐。随着各种高性能器件如半导体激光器LD、电荷耦合器件CCD、CMOS图像传感器和位置敏感传感器PSD等的出现,新型三维传感器不断出现,其性能也大幅度提高,光学非接触测量技术得到迅猛的发展。 非接触式三维测量不需要与待测物体接触,可以远距离非破坏性地对待测物体进行测量。其中,光学非接触式测量是非接触式测量中主要采用的方法。 3 光学非接触式三维测量的概述 光学非接触式三维测量技术根据获取三维信息的基本方法可分为两大类:被动式与主动式。如图2所示[3]。 主动式是利用特殊的受控光源(称为主动光源)照射被测物,根据主动光源的已知结构信息(几何的、物体的、光学的)获取景物的三维信息。被动式是在自然光(包括室内可控照明光)条件下,通过摄像机等光学传感器摄取的二维灰度图像获取物体的三维信息。

立体定位技术

实验6 小动物脑立体定位技术 一、实验目的 1. 了解脑立体定位技术。 2. 掌握脑立体定位仪及脑图谱的使用方法。 二、实验原理 脑立体定位技术被广泛的运用于脑的损毁、刺激和脑电记录的精确定位中,成为 研究脑结构和功能必不可少的工具。脑立体定位技术主要是使用脑立体定位仪作为定位仪器,利用某些颅骨外面的标志(如前囟、后囟、外耳道、眼眶、矢状缝等)或其它参考点所规定的三度坐标系统,来确定皮层下某些神经结构的位置,以便在非直视暴露下对其进行定向的刺激、破坏、注射药物、引导电位等研究,是神经解剖、神经生理、神经药理和神经外科等领域内的重要研究方法。常用的实验动物,如大鼠、小鼠、猫等高等哺乳动物以及鸟类,其均有完全的外耳道,可用(耳棒)来定位。在确定了颅外标记之后,就可按脑立体定位图谱所提供的数据进行定位操作。 三、实验器材 江湾-Ⅰ型脑立体定位仪,MC-5微操作仪,常规手术器械,钻孔针,纱布,干棉球,酒精,0.4%戊巴比妥钠(麻醉剂,现配现用),生理盐水,1ml注射器,3%双氧水, 小白鼠。 四、实验步骤 1. 江湾Ⅰ型脑定位仪的使用 1.1 校验仪器 定位仪经过搬动或长期不用后,使用前需先加以校验。重点是检验电极移动架各滑尺是否保持直角,可用三角板测定各滑尺所成的角度是否是直角;各衔接部与螺丝有没有松动;滑尺是否太松;检查主框两臂的平行情况;最后观察固定头的装置两侧对称程度,小框是否与主框平行。检查仪器无故障后,可进行下列校验性操作: (1)将两侧耳杆柱旋松,在主框上前后滑动,然后再按照原规定刻度装好,看两侧耳 杆尖是否完全对正。 (2)取下一侧耳杆,将一侧电极移动架装好,前后左右上下移动各滑尺,使装在电极 夹上的金属定位针尖正对耳杆尖的中心,记下各滑尺的刻度读数,再卸下移动架再装上,并按上法测定耳杆尖的部位,记下三个滑尺的读数,反复操作取平均数首先将放置水平的脑立体定位仪上的两个滑道,按实验的要求调节好合适的高度后。 (3)然后再用水平尺调正好两个滑道的前后、左右水平。这时再把安置在滑道上的手 动微推进器按上面的刻度调节垂直。

三维立体电影制作流程

1、三维立体电影制作流程 三维立体电影,即我们常说的4D电影,是立体电影和特技影院结合的产物。随着三维软件在国内越来越广泛的应用,4D电影也得到了飞速的发展。运用三维软件制作立体电影有其独特的优势,如三维场景本身就具有立体特性,与立体成像相关的各种参数非常容易在软件环境中调节等。本文具体讲解了三维立体电影制作的原理及常见问题的解决方法,以后我们还会在具体的制作方面继续探讨,希望广大对立体电影感兴趣的朋友不要错过。 4D电影:4D电影是立体电影和特技影院结合的产物。除了立体的视觉画面外,放映现场还能模拟闪电、烟雾、雪花、气味等自然现象,观众的座椅还能产生下坠、震动、喷风、喷水、扫腿等动作。这些现场特技效果和立体画面与剧情紧密结合,在视觉和身体体验上给观众带来全新的娱乐效果,犹如身临其境,紧张刺激。4D影院最早出现在美国,如著名的蜘蛛侠、飞跃加州、T2等项目,都广泛采用了4D电影的形式。近年来,随着三维软件广泛运用于立体电影的制作,4D电影在国内也得到了飞速的发展,画面效果和现场特技的制作水平都有了长足的进步,先后在深圳、北京、上海、大连、成都等地出现了几十家4D影院。这些影院大都出现在各种主题公园(乐园)、科普场所中,深受观众和游客的喜爱。

运用三维软件制作立体电影有其独特的优势,如三维场景本身就具有立体特性,与立体成像相关的各种参数非常容易在软件环境中调节等。所以,计算机三维技术应用于影视行业后,很快就出现了三维立体电影,如大家俗称的3D电影、4D电影。美国迪士尼乐园中的蜘蛛侠(SpiderMan),更是解决了“三维立体跟踪渲染”技术,使画面中的立体场景能够根据游客的运动轨迹自动地转换透视关系,能够适时地保持虚景(三维画面)和实景(现场布景)一致和连续的透视关系,大大提高了画面的真实感。那么,怎样运用三维软件来制作立体电影?制作过程中要注意哪些问题?本文将通过对三维立体电影的制作原理的详细分析,探讨一些常见问题的解决方法。 人眼的立体成像原理 在现实生活中,人们通过眼睛观察的周围环境之所以是立体的,是因为人的两只眼睛所处的空间位置不同,可以从两个不同的视角同时获得两幅不同的场景图像,人的大脑对这两幅图像进行处理后,不仅能分辨出所观察物体的颜色、质感等光学信息,还能根据两幅图像的差异判断出物体

主动式光学三维成像技术

万方数据

万方数据

万方数据

万方数据

主动式光学三维成像技术 作者:周海波, 任秋实, 李万荣 作者单位:上海交通大学激光与光子生物医学研究所,上海,200030 刊名: 激光与光电子学进展 英文刊名:LASER & OPTOELECTRONICS PROGRESS 年,卷(期):2004,41(10) 被引用次数:6次 参考文献(23条) 1.Noguchi M;Nayar S K Microscopic shape from focus using active illumination[外文会议] 1994(01) 2.Cohen F S;Patel M A A new approach for extracting shape from texture,Intelligent Control,1990 1990 3.Nayar S K;Watanabe M;Noguchi M Real-time focus range sensor[外文期刊] 1996(12) 4.Ghita O;Whelan P F A bin picking system based on depth from defocus[外文期刊] 2003(04) 5.POSDAMER J L;Altschuler M D Surface measurement by space-encoded projected beam systems[外文期刊] 1982(01) 6.WOODHAM R J Photometric method for determining surface orientation from multiple images 1980(01) 7.Miyasaka T;Kuroda K;Hirose M High speed 3-D measurement system using incoherent light source for human performance analysis 2000 8.Carrihill B;Hummel R Experiments with the intensity ratio depth sensor 1985 9.Maruyama M;Abe S Range sensing by projecting multiple slits with random cuts[外文期刊] 1993(06) 10.Caspi D;Kiryati N;Shamir J Range imaging with adaptive color structured light[外文期刊] 1998(05) 11.Horn E;Kiryati N Toward optimal structured light patterns[外文期刊] 1999(02) 12.Rocchini C;Cignoni P;Montani M A low cost 3D scanner based on structured light 2001(03) 13.Inokuchi S;Sato K;Matsuda F Range imaging system for 3-D object recognition 1984 14.Horn B K P;Brooks M Shape from Shading 1989 15.Schubert E Fast 3D object recognition using multiple color coded illumination[外文会议] 1997 16.Pulli K Acquisition and visualization of colored 3D objects[外文会议] 1998 17.Sato K;Inokuchi S Three-dimensional surface measurement by space encoding range imaging 1985(02) 18.Daniel Scharstein;Richard Szeliski High-Accuracy Stereo Depth Maps Using Structured Light[外文会议] 2003 19.Batlle J;Mouaddib E;Salvi J Recent progress in coded structured light as a technique to solve the correspondence problem: a survey[外文期刊] 1998(07) 20.Yoshizawa T The recent trend of moiremetrology 1991(03) 21.Li Zhang;Curless B;Seitz S M Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic Programming[外文会议] 2002 22.Sato T Multispectral pattern projection range finder 1999 23.EL-Hakim S F;Beraldin J A;Blais F A Comparative Evaluation of the Performance of Passive and Active 3-D Vision Systems 1995 本文读者也读过(2条) 1.欧阳俊华.OUYANG Jun-hua近距离三维激光扫描技术[期刊论文]-红外2006,27(3)

3D立体成像技术简介

3D立体成像技术简介 3D立体成像技术其实并不是一个新鲜事物。如果从时间上看,3D立体成像 技术早在上个世纪中叶就已经出现,比起现在主流的的液晶、等离子这些平板 显示技术,历史更加悠久。 那么现在的3D电视,到底使用了哪些方式来实现所谓的“全高清无闪烁”的立体影像呢? 色差式3D 历史悠久缺点最多 首先我们看看最早出现的也是最容易实现的一种3D立体成像技术:色差式 3D成像技术。 从技术层面上看色差式3D立体成像是比较简单的一种方法,这种3D成像 只需要通过一副简单的红蓝(或者红绿)眼镜就可实现,硬件成本不过几元钱。显示设备方面也无需额外的升级,现有的任何显示设备都可以直接显示。 色差式3D立体成像技术的原理是将两张不同视角上拍摄的影像分别以两种不同的颜色印制在同一副画面中,如果不戴眼镜,我们只能看到色彩重合的模 糊图像。但是戴上眼镜后,左右眼不同颜色的镜片分别过滤了对应的色彩,只 有红色的影像通过红色镜片蓝色通过蓝色镜片,最终两只眼睛看到的不同影像 在人脑中重叠产生了立体效果。 色差式3D立体成像原理简单,能达到的3D景深效果也还算不错。不过由 于采用的色度分离方式会给观看者带来比较严重的视觉障碍,舒适感始终不能 让人满意,同时画面的色彩还原效果也一直在较低的水准徘徊,这就导致了它 很难成为3D立体显示技术中的主流。 偏光式3D 影院主流家庭不易实现 在3D电视大量出现之前,3D影院其实已经进入我们的生活很长一段时间。而在3D影院之中最为常见的,就是偏光式3D技术。 偏光式3D技术主要利用偏振光分离技术实现3D立体成像。观看者通过佩 戴偏振眼镜,左右眼镜片就分别过滤掉不同偏振方向的光线,从而实现了左右 眼画面的分离。 影院方面在具体实施的时候主要有两种方式:双机3D和单机3D。双机3D 多用在IMAX 3D影院中,通过使用两台投影机,分别透射偏振方向不一样的左 右眼画面。单机3D相对简单,主要通过但抬头迎和快速切换的偏振器来分别高速切换左右眼画面,最终再通过偏振眼镜进行左右眼画面的分离。

三维显示技术介绍

三维显示技术介绍 目前的三维立体显示技术共可以分为分光立体眼镜 (Glasses-based Stereoscopic)、自动分光立体显示 (Autostereoscopic Displays)、全息术 (Hologram)和体三维显示(V olumetric 3-D Display)4大类。 其中的前两类应该都是大家很熟悉的技术了,它们都采用了视差的方式来给人以3D显示的感觉:分别为左眼和右眼显示稍有差别的图像,从而欺骗大脑,令观察者产生3D的感觉。由于人为制造视差的方式所构造的3D景象并不自然,它加重了观察者的脑力负担,因此看久了会令人头痛。而全息术则利用的并不是数字化的手段,而是光波的干涉和衍射,它一般只能生成静态的三维光学场景,并且对观察角度还有要求,所以就目前而言,它对于人机交互应用而言还并不适合。 体三维显示则与前三者不同,它是真正能够实现动态效果的3D技术,它可以让你看到科幻电影中一般“悬浮”在半空中的三维透视图像。体三维显示技术目前大体可分为扫描体显示 (Swept-V olume Display)和固态体显示 (Solid-V olume Display)两种。其中,前者的代表作是Felix3D和Perspecta,而后者的代表作则名为DepthCube。 Felix3D拥有一个很直观的结构框架,它是一个基于螺旋面的旋转结构,如下图所示,一个马达带动一个螺旋面高速旋转,然后由R/G/B三束激光会聚成一束色度光线经过光学定位系统打在螺旋面上,产生一个彩色亮点,当旋转速度足够快时,螺旋面看上去变得透明了,而这个亮点则仿佛是悬浮在空中一样,成为了一个体象素(空间象素,V oxel),多个这样的voxel便能构成一个体直线、体面,直到构成一个3D物体,过程很直观,不是么? Perspecta可能是扫描体3D显示领域最令人瞩目的成就了,它采用的是一种柱面轴心旋转外加空间投影的结构,如下图所示,与Felix3D不同,它的旋转结构更简单,就一个由马达带动的直立投影屏,这个屏的旋转频率可高达730rpm,它由很薄的半透明塑料做成。当需要显示一个3D物体时,Perspecta将首先通过软件生成这个物体的198张剖面图(沿Z轴旋转,平均每旋转2°不到截取一张垂直于X-Y平面的纵向剖面),每张剖面分辨率为798×798象素,投影屏平均每旋转2°不到,Perspecta便换一张剖面图投影在屏上,当投影屏高速旋转、多个剖

推荐-三维成像声纳1 精品

三维成像声纳 专业:光电子技术与科学 院校:长春理工大学光电信息学院

目录 摘要 第一章声呐 1.1 声呐的概述 1.2 三维成像技术 1.3 三维成像声呐的发展现状 第二章三维成像声呐的工作原理 第三章三维成像声呐的应用 第四章三维成像声纳的选择 第五章结论和展望 摘要 声纳的发展背景: 海洋蕴藏着丰富的矿产和能源,同时又具有重要的军事地位,海洋开发日益受到人们的重视。首先,全球能源日益紧张,所以开发新的能源和空间十分必要,海洋是个巨大的能源宝库,具有很大的开发潜力。其次,我国海岸线绵长,海域辽阔,了解海域特点、海底地形地貌状况对维护国家安全很有必要。 从上面可以看到成像声纳有着十分广泛的用途,不仅关系到军事方面,而且还关系到国民经济生活发展的很多方面,所以研究和发展成像声纳十分必要和迫切。三维成像声纳所使用的可视化技术,将大量枯燥的数据以生动的立体图形图像的方式表现出来,使人们能够对声纳数据进行更直观的解释和分析,提高水下探测的工作效率。 借助成熟的三维显示技术,三维图形可被缩放、移动和转动、测距,以便工作人员可以从各种视角更好地进行观察和理解,提供准确、科学的依据。 1.1声呐的概述

声呐是英文缩写“SONAR”的音译,其中文全称为:声音导航与测距,Sound Navigation And Ranging”是一种利用声波在水下的传播特性,通过电声转换和信息处理,完成水下探测和通讯任务的电子设备。它有主动式和被动式两种类型,属于声学定位的范畴。声呐是利用水中声波对水下目标进行探测、定位和通信的电子设备,是中应用最广泛、最重要的一种装置。 声呐是各国海军进行水下监视使用的主要技术,用于对水下目标进行探测、分类、定位和跟踪;进行水下通信和导航,保障舰艇、反潜飞机和反潜直升机的战术机动和水中武器的使用。此外,声呐技术还广泛用于鱼雷制导、水雷引信,以及鱼群探测、海洋石油勘探、船舶导航、水下作业、水文测量和海底地质地貌的勘测等。 1.2三维成像技术 通常我们说一个客观的世界是三维的,客观世界的三维图像通过某种技术把它记录下来然后处理、压缩再传输出去,显示出来,最终在人的大脑中再现客观世界的图像,这个过程就是三维成像技术的全过程。 1.3 三位成像声纳的发展现状 三维成像声纳与普通的多波数声纳的区别,在于它具有更高的分辨率,从而可以提供水下目标外形轮廓的更多细节描述。高分辨率成像声纳在对水下目标进行成像时,能够提供非常优秀的图像质量,从而可以对目标进一步地跟踪和识别。目前最前沿的三维成像声纳是以声透镜技术为基础,它能提供目标的实时动态视频图像,质量小、尺寸小,可以装载到各种AUV、ROV上进行水下作业。 声视觉导航:给出目标物尺寸和方位信息 海底地貌检测:提供海底的等高线图和地理参考数据,海图的绘制。 残骸搜索:提供失事船只残骸的详细信息 堤坝的检测:提供堤坝的裂缝信息 管道检测:对海底油气输送管道进行安全检查 桥墩探伤:检测受损桥墩的险情 海港检测:给出水下目标的回声及运动轨迹和速度 海床检测:矿产资源和能源勘探

室内三维定位技术

室内三维定位技术 一、概述 室内定位参考百科的描述为:在室内环境无法使用卫星定位时,使用室内 定位技术作为卫星定位的辅助定位,解决卫星信号到达地面时较弱、不能穿透 建筑物的问题。最终定位物体当前所处的位置。主要采用无线通讯、基站定位、惯导定位等多种技术集成形成一套室内位置定位体系,从而实现人员、物体等 在室内空间中的位置监控。 随着智能手机的普及以及移动互联网的发展,地图与导航类软件将进入一 个新的时代——室内导航。经研究,人们80%--90%的时间都是呆在室内,70% 移动设备的使用都是在室内,80%的数据连接也在室内。近几年来,包括谷歌、微软、苹果、博通等在内的一些科技巨头,还有一些世界有名的大学都在研究 室内定位技术。室内定位技术的商业化必将带来一波创新高潮,各种基于此技 术的应用将出现在我们的面前,其影响和规模绝不会亚于GPS。 民用领域可以想象一些比较常见的应用场景,比如在机场大厅、展厅、大 型商场、超市、公共场所室内导航,能够快速找到安全出口、电梯,家长用来 跟踪小孩的位置避免小孩在超市中走丢。室内停车,找车位、停车,计时计费等。智能家居,房屋根据你的位置打开或关闭电灯。商场商户,商店根据用户 的具体位置向用户推送更多关于商品的介绍,促销活动,排队预约,支付服务等。大型建筑物应急疏散,公共安全,灾后救援。大数据分析:室内定位系统 可以进行更高精度、更大量级的大数据分析,室内定位数据可以捕捉用户在某 个货架或者店铺的光顾频率、停留时间,从而得出用户的类型、兴趣和偏好等 特质以及店铺热度、品牌关联度等重要结论,为商业分析提供有力的工具。例如,万达广场借此发现许多在必胜客消费的客户都会去ZARA消费,他们据此针对性的做了两者间的联合促销,得到了良好的收效。如果相关技术产业化后, 应用场景会十分广泛。 工业领域应用场景,如矿井,工厂厂房内精确地定位工人、设备(叉车) 上位置,实时时地将人、车、物的位置信息准确地将反映到工厂控制中心,方

光学三维测量技术与应用

光学三维测量技术 1. 引言 人类观察到的世界是一个三维世界, 尽可能准确和完备地获取客观世界的三维信息才能尽可能准确和完备地刻画和再现客观世界。对三维信息的获取和处理技术体现了人类对客观世界的把握能力,因而从某种程度上来说它是体现人类智慧的一个重要标志。 近年来, 计算机技术的飞速发展推动了三维数字化技术的逐步成熟, 三维数字化信息获取与处理技术以各种不同的风貌与特色进入到各个不同领域之中 [1]:在工业界, 它已成为设计进程中的一环, 凡产品设计、模具开发等, 无一不与三维数字化测量有着紧密的结合; 虚拟现实技术需要大量景物的三维彩色模型数据, 以用于国防、模拟训练、科学试验; 大量应用的三坐标测量机和医学上广泛应用的 CT 机和 MRI 核磁共振仪器,也属于三维数字化技术的典型应用;文化艺术数字化保存(意大利的古代铜像数字化、中国的古代佛像数字化、古文物数字化保存、 3D 动画的模型建构(电影如侏罗纪公园、太空战士、医学研究中的牙齿、骨头扫描, 甚至人类学的考古研究等, 都可运用三维扫描仪快速地将模型扫描、建构; 而随着宽频与计算机速度的提升, Web 3D的网络虚拟世界将更为普及,更带动了三维数字化扫描技术推广到商品的电子商务、产品简报、电玩动画等, 这一切都表明未来的世界是三维的世界。 目前, 有很多种方法可用来获取目标物体的三维形状数据, 光学三维测量技术(Optiacl Three-dimensional Measurement Techniques因为其“非接触”与“全场”的特点,是目前工程应用中最有发展前途的三维数据采集方法。光学三维测量技术是二十世纪科学技术飞速发展所催生的丰富多彩的诸多实用技术之一, 它是以现代光学为基础, 融光电子学、计算机图像处理、图形学、信号处理等科学技术为一体的现代测量技术。它把光学图像当作检测和传递信息的手段或载体加以利用, 其目的是从图像中提取有用的信号, 完成三维实体模型的重构 [2]。随着激光技术、精密计量光栅制造技术、计算机技术以及图像处理等高新技术的发展, 以及不断推出的高

V3D三维成像测量技术引领车轮定位技术的发展方向

V3D三维成像测量技术引领车轮定位技术的发展方向 随着汽车技术不断发展,对于现代汽车,四轮定位关乎汽车的行驶安全性、驾驶的可操控性和舒适性、燃油的经济性,以及悬架系统部件和轮胎的使用寿命。广大汽车用户也不断认知汽车四轮定位的重要性。作为检测工具,四轮定位仪的技术水平直接关乎四轮定位的精确性、实用性、工作效率和使用寿命。 目前,全球最先进的四轮定位测量技术非V3D三维成像测量技术莫属。那么什么是“V3D”技术?它先进在哪里?为用户能带来哪些好处?这是业内人士和广大用户特别关心的问题。现在,让我们一起来揭开这个谜底。 1.V3D技术的由来 简单地讲,V3D是英文“Visualinerwith3DimensionImagingTechnology”的简写,意思是:三维成像技术可视定位仪。 1920年,美国有一位叫“JohnBean”的技术工程师,他注意到装满水的救火车由于负重使得车轮发生严重变形,轮胎严重磨损,受此现象启发,JohnBean先生想到:能否设计一个仪器,来测量和调整车轮的定位状态呢?经过艰苦探索,他发明了第一台车用四轮定位系统,并在以后的几十年中不断致力于四轮定位系统的研发和销售,这其中包括世界上第一台光学原理定位仪,第一台采用图形显示的定位仪,以及第一台应用计算机技术的定位仪。期间,“JohnBean”注册成为汽车维修设备的品牌。 早在1985年,“JohnBean”品牌为美国FMC公司所有,同年“JohnBean”品牌的研发人员在世界上率先提出了三维成像技

术的设计理念。但由于当时计算机性能的限制,没有形成产品。随着计算机计算能力的不断提高,终于在1995年形成了具有V3D技术的产品。因其技术的先进,1996年美国SNAPON(中文名:实耐宝)公司从FMC公司收购了“JohnBean”品牌。本世纪初最新研发的ULTRAVisualiner3D系列三维成像四轮定位系统,标志着四轮定位系统在技术上一次大的革新,极大地方便了用户的操作,并且更加精确。 2.V3D定位仪的技术原理 V3D的技术原理是革命性的,完全有别于传统定位仪。在此我们以美国“JohnBean”牌V3D定位仪为例,具体说明如下: 计算机主机+信息主板+高性能数字照相机+4个目标盘,构成V3D系统的基本元件,照相机的发光二极管不断发射固定频率的红外线,目标盘接收到光线后,将光线反射给照相机进行成像。照相机将所成图像与事先储存在电脑中的图像进行比较后,精确地计算出目标与相机间距离,再通过数据处理后,计算出车辆相关尺寸,得出相应四轮定位数据。 利用高技术的数码相机和专利的三维技术,计算出车辆每一个车轮的车轮平面、轮轴平面和车身平面(图1),车身平面是由每个车轮轮轴所在的中心点连接形成的。利用三个平面的几何关系确定车辆的四轮定位数据,并将这些数据与原厂数据进行比较,告知操作者需要调整的角度信息。 与传统的四轮定位技术不同,以往的四轮定位传感器必须配有电子元件,其中包括每一个车轮传感器中的电子重力传感器,因此必须不断确认车轮平面与所在举升机之间的位置关系。因此,对于传统四轮定位仪,要求整个举升机的平面要绝对的水平,操作人要特别关注整个标定的质量和精确度,而且标定的频率较高;每次进行定位操作时,安装在车轮上的传

三维立体投影显示系统方案

一、单通道三维立体投影显示系统 单通道三维立体投影显示系统是一套基于高端PC 虚拟现实工作站平台的入门级虚拟现实三维投影显示系统,该系统通常以一台图形计算机为实时驱动平台,两台叠加的立体版专业LCD或DLP投影机作为投影主体显示一幅高分辨率的立体投影影像,所以通常又称之为单通道立体投影系统。我们采用成熟的偏振光成像技术或世界最先进的光谱分离立体成像技术来生成单通道立体图像。 采用光谱分离立体成像技术最大的优点是三维立体图像色彩饱和度更高、立体感更强,为虚拟仿真用户提供一个有立体感的沉浸式虚拟三维显示和交互环境,同时也可以显示非立体影像,而由于虚拟仿真应用的特性和要求,通常情况下均使用其立体模式。 在虚拟现实应用中用以显示实时的虚拟现实仿真应用程序,该系统通常主要包括专业投影显示系统、悬挂系统、成像装置等三部分,在众多的虚拟现实三维显示系统中,单通道立体投影系统是一种低成本、操作简便、占用空间较小(可选择正投或背投)具有极好性能价格比的小型虚拟三维投影显示系统,其集成的显示系统使安装、操作使用更加容易方便,被广泛应用于高等院校和科研院所的虚拟现实实验室中。投影系统是正投或背投,应该依据展示空间面积大小与实际需要来选择。正投系统更为紧凑,占用的空间更小,投影幕墙具有较好的稳定性。背投主要适用于空间比较大,而且投影前需要讲解人的场合。由于光线从另一侧打在投影幕上,讲解人不会挡住光线,也不会被强烈的光线损伤视力。 系统结构示意图

二、双通道立体投影显示系统 为了拓宽观察视角,满足控制室与演示中心多面板现实的需要,我们使用两套立体投影设备拼接成为宽幅面的双通道平板立体显示系统。 双通道显示系统的宽度适宜进行平 板显示(如果是更大的视角,使用柱面环 幕则更有利于产生视野封闭的巨大沉浸 感。) 对于双通道立体投影显示系统而言, 各通道间的亮度与色彩平衡也是至关重 要的技术要求。目前通常采用偏振立体成 像技术实现被动式三维立体成像,就是在 输出左右立体像对的两台高亮度的LCD 或DLP投影机前安装具有不同极化方向 的偏振片。但其所使用的投影幕必须是具 有高增益指数的金属投影幕,而且投影幅 面一般应该控制在150英寸范围以内,否则在不同的视点观看时会出现因高增益而引起的“太阳效应”,所以不适用于多通道立体投影显示系统。目前,一种全新的基于光学虑波的技术成功解决了这个问题,它就是来自德国的Infitec plus,Infitec plus是目前世界最先进的立体成像技术,中铭科技推出的多通道虚拟现实系统正是基于该项技术的一套完美的多通道虚拟现实投影显示系统解决方案。 偏振技术成像的太阳效应Infitec立体成像技术的效果Infitec技术(干涉滤波技术)采用高质量滤光技术,分离光谱以便适合人的每只眼睛,生成无重像的被动立体图像,所以,无需特殊的具有偏振特性的屏幕或电子眼镜,只需配戴专业Infitec眼镜即可,Infitec 眼镜不需要配备电源和复杂 的电路,因此舒适感和沉浸 感更好,眼镜轻便,由于不 需信号同步发射器,所以配 戴者的头部可随意移动,配 戴者互相之间不会产生干 扰,这样Infitec还可以满足 有大量观众场合的应用。

三维超声成像的新技术及其临床应用

【摘要】随着医学影像技术的发展,超声成像已经成为临床上应用最广泛的医学成像模式之一。近年来,随着电子技术、计算机技术的发展,超声成像设备在成像方法和技术等层面上不断得到改进,临床诊断能力也得到进一步提高。本文主要介绍三维超声成像的新技术及其临床应用。 【关键词】超声成像;临床应用 【中图分类号】r 445.1 【文献标识码】a 【文章编号】1004-7484(2012)12-0440-02 随着社会科学技术的进步与人们生活水平的提高,医学影像学作为医生诊断和治疗重要手段已成为医学技术中发展最快的领域之一,它使得临床医生对人体内部病变部位的观察更直接、更清晰,确诊率更高。而超声成像技术在医学成像领域中以其特有的优势发挥了巨大的作用,在临床上得到了广泛的应用。20世纪40年代初就已探索利用超声检查人体,50年代已研究、使用超声使器官构成超声层面图像,70年代初又发展了实时超声技术,可观察心脏及胎儿活动。三维超声成像技术与传统二维超声成像相比,具有明显的优势:首先三维超声成像技术能直接显示脏器的三维解剖结构;其次还可对三维成像的结果进行重新断层分层,能从传统成像方式无法实现的角度进行观察;再有还可对生理参数进行精确测量,对病变位置精确定位。因此,近几年来三维超声成像已经成为医学成像领域备受关注的方面。 1 三维超声的成像技术 可靠的数据提取是得到精确三维超声图像的前提。采用二维面阵超声探头,使超声束在三维扫查空间中进行摆动,即可直接得到三维体数据。但二维面阵换能器的制作工艺限制了阵元数,使得三维图像的分辨率受到了一定的限制。目前已有使用二维阵列的超声成像系统面世。目前三维超声数据的提取仍广泛采用一维阵列探头。用一维阵列探头提取三维超声数据,需要外加定位装置,如目前临床广泛采用的一体化探头。该探头是将一个一维超声探头和摆动机构封装在一起,操作者只要将该探头放在被探查部位,系统就能自动采集三维数据。还有一种新型探头专门用于解决定位问题。该探头有三个阵列,中间的主阵列用于超声成像,与主阵列垂直的两个侧阵列用于提取定位图像。由于探头移动的连续性,所以定位图像两两重叠部分很大,可以通过两侧的定位图像确定两次采样间的位移、旋转,从而确定图像的空间位置。此外,还有一些文献提供了通过相邻图像的相关和图像的斑点噪声统计规律来确定探头侧向位移的方法。 2 三维超声的临床应用 2.1 三维超声在空腔脏器中的应用 2.1.1 胃、肠道疾病嘱受检者适量饮水或灌肠后可建立良好的透声窗。清楚显示胃肠道隆起性病变与溃疡的大小、深度、边缘形态,观察恶性肿瘤的浸润深度、范围及与邻近组织、血管的立体位置关系,进行术前tnm分期,对协助临床制定相应的治疗方案,具有重要意义。3d-cde对溃疡出血和胃底静脉曲张的诊断,也可提供较大的帮助。 2.1.2 膀胱疾病膀胱充盈后可形成极佳的透声窗,三维超声与二维超声一样清晰显示病变的形态、大小、数目、内部回声,同时三维超声还能显示病变的整体、表面形态及肿瘤对膀胱壁的浸润情况,从而提高了其诊断的准确性,并有助于肿瘤术前方案的抉择。对慢性膀胱炎症、憩室、结石、凝血块等膀胱疾病的诊断,也显示出优越性。 2.2 在实质性脏器中的应用 肝脏疾病肝囊肿与肝脓肿二维超声诊断准确性较高,而肝癌与肝内其它性质占位性病变相互间的鉴别有时较为困难。三维超声可从不同方位观察肝表面和边缘轮廓,肿三维超声成像在临床上有广泛的应用前景。可用于精确测量和定位在产科临床上,三维超声成像可用于鉴别早期胎儿是否存在畸形以及检查各个孕期胎儿的生长发育情况;在心血管疾病诊断中,可用于多种心脏疾病以及血管内疾病的检查。随着实时三维超声成像(一般要求帧频必须大

三维空间定位准确度定义与测量说明(精)

三维空间定位准确度定义与测量说明 王正平 美国光动公司 1180 Mahalo Place Compton, CA 90220 310-635-7481 I. 简介 20年前,大型机器的主要定位精度为丝杆的螺距误差及热膨胀误差,但直至今日上述的大部份误差已藉由线性编码器来减少与补偿, 因此机器的误差转而变成以垂直度误差与直线度误差为主要原因, 然而为了达到三维空间定位精度,垂直度误差与直线度误差的测量与补偿则变得更为重要。 II. 机床定位误差 就三轴机器而言, 每轴共有六项误差, 或换句话说, 三轴共有十八误差加上三项垂直度误差,这二十一项刚体误差可以表示如下 [1]: 直线位移误差 : Dx(x, Dy(y, 及 Dz(z 垂直直线度误差 : Dy(x, Dx(y, 及 Dx(z 水平直线度误差 : Dz(x, Dz(y, 及 Dy(z 横转度误差 : Ax(x, Ay(y, 及 Az(z 俯仰度误差 : Ay(x,Ax(y, 及 Ax(z 偏摇度误差 : Az(x, Az(y, 及 Ay(z

垂直度误差 : ?xy, ?yz, ?zx, 其中 D 为直线误差,下标表示位移方向,位置坐标为函数中的变量, A 为角度误差,下标表示旋转方向,位置坐标为函数中的变量。 III. 现有的空间精度定义 对于三轴机器而言,主要的定位误差为各轴的位移误差 Dx(x, Dy(y, Dz(z, 空间误差则定义为这些位移误差和的平方根, 因此可表示如下式:空间误差 = sqrt {[Max Dx(x-Min Dx(x]2 + [Max Dy(y-Min Dy(y]2 + [Max Dz(z- Min Dz(z]2}. 上述的定义当主要误差为三项位移误差 (或丝杆螺距误差时是正确的, 但是近年来的机器, 其主要误差为直线度误差与垂直度误差, 远大于直线位移误差,因此上述的定义并非绝对符合 . IV. 空间精度的新定义 各轴向的定位误差 Dx(x,y,z, Dy(x,y,z及 Dx(x,y,z为位移误差与直线度误差的和可表示如下式: Dx(x,y,z =Dx(x + Dx(y + Dx(z, Dy(x,y,z =Dy(x + Dy(y + Dy(z, Dz(x,y,z =Dz(x + Dz(y + Dz(z. 空间误差为这些总误差的均方根,如下式所示: 空间误差 = sqrt {[Max Dx(x,y,z-Min Dx(x,y,z]2 + [Max Dy(x,y,z-Min Dy(x,y,z]2 + [Max Dz(x,y,z- Min Dz(x,y,z]2}.

相关主题
文本预览
相关文档 最新文档