当前位置:文档之家› 受电弓

受电弓

受电弓
受电弓

受电弓

一、分类

1.1双臂式

双臂式集电弓乃最传统的集电弓,亦可称“菱”形集电弓,因其形状为菱形。但现因保养成本较高,加上故障时有扯断电车线的风险,目前部分新出厂的铁路车辆,已改用单臂式集电弓;亦有部分铁路车辆从原有的双臂式集电弓,改造为单臂式集电弓。

1.2单臂式

除了双臂式,其后亦有单臂式的集电弓,亦可称为“之”(Z)(ㄑ)字形的集电弓。此款集电弓的好处是比双臂式集电弓噪音为低,故障时也较不易扯断电车线,为目前较普遍的集电弓类型。而依据各铁路车辆制造厂的设计方式不同,在集电弓的设计上会有些许差异。

图1 单、双臂受电弓

二、结构

电力牵引机车从接触网取得电能的受电弓,安装在机车或动车车顶上。受电弓可分单臂弓和双臂弓两种,均由滑板、上框架、下臂杆(双臂弓用下框架)、底架、升弓弹簧、传动气缸、支持绝缘子等部件组成。菱形受电弓,也称钻石受电弓,以前非常普遍,后由于维护成本较高以及容易在故障时拉断接触网而逐渐被淘汰,近年来多采用单臂弓。

图2单臂受电弓结构图

三、 TSG18D技术参数

额定电压 DC1500ⅴ

电压波动范围 DC1000ⅴ-DC1800ⅴ

额定工作电流 1050A

额定运行速度 90km/h

折叠高度(包括支持绝缘子) 310mm﹙0~10 mm﹚

最低工作高度(从落弓位置滑板面起) 165mm

最高工作高度(从落弓位置滑板面起) 1950mm

最大升弓高度(从落弓位置滑板面起)≥2550mm

弓头长度 1550 ±10mm

弓头宽度 328 ±3mm

弓头高度 225±10mm

滑板长度 1250±1mm

滑板宽度 35 mm

静态接触压力 120±10N

环境工作温度 -24℃~+40℃

额定工作压力 560kPa

升弓时间≤9s

降弓时间≤8s

总重(包括支持绝缘子)≤140kg

安装尺寸 1100×800±1mm

电气间隙≥30mm

四、受电弓的检修

4.1日常检修

在进行受电弓的检查时,为了安全的作业,就必须按照作业指导书进行。受电弓日检的作业指导书如表1所示

五、受电弓控制原理分析

5.1 气路工作原理

(1)升弓:在司机室按下受电弓升弓按钮后,受电弓供风单元内的升弓电磁阀(车辆受电弓控制单元的一部分)得电动作,向受电弓供应压缩空气。进入气阀箱后压缩空气依次经过空气过滤器(序1)、单向节流阀(序2)、调压阀(序3)、单向节流阀(序5)、安全阀(序6)后分为三条支路,两条支路分别向两个升弓气囊(序7)供气,第三条支路的压缩空气经过快排阀(序8)后向带有气道的滑板(序11)供气。压缩空气进入升弓气囊(序3),气囊膨胀抬升,抬升的气囊带动钢丝绳(序2)拉拽下臂杆,使受电弓逐渐升起,直到弓头与接触网接触并保持在规定的接触压力。

(2)降弓:司机在司机室按下降弓按钮后,升弓电磁阀失电,向受电弓供应的压缩空气被切断,同时升弓电磁阀将受电弓气路与大气连通,气囊升弓装置排气,受电弓靠自重下降,直到顶管降下并保持在底架的两个橡胶止挡上。

图4-3 气路工作原理

1 过滤阀

2 升弓节流阀

3 调压阀

4 压力表

5 安全阀

6 降弓节流阀

7 气囊

8 快排阀

9 ADD 球阀 10 ADD 试验阀11 滑板 12 压力开关

5.2电路工作原理

受电弓是从接触网向整个列车电气系统的供电以及输送再生制动能量的必要部件。在刚性和柔性接触网的线路上均能适用。目前北京、上海、广州已经建成地铁系统,其受电制式有第三轨受电(如北京地铁)和架空线受电弓受电(如上海、广州地铁)两种,其中架空线受电弓与机车受电弓在结构、原理等方面有诸多相似之处。

受电弓的控制电路如图3.2所示:

图3 受电弓的控制电路

受电弓电路控制如图3所示。由列车电源线(DC110V)正端30420提供电源,由受电弓和高速断路器控制保护空气开关2F30进行过电流保护。

当列车激活后,列车控制系统进入工作准备状态,列车控制启动继电器2K04和紧急制动继电器2K10分别得电工作,驾驶员可以操作升弓开关2S01来执行“升弓”指令,操作降弓控制开关2S02来执行“降弓”指令。

(1)升弓控制当按下升弓开关2S01,电源经由自动空气开关2F31使升弓起动继电器2K31得电,控制电路逻辑为

一组2K31连锁(14—13)控制各自单元车辆受电弓保持继电器2K33得电吸合。具体电路为:电源列车线30420经自动空气开关2F33、紧急制动继电器2K10(此继电器失电起动紧急制动,在后续制动电路图分析)常开连锁(54—53)、降弓继电器2K32常闭连锁(21—22)、升弓起动继电器2K31常开连锁(14—13)、车间电源供电继电器3k08(次继电器与升弓保持继电器2k33互锁,完成列车车间电源供电和受电弓供电方式的单一供电形式)常闭连锁(31—32)使得受电弓

保持继电器2k33得电,并通过自身常开连锁(14—13)完成自持。其控制电路

逻辑为

30420·2F33·2K10·2K32·(2K31+2K33)·3K0830400

2K33得电后一组常开连锁(24—23)开启受电弓驱动电路,控制电源由控制电源列车线30420经自动空气开关、紧急制动继电器2K10常开连锁(64—63)、降弓继电器2K32常开连锁(31—32)、受电弓保持继电器2K33常开连锁(24—23)闭合,控制受电弓电磁阀2Y01得电,开通升弓气路,使受电弓升弓并保持受电弓处在合适工作位置。其控制电路逻辑为

30420·2F33·2K10·2K32·2K3330400

(2) 降弓控制按下降弓控制开关2S02,其常闭连锁(21—22)分断,升弓起动继电器2K31失电,同时2S02的常开连锁(13—14)闭合,使降弓继电器

2K32得电,控制电路逻辑为

30420·2S02·2F3230400

其一组常闭连锁(21—22)和(31—32)打开,是的2K33和2Y01失电,受电弓(2K6)落弓。在紧急情况时,单只受电弓可以通过操作设在A车驾驶控制面板的紧急制动开关使受电弓降弓(双弓),当该开关被激活,2K10继电器失电,其常开连锁(54—53)和(64—63)直接分断2K33和2Y01。

要使受电弓能够升起来,升弓气压不能小于3bar。当升弓气压小于3bar,可以利用A车8号座位下的脚踏泵来提供足够的升弓气压。当列车在“有电无气”状态下升弓时,可以先按下升弓按钮,使电磁阀2Y01得电,连接受电弓的气路被打开,然后踩脚踏泵升弓,这就是通常说的“有电无气”升弓方法。

(3) 受电弓状态检测。受电弓的状态可以从按钮灯上判断。当升弓按钮绿灯亮时,表示所有受电弓都已升起;当降弓按钮红灯亮时,表示所有受电弓都已降下;当升弓按钮绿灯和降弓按钮红灯都不亮时,表示两个受电弓处于不同的状态(如升单弓)。

六、受电弓常见电气故障的处理

受电弓升弓的前提条件是:送入传动风缸的压缩空气压力不能小于3bar;受电弓电磁阀线圈电压不能小于97V。由于受电弓受电路和气路两方面控制,因

此,当司机台激活后受电弓不能升弓,其可能的故障原因为:

一、升弓电磁阀有电但压缩空气不足

二、升弓电磁阀电压不足但压缩空气气压足够

三、升弓电磁阀电压和压缩空气均不足

下面将对上述三种故障的原因进行详细分析,并提出紧急处理方案。

故障一原因分析:

在“升弓电磁阀有电但压缩空气不足”的情况时:此时只需一人就能完成,先按升弓按钮(绿色的显示灯亮),使升弓电路得电保持(使电磁阀2Y01得电,连接受电弓的气路被打开);再人为的提供压缩空气(此时必须使用安装在B 车8 位中间端的电气柜中的脚踏泵,大概踩踏20次左右),观察客内室的应急照明(DC110V),常规照明220V的灯亮灭情况,如果全部灯亮则表示升弓已完成(在完成之后恢复现场)。

故障二原因分析:

在“升弓电磁阀电压不足但压缩空气气压足够”的情况下时,此时需要两人共同合作才能完成:

1)手动操作拉杆使气源开关(电磁阀2Y01)打到“开”的位置,使电磁阀2Y01开通气路。

2)在第一步中获得了电之后,使辅助电路具备启动条件,给蓄电池充电,合上3S01,打开蓄电池开关激活列车,在激活司机台之后使受电弓保持继电器2K33得电而保持。

3)客室照明恢复。

故障三原因分析:

在“升弓电磁阀电压和压缩空气均不足”的情况时:同时使用故障原因一和原因二的解决方法。

受电弓电气故障处理小结:

受电弓的故障主要是受电弓不能升起,而造成这种故障的原因主要有三种,即:升弓汽缸内气压不足而升弓电磁阀2Y01电压足够,升弓汽缸内气压足够而升弓电磁阀2Y01电压不够,升弓汽缸内气压和升弓电磁阀2Y011电压均不足。解决这种故障的方法要因情况而定,其中当气压不足时还需用到安装在B 车8 位中间端的电气柜中的脚踏泵。当然,处理故障时需要一定的受电弓升降电路控制图知识,要掌握受电弓升降弓的电气控制原理,从而在处理故障时能够清楚明白的知道是哪个元器件或者线路出现故障,并及时采取相关的处理方法。

受电弓参数

电力机车受电弓参数 DSA150型受电弓,设计速度160 Km/h,适用于相应速度等级的各种电力机车及动车组。具有DSA200型受电弓的所有特点,与DSA200型受电弓比较,DSA150上臂采用铝型材焊接结构。 DSA150型受电弓的参数: 设计速度160 km/h 落弓位伸展长度约2600 mm 最大升弓高度(包括绝缘子)3000 mm 落弓位高度(包括绝缘子)588 mm 弓头长度1950 mm 额定电压25 kV 额定电流1000 A 接触压力70 – 120 N(可调) 驱动类型气囊驱动机构 升弓时间≤5.4 秒(可调) 降弓时间≤4 秒(可调) 整弓质量约125kg DSA200型受电弓,设计速度200km/h,适用于相应速度等级的各种电力机车及动车组。底架、下臂采用钢焊接结构,下导杆采用不锈钢材料,上导杆、上臂和弓头都采用重量较轻的铝合金。 DSA200型受电弓的参数: 设计速度200 km/h 落弓位伸展长度约2600 mm 最大升弓高度(包括绝缘子)3000 mm 落弓位高度(包括绝缘子)588 mm 弓头长度1950 mm 额定电压25 kV 额定电流1000 A 接触压力70 – 120 N(可调) 驱动类型气囊驱动机构 升弓时间≤5.4 秒(可调) 降弓时间≤4 秒(可调) 整弓质量约125kg DSA250型受电弓,设计速度250km/h,适用于相应速度等级的各种电力机车及动车组。与DSA200型受电弓比较,其下臂采用铝型材焊接结构型式,可以选装弓头翼片以调整动态接触压力。 DSA250型受电弓的参数: 设计速度250 km/h 落弓位伸展长度约2600 mm 最大升弓高度(包括绝缘子)3000 mm 落弓位高度(包括绝缘子)588 mm

受电弓机构综合

机械原理课程设计 说明书 设计题目:受电弓机构综合 专业:2011级工程机械1班 设计者:金宗 学号:20116201 指导老师:鉴 2013年12月10日

目录 一、设计题目:受电弓机构综合 (1) 1.1 设计题目简介 (1) 1.2 设计要求和有关数据 (1) 1.3设计任务 (1) 二、数据收集与设计思路 (2) 2.1 受电弓工作原理 (2) 2.2 受电弓分类 (3) 2.2.1 双臂式 (3) 2.2.2 单臂式 (3) 2.2.3 垂直式 (4) 2.2.4 津式 (5) 2.3 受电弓主要构成 (5) 三、机构选型设计 (5) 3.1 设计案的要求 (5) 3.2 机构的设计 (6) 3.2.1 案一:菱形机构 (6) 3.2.2 案二:平行四边形机构 (7) 3.2.3 案三:铰链四连杆机构 (9) 四、机构尺度综合 (9) 五、运动分析 (12) 5.1 驱动式的确定与计算 (12)

5.1.1 直接型驱动机构 (13) 5.2 运动仿真(ADAMS) (16) 5.2.1 受电弓弓头的位移曲线图 (16) 5.2.2 受电弓弓头的速度曲线图 (16) 5.2.3 受电弓弓头的加速度曲线图 (17) 5.3 受电弓弓头上升偏离理想直线的位移验证 (17) 5.4 传动角的验证 (18) 5.5 Pro/e建模模型 (18) 六、总结 (19) 七、收获与体会 (19) 参考文献 (20) 附录 (20) 1.利用位移矩阵求解初始位置坐标的Matlab程序 (20)

一、设计题目:受电弓机构综合 1.1 设计题目简介 如图所示,是从垂直于电力机车行使速度 的向看上去,受电弓的弓头的最低和最高位置。 理想的情况是以车体为参照系时,弓头沿垂直 于车顶的向直线上升、下降,最低400mm, 最高1950mm。 图1-1 1.2 设计要求和有关数据 1. 在弓头上升、下降的1550mm行程,偏离理 想化直线轨迹的距离不得超过100mm。 2. 在任时候,弓头上部都是整个机构的最高处。 3. 只有一个自由度,用风缸驱动。 4. 收弓后,整个受电弓含风缸不超出虚线所示 1400×400mm区域。 5. 在垂直于机车速度的向,最大尺寸不超过12 00mm。 6. 最小传动角大于或等于30°。图1-2 1.3设计任务 1. 至少提出两种运动案,然后进行案分析评比,选出一种运动案进行设计;

受电弓原理介绍

受电弓原理介绍 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

第三节受电弓原理介绍受电弓主要功能是从额定电压DC1500V接触网上获取电源,向整个列车电气系统供电,同时还通过列车的再生制动系统将列车的动能转换为电能回馈给接触网供给其它在线列车的使用,起到双向传递枢纽的作用。受电弓在刚性接触网和柔性接触网的线路上均能适用,在整个车辆速度范围内,受电弓有良好的动力学特性能,能够保证在各种轨道和速度下与接触网具有良好的接触状态和接触稳定性。它在气路上的特别设计保证了它降弓时有明显的迅速下降和平稳下降两个阶段。B2型车采用的是SBF920型单臂式受电弓。 (1)受电弓结构 图10 SBF920型单臂式受电弓结构示意图 单臂式受电弓主要特性有:重量轻,设计简单,维护少,卓越的接触性能以及安全的操作。 底架:底架由封闭的矩形空心钢管焊接而成。底架上装有以下部件:支撑下支架轴承座,上支架及下支架缓冲垫,运输挂钩,降弓后支撑弓头的支撑弹簧,升弓装置,连接杆,气动降弓机构,绝缘子,高压连接板,休息位置指示器,锁钩支撑座,气动设备。 下支架:下支架由无缝钢管焊接而成,其底板位于底架上。下支架上装有以下部件:装有升弓装置钢绳驱动的凸轮,气动降弓机构驱动的杠杆,平行导杆,减震器,上支架安装座。 上支架:上支架为无缝铝管的焊接结构,十字形钢缆连接结构使框架具有一定的横向稳定性。上支架装有以下部件:弓头,连接杆,减振器,上升限位装置,受电头支撑轴。

连接杆:连接杆由一根用碳钢圆管制成的连接管和两个分别带有左旋及右旋螺纹的轴承座和两套绝缘轴承组成。通过转动连接管,可调节和微调受电弓的几何形状。 弓头:弓头安装在一根位于上支架上的轴上,叶片弹簧用于悬承被固定在托架盒内的集电板。平行导向滑环确保碳滑板与接触网的平行工作。每个碳滑板的单个悬承可实现最大的接触特性,将磨损尽量减至最小。悬承架在水平和竖直力异常大时保护弓头的叶片弹簧,防止其毁坏。整体的平衡使得弓头能够在接触网上自由转动。 平行导杆: 当受电弓进行升弓或降弓时,平行导杆可防止弓头失稳翻转。 升弓装置:受电弓通过驱动弹簧的作用升起并对接触网施加压力。升弓机构通过驱动钢缆和安装在下支架上的凸轮动作。 液压减震器:液压减振器通过上支架、下支架之间的减振器实现振荡衰减。它保证了碳滑板和接触网之间的良好接触。减振器适合的工作温度在-40至80摄氏度之间。 气动降弓机构:受电弓降弓是依靠固定在底架和下支架的杠杆之间气动降弓机构来完成。受电弓下降通过装在气压缸里的压缩弹簧实现,通过下支架上的触发臂上的活塞和活塞杆起作用。如果气缸受到压缩空气的压力,则压缩弹簧会被活塞压缩,此时受电弓可升弓。 升弓和降弓时间通过两个节流阀进行调节。若要调整受电弓的降弓位置,可以调整下支架的触发接头上的螺丝。如果没有压缩空气可以利用,受电弓可以使用气动脚踏泵升弓。 底架和上支架间的轴承:受电弓装备有免维护,油脂润滑周期长的深沟滚珠球轴承。每套轴承都装配有两个滚珠球轴承在加工好的轴上,轴承间的间隙填满了油脂。轴承外端安装了两个金属保护盖,避免机械损伤。

接触网锚段关节设计课程设计

接触网工程课程设计报告 专业: 班级: 姓名: 学号: 指导教师:

1 设计原始题目 1.1 具体题目 电分相式锚段关节设计。 1.2 要完成的内容 对各类锚段关节进行分析比较,确定应用锚段关节实现电分相的条件,对电分相式锚段关节进行设计,在传统的器件式电分相方面的改进。 2 设计课题的计算与分析 2.1 题目分析与设计 在我国早期的电气化铁路中,多采用器件式电分相,但是随着车速的提高,器件式电分相难以消除的硬点使锚段关节式电分相的使用成为必要的发展趋势。锚段关节可分为绝缘与非绝缘两种类型,按照跨距的不同,常见的锚段关节有四跨、五跨以及可用作电分相的七跨、八跨、九跨绝缘锚段关节。在锚段关节处,两锚段的接触悬挂是并排架设的。对它的基本要求是当机车通过时,应保证受电弓能平滑地由一个锚段过渡到另一个锚段。 本次课程设计主要对常见的这些电分相进行分析和比较,并讨论锚段关节式电分相在我国的应用过程中存在的问题。 2.2 锚段关节的比较 2.2.1 四跨绝缘锚段关节 四跨绝缘锚段关节如图1,它组成由两根锚柱、两根转换柱和一根中心支柱形成四个跨距。电力机车受电弓在中心支柱处实现两锚段的转换和过渡,两锚段靠安装在转换支柱上的隔离开关实现电气连接。 四跨绝缘锚段关节除了进行机械分段外,主要用于电分段,多用于站场和区间的衔接处。这种锚段关节的特点是相邻两锚段的两组悬挂,其承力索之间、接触线之间在垂直方向和水平都彼此相距500mm,以保证其电气方面的绝缘。在中心支柱处,两接触线等高,并保证受电弓在由一个锚段过渡到另一个锚段时,过渡较平稳。

图1四跨绝缘锚段关节 2.2.2 五跨绝缘锚段关节 由于四跨绝缘锚段关节存在中心柱处接触线弹性差和接触线坡度大的缺点所以不适合高速电气化铁道要求,进而产生了五跨绝缘锚段关节。五跨绝缘锚段关节是锚段关节中含有五个跨距,主要在高速电气化铁路中应用。因为四跨锚段关节在受电弓由一个锚段过渡到另一个锚段时,是在中心柱处转换的。 在此处,虽然可以控制并实现两支接触线等高,但在定位点处,由于有两个定位器,其弹性性能明显变差,在此不仅会加大接触线的磨损,而且影响受流。五跨绝缘锚段关节受电弓接触两接触线是在两等高导线处,接触压力小,克服了四跨接触压力大和出现硬点的不足,使受电弓受流质量良好,且弹性性能好,过渡平稳,延长接触线使用寿命。五跨绝缘锚段关节如图2所示。 图2 五跨绝缘锚段关节 2.3 电分相式锚段关节 对于高速电气化铁路,其电分相已不能用常规带有绝缘滑条式的电分相装置,因为常规式电分相装置动态性能差,在实际应用中会在电分相处形成一连串的硬点,不仅会造成接触线磨耗加剧,而且严重时,会形成火花甚至拉弧,烧损接触

受电弓知识

受电弓知识 受电弓动态包络线示意图 e a--设计规定的受电弓横向摆动量 b--滑板拐点至受电弓诱导角端点的距离 c--滑板拐点至受电弓中心线的距离 d = 2a+b e = a+b+c

300km/h受电弓,设计速度300km/h,适用于相应速度等级的各种电力机车及动车组。底架采用不锈钢焊接结构,下臂采用铸铝结构,上导杆采用碳纤维材料,弓头采用高强度的钛合金材料,上臂采用重量较轻的铝型材。 300km/h受电弓的参数: 设计速度300 km/h 落弓位伸展长度约2640 mm 最大升弓高度(包括绝缘子)3000 mm 落弓位高度(包括绝缘子)588 mm 弓头长度1950 mm 额定电压25 kV 额定电流1000 A 接触压力70 –120 N(可调) 驱动类型气囊驱动机构 升弓时间≤5.4 秒(可调) 降弓时间≤4 秒(可调) 整弓质量约109kg 此主题相关图片如下:

DSA150型受电弓,设计速度160 Km/h,适用于相应速度等级的各种电力机车及动车组。具有DSA200型受电弓的所有特点,与DSA200型受电弓比较, DSA150上臂采用铝型材焊接结构。 DSA150型受电弓的参数: 设计速度 160 km/h 落弓位伸展长度约2600 mm 最大升弓高度(包括绝缘子) 3000 mm 落弓位高度(包括绝缘子) 588 mm 弓头长度 1950 mm 额定电压 25 kV 额定电流 1000 A 接触压力 70 – 120 N(可调) 驱动类型气囊驱动机构 升弓时间≤5.4 秒(可调) 降弓时间≤4 秒(可调) 整弓质量约125kg 此主题相关图片如下:

受电弓结构说明

DAS350型受电弓结构说明 如图所示,DSA-350型受电弓主要由底架、阻尼器、升弓装置、下臂、弓装配、 下导杆、上臂、上导杆、弓头、滑板及升弓气源控制阀板等机构组成。升弓装置安装在底架上,通过钢丝绳作用于下臂。上臂和弓头由较轻的铝合金材料结构设计而 成。 1-底架; 2-阻尼器; 3-升弓装置; 4-下臂; 5-弓装配; 6-下导杆; 7-上臂; 8-上导杆; 9-弓头; 10-滑板。 1. 底架:通过支持绝缘子和3个安装座将受电弓安装到车顶上。底架上有3个电源引线连接点和升弓用气路,还装有自动降弓用快速排气阀、试验阀和自动降弓用关闭阀。 2.阻尼器:装在底架和下臂之间,它使得机车运行速度变化大时受电弓和接触网压力变化不大。 3.升弓装置:升弓装置是受电弓的动力装置,由气囊式气缸和导盘组成,其导盘通过钢索连接在下臂钢索轨道上,进气时气囊胀大,推动导盘向其前方运动,导

盘和钢索轨道间拉紧的钢索带动下臂绕轴向上转动,受电弓升起。排气时气囊式气缸回缩,受电弓降弓。 4.下臂为钢管支撑受电弓重量,传递升弓力矩,其长度决定了受电弓的工作高度。其一端固定在底架上,另一端通过铰链和上臂相连。其上设有钢索导轨,通过钢索和升弓装置相连,升弓装置带动下臂绕轴转动。其内有空气管路,通过管接头和软管连接,作为自动降弓装置气的路。 5.弓装配:在受电弓落弓时起防护弓头的作用。 6.下导杆分别接在上臂一端和底架上,用于调整最大升弓高度和滑板运动轨迹。 7.上臂为铝合金框架,用于支承弓头重量,传递向上压力,保证受电弓工作高度。 8.上导杆一端接在下臂,另一端接在弓头支架的幅板下方,其作用是调整滑板在各运动高度均处于水平位置。 9.弓头:弓头安装在受电弓框架的顶端,直接与接触网接触,汇集电流。它主要由滑板座、幅滑板、4个拉伸弹簧、2个横向弹簧及其附属装置组成,如下图。两个滑板座与两个幅板相连,组成相对坚固的弓头支架。弓头支架垂悬在4个拉簧下方,两个横向弹簧安装在弓头和上臂间,滑板安装在弓头支架上。这种结构使滑板在机车运行方向上移动灵活,而且能够缓冲各方向上的冲击,达到保护滑板的目的。

城轨行车课程设计资料

城轨行车课程设计任务书 一. 资料 1、设计线路情况 (1)该线路贯穿市区,设站13个,目前为单线运营。 (2)线路示意图 A b c d e f g h i j k B a 终点站中间站 A站衔接车辆段,B站衔接停车场。 (3)站间距 ? 为本人学号尾数。 2、线路客流资料 (1)线路站间OD表

M线早高峰站间OD表 注:???部分为自己学号后三位。 (2)运营时间段及分时客流占高峰小时客流的比例 3、设计相关参数及取值 (1)车站超高峰系数

(2)站台分布不均衡系数 (3)最大断面客流满载率 线路最大客流断面所在区间的满载率在高峰小时为1.1,其它运营时间为0.9。(4)列车停站时间 列车在车站的停站时间由三部分组成: ①开门时间 开门时间是指列车进站停稳,到列车车门和屏蔽门打开的时间。 ②乘客上下车时间 乘客上下车速度参照国内城市轨道交通经验,按每上下乘客0.6s/人计算。

由于在超高峰时段旅客较多,会造成每个站台旅客的不均衡,需要在以求得的上下车时间的基础上乘以超高峰小时系数和旅客分布不均衡系数。 ③关门时间 关门时间是指从最后一名乘客走进车厢,到车门、站台屏蔽门全部关闭所需时间。 根据相关资料显示,车门的动作时间一般为4s,但考虑到二次关门的可能性,所以关门时间采用6s。 另外考虑到各门上下乘客不均匀延误时间需要3s以及关门后确认启动时间2s,开关门所需时间为15s。 停站时间取值按计算值取5s的整数倍,不足25s的,取25s。 停站时间不能大于45s。在换乘站和折返站,停站时间按不小于30s设计。(5)M线列车运行速度 上下行运行速度均取55km/h。 (6)起停车附加时分 站间距大于1.5km时起停附加时间取30s,站间距小于1.5km时取25s。 4、折返站布置 M线终点折返站均为站后折返线布置,中间站中c、f、i三站设有站前折返设备。折返站列车停留时间标准取180s。其他相关作业时间标准参考上课资料。 5、车辆相关数据 M线采用地铁B型车,相关技术指标如下:

受电弓参数(精)

受电弓参数 DSA150型受电弓,设计速度160 Km/h,适用于相应速度等级的各种电力机车及动车组。具有DSA200型受电弓的所有特点,与DSA200型受电弓比较,DSA150上臂采用铝型材焊接结构。 DSA150型受电弓的参数: 设计速度160 km/h 落弓位伸展长度约2600 mm 最大升弓高度(包括绝缘子)3000 mm 落弓位高度(包括绝缘子)588 mm 弓头长度1950 mm 额定电压25 kV 额定电流1000 A 接触压力70 – 120 N(可调) 驱动类型气囊驱动机构 升弓时间≤5.4 秒(可调) 降弓时间≤4 秒(可调) 整弓质量约125kg DSA200型受电弓,设计速度200km/h,适用于相应速度等级的各种电力机车及动车组。底架、下臂采用钢焊接结构,下导杆采用不锈钢材料,上导杆、上臂和弓头都采用重量较轻的铝合金。 DSA200型受电弓的参数: 设计速度200 km/h 落弓位伸展长度约2600 mm 最大升弓高度(包括绝缘子)3000 mm 落弓位高度(包括绝缘子)588 mm 弓头长度1950 mm 额定电压25 kV 额定电流1000 A 接触压力70 – 120 N(可调) 驱动类型气囊驱动机构 升弓时间≤5.4 秒(可调) 降弓时间≤4 秒(可调) 整弓质量约125kg DSA250型受电弓,设计速度250km/h,适用于相应速度等级的各种电力机车及动车组。与DSA200型受电弓比较,其下臂采用铝型材焊接结构型式,可以选装弓头翼片以调整动态接触压力。 DSA250型受电弓的参数: 设计速度250 km/h 落弓位伸展长度约2600 mm 最大升弓高度(包括绝缘子)3000 mm 落弓位高度(包括绝缘子)588 mm

受电弓结构原理及应用

目录 1. 概述 (2) 2. 弓网动力学 (2) 3. 工作特点 (2) 4. 受电弓结构 (3) 5. 受电弓分类 (4) 6. 受电弓的工作原理 (6) 7. 受流质量 (6) 7.1. 静态接触压力 (7) 7.1.1. 额定静态接触压力 (7) 7.1.2. 同高压力差 (7) 7.1.3. 同向压力差 (7) 7.2. 最高升弓高度 (7) 7.3. 弓头运行轨迹 (8)

1.概述 受电弓是电力牵引机车从接触网取得电能的电气设备,安装在机车或动车车顶上。 2.弓网动力学 弓网动力学研究电气化铁道机车(动力车)受电弓与接触网动态作用关系与振动问题的学科领域。电力机车是通过受电弓滑板与接触网导线间的滑动接触而获取电能的,当运动的受电弓通过相对静止的接触网时,接触网受到外力干扰,于是在受电弓和接触网两个系统间产生动态的相互作用,弓网系统产生特定形态的振动。当振动剧烈时,可以造成受电弓滑板与接触导线脱离接触,形成离线,产生电弧和火花,加速电器的绝缘损伤,对通信产生电磁干扰,更严重的是直接影响受流,甚至会造成供电瞬时中断,使列车丧失牵引力和制动力。而弓网之间接触力过大时,虽可大大降低离线率,但接触导线与受电弓滑板磨耗增大,使用寿命缩短。因此,良好的弓网关系是确保列车稳定可靠地受流的基本前提。弓网动力学的主要任务就是要研究并抑制弓网系统有害振动,确保受电弓与接触网系统相互适应、合理匹配,为不同营运条件(特别是高速运行)下的受电弓与接触网结构选型和参数设计提供理论指导。评价弓网关系和受流质量,一般采用弓网接触压力、离线率、接触导线抬升量、受电弓振幅、接触网弹性系数、接触导线波动传播速度和受电弓追随性等指标。弓网动力学的研究,通常以理论研究为主,并结合必要试验,通过建立受电弓与接触网振动模型来预测上述性能指标,从而改进或调整系统设计。弓网系统最初的动态设计只是基于一些简化的数学模型而进行的,随着列车运行速度的提高,弓网系统的模型越来越复杂,从20世纪70年代开始,计算机作为一种辅助模拟工具被用于弓网系统动力学仿真和优化设计,从而使得弓网动力学研究领域得到极大丰富和发展。 3.工作特点 (1)受电弓无振动而有规律地升起,直至最大工作高度; (2)靠滑动接触而受流。要求滑板与接触导线接触可靠,受电弓和接触网特别是接触网要磨耗小,升、降弓不产生过分冲击。

《地下工程》课程设计

《地下工程课程设计》 目录 一、目的 (2) 二、设计资料 (2) 三、隧道设计 (2) 四、管片衬砌结构设计 (7) 五、轨道设计 (12) 六、参考文献 (13)

地铁区间盾构隧道建筑限界的确定与横断面设计一.目的:通过课程设计,使学生掌握地铁区间隧道车辆轮廓线、车辆限界、设备 限界和建筑限界的计算过程与影响因素,车辆类型,支护结构类型,轨道类型,受电弓知识,直线与曲线隧道计算超高的办法及其对隧道建筑限界的影响等知识,使学生能够在任一速度和曲线半径下,选择车型和轨道设计,进行隧道衬砌选择和衬砌管片的选择,并且设计出管片的厚度和二次衬砌的厚度(若需要),绘出给定条件下的隧道建筑限界图(车辆轮廓线图、车辆限界图、设备限界图和建筑限界图),并给出具体控制点的坐标值,绘出单(复)线隧道直线和曲线条件下的衬砌内轮廓图,绘出衬砌设计图,绘出管片设计图等。 二.设计资料:取之于“广州地铁某线某区间盾构隧道设计”。 圆形盾构地铁区间隧道,底层参数为: 粉粘土,上覆地层高12.0m,容重18.0kN/m3,地面超载20.0kN/m3,侧压力系数0.5,地基抗力系数30.0MPa/m。 设计要求: 1)直线隧道,时速80km/h 2)曲线段隧道,时速70 km/h,半径750m,车型B1,减震轨枕。 三.隧道设计: 本隧道设计选择B1车型中的下部受流型车型,其车辆主要参数如下: 1.车辆长度:19000mm 2. 车辆宽度:2800mm 3. 车辆高度:3800mm 4. 车体重量: 1) 空车:24000kg(钢车) 2)重车:42600kg(钢车) ●车辆轮廓线 B1型计算车辆轮廓线坐标值(mm)如下表: 点号0 1 2 3 4 5 6 27 28

受电弓原理介绍

第三节受电弓原理介绍 受电弓主要功能是从额定电压 DC1500V接触网上获取电源,向整个列车电气系统供电,同时还通过列车的再生制动系统将列车的动能转换为电能回馈给接触网供给其它在线列车的使用,起到双向传递枢纽的作用。受电弓在刚性接触网和柔性接触网的线路上均能适用,在整个车辆速度范围内,受电弓有良好的动力学特性能,能够保证在各种轨道和速度下与接触网具有良好的接触状态和接触稳定性。它在气路上的特别设计保证了它降弓时有明显的迅速下降和平稳下降两个阶段。B2型车采用的是 SBF920型单臂式受电弓 (1)受电弓结构 图10 SBF920型单臂式受电弓结构示意图 单臂式受电弓主要特性有:重量轻,设计简单,维护少,卓越的接触性能以及安全的操作。 底架:底架由封闭的矩形空心钢管焊接而成。底架上装有以下部件:支撑下支架轴承座,上支架及下支架缓冲垫,运输挂钩,降弓后支撑弓头的支撑弹簧,升弓装置,连接杆,气动降弓机构,绝缘子,高压连接板,休息位置指示器,锁钩支撑座,气动设备。 下支架:下支架由无缝钢管焊接而成,其底板位于底架上。下支架上装有以下部件:装有升弓装置钢绳驱动的凸轮,气动降弓机构驱动的杠杆,平行导杆,

减震器,上支架安装座。 上支架:上支架为无缝铝管的焊接结构,十字形钢缆连接结构使框架具有一定的横向稳定性。上支架装有以下部件:弓头,连接杆,减振器,上升限位装置,受电头支撑轴。 连接杆:连接杆由一根用碳钢圆管制成的连接管和两个分别带有左旋及右旋螺纹的轴承座和两套绝缘轴承组成。通过转动连接管,可调节和微调受电弓的几何形状。 弓头:弓头安装在一根位于上支架上的轴上,叶片弹簧用于悬承被固定在托架盒内的集电板。平行导向滑环确保碳滑板与接触网的平行工作。每个碳滑板的单个悬承可实现最大的接触特性,将磨损尽量减至最小。悬承架在水平和竖直力异常大时保护弓头的叶片弹簧,防止其毁坏。整体的平衡使得弓头能够在接触网上自由转动。 平行导杆:当受电弓进行升弓或降弓时,平行导杆可防止弓头失稳翻转。 升弓装置:受电弓通过驱动弹簧的作用升起并对接触网施加压力。升弓机构通过驱动钢缆和安装在下支架上的凸轮动作。 液压减震器:液压减振器通过上支架、下支架之间的减振器实现振荡衰减。它保证了碳滑板和接触网之间的良好接触。减振器适合的工作温度在-40至80 摄氏度之间。 气动降弓机构:受电弓降弓是依靠固定在底架和下支架的杠杆之间气动降弓机构来完成。受电弓下降通过装在气压缸里的压缩弹簧实现,通过下支架上的触 发臂上的活塞和活塞杆起作用。如果气缸受到压缩空气的压力,则压缩弹簧会被活塞压缩,此时受电弓可升弓。 升弓和降弓时间通过两个节流阀进行调节。若要调整受电弓的降弓位置,可以调整下支架的触发接头上的螺丝。如果没有压缩空气可以利用,受电弓可以使用气动脚踏泵升弓。 底架和上支架间的轴承:受电弓装备有免维护,油脂润滑周期长的深沟滚珠球轴承。每套轴承都装配有两个滚珠球轴承在加工好的轴上,轴承间的间隙填满了油脂。轴承外端安装了两个金属保护盖,避免机械损伤。 电气设备:所有的轴承位置均通过分流导线进行旁路处理,以防止电流流经轴承。分流导线由一根柔软镀锡铜线和终端线耳组成,在接线板上涂上含铜的导电脂,使分流导线和支架之间有更好的导电性能。 气动设备:气动设备由连接到气压缸的压缩空气供应线路组成。气路中安装了两个节流阀,用于调节升弓和降弓速度。 降弓位置传感器:降弓位置传感器安装在底架的绝缘板上,当受电弓在降弓

电气化铁道接触网课程设计

课程名称:接触网课程设计 设计题目:接触网九区平面设计 院系:电气工程系 专业:铁道电气化 年级:2007 级 学号: 姓名: 指导教师:王老师 西南交通大学峨眉校区 年月日 接触网课程设计 一、原始资料 1.悬挂形式:正线全补偿简单链形悬挂,站线半补偿简单链形悬挂。 2.气象条件:学号尾数1的为第一典型气象区,学号尾数2的为第二典型气象区,学号尾数3的为第三典型气象区,学号尾数4的为第四典型气象区,学号尾数5的为第五典型气象区,学号尾数6的为第六典型气象区,学号尾数7的为第七典型气象区,学号尾数8的为第八典型气象区,学号尾数0、9的为第九典型气象区。 3.悬挂数据:学号尾数0、1的结构高度为1.1米,学号尾数2的结构高度为1.2米,学号尾数3的结构高度为1.3米,学号尾数4的结构高度为1.4米,学号尾数5的结构高度为1.5米,学号尾数6、7的结构高度为1.6米,学号尾数8、9的结构高度为1.7米。 站线:承力索GJ—70,Tcmax=1500kg;接触线TCG—100,Tjm=1000kg。 正线:承力索GJ—70,Tjm=1500kg;接触线TCG—100,Tjm=1000kg。 e=8.5m 4.土壤特性: (1)女生:安息角(承载力)Φ=30o,挖方地段。 (2)男生:安息角(承载力)Φ=30o,填方地段。 二、设计内容 1.负载计算 2.最大跨距计算 3.半补偿链形悬挂安装曲线计算 4.半补偿链形悬挂锚段长度及张力增量曲线决定 5.平面设计 (1)基本要求

(2)支柱布置 (3)拉出值及之字值标注 (4)锚段关节 (5)咽喉区放大图 (6)接触网分段 6.站场平面表格填写 侧面限界、支柱类型、地质情况、基础类型、拉杆及腕臂/定位管及定位器、安装参考图号 三、验算部分 1.各种类型支柱校验 2.缓和曲线跨距校验 四、使用图纸 按学号最后两位相加之和末位数使用站场0---站场9的图纸 五、课程设计于第七周末交,延期交以不及格论处,特殊情况申请延期除外。 第一章 接触网的负载计算 各种气象条件下悬挂负载的计算: 原始资料:1)悬挂形式:正线全补偿链型悬挂,站线半补偿链向悬挂 2)气象条件:第九典型气象区 3)悬挂数据:结构高度为1.1m 站线:承力索GJ —70,cm T =1500kg ; 接触线TCG —100,jm T =1000kg 。 正线:承力索GJ —70,jm T =1500kg ; 接触线TCG —100,jm T =1000kg 。 e=8.5m 4)土壤特性:安息角(承载力)为300,填方地段 1、气象条件:m ax t =40℃;min t =-20℃;b t =-5℃;m ax V =30m/s ;b V =15m/s ; b=20mm;3/900m kg b =γ;05V t C =-(查标准典型气象区表) 2. 线索条件:承力索GJ-70: max c T =1500Kg ; Δc T =±10%c T ;c g =0.615Kg/m ; dc=11mm ;s=72.20mm 2 接触线TCG-100:jm T =1000kg :;ΔJ T =±15%j T ;A=11.8mm ; B=12.8mm ;j g =0.89kg/m ,d g =0.05kg/m 。 风速不均匀系数 : α=0.85(查风速不均匀系数表) 风载体型系数: K=1.25(查风负载体型系数表) 计算过程: 1.垂直负载:

斯科特牵引变电所课程设计

牵引供电课程设计 目录 第1章课题设计任务要求 (1) 1.1 设计任务 (1) 1.2 设计的基本要求 (1) 1.3 设计的基本依据 (1) 第2章设计方案分析和确定 (1) 2.1方案主接线的拟定 (1) 2.2年运量和供电距离的分析 (2) 2.3变压器与配电装置的一次投资和和折旧维修 (3) 2.4供电方式的优缺点 (3) 第3章变压器台数和容量的选择 (3) 3.1牵引变压器备用方式的选择 (3) 3.2牵引变压器台数和容量的选择 (4) 第4章主接线设计 (7) 4.1电源侧主接线 (7) 4.2牵引变压器接线 (7) 4.3牵引侧主接线 (8) 4.4倒闸操作 (9) 第5章牵引变电所的短路计算 (9) 5.1短路计算的目的 (9) 5.2短路点的选取 (9) 5.3短路计算 (9) 第6章电气设备的选择 (11) 6.1室外110kV进线侧母线的选择 (11) 6.2室外27.5kV进线侧母线的选择 (12) 6.3高压断路器的选择 (12) 6.4隔离开关的选择 (13) 6.5电压互感器的选取 (14) 6.6电流互感器的选取 (14) 第7章电压水平的改善 (15) 7.1 接触网功率因数低的主要原因 (15) 7.2 串联电容补偿 (15) 第8章继电保护 (16) 8.1继电保护的任务 (16) 8.2继电保护基本要求 (16) 8.3继电保护的拟用 (16) 第9章防雷保护装置 (17) 第10章总结 (17) 参考文献 (18)

第1章 课题设计任务要求 1.1 设计任务 SCOTT 接线牵引变电所电气主接线设计,对双线路供电经过本次设计,对所学的专业知识得到相当的运用和实践,这将使自己所学的理论知识提升到一定的运用层次,为以后完成实际设计奠定扎实的基本功和基本技能,最终达到学以致用的目的。 1.2 设计的基本要求 (1)确定该牵引变电所高压侧的电气主接线的形式,并分析其正常运行方式下的运行方式。 (2)确定牵引变压器的容量、台数及接线形式。 (3)确定牵引负荷侧电气主接线的形式。 (4)对变电所进行短路计算,并进行电气设备的选择。 (5)设置合适的过电压保护装置、防雷装置以及提高接触网功率因数的装置。 (6)用CAD 画出整个牵引变电所的电气主接线图。 1.3 设计的基本依据 某牵引变电所位于大型编组站内,向两条复线电气化铁路干线的两个方向供电区段供电,已知列车正常情况的计算容量为27000 kVA ,并以10kV 电压给车站电力照明机务段等地区负荷供电,容量计算为2700 kVA ,各电压侧馈出数目及负荷情况如下: 25kV 回路(1路备):两方向年货运量与供电距离分别为 m 503011k Mt L Q ??=,m 304022k Mt L Q ??=,m 10120k Mt kW h q ?=?。10kV 共4回路(2路备)。 供电电源由系统区域变电所以双回路110kV 输送线供电。本变电所位于电气化铁路的首端,送点距离30km ,电力系统容量为3000MVA ,选取基准容量为100MVA ,在最大运行方式下,电力系统的电抗标幺值为0.23;在最小运行方式下,电力系统的标幺值为0.25.主变压器为SCOTT 接线。 第2章 设计方案分析和确定 2.1 方案主接线的拟定 按110 kV 进线和终端变电所的地位,考虑变压器数量,以及各种电压等级馈线

接触网受电弓数据及图片

接触网受电弓数据 300km/h受电弓,设计速度300km/h,适用于相应速度等级的各种电力机车及动车组。底架采用不锈钢焊接结构,下臂采用铸铝结构,上导杆采用碳纤维材料,弓头采用高强度的钛合金材料,上臂采用重量较轻的铝型材。 300km/h受电弓的参数:设计速度300 km/h ;落弓位伸展长度约2640 mm ;最大升弓高度(包括绝缘子)3000 mm 落弓位高度(包括绝缘子)588 mm ;弓头长度1950 mm 额定电压25 kV ;额定电流1000 A 接触压力70 –120 N(可调) 驱动类型气囊驱动机构升弓时间≤5.4 秒(可调);降弓时间≤4 秒(可调);整弓质量约109kg

DSA150型受电弓,设计速度160 Km/h,适用于相应速度等级的各种电力机车及动车组。具有DSA200型受电弓的所有特点,与DSA200型受电弓比较,DSA150上臂采用铝型材焊接结构。 DSA150型受电弓的参数:设计速度160 km/h ;落弓位伸展长度约2600 mm ;最大升弓高度(包括绝缘子)3000 mm 落弓位高度(包括绝缘子)588 mm 弓头长度1950 mm ;额定电压25 kV 额定电流1000 A 接触压力70 –120 N(可调) 驱动类型气囊驱动机构升弓时间≤5.4 秒(可调);降弓时间≤4 秒(可调)整弓质量约125kg DSA200型受电弓,设计速度200km/h,适用于相应速度等级的各种电力机车及动车组。底架、下臂采用钢焊接结构,下导杆采用不锈钢材料,上导杆、上臂和弓头都采用重量较轻的铝合金。

DSA200型受电弓的参数:设计速度200 km/h ;落弓位伸展长度约2600 mm ;最大升弓高度(包括绝缘子)3000 mm 落弓位高度(包括绝缘子)588 mm ;弓头长度1950 mm 额定电压25 kV ;额定电流1000 A ;接触压力70 –120 N(可调) 驱动类型气囊驱动机构升弓时间≤5.4 秒(可调);降弓时间≤4 秒(可调);整弓质量约125kg DSA250型受电弓,设计速度250km/h,适用于相应速度等级的各种电力机车及动车组。与DSA200型受电弓比较,其下臂采用铝型材焊接结构型式,可以选装弓头翼片以调整动态接触压力。 DSA250型受电弓的参数: 设计速度250 km/h ;落弓位伸展长度约2600 mm ;最大升弓高度(包括绝缘子)3000 mm 落弓位高度(包括绝缘子)588 mm ;弓头长度1950 mm 额定电压25 kV ;额定电流1000 A 接触压力70 –120 N(可调) 驱动类型气囊驱动机构;升弓时间≤5.4 秒(可调);降弓时间≤4 秒(可调)整弓质量约115kg

接触网课程设计 (2)

接触网工程课程设计报告 专业:电气工程及其自动化 班级:电气1001 姓名:周兴 学号:201009018 指导教师:张红生 兰州交通大学自动化与电气工程学院 2013年7月19日

1基本题目 1.1 具体题目 电气化铁路接触网的绝缘配合。 1.2 要完成的内容 根据所在区域环境条件选择绝缘设备型号,设计避雷设备的安装,确定绝缘配合方案及配合中的参数设计。 1.3 题目分析 接触网的绝缘配合,就是根据接触网所在的电气化铁路供电系统中所可能施加于接触网的各种电压,包括正常工作电压、操作过电压和大气过电压,并考虑保护装置的特性和接触网的绝缘特性,来确定接触网对所加电压的必要的耐受强度,以便把作用于接触网上的各种电压所引致的接触网绝缘损坏和影响接触网不间断正常供电的概率,降低到在经济上和铁路运营上所能接受的水平。良好的绝缘配合,就是要在技术上正确处理各种电压、各种限压措施(如装设避雷器)和接触网绝缘耐受能力三者之间的配合关系,并在经济上协调接触网建设投资费、运营维护费和事故损失费三者之间的关系。因此,对接触网的绝缘配合进行分析与研究是十分必要的。 2 接触网的绝缘配合 2.1 绝缘部件 2.1.1 绝缘子的作用和要求 绝缘子是接触网带电体与支柱设备或其他接地体保持电气绝缘的重要部件。其要承受着工作电压和各种过电压,并承担着接触悬挂和支持结构的重量及因气象影响产生的机械荷载,另外还受到风吹日晒,以及其他污染物,如扬尘、化工粒子的影响;其要有足够电气绝缘强度,能长期使用,具有抗污、抗腐蚀等功能。 2.1.2 绝缘子的分类 接触网用的绝缘子多为悬式绝缘子和棒式绝缘子。悬式绝缘子主要用来悬吊或支撑接触悬挂,电气化铁路供电的额定电压是25kV,选用的绝缘子形式一般是由三片组成的绝缘子串,轻污染区采用三片普通型悬式绝缘子组成,重污染区采用四片均为防污型悬式绝缘子组成的绝缘子串。悬式绝缘子串有较好的机电性能,在部分绝缘子片损坏时,尚能维持供电。棒式绝缘子是根据电气化铁路接触网的工作条件而专门设计的一种瓷质的整体式绝缘子,它受压性能较好,具有一定的抗弯强度,对于承受压力及弯矩的场合采用棒式绝缘子。 根据材料可分为瓷质绝缘子﹑玻璃钢绝缘子及硅橡胶绝缘子三种类型。瓷质绝缘子有造价低,表面光洁度高,防污能力好等优点,但也有比价笨重,不易更换的缺点;玻

接触网 锚段关节电分相

接触网工程课程设计 专业: 班级: 姓名: 学号: 指导教师: 兰州交通大学自动化与电气工程学院 201 年月日

1 基本题目 1.1题目 电分相式锚段关节设计:对各类锚段关节进行分析比较,确定应用锚段关节实现电分相的条件,对电分相式锚段关节进行设计,在传统的器件式电分相方面上的改进。 1.2 题目分析 电分相是为了满足接触网不同相供电而在两相交接处设立的分相隔离装置,电分相类型和材质的不同对机车受电弓取流的稳定性、受电弓的质量、列车最高速度和牵引变电所继电保护等都有影响。当今电气化铁路不断提速,对行车安全要求很高,因此选用好电分相才对列车行车安全、稳定非常重要。为适应高速铁路的弓网受流,2005年国内颁布的《新建时速200公里客货共线铁路设计暂行规定》中规定:时速200 km以上接触网的电分相均采用带中性段的绝缘锚段关节式电分相。电分相锚段关节在设计上都必须满足以下几个最基本要求:保证受电弓的平滑过渡;每个断口(空气绝缘间隙)必须能满足相间绝缘要求;断口间距应与机车受电弓间距满足一定的配合关系,即有2个断口电分相锚段关节(含3个断口除外)的间距≠重联或大编组动车组允许同时升起的2个受电弓间的距离,防止2个受电弓同时将2个断口短接造成相间短路;设置位置符合线路坡度及距信号机距离要求。本文分析了传统器件式电分相与应用锚段关节实现电分相的特点以及使用电分相式锚段关节改进器件式电分相的方式。 2题目论述 2.1 概述 目前我国电气化铁路电力机车和动车都采用单相供电,为平衡电力系统各相负荷,牵引供电一般实行三相电源相序轮换供电,即电气化铁道牵引变电所向接触网供电的馈线是不同相的,保证铁路牵引供电网实现相与相之间电气隔离,在不同相供电臂的接触网对接处设置了绝缘结构,称电分相。我国高速铁路电分相一般设置在牵引变电所出口处及供电臂末端、铁路局分界处,主要由接触网部分、车载装置、地面信号装置等组成。 我国早期电气化铁路采用结构复杂的接触网八跨、六跨、五跨等双绝缘锚段关节组成的电分相(简称关节式电分相)。在20世纪80~90年代电气化工程改造中普遍采用绝缘材料制作的结构简单的器件式电分相。随着铁路不断提速,为了尽量减少接触网上硬点,保护机车受电弓和接触线,减少弓网事故率,满足列车受流要求,到20世纪末

受电弓技术规格书

QG-120(F)型受电弓 技术规格书 1 概述 本文件仅限于CRC生产的上海六、八号线地铁车辆项目所采购的受电弓。 2 总则说明 QG-120(F)型单臂受电弓是铁路电力机车车辆从架空接触网集取电流的装置。我们提供的QG-120(F)型受电弓结构简单,重量轻,易于维修,该型受电弓在整个车辆速度范围内具有良好的空气动力学性能,包括在最大规定逆风时的空气动力学性能,从而保证了受电弓能在各种轨道状态下与架空接触导线都具有良好的接触状态和接触的稳定性。QG-120(F)型受电弓适用于时速在120Km/h以下的各型号电力动车组的使用。QG-120(F)型受电弓配装有(ADD)自动降弓系统,在受电弓滑板磨耗到线或弓头遇到外力损坏时,受电弓能以大于1m/s的速度做快速降弓运动,有效的保护了受电弓和网线的安全; 3、 QG-120(F)型受电弓的技术参数及特性 3.1 QG-120(F)型受电弓的技术参数 3.1.1集电容量 额定电压 DC 1500V 网线电压变化范围 DC 1000V~1800V 额定电流1614A 最大工作电流(14S) 3545A

最大停车电流 460A 短时间电流 3770A 3.1.2适用车辆速度≤120Km/h 3.1.3 受电弓位置 最低工作位置 80mm 最大工作位置(包括绝缘子) 2400mm 最大升弓高度(不包括绝缘子) 2800mm±100mm 折叠高度(包括绝缘子)300+5mm 3.1.4 受电弓静态接触压力 额定静态压力(静压力平均值) 120 N±10N 静态压力调整范围 100N-140N 3.1.5 受电弓张开、闭合时间 升弓时间(弓头离开止挡到最大工作高度) 8s±1s 降弓时间(最大工作高度到弓头落到止挡位置)7s±1s 3.1.6 受电弓尺寸 受电弓总长度≈2400mm 受电弓总宽度 1700mm±10mm 碳滑条工作部分长度 1050mm×60×22 弓头宽度 350mm±5mm 碳滑条数量 2根 底脚安装(在详细设计时与用户讨论) 1000mm×900mm 3.1.7受电弓工作气压 额定工作气压 0.45Mpa

受电弓

受电弓 受电弓包括主架、臂、弓头和传动装置。受电弓和接触网相互作用的基本要求是:由于受电弓在运行中相对于接触网做横向运动,而受电弓弓头必须总是超出接触线最不利的位置,只有当运行中接触线不离开受电弓弓头的工作范围时才能使系统顺利运行。在正常运行时,接触线在滑板上的滑行是最重要的。受电弓有上、下两个工作位置,这两个位置之间的范围便是工作范围。 经验和理论研究均已证明,不可能为了优化与特定接触网的相互作用而单纯设计受电弓,况且标准的接触网设计没有均衡的动态特性,因为跨距、质量和张力均会随着线路实际情况和运行条件而发生变化。然而,受电弓必须具有一定的基本特性,并适合于规定的应用范围。完善的受电弓设计应能保证其在各种不同的接触网系统中均能实现良好的运行性能。为了实现令人满意的受流质量,受电弓作用的静态接触压力及平均空气动力接触压力应该遵循相关标准的要求。标称静态接触压力应在以下范围内:对于交流供电系统,为60~90 N;对于直流1.5 kV供电系统,为70~110 N。在直流系统中,需要改进碳滑板与接触线的接触,为避免列车停车时其附属设备运转引起接触线变热的危险,静态接触压力通常为140 N。 考虑到空气动力的作用,在交流系统中,受电弓的接触压力应为40~120 N;在直流系统中,受电弓的接触压力应为50~150 N。在列车多弓同时运行的情况下,任何受电弓的平均接触压力不应大于规定值,因为每个单独的受电弓均应满足受流标准的要求。平均接触压力是力的平均值,因为有静态力和空气动力的作用,它相当于静态力和一定速度条件下气流作用于受电弓元件上引起的空气动态力。平均接触压力是受电弓弓头与接触网接触的情况下测得的压力,此时后弓不与接触网接触。为了遵守这些规定,在交流系统中,受电弓的接触压力应为40~120 N;在直流系统中,受电弓的接触压力应为50~120 N。 以京沪高速铁路为例,由于其高速、中速列车均采用交直交动车组,列

相关主题
文本预览
相关文档 最新文档