当前位置:文档之家› 某电厂脱硫除雾器堵塞严重原因探析

某电厂脱硫除雾器堵塞严重原因探析

某电厂脱硫除雾器堵塞严重原因探析
某电厂脱硫除雾器堵塞严重原因探析

某电厂脱硫塔除雾器结垢与堵塞的原因分析及解决方案

环保技术人员廉珂

故障现象:某电厂某机组脱硫系统三级屋脊式除雾器运行压差高于700Pa,阻力过大,一般而言两级屋脊式除雾器设计阻力不超过200Pa,三级屋脊式除雾器设计阻力不超过300Pa。经检查发现,除雾器结垢现象非常严重,并且垢样比较坚硬、光滑。除雾器一边结垢堵塞现象比较严重,另一边比较轻微,推测脱硫塔烟气流场分布非常不均匀。起初怀疑是浆液品质的问题。对于该故障的解决,我们的思路是:首先分析结垢和堵塞的原因,然后有针对性地从工艺设计、设备改造、操作控制等方面着手解决故障。

故障危害:脱硫塔除雾器的结垢与堵塞是脱硫塔常见的故障之一。①除雾器的结垢,严重的会造成堵塞,使得烟气流通面积减少,烟气流速增加,降低除雾器去除雾滴的效率,进而带来一系列的问题,比如烟囱石膏雨等;②除雾器的结垢和堵塞,会使得除雾器的阻力大大增加,增加增压风机(或引风机)的出力,增加电耗,更严重的会引起风机的失速现象,影响机组的安全性和可靠性。

分析故障原因的方法:

⒈首先在机组停机时,对脱硫系统进行严格的静态检查:打开浆液池及除雾器处的人孔门,用目测和拍照的方式对喷淋层、吸收塔喷嘴、除雾器、喷淋层区域衬胶以及除雾器冲洗水进行静态检查。检查除雾器时主要关注以下几个方面:除雾器的变形情况(可能会由于结垢或堵塞的原因引起,也可能与安装质量和高温烟气进入吸收塔引起的除雾器局部受热不均匀有关);检查除雾器的堵塞及结垢情况;检查除雾器的冲洗喷嘴及冲洗效果(需要开启冲洗水)。

⒉其次还需要进行以下工作:①对垢样的成分进行化学分析;②煤质、石灰石、浆液品质的分析;③浆液PH值、浆液密度的分析;④分析氧化风量控制是否合适等。

故障解决方法:①控制煤质(尤其是煤质的灰含量);②加强除尘器的除尘效率;③控制石灰石的品质(主要是控制杂质的含量:MgCO3、SiO2、Al2O3、Fe2O3等);④解决除雾器冲洗水系统存在的一些问题:喷嘴堵塞;喷嘴冲洗角度小;冲洗水压力不足;冲洗水流量不够;冲洗频率不合理(脱硫塔除雾器冲洗系统是非常重要的);⑤解决氧化风量不足或氧化效果较差的状况(亚硫酸钙黏度比较大,较难冲洗);⑥PH值控制在合适范围内(5.5-5.8之间);⑦改善浆液品质;⑧检查是否有设计、安装和施工的缺陷,进行整改。

最后经过详细检查和分析,发现该机组脱硫塔除雾器经常发生堵塞的主要原因是设计、安装和施工的缺陷:最底层除雾器与最上层喷淋层之间间距过小,仅有0.8米左右,吸收塔出口烟道与最顶层除雾器间距也过小。最底层除雾器与最上层喷淋层之间间距过小,会使得雾滴的沉降距离不够,使得大量雾滴直接进入脱硫塔除雾器。吸收塔出口烟道与最顶层除雾器间距过小会影响除雾器内烟气流速分布,一般立式除雾器中的烟气流速不能超过5m/s,流速过高,雾滴携带会比较严重,目前脱硫系统烟气流速设计值有越来越大的趋势,很多都在3.5m/s以上,如果除雾器部分发生堵塞,会使得整个除雾器截面烟气流通面积减少,烟气流速增加,使得雾滴携带严重,雾滴携带严重又容易造成除雾器结垢和堵塞,产生恶性循环,久而久之使得除雾器堵塞严重。

“中国华电集团火电厂烟气脱硫(石灰石-石膏湿法)设计导则(A版2007年10月)”中规定:最上层喷淋层与一级除雾器距离不低于1.5m,最上部除雾器顶部距离烟气出口烟道下沿距离不低于1.5m。针对此原因,设计了以下改造方案:加高脱硫塔,增大最底层除雾器与最高层喷淋层之间的间距至3m,同时增大最顶层除雾器与吸收塔出口烟道之间的距离。

新型脱硫塔高效除雾器的应用

新型脱硫塔高效除雾器的应用 北极星节能环保网来源:德创环保2016/4/1 12:03:01 我要投稿 所属频道: 大气治理关键词:脱硫湿法脱硫除雾器北极星节能环保网讯:1. 前言 国内的烟气脱硫目前大都采用的是湿法工艺,其核心装置就是吸收塔,由于吸收塔内的反应大部分都采用喷淋管喷射洗涤,处理过的烟气中含有大量的浆液滴,因此烟气在经过洗涤后要通过除雾器,目的是将烟气中夹带的浆液滴通过撞击除雾器叶片分离出来,顺着除雾器叶片通道流向塔内,以免随烟气排除塔外污染环境。 除雾器是湿法脱硫中必不可少的设备。目前广泛使用的除雾器(包括屋脊式、平板式和烟道式),但是从现运行的脱硫系统中,可以发现除雾器主要存在以下2点问题。 (1)除雾效率不高,致使烟囱下“石膏雨” 石膏雨产生的原因是除雾器出口烟气携带的液滴超标,现大多数脱硫系统都不设GGH 的脱硫系统,由于排烟温度较低,烟气扩散条件不利,烟气携带的液滴会在烟囱出口形成“石膏雨”(即脱硫塔浆液池内的大量石膏浆液随上升烟气从烟囱口飘出,严重影响周围环境)。 目前两级平板或屋脊除雾器只能保证出口雾滴浓度不大于75mg/Nm3已经远远不能满 足主流环保公司和电厂出口雾滴浓度不大于20mg/Nm3的目标,改进势在必行。 (2)除雾器板片结垢堵塞,冲冼失常,造成除雾器坍塌 当除雾器冲洗系统受吸收塔液位影响不能按正常程序运行时,除雾器板片上结垢往往得不到及时冲洗,恶性循环愈演愈烈,塔内布置的除雾器板片上的亚硫酸钙与硫酸钙堆积物越来越多,最终使得除雾器不堪重负而坍塌。 我公司最新研发的高效除雾器叶片在福建华电可门2号烟气脱硫EPC项目上的应用,显示出在脱水除雾方面的高效性。该技术为脱硫塔的脱水除雾带来了新的技术理论和应用思路,有利于跟上日益严苛的环保要求。 2 . 脱硫项目概况

脱硫塔除雾器结垢与堵塞的原因分析及解决方案

脱硫塔除雾器结垢与堵塞的原因分析及解决方案 一、故障现象 除雾器运行压差高于700Pa,阻力过大。 一般而言两级屋脊式除雾器设计阻力不超过200Pa,三级屋脊式除雾器设计阻力不超过300Pa。 经检查发现,除雾器结垢现象非常严重,并且垢样比较坚硬、光滑。除雾器一边结垢堵塞现象比较严重,另一边比较轻微,推测脱硫塔烟气流场分布非常不均匀。起初怀疑是浆液品质的问题。对于该故障的解决,我们的思路是:首先分析结垢和堵塞的原因,然后有针对性地从工艺设计、设备改造、操作控制等方面着手解决故障。 二、故障危害: 脱硫塔除雾器的结垢与堵塞是脱硫塔常见的故障之一。①除雾器的结垢,严重的会造成堵塞,使得烟气流通面积减少,烟气流速增加,降低除雾器去除雾滴的效率,进而带来一系列的问题,比如烟囱石膏雨等;②除雾器的结垢和堵塞,会使得除雾器的阻力大大增加,增加增压风机(或引风机)的出力,增加电耗,更严重的会引起风机的失速现象,影响机组的安全性和可靠性。 三、分析故障原因的方法: ⒈首先在机组停机时,对脱硫系统进行严格的静态检查:打开浆液池及除雾器处的人孔门,用目测和拍照的方式对喷淋层、吸收塔喷嘴、除雾器、喷淋层区域衬胶以及除雾器冲洗水进行静态检查。

检查除雾器时主要关注以下几个方面:除雾器的变形情况(可能会由于结垢或堵塞的原因引起,也可能与安装质量和高温烟气进入吸收塔引起的除雾器局部受热不均匀有关);检查除雾器的堵塞及结垢情况;检查除雾器的冲洗喷嘴及冲洗效果(需要开启冲洗水)。 ⒉其次还需要进行以下工作:①对垢样的成分进行化学分析; ②煤质、石灰石、浆液品质的分析;③浆液PH值、浆液密度的分析;④分析氧化风量控制是否合适等。 四、故障解决方法: ①控制煤质(尤其是煤质的灰含量); ②加强除尘器的除尘效率; ③控制石灰石的品质(主要是控制杂质的含量:MgCO3、iO2、Al2O3、Fe2O3等); ④解决除雾器冲洗水系统存在的一些问题:喷嘴堵塞;喷嘴冲洗角度小;冲洗水压力不足;冲洗水流量不够;冲洗频率不合理(脱硫塔除雾器冲洗系统是非常重要的); ⑤解决氧化风量不足或氧化效果较差的状况(亚硫酸钙黏度比较大,较难冲洗); ⑥PH值控制在合适范围内(5.5-5.8 之间); ⑦改善浆液品质; ⑧检查是否有设计、安装和施工的缺陷,进行整改。 五、结果:

烟气脱硫系统概述

烟气脱硫系统概述 烟气脱硫(Flue gas desulfurization,简称FGD )是世界上唯一大规模商业化应用的脱硫方法,是控制酸雨和二氧化硫污染最为有效和主要的技术手段。 石灰石/石膏湿法FGD 工艺技术是目前最为先进、成熟、可靠的烟气脱硫技术,更由于其具有吸收剂资源丰富,成本低廉等优点,成为世界上应用最多的一种烟气脱硫工艺,也是我国行业内推荐使用的烟气脱硫技术。 我公司烟气脱硫系统采用石灰石—石膏就地强制氧化脱硫工艺。吸收塔采用单回路四层喷淋、二级除雾装置,脱硫剂为(CaCO 3)。在吸收塔内,烟气中的SO 2与石灰石浆液反应后生成亚硫酸钙,并就地强制氧化为石膏(CaSO 4·2H 2O ),石膏经二级脱水处理后外售或抛弃。其主要化学反应如下: CaCO 3+ SO 2+ H 2O CaSO 3·H 2O+CO 2 CaSO 3·H 2O+21O 2+2H 2O CaSO 4·H 2O+H 2O FGD 工艺系统主要有如下设备系统组成:烟气系统;吸收塔系统;石灰石浆液制备系统;石膏脱水系统;工艺水系统;氧化空气系统;压缩空气系统;事故浆液系统等。 工艺流程描述为: 由锅炉引风机来的热烟气进入喷淋吸收塔进行脱硫。在吸收塔内,烟气与石灰石/石膏浆液逆流接触,被冷却到绝热饱和温度,烟气中的SO2和SO3与浆液中的石灰石反应,

生成亚硫酸钙和硫酸钙,烟气中的HCL、HF也与烟气中的石灰石反应被吸收。脱硫后的烟气温度约50℃,经吸收塔顶部除雾器除去夹带的雾滴后进入烟囱。氧化风机将空气鼓入吸收塔浆池,将亚硫酸钙氧化成硫酸钙,过饱和的硫酸钙溶液结晶生成石膏,产生的石膏浆液通过石膏浆液排出泵连续抽出,通过石膏旋流器、真空皮带脱水机二级脱水后贮存在石膏间或者进行抛弃处理。

脱硫塔

第一章运行管理 一、工艺流程及流程简介 1.1工艺流程 1.1 工艺流程图 1.2工艺流程简介 锅炉烟气经引风机、多管除尘器、后,首先进入脱硫除尘塔内与经喷嘴雾化后的脱硫液进行脱硫反应;烟气在塔内通过三层喷淋装置进行三级脱硫除尘反应,SO2总脱除率可达99%以上,除尘效率达到99%以上;脱硫塔内 NaOH吸收SO2发生中和反应生成NaHSO3与Na2SO3,然后流入下游水池进行循环使用,完成对烟气中SO2的吸收净化。 经一级除尘脱硫后的干净烟气通过塔上部的弯头、管道进入二级脱硫除尘塔经过收水器进一步净化脱水,,除去烟气中夹带的水,经过脱硫除雾后的烟气进入烟囱排放。随着脱硫反应的进行,循环池内pH值不断下降,当循环池内pH值降低到10以下时,要及时向循环池补充钠碱以防pH值过低影响脱硫效果。 二、人员配备 1、脱硫控制室配室操作人员3人,负责脱硫工程的日常工作。 2、脱硫工程配机修人员1人,负责站区日常的设备维修工作。 三、各主要处理单元运行控制参数 1、循环池中有关参数的控制 循环池中pH应控制在10以上,低于10时脱硫效果不理想。 2、脱硫塔内有关参数的控制 脱硫塔出口pH应控制在7.0以上。 第二章操作规程 一、循环泵房及泵房内循环水泵、冲洗水泵、排液泵 1、循环泵作用 向脱硫塔供脱硫液。 1.1、开泵前准备 (1)检查循环池内水位,确保循环池内水位不低于池深的2/3。

(2)检查管路系统是否有跑、冒、滴、漏现象存在,如有要及时处理。 (3)检查水泵及系统零部件是否齐全完好。如:所有紧固件是否紧固;连轴器间隙是否合适;水泵注油孔是否已按规定注油;仪表、阀门是否完好等。 (4)进行手动盘车旋转两周看是否正常,应不卡不重,无异常声音。否则应查明原因进行处理。 (5)检查循环泵有无冷却水,是否打开。 (6)检查机械部分时,不得将水泵电路开关合闸使电机处于带电状态,且在配电柜上挂有“有人操作,不许合闸”标牌。 1.2.操作顺序 (1)开启循环泵 打开泵进口管路的碟阀,开启循环泵。当压力表显示压力达到额定压力 0.3-0.4MPa后即为所需工况。 (2)关闭循环泵 循环泵停止工作后,慢慢关闭进水管路上的碟阀 1.3.泵在运行中,应注意以下事项: (1)开启水泵后,如压力表指针不动或剧烈摆动,有可能是泵内积有空气,停泵后排净泵内空气再启动。 (2)检查各个仪表工作是否正常、稳定,特别注意电流表是否超过电动机额定电流,电流过大、过小应立即停机检查。 (3)注意轴承温度,轴承最大温度不得大于95度。 (4)按动停泵按钮后,严禁马上再按启泵按钮,否则会发生水击造成设备管路损坏等重大事故。因此,特别规定,停泵10分钟后才允许按启动按钮,待无异常情况后方允许离开开关柜。 (5)泵电动机在不允许连续起动,启动间隔时间至少为10分钟。 2冲洗水泵的作用 向脱硫塔除雾器提供冲洗水,冲洗除雾器,防止除雾器积灰致使除雾器压降过大。建议每小时冲洗时间不低于10分钟。 2.1、开泵前准备

除雾器设计

1 除雾器 1)除雾器功能简介[孙琦明湿法脱硫工艺吸收塔及塔内件的设计选型中国环保产业 2007.4 研究进展18-22] 除雾器用来分离烟气所携带的液滴。在吸收塔内,由上下二级除雾器(水平式或菱形)及冲洗水系统(包括管道、阀门和喷嘴等)组成。经过净化处理后的烟气,在流经两级卧式除雾器后,其所携带的浆液微滴被除去。从烟气中分离出来的小液滴慢慢凝聚成较大的液滴,然后沿除雾器叶片往下滑落至浆液池。在一级除雾器的上、下部及二级除雾器的下部,各有一组带喷嘴的集箱。集箱内的除雾器清洗水经喷嘴依次冲洗除雾器中沉积的固体颗粒。经洗涤和净化后的烟气流出吸收塔,最终通过烟气换热器和净烟道排入烟囱。 2)除雾器本体 除雾器本体由除雾器叶片、卡具、夹具、支架等按一定的结构形成组装而成。其作用是捕集烟气吕中的液滴及少量的粉尘,减少烟气带水,防止风机振动。除雾器叶片是组成除雾器的最基本、最重要的元件,其性能的优劣对整个除雾系统的运行有着至关重要的影响。除雾器叶片通常由高分子材料(如聚丙稀、FRP等)或不锈钢(如317L)2大类材料制作而成。除雾器叶片种类繁多。按几何形状可分为折线型(a、d)和流线型(b、c),按结构特征可分为2通道叶片和3通道叶片。 除雾器布置形式通常有:水平型、人字型、V字型、组合型等大型脱硫吸收塔中多采用人字型布置,V字型布置或组合型布置(如菱形、X型)。吸收塔出口水平段上采用水平型

除雾器从工作原理上可分为折流板和旋流板两种形式。在大湿法中折流板除雾器应用的较多。折流板除雾器中两板之间的距离为30~50mm,烟气中的液滴在折流板中曲折流动与壁面不断碰撞凝聚成大颗粒液滴后在重力作用下沿除雾器叶片往下滑落,直到浆液池,从而除去烟气所携带的液滴。折流板除雾器从结构形式上,又可分为平板式和屋顶式两种。屋脊式除雾器设计流速大,经波纹板碰撞下来的雾滴可集中流下,减轻产生烟气夹带雾滴现象,除雾面积也比水平式大,因 此除雾效率高,出口排放的液滴浓度≤50 3 mg。一般常规设计要求除雾器出 /m 口排放的液滴浓度≤753 mg。本工程吸收塔选择除雾效果相对好的屋脊式除 /m 雾器。 3).除雾器冲洗系统 除雾器冲洗系统主要由冲洗喷嘴、冲洗泵、管路、阀门、压力仪表及电气控制部分组成。作用是定期清除除雾器叶片捕集的液滴、粉尘,保持叶片表面清洁,防止叶片结垢和堵塞。除雾器堵塞后,会增加烟气阻力,结垢严重时会导致除雾器变形、坍塌和折断。对于正常的二级除雾器,第2级除雾器后端面仅在必要时才进行冲洗,避免烟气携带太多液滴。旁路取消后,为避免浆液在第2级除雾器上部沉积引起堵塞,要求厂家在除雾器设计时,增加了二级除雾器后端面手动冲洗系统,防止除雾器堵塞时无法进行清除。除雾器冲洗水阀门是动作十分频繁的阀门,应选择质量可靠的产品。除雾器冲洗水喷头距除雾器间距。按0.5 m~0.6m 计,两层除雾器之间还设有上下冲水的两层水管,其间隔应考虑到便于安装维修。加上两层波形除雾器高度,最底部上冲水管至最上部下冲水管总高差约3.4 m~3.5 m。以上尺寸适于平铺波纹板式除雾器。如用菱形除雾器,其空问高度将可降l m左右。 4)除雾器的主要性能及设计参数 ①烟气流速:烟气流速是以空床气速u表示,也有用空床气体动能因子F,它是一个重要技术参数,其取值大小会直接影响到设备的除雾效率和压降损失,也是设备设计或核算生产能力的重要依据。通过除雾器断面的烟气流速过高或过低都不利于除雾器的正常运行,流速的增加将造成系统阻力增加,使得能耗增加。同时流速的增加有一定的限度,流速过高会造成二次带水,从而降低除雾效率。常将通过除雾器断面的最高且又不致二次带水时的烟气流速定义为临界气流速度,该速度与除雾器结构、系统带水负荷、气流方向、除雾器布置方式

基于PLC的火电厂烟气脱硫控制系统研究与设计

基于PLC的火电厂烟气脱硫控制系统研究与设计 0 引言我国是燃煤大国,煤炭占一次能源消费总量的75%。随着煤炭消费的不断增长,燃煤排放的二氧化硫也不断增加,致使我国酸雨和二氧化硫污 染日趋严重。为了实现SO2 的减排目标,国家制定了一系列的环保措施。目前国内烟气脱硫工艺设备的设计、制造、安装和调试水平已有了大幅度的提高, 已建成、投运了一大批大型机组火电机组烟气脱硫系统。但据了解,目前投运 的火力发电厂都还存在着不少这样或那样的技术问题,其中热工自动化投入水 平不高是其中的一个重要技术问题,如测量不准,系统自动投不上,系统调节 品质差等,致使一些电厂的脱硫系统出现运行故障多、不能与发电机组完全同 步运行或运行中脱硫效率达不到设计值或系统运行成本高等问题。对于整个烟 气脱硫系统,作为监视、控制脱硫系统运行的控制系统是重要的组成部分,它 既要保证脱硫系统的正常工作和异常工况的系统安全,又要与单元机组控制系 统相协调,保证锅炉的安全运行。控制系统采用DCS 虽然自动化程度大为提高,但由于脱硫工艺系统总的监控点数(一般为600~1 000 点)远低于能满足单元机组控制的DCS 系统的经济规模(一般为5 000~10 000 点),造成控制系统造价偏高,经济性下降。目前,国内许多电厂在烟气脱硫控制上己开始尝试采 用可编程控制器PLC 作为控制主机,将脱硫控制纳入全厂辅助系统网络集中监控,既保证可靠性,又能大幅度降低系统造价。本文研究采用可编程控制器PLC 作为控制主机,进行脱硫控制系统的硬件设计,给出了具体的设计方案及各功能模块的详细设计。现场实际运行结果证明了设计方法的有效性。 1 烟气脱硫工艺流程石灰石/石膏湿法烟气脱硫的基本工艺流程为:锅炉烟气经过除尘器除尘后,由引风机送入脱硫系统,烟气由进口烟道进入由增压 风机增压后,经气气换热器(GGH)降温,进入吸收塔。在吸收塔内,烟气由下

脱硫除雾器堵塞故障分析

3第10卷(2008年第7期)电力安全技术 某电力公司采用目前世界上最有效成熟的强制氧化石灰石膏湿法脱硫,脱除电厂排放的烟气中90%以上的SO 2,但由于该套设备为进口设备,很多运行参数的设定及运行操作方法不规范,导致在运行中出现较多问题。1概述 除雾器安装在吸收塔喷雾级的上方,将烟气所携带的大部分浆液滴分离。装置包括1个下方粗分离器和1个上方细分离器。这2个分离器的挡板是互相平行的波纹板,将烟气分成若干支流,由于阻碍、惯性的作用,使液滴撞击挡板形成液膜并且在重力的作用下向下流。因为是分离浆液滴,所以必需按照一定的冲洗程序经常冲洗,避免浆液滴凝固,堵塞除雾器。冲洗程序是根据吸收塔中的水位作为除雾器冲洗时间的运算函数,冲洗频率根据较长的时间间隔函数确定。但是,为了防止由浆滴引起的除雾器堵塞,设定了一个最长时间间隔,该间隔精确对应于最小冲洗时间。也就是说,如果该水位低于要求值,水位越低冲洗时间间隔越短。滞留在除雾器的液滴可能含有固体物(主要是石膏),在挡板上可能形成饼状物,所以在粗分离器每侧以及细分离器流入侧安装了定期清洗设备。但是,在冲洗过程中只有可溶饼状物才真正被冲洗掉,其他的固体物有可能堵塞除雾器。除雾器的冲洗介质是新鲜的工艺水,采用工艺水进行除雾器清洗有2个目的:防止除雾器堵塞,维持吸收塔所需液位,冲洗完除雾器后还可以用来补充吸收塔中的液体损耗。2故障情况 脱硫工程投运1年,整体运行情况良好,但由于冲洗系统的不正常运行导致除雾器严重堵塞。从吸收塔人孔观察,第1层除雾器底部几乎完全堵塞,顶部部分堵塞,第2层除雾器底部也部分堵塞。从相关设备检查情况来看,所有除雾器冲洗水阀阀门都能够打开,但是某些阀门打开的时间超出设定的开启时间,阀门在一段时间内没有开启之后通常会 林建峰 (广东粤华发电有限责任公司,广东广州 510731) 脱硫除雾器堵塞故障分析 出现超时开。原烟气烟道接入吸收塔处发现石灰石浆液结块。除雾器差压指示不正常,在FGD运行 期间数据显示不能反映除雾器真正的差压数值。3 故障分析 通过对DCS 系统历史记录的数据分析,造成除雾器堵塞的主要原因是除雾器冲洗不规律及冲洗水流量不足,而冲洗不规律的主要原因是冲洗水阀和冲洗水阀的传动装置故障引起。冲洗水流量可通过工艺水调整阀进行运行工况调整来完成。(1)不同冲洗水压力下,冲洗水门的冲洗水流量对比(冲洗水阀分为A ,B ,C 3层,每层6个冲洗水门)如图1所示。从冲洗水流量数据中可知,测得的流量低于设计流量,故冲洗效果不能达到设计要求。 图1冲洗水门水流量对比 (2)除雾器冲洗不规律,整个除雾器的程控(该程控控制着冲洗的停顿时间)并没有实现。有相当长的一段时间除雾器没有进行冲洗,冲洗时间如图2所示。 图2除雾器冲洗时间(3)除雾器前后差压是直接反映除雾器是否堵塞的重要参数,但在FGD 运行期间,从历史记录显示查出,除雾器差压信号连续5天都是同样的数 S h i g u f en x i 事故分析1

烟气脱硫DCS系统方案

XXXX项目——烟气脱硫DCS系统方案及报价 XXXX有限公司

目录 系统简介 (3) DCS系统硬件介绍 (4) DCS软件介绍 (8) DCS系统技术规格 (10) 本控制系统统构成 (22) 本控制系统规模及功能 (13) 系统配置清单及供货范围 (19) 检测及质量保证 (20) 技术服务和培训 (22) 其它 (23) 系统报价 (25) 内容截止于第25页

一、系统概述 (一)、系统简介: ●德国Wago DCS系统是基于多种总线的控制系统,其代表产品就是基于以太网的控 制系统。 ●其设计特点是融入了DCS系统和FCS系统的优势。 ?WaGo控制系统典型结构图 显示器 PROFIBUS DeviceNet CANopen ?WagoDCS控制系统的特点 ●最佳的模块化结构 1-,2-,和4-,8-通道功能被容纳在一个I/O模块里。 ●现场总线节点可以独立于现场总线而设计 ●DCS现场总线适配器支持所有重要的现场总线 ●一个DCS控制器可以包括带有不同电位,电源和信号的数字量/模拟量的输入输出 模块。 ●电源模块带有熔断器或者不带熔断器。如果需要错误信息可以通过总线传输。 ●快捷方便的接线方式,具有高可靠性。 (二)、总线型分散控制系统的硬件特点:

1.Wago 分散控制系统的可组合节点硬件: 1-1 750-841ETHERNET 控制器: 该控制器支持所有I/O 模块自动配置、生产成包括数字量模块、模拟量模块及特殊功能 模块的本地过程映像,模拟量模块和特殊功能模块以字或者字节的形式传输数据,而数字量模块以位的形式传输数据。 - 开关量输入模块 - 开关量输出模块 - 模拟量输入模块 - 模拟量输出模块 - 特殊功能模块

脱硫塔的设计

目录 1 处理烟气量计算 (3) 2 烟气道设计 (3) 3吸收塔塔径设计 (3) 4 吸收塔塔高设计 (3) 5 浆液浓度的确定 (5) 6 喷淋区的设计 (5) 7 除雾器的设计 (7) 8 氧化风机与氧化空气喷管 (9) 9 塔内浆液搅拌设备 (9) 10 排污口及防溢流管 (9) 11 附属物设计 (10) 12 防腐 (10)

脱硫塔的结构设计,包括储浆段、烟气入口、喷淋层、烟气出口、喷淋层间距、喷淋层与除雾器和脱硫塔入口的距离、喷喷嘴特性(角度、流量、粒径分布等)、喷嘴数量和喷嘴方位的设计 烟道设计 塔体设计: 脱硫塔上主要的人孔、安装孔管道孔:除雾器安装孔,每级至少一个;喷淋浆液管道安装孔,至少一个;脱硫塔底部清渣孔,至少一个;烟气入口烟道设置一人孔,以便大修时清理烟道可能的积垢。 脱硫塔上主要的管孔:循环泵浆液管道入口,一般为3个;液位计接口,一般为2~3个,石膏浆液排出口1~2个;排污口1个;溢流口1个;滤液返回口1个;事故罐浆液返回口1个;地坑浆液返回1个;搅拌机接口2~6个;差压计接口2~4个。 储液区:一般塔底液面高度h1=6m~15m; 喷淋区:最低喷淋层距入口顶端高度h2=1.2~4m;最高喷淋层距入口顶端高度h3≥vt,v为空塔速度,m/s,t为时间,s,一般取t≥1.0s;喷淋层之间的间距h4≥1.5~2.5m; 除雾区:除雾器离最近(最高层)喷淋层距离应≥1.2m,当最高层喷淋层采用双向喷嘴时,该距离应≥3m;除雾器离塔出口烟道下沿距离应≥1m; 喷淋泵 喷淋头 曝气泵

1 处理烟气量计算 得到锅炉烟气量,根据实际的气体温度转化成当时的处理烟气量。根据燃料的属性计算出烟气中SO2的含量,并根据国家相关环保标准以及甲方的要求确定烟气排放SO2的含量,并计算脱硫效率 2 烟气道设计 进气烟道中的气速一般为13m/s,排气烟道中的气速一般为11m/s,由此算出截面积,烟道截面一般为矩形,自行选取长宽。 3吸收塔塔径设计 直径由工艺处理烟气量及其流速而定。根据国内外多年的运行经验,石灰法烟气脱硫的典型操作条件下,吸收塔内烟气的流速应控制在u<4.0m/s为宜。(一般配30万kW机组直径为Φ13m~Φ14m,5万kW机组直径约为Φ6m~Φ7m)。 喷淋塔塔径D: 则喷淋塔截面面积 将D代入反算出实际气流速度u`: 4 吸收塔塔高设计 4.1 浆液高(h1) 由工艺专业根据液气比需要的浆液循环量及吸收SO2后的浆液在池内逐步氧化反应成石膏浆液所需停留时间而定,一个是停留时间大于4.5min 4.2 烟气进口底部至浆液面距离(c) 一般定为800mm~1200mm范围为宜。考虑浆液鼓入氧化空气和搅拌时液位有所波动;入口烟气温度较高、浆液温度较低可对进口管底部有些降温影响;加之该区间需接进料接管, 4.3 烟气进出口高度

脱硫系统逻辑控制

脱硫系统逻辑控制 1.1 石灰石系统 1.1.1 石灰石加料系统顺控启动程序; 1.1.1.1 开启石灰石料斗布袋除尘风机; 1.1.1.2 石灰石了头布袋除尘风机运行后,启动斗式提升机; 1.1.1.3 斗式提升机运行反馈后空载运行2分钟; 1.1.1.4 启动除铁器; 1.1.1.5 除铁器运行后,启动卸料振动给料机; 1.1.2 石灰石加料系统顺控停止程序: 在工业电视系统中人工监视石灰石卸料斗内物料卸空后,按照以下逻辑停止石灰石加料系统。 1.1. 2.1 停止振动给料机; 1.1. 2.2 振动给料机停止反馈后延时5min停止斗式提升机, 1.1. 2.3 斗式提升机停止后,停仓顶收尘; 1.1. 2.4 手动清除除铁器上杂物,停止除铁器。(此步不入程控) 1.1.3 布袋除尘启动允许条件: “石灰石料仓除尘器备妥”信号; 1.1.4 振动给料机启动允许条件: 斗式提升机运行反馈后,才允许启动卸料振动给料机; 1.1.5 振动给料机联锁停止条件 1.1.5.1 石灰石仓料位高于8m时; 1.1.5.2 斗式提升机故障或停止; 注:振动给料机联锁停止条件满足后,按照石灰石加料系统顺控停止顺序运行。 1.2 湿式球磨机系统 1.2.1 球磨机 1.2.1.1 启动允许条件: “湿式球磨机油站允许主机起动”条件满足; 1.2.1.2 停止允许条件: 皮带称重机已停; 1.2.1.3 联锁停止: 湿式球磨机油站油压低停主机; 球磨机轴承温度>60℃; 球磨机电机轴承温度>85℃; 球磨机定子线圈温度>125℃; 以上条件满足任意一个,联锁停止球磨机。 注:为避免线路接触不实等原因出现错误信号造成设备保护跳,影响机组正常运行,所有保护点在上升曲线>600/min的情况下,系统认为是坏点自动切除,保护不起作用。 1.2.1.4 球磨机报警: 球磨机轴承温度>55℃; 球磨机电机轴承温度>80℃; 球磨机定子线圈温度>120℃; 湿式球磨机油站综合报警; 1.2.2 皮带称重机 1.2.2.1 启动允许条件: 球磨机已运行;

湿法脱硫除雾器除垢方法

湿法脱硫除雾器除垢方法 我国85%以上烟气脱硫采用湿法脱硫技术。在湿法脱硫装置长期运行中,除雾器结垢问题普遍存在。除雾器结垢会使除雾器叶片间通道变窄,叶片表面不光滑,造成流场不均匀,除雾器效率降低,引起“石膏雨”。结垢严重时,会局部堵塞除雾器通道,一定程度时造成整体塌陷,有的甚至将除雾器底部冲洗水管和支撑梁压断。 除雾器掉落若发现不及时,还可能堵住循环浆液泵入口滤网,造成循环泵振动过大。除雾器结垢给脱硫系统的安全运行带来隐患。因此研究解决除雾器结垢问题可提高脱硫系统运行稳定性。 1除雾器结垢原因分析 除雾器结垢根据垢淀质地及其清理程度可分为软垢和硬垢。 1.1软垢 软垢呈叶状,柔软,相对来说较易处理。究其成分,为CCS垢和碳酸钙垢。CCS垢即CaSO3˙1/2H2O和CaSO4˙2H2O2种物质的混合结晶物。CaSO3˙1/2H2O在水中溶解度小,脱硫系统在较高pH下运行时,浆液中的硫多以SO2-3形式存在,易使亚硫酸钙达到饱和并超过临界饱和值,当烟气夹带浆液通过除雾器时,在其表面结晶沉积,形成软垢。此外,碳酸钙是一种难溶物质,但碳酸钙垢易清理,属于软垢。由石灰石-石膏法脱硫中未参与反应的碳酸钙或石灰-石膏法脱硫中Ca(OH)2在较高pH下与烟气中CO2反应生成的碳酸钙在除雾器表面沉积生成。美国EPA和TV A中试结果表明,当浆液pH大于6.2时,易发生软垢堵塞[1]。 1.2硬垢 硬垢为坚硬的结晶垢,无法通过降低pH或高压冲洗的方法清除,必须使用机械方法。究其成分,为石膏垢和灰垢。当吸收塔浆液石膏过饱和度大于1.4时,溶液中石膏会析出结晶,沉积形成硬垢。亚硫酸钙软垢在除雾器表面若不及时清理会逐渐氧化,在较高温度烟气作用下,干湿交界面处易形成硬垢。 烟气中携带的飞灰、浆液中含有硅、铝、铁等物质,在除雾器表面沉积形成的硅酸盐垢极其坚硬,且飞灰中金属氧化物黏性较强,所形成的垢难以清理。 2除雾器减缓垢方法 2.1控制脱硫运行参数 脱硫运行条件不仅影响脱硫效率,还会影响脱硫系统稳定性。不良的运行条件会造成系统内结垢。为防止结垢,宜控制主要参数:浆液pH不高于6,氧化风量充足,浆液密度宜运行在1080~1180kg/m3。苏大雄等[2]对石灰湿法脱硫过程中pH变化对结垢的影响做了研究,通过饱和指数法判断结垢趋势。 研究表明,pH7~8时,结垢严重;pH4~6时,不易结垢。强制氧化可促使CaSO3溶液向CaSO4溶液转化,消除CaSO3的过饱和度,有效降低其结垢风险,而CaSO4的过饱和度可通过控制停留时间和浆液固体含量得到有效控制。 在一定浆液停留时间条件下,适当增加浆液中固体石膏含量可增大CaSO4结晶表面,提高结晶速率,从而将石膏过饱和度降低在不易发生结垢的程度[3]。监控浆液密度,合理运行石膏脱水系统,将浆液密度控制在合理范围内,可保障浆液良性运行。 2.2除雾器冲洗控制 为防止除雾器结垢,需在除雾器上下布置冲洗喷嘴对除雾器进行冲洗。适当的冲洗水压力、水量、冲洗频次、覆盖率及冲洗水品质对减缓结垢有很大作用。冲洗水压力宜0.15~0.30MPa,下层除雾器冲洗水量及频次宜较大,冲洗水覆盖率300%,冲洗水不溶物含量及硬度应控制在低值。冲洗水压力、水量过小则不足以将软垢冲洗完全,若冲洗水压力、水量过大则会造成二次夹带。

烟气脱硫DCS控制系统经典

烟气脱硫DCS控制系统 一、概述 环境保护部于2009年1月19日发布了《关于加强燃煤脱硫设施二氧化硫减 排核算工作的通知》,通知要求,所有脱硫设施必须安装完成分布式控制系统(或 集散控制系统,简称脱硫DCS系统),实时监控脱硫系统的运行情况。对湿法脱 硫系统和烟气循环流化床脱硫系统,DCS系统要记录发电负荷(或锅炉负荷)、 烟气温度、烟气流量、增压风机电流和叶片开启度、氧化风机和密封风机电流、脱硫剂输送泵电流、烟气旁路开启度、脱硫岛PH值以及烟气进口和出口二氧化硫、烟尘、氮氧化物浓度等参数;对于循环流化床锅炉炉内脱硫系统和炉内喷钙 炉外活化增湿脱硫系统,DCS系统要记录自动添加脱硫剂系统输送风机电流以及 烟气出口温度、流量、二氧化硫、烟尘、氮氧化物浓度等参数。在旁路烟道加装 的烟气温度和流量等参数应记录入DCS系统。DCS系统要确保能随机调阅上述运 行参数及趋势曲线,相关数据至少保存六个月以上。 二、系统构成 根据DCS系统原理,即集中管理分散控制的理论。组成DCS系统分为两种途径,一种是PLC加上位机,一种是专用DCS控制卡与控制软件。其技术比较如下:项目PLC加上位机专用DCS控制卡与控制软件使用范围中小型控制系统大中型控制系统 技术难度低一般上位机稳定性高高 性价比高一般 三、系统介绍 下面重点介绍以PLC加上位机系统。 1.结构形式

如上图所述,系统现场控制级、集中操作监视级为脱硫过程控制PLC、系统监测模块、烟气检测。综合信息管理级及为主机、备用机和服务器。系统可通过工业以太网上下连接。 2.系统特点 ●系统功能强大、可同时控制多台烟气脱硫装置。 ●用网线或电话线可远程监控烟气脱硫系统的运行。 ●数据记录和存储功能强大,记录画面可同时显示八条不同曲线,只需拖动鼠标便可读出曲线上各时间所对应的数据;可以选择不同批次的任意几条曲线同时显示,以便对比分析。数据在硬盘上可保存几年以上。 ●参数控制画面显示十分清楚,每个参数有PID调节过程显示,如设定值、实时值、调节偏差,调节输出值,PID设定值,上下限位值,瞬时曲线跟踪显示,长时曲线跟踪显示,手自动切换,在线设定。 ●对于任一点参数的变化,系统响应速度小于一秒。 ●采用分布式数据库,取消不可靠的集中式服务器,系统局部故障不会造成系统瘫痪。 3.系统功能

脱硫除雾器的主要性能、特性及设计参数

脱硫除雾器的主要性能、特性及设计参数 1 主要性能参数 (1) 除雾性能 除雾性能可用除雾效率来表示。除雾效率指除雾器在单位时间内捕集到的液滴质量与进入除雾器液滴质量的比值。除雾效率是考核除雾器性能的关键指标。影响除雾效率的因素很多,主要包括:烟气流速、通过除雾器断面气流分布的均匀性、叶片结构、叶片之间的距离及除雾器布置形式等。对于脱硫工程,目前用于衡量除雾性能的参数主要是除雾后烟气中的雾滴含量。一般要求,通过除雾器后雾滴含量一个冲洗周期内的平均值小于75mg/Nm3。该处的雾滴是指雾滴粒径大于15μm的雾滴,烟气为标准干烟气。其取样距离为离除雾器距离1-2m 的范围内。 目前国内尚无脱硫系统除雾器性能测试标准,根据AEE公司提供的资料采用以下方法: I 在除雾器出口烟道上用烟气采样仪采集烟气,记录采样时间,同步测量烟气流速、标准干烟气量、烟温、烟气含湿量、烟气含氧量等。 II 在除雾器出口,用带加热采样管和尘分离器的标准除尘设备对气体进行等速采样。采样体积为5m3,采样后用超纯水对采样管和采样设备进行反复冲洗,洗液倒入250ml容量瓶中定容。混匀后用EDTA法测定Mg2+含量。 III 用稀释的高氯酸和超纯水对采样后的微纤维过滤器进行反复冲洗,洗液用慢速厚型定性层析滤纸过滤到250ml容量瓶中,定容。混匀后用EDTA法测定Mg2+含量。另取1个新的微纤维过滤器作空白样。 IV 用烟尘采样仪测定吸收塔进口烟尘浓度,然后计算除雾器出口液滴质量浓度。 (2)压力降 压力降指烟气通过除雾器通道时所产生的压力损失,系统压力降越大,能耗就越高。除雾系统压降的大小主要与烟气流速、叶片结构、叶片间距及烟气带水负荷等因素有关。当除雾器叶片上结垢严重时系统压力降会明显提高,所以通过监测压力降的变化有助把握系统的状行状态,及时发现问题,并进行处理。湿法脱硫系统除雾器的压力降一般要求小于200Pa。 2 除雾器的特性参数 (1) 除雾器临界分离粒径dcr 波形板除雾器利用液滴的惯性力进行分离,在一定的气流流速下,粒径大的液滴惯性力大,易于分离,当液滴粒径小到一定程度时,除雾器对液滴失去了分离能力。除雾器临界分离粒径是指除雾器在一定气流流速下能被完全分离的最小液滴粒径。除雾器临界分离粒径越小,表示除雾器除雾能力越强。 应用于世法脱硫系统屋脊式除雾器,其除雾器临界分离粒径在20-30μm。 (2) 除雾器临界烟气流速 在一定烟速范围内,除雾器对液滴分离能力随烟气流速增大而提高,但当烟气流速超过一定流速后除雾能力下降,这一临界烟气流速称为除雾器临界烟气流速。临界点的出现,是由于产生了雾沫的二次夹带所致,即分离下来的雾沫,再次被气流带走,其原因大致是:① 撞在叶片上的液滴由于自身动量过大而破裂、飞溅;② 气流冲刷叶片表面上的液膜,将其卷起、带走。因此,为达到一

烟气脱硫系统控制说明

烟气脱硫系统控制说明 批准: 审定: 校核: 编制:

目录 一、FGD自动控制系统组成 二、FGD系统启动、停止顺序 三、FGD分系统启动、停止顺序 四、FGD闭环控制系统

系统说明 一、 本说明对脱硫工程系统及相关设备的控制和顺序启动。本工程主要由以下系统构成: 1)石灰石浆液制备系统 2)烟气系统 3)挡板密封空气系统 4)吸收塔系统 5)吸收塔浆液循环系统 6)氧化空气系统 7)石膏脱水系统、石膏浆液输送系统 8)工艺水系统 9)除雾器冲洗水系统 二、机组FGD系统 1.机组FGD启动允许条件 1)锅炉电除尘运行正常。 2)锅炉达到不投油稳燃负荷 3)FGD入口烟气温度正常 4)FGD入口压力正常 5)石灰石浆液箱液位正常 2.机组FGD紧急停运条件 1)FGD入口烟气温度超限延时跳闸 2)FGD入口烟气压力超限 3)锅炉MFT 4)电除尘器故障 5)增压风机停运。 6)吸收塔浆液循环泵均停 7)吸收塔排气门打开 8)锅炉油枪投油

9)锅炉侧引风机跳闸 10)厂用电源故障FGD系统失电 3.机组FGD启动程序 1)启动吸收塔系统。 2)启动烟气系统。 3) 4.机组FGD停止程序 1)停烟气系统。 停止吸收塔系统。 5.机组FGD短时停机程序。 1)停烟气系统。 2)停止吸收塔系统 3)石灰石浆液箱搅拌器不停 4)石膏浆液搅拌器不停 5)事故浆液箱搅拌器不停 6)排水坑搅拌器不停 6.原烟气挡板门、净烟气挡板门无法关闭,且旁路无法打开,锅炉应进行保护动作以下详细叙述各系统的功能与连锁控制要求:

三、FGD分系统启动、停止顺序 1.石灰石输送系统 1.1 系统功能 将厂外来石灰石运至石灰石卸料间。贮存在石灰石料斗中的石灰石(≤20mm)由料斗出口经除铁器除铁后,通过料斗下设电机振动给料机卸入斗式提升机,提升后经配仓带式输送机送至石灰石仓贮存。贮仓的石灰石经仓下电动插板门卸至称重计量带式输送机。 1.2 控制设备 流化风机 称重带式皮带给料机、闸板阀 仓顶除尘 2.石灰石浆液制备系统 2.1 系统功能 贮存在石灰石仓中的石灰石块(0~20mm)由贮仓出口经皮带秤重给料机进入石灰石浆液箱。 2.2 控制设备 石灰石浆液泵 1台浆液泵有入口阀、出口阀、冲洗阀各1个 浆液调整执行器 3.石灰石浆液供应系统 3.1 系统功能 来自石灰石浆液制备系统的合格浆液进入石灰石浆液箱,再由石灰石浆液泵送至吸收塔,浆液输送管路靠近吸收塔处设有再循环管路,以保证输送管路介质处于最佳流速;来自工艺水系统的工艺水对石灰石浆液箱内的浆液浓度进行调节。 3.2 控制设备 石灰石浆液供应箱搅拌器 石灰石浆液泵(1运1备) #1石灰石浆液泵入口阀、出口阀、冲洗阀 #2石灰石浆液泵入口阀、出口阀、冲洗阀 #1石灰石浆液箱工艺补水阀 3.3 子功能组控制 (1)允许启动条件 石灰石浆液箱液位≥?m 对应石灰石浆液管道母管门打开 (2)允许停止条件 对应石灰石浆液管道母管门关闭 (3)自动停 石灰石浆液箱液位≤?m 石灰石浆液箱搅拌器停运(延时) (4)启动顺序 完成对入口管路冲洗 启动石灰石浆液泵 开对应石灰石浆液泵的出口门

防止除雾器堵塞安全运行措施详细版

文件编号:GD/FS-8744 (解决方案范本系列) 防止除雾器堵塞安全运行 措施详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

防止除雾器堵塞安全运行措施详细 版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 石灰石-石膏湿法脱硫是目前我国火电厂应用最广泛的脱硫工艺,除雾器是湿法脱硫中必不可少的重要设备,当含有污染物的烟气经过喷淋区雾化的浆液后,烟气继续向上流动,为了减少烟气中的含水,需要在吸收塔的出口布置除雾器以除掉烟气中大颗粒的液滴。对不设GGH 的脱硫系统,由于排烟温度较低,烟气扩散条件不利,在运行过程中如果参数控制不佳,烟气携带的液滴会在烟囱出口形成“石膏雨”,影响电厂周围环境,严重时引发除雾器的堵塞停运和烟道腐蚀事件,更有甚者将可能造成除雾器的坍塌。

一、除雾器堵塞的主要原因 1.1 石膏浆液中亚硫酸钙含量偏高,并被烟气带走沉积由于吸收塔中石膏浆液中亚硫酸钙含量偏高,烟气携带的亚硫酸钙也随之上升。亚硫酸钙随液滴进入除雾器后,会在除雾器叶片上形成软垢。这部分软垢慢慢地被氧化,经过结晶、长大最终形成硬垢,逐渐堵塞除雾器。该厂石膏浆液中亚硫酸钙含量偏高的原因大致有以下2 种。 (1) pH 值控制不当,亚硫酸钙难以被及时氧化。适当的浆液pH 值既可以保证脱硫系统正常的脱硫效率,又能使石灰石浆液被充分利用。实践表明,吸收塔石膏浆液pH值维持在5.2 ~5.5时脱硫效率最理想。但由于电厂有时燃烧高硫煤,排出的烟气中二氧化硫含量较高,运行人员向吸收塔中补充大量的石灰石浆液,以保证吸收塔浆液pH 值。浆

湿式静电除雾器(WESP)在湿法脱硫上的作用

湿式静电除雾器(WESP)在湿法脱硫塔的布置 WESP系统原理 湿法脱硫塔出来的湿烟气进入湿式静电除雾器(WESP),在WESP的阳极

筒和阴极线之间施加数万伏直流高压电,在强电场的作用下,电晕线周围产生电晕层,电晕层中的空气发生雪崩式电离,产生大量的负离子和少量的阳离子,在阳极筒内湿烟气中的微尘(雾)粒子、与放电产生胡正、负离子相碰撞而荷电,荷电后的尘(雾)粒子由于受到高压静电场库仑力的作用,分别向阴、阳极运动;到达两极后,将各自所带的电荷释放掉,尘(雾)粒子就被阴、阳极所收集,靠重力自流向下而与气体分离;部分的尘(雾)粒本身则由于其固有的黏性而附着在阳极板(筒)和阴极线上,通过冲洗的方法清除。 WESP装置结构 (1)WESP本体 WESP本体采用圆形结构,规格为Φ9.2m×10.7m,上部设有烟气导流板和气体分布板,下部设有液体收集槽,总高度约14m(含盖顶及下部收集槽)。外壳体为碳钢衬玻璃鳞片。 WESP的出口烟道设置在本体侧面,直接接现有的垂直净烟道,降低了烟气的阻力;而且也能防止净化后的烟气二次带水。收集的液体自流进入浆液箱,靠水泵打回吸收塔。 (2)阳极装置 阳极装置包括沉淀极、支撑梁、冲洗水管、支撑梁。 阳极筒(也称沉淀极)采用先进的导体玻璃钢材质、导电性能好、易冲洗等优点。阳极膜上、下端由支撑管支撑、张紧,其中上部的支撑管兼作冲洗水管,通过该冲洗水管可实现阳极膜6个面的在线冲洗,以保证阳极膜不结垢。 阳极膜上下的四层支撑管分别由四道支撑梁进行支撑。阳极膜上部支撑梁固定于塔壁上,下部的支撑梁通过两端的调节机构来调节其高度,以实现对阳极膜的张紧。 沉淀极采用玻璃钢蜂窝状结构。蜂窝状结构较圆管结构截面面积利用率高,玻璃钢材质具有导电性能好、使用寿命长等优点。 (3)阴极装置 阴极装置包括阴极线、上下部吊挂装置、绝缘箱。 每个阳极孔中心布置有一条阴极线,采用芒刺型、铅锑合金材质,阴极线固定于上下框架上,框架通过绝缘箱支撑。绝缘箱内吊杆采用石英管支撑,通过向

脱硫塔除雾器原理及应用

脱硫塔除雾器原理及应用 玻璃钢除雾器的工作原理主要是利用惯性除去雾滴,广泛应用于电力、环保、化工、石油、医药、轻工、冶金等行业中各种设备上的气液分离,其主要应用在如下几个方面: (1)饱和蒸汽、二次蒸汽气液及夹带物的分离,提高蒸汽品质。 (2)冷却塔、洗涤塔、饱和塔后的气液分离,防止带水,保证下游设备安全稳定地进行。 (3)压缩气体冷却后冷凝液和油雾的分离,防止击缸和油雾对下游设备的堵塞及损害。 (4)回收及净化装置气体中雾滴的除外,回收有价值物料及保证工艺指标的合格。 (5)氢氮压缩机油雾的分离,防止油雾对触媒的损害。 (6)燃煤烟气脱硫装置中硫的脱除及夹带物的分离。 (7)减少污染物的排放(如粉尘),保护环境。 玻璃钢除雾器的典型应用: 1、折流板除雾器 折流板除雾器的接触面积很大,它的细分离性能很好,因此折流板除雾器在洗涤塔、蒸发器、回收塔、冷却塔后的气液分离等过程中被广泛应用。当夹带微小液滴的气流以一定的速度通过特殊设计成形的波形板时,气流携带着微小液滴在波形板构成的通道内作曲线运动。水滴受到惯性力、附着力和离心力这三者的作用,使其不能和气流一起偏转,从而撞击壁面并粘附在波形板的壁面上形成一层水膜,由于重力的作用,水膜向下流动并汇聚成较大水流,水流不断流动一直到波形板倒钩处,并最后离开波形板,达到分离的效果。波形板分离器一般安装在蒸发室、冷却塔、洗涤塔、回收塔、饱和塔的顶部或出口管道上。 2、脱硫塔除雾器 在锅炉烟气脱硫系统中,脱硫除雾器是关键设备,脱硫除雾器性能的优劣关系到系统的运行状态,即湿法烟气脱硫系统能否稳定的、连续的运行。如果除雾器产生故障,脱硫系统就会停运,严重的话整个机组都会停机。除雾器主要用于除去烟气中的液滴(还有少量的粉尘),使得烟气带水量降低,这样一方面防止风机振动,另一方面减少对环境的污染。在反应区中,烟气中的硫与石灰石浆液发生中和反应,所形成的雾滴和烟气一起流至除雾器区域,

除雾器堵塞原因分析及应对

第 45 卷 第 7 期 2016 年 7 月 Vol.45 No.7Jul.2016 化工技术与开发 Technology & Development of Chemical Industry 除雾器堵塞原因分析及应对 龙天宇,周 安,唐兴兴,辛 闻,张富青 (武汉工程大学化学与环境工程学院,湖北 武汉 430073) 摘 要:除雾器堵塞已成为工厂尾气处理中的常见现象。堵塞不仅会影响除雾器的除雾效果,还会加重对下游设备的腐蚀。本文对除雾器的堵塞原因进行分析,并提出应对策略。 关键词:除雾器;气液分离;堵塞 中图分类号: TQ 028.3+8 文献标识码:A 文章编号:1671-9905(2016)07-0061-03 基金项目:武汉工程大学校长基金项目(2015062) 通讯联系人:张富青,副教授,湖北襄阳人,E-mail: 04002085@https://www.doczj.com/doc/c911936214.html, 收稿日期:2016-05-16 气汽液传质、传热的单元操作中最常见的是通过两相的密切接触和分离以促进相与相间组分的传递,达到液体或气体提纯、增减湿、除污等目的。离开吸收塔或填料塔的气相夹带一定数量、大小不等的液沫、液滴,在随后的冷却或冷凝过程中,会形成悬浮于气相中的微小粒子。通常,必须将被气流所夹带的液滴分离出去(简称除雾)。 1 除雾器类型 除雾的方法很多,生产中常根据粒径范围选用不同的除雾器,以挡板除雾器为例介绍如下。 挡板除雾器的基本型式有固定百页窗式和叶片式2种,运行时气体在曲折的倾斜通道中以一定的速度流出,由于流向被改变,液滴在惯性力作用下,撞击在挡板表面从而被捕捉,受重力作用向下集聚到挡板底段流出[1-5]。 固定百页窗式是最早使用的挡板除雾器,叶片为一定数量平行排列的锯齿形叶片。其形状主要有之字形、折线形、弧形和弧形带倒钩形等。片间距在7~75mm 范围,叶片高度150~300mm,常见的倾角为45°和60°,但只能除去较大喷雾(大于20μm),后为叶片式取代。 叶片式除雾器分为垂直向上和水平流动2种。前者呈总体上的逆流,液滴被叶片捕捉到之后,逐渐向下集聚到底段,再返回塔中;后者气液错流,叶片拐弯处设有集液沟以收集板面上的液滴,收集的液滴沿沟向下流出,有效防止板面上液滴被气流二次 带出。 挡板式除雾器的优点是压降低,处理量大和极强的抗堵塞能力,不足之处是雾滴直径过小时除雾效率会明显下降。 2 除雾器堵塞原因分析 2.1 除雾器冲洗周期过长 除雾器的冲洗周期直接决定着冲洗的有效性,太长则石膏颗粒和烟气会不断附着,除雾器表面结 垢加重,烟气冲刷后不断硬化形成硬垢,此时仅凭冲洗已无法冲刷掉垢物。通常除雾器冲洗周期设定为每隔1~2h 冲洗1次 [6-9]。2.2 除雾器冲洗水压力不够 实际生产中,管路设计不合理或除雾器冲洗水的再循环管路节流孔板设置过大,都可能造成除雾器冲洗水压力无法满足设计要求,使得冲洗效果不理想,除雾器表面形成结垢晶核不断长大,最终形成硬垢。2.3 吸收塔浆液过饱和,烟气含固体量增加 脱硫系统实际运行中,加入到吸收塔内的石灰石浆液如远远超过设计要求,则会使硫酸盐浓度超过临界饱和度,烟气与浆液接触后携带的固体颗粒量大大增加,与除雾器碰撞后部分附着在除雾器表面,逐渐形成垢物。 2.4 脱硫系统进口烟尘含量远高于设计值 在除雾器表面沉积的垢物除了吸收塔浆液中的

相关主题
文本预览
相关文档 最新文档