当前位置:文档之家› 加氢精制催化剂及工艺技术

加氢精制催化剂及工艺技术

加氢精制催化剂及工艺技术
加氢精制催化剂及工艺技术

加氢精制催化剂及工艺技术

?加氢精制技术应用概况

?加氢精制主要反应及模型化合物加氢反应历程

主要反应

模型化合物加氢反应历程

典型工艺流程

?加氢精制工艺技术

重整原料预加氢催化剂及工艺

二次加工汽油加氢精制催化剂及工艺

煤油加氢精制催化剂及工艺

劣质二次加工柴油加氢精制催化剂及工艺

进口高硫柴油加氢精制催化剂及工艺

焦化全馏分油加氢精制催化剂及工艺

石蜡加氢精制催化剂及技术

?加氢精制催化剂

加氢精制技术应用概况

抚顺石油化工研究院(FRIPP)是国内最早从事石油产品临氢催化技术开发的科研机构。几十年来,FRIPP在轻质馏分油加氢精制、重质馏分油加氢处理、石油蜡类加氢精制、渣油加氢处理和临氢降凝等领域已开发成功5大类共30个品牌的商业催化剂,先后在国内45个厂家共115套加氢精制/加氢处理工业装置上应用,累计加工能力超过4000万吨/年。

FRIPP加氢精制技术开发的经历:

?1950s 页岩油加氢技术

?1960s 重整原料预精制技术

?1970s 汽、煤、柴油加氢精制技术

?1980s 石油蜡类加氢精制技术

?1990s 重质馏分油加氢精制技术、渣油加氢处理技术

FRIPP加氢精制系列催化剂:

?轻质馏分油 481、481-3、FH-5、FH-5A、FDS-4、FDS-4A、FH-98

?重质馏分油 3926、3936、CH-20、3996

?柴油临氢降凝 FDW-1

?石油蜡类 481-2、481-2B、FV-1

?渣油 FZC-10系列、FZC-20系列、FZC-30系列、FZC-40系列、FZC-100系列、 FZC-200系列、FZC-300系列

FRIPP加氢精制催化剂工业应用统计(1999年):

加氢精制主要反应及模型化合物加氢反应历程

加氢精制主要反应

加氢精制主要反应为加氢脱硫、加氢脱氮、加氢脱氧、烯烃与芳烃的饱和加氢,以及加氢脱金属。其典型反应如下:

1、加氢脱硫

2、加氢脱氮

3、加氢脱氧

4、烯烃加氢饱和

5、芳烃加氢饱和

6、加氢脱金属

(1)沥青胶束的金属桥的断裂(详见图3)

式中 R,R'--芳烃;M--金属钒。

(2)卟啉金属镍的氢解

加氢精制主要反应及模型化合物加氢反应历程

模型化合物加氢反应历程

石油馏分中硫、氮化合物的氢解属于双分子吸附反应机理,随着分子结构的不同,反应历程有很大差别,现扼要介绍如下:

1、模型硫化物加氢脱硫反应历程

硫化物加氢脱硫反应活性,随着分子结构不同而异,一般烷基硫化物大于环状硫化物,环状硫化物又随着环上取代基的增加而下降。如硫芴的反应活性较噻吩约低一至二个数量级,硫化物的一般反应活性顺序如下:

通常以噻吩或硫芴代表硫化物进行加氢脱硫反应历程的研究,图1是在Co-Mo/Al2O3催化剂上18MPa、300℃时硫芴的加氢脱硫反应历程。硫芴加氢脱硫反应存在二条平行路线,(1) C-S键直接氢解,生成H2S和联苯;

(2)其中一个苯环先加氢,然后C-S键断裂生成H2S和环己基苯。第一条反应速度常数约比第二条高一个数量级,是主导路线。

图1 硫芴加氢反应历程图

2、模型氮化物的加氢脱氮反应历程

氮化物的加氢脱氮反应活性,同样也随着分子结构不同而有很大差别,其一般顺序为:

其中五元及六元氮杂环化物最难加氢脱氮。图2为在Ni-Mo/Al2O3催化剂上,3.4MPa、342℃时喹啉加氢脱氮的反应网络图。

图2 喹啉加氢脱氮的反应网络图

氮杂环加氢脱氮反应必须经过C=N键加氢成C-N键后断裂。如图2,喹啉加氢脱氮反应首先是环加氢。加氢在苯环和氮杂环上同时进行,而以氮杂环为主。由于反应[Ⅰ]处于热力学平衡,故在反应温度较低时,脱氮反应步骤按[Ⅰ]→[Ⅶ]→[Ⅵ]进行,随着反应温度逐渐升高,或压力降低时,平衡移向左边,则反应步骤愈来愈明显转变为[Ⅳ]→[Ⅴ]→[Ⅵ]。

因受邻近苯核共振能的影响,苯胺的C-N键很难断裂,因此反应[Ⅲ]速度很慢,实际上很少发生。

3、芳烃加氢反应历程

一般馏分油的芳烃加氢主要指萘系或蒽(菲)系稠环芳烃的加氢。其反应历程如下。

萘加氢:

菲(蒽)加氢:

从反应历程可见,稠环芳烃加氢有两个特点:( 1 )每个环加氢脱氢都处于平衡状态;( 2 )加氢逐环依次进行。从稠环芳烃的分子结构考虑,当稠环芳烃中一个环引进一个分子氢以后,其苯核共振能的稳定化作用便受到破坏,因而生成的环烯比较容易加氢生成环己烷,例如具有三个苯环的蒽,其第9及第10位置就比萘第7、8位置不稳定,容易与氢反应,而萘比苯又更具有烯烃性质,因此比苯又容易加氢生成四氢萘。但当萘一旦加上二个分子的氢,或蒽加上一个分子氢以后,则相对地变得更加稳定,继续加氢就需要苛刻的加氢条件。

稠环芳烃加氢深度受到热力学平衡的限制,一些稠环芳烃加氢平衡常数如下表。

一些稠环芳烃加氢的平衡常数

显然,随着反应温度升高,加氢平衡常数呈数量级下降,因此芳烃深度饱和加氢必须在较低温度下进行。

4、加氢脱金属反应

加氢脱金属是渣油加氢精制的主要反攻反应。由于在渣油中,金属及硫、氮一般共同存在于沥青质胶束中,因此,从渣油中加氢脱金属和加氢脱硫、脱氮与沥青质的转化是分不开的。

沥青质胶束的裂解是通过反应″a″与反应″b″连续反应过程,反应″a″是首先通过金属(M)桥的断裂,以及金属(V或Ni)从卟啉结构中脱除,然后经反应″b″,通过杂原子(S、N)的脱除,进一步降低分子量,而形成稠环芳烃和烷烃桥合的沥青质碎片。一般认为沥青质裂解属于热裂解反应,而渣油加氢精制过程一般要求较高的氢分压,主要在于抑止催化剂表面积炭的形成。

典型工艺流程

加氢精制典型工艺流程图:

循环氢脱H2S典型工艺流程图:

加氢精制工艺技术

重整原料预加氢催化剂及工艺

FRIPP开发的重整原料预加氢催化剂主要有481-3催化剂及FDS-4A催化剂。481-3催化剂活性达到了国外同类催化剂S-12、HR-306水平,已经在国内25个厂家30套工业装置上应用;FDS-4A催化剂是近期开发的新一代加氢精制催化剂,其活性明显高于国际市场上的同类主流催化剂,是481-3催化剂的换代产品,目前已有8套工业装置使用。

481-3催化剂用于国内重整原料预加氢时,可在氢压1.0~2.0MPa、反应温度270~320℃、体积空速2.0~12.0h-1、工艺条件下进行;用于进口高硫重整原料预加氢时,可在氢压1.0~2.0MPa、反应温度270~320℃、体积空速2.0~5.0h-1工艺条件下进行。

FDS-4A催化剂活性更高,用于进口高硫重整原料预加氢时,可在氢压1.0~2.0MPa、反应温度270~320℃、体积空速6.0~10.0h-1工艺条件下进行。

481-3催化剂、FDS-4A催化剂高空速试验典型结果

二次加工汽油加氢精制催化剂及工艺

随着我国炼油工业的迅速发展,焦化、催化及热裂化加工能力不断增加,为改善这些二次加工汽油的质量,FRIPP开发了特别适合这类油料加氢精制的481-3、FH-5、FH-98催化剂。FH-98催化剂是近期开发的新型加氢精制催化剂,已经在多套焦化汽油加氢装置上工业应用。二次加工汽油加氢可根据原料油性质及产品要求,调整工艺参数达到不同的加氢深度。目前,全国已有13套工业装置应用FRIPP技术。

焦化汽油加氢生产石脑油典型工业运转结果

煤油加氢精制催化剂及工艺

煤油加氢精制分两种,一种是煤油深度加氢精制,为烷基苯提供进料;另一种为航煤浅度加氢精制脱硫醇。FRIPP开发的煤油加氢精制催化剂主要有481-3、FDS-4A催化剂,用于煤油深度加氢精制的工艺条件为:氢压4.0~5.0MPa、反应温度280~320℃、体积空速1.0~2.0h-1;用于煤油浅度加氢精制的工艺条件为:氢压0.5~1.6MPa、反应温度190~290℃、体积空速2.5~4.0h-1。481-3催化剂已经在煤油深度加氢精制装置上应用,FDS-4A催化剂在煤油浅度加氢精制装置上工业应用。

481-3催化剂、FDS-4A催化剂工业应用典型结果

劣质二次加工柴油加氢精制催化剂及工艺

随着原油的重质化及对轻油需要量的增加,二次加工柴油的量越来越多,油品质量越来越差,需要加氢精制才能出厂。FRIPP开发的劣质二次加工柴油加氢精制催化剂有FH-5、FH-98催化剂。

FH-98催化剂是FRIPP在总结已有成功经验的基础上开发的新一代劣质二次加工油品加氢精制催化剂,是FH-5催化剂的换代产品。通过活性组分的优化组合、改善金属组分在载体上的分散性能、添加助剂、调变载体的微孔结构、调整催化剂外形及颗粒度等方面的试验工作,使FH-98催化剂具有了优异的加氢精制性能和使用性能。FH-98催化剂是以含硅氧化铝为载体,担载钨、钼、镍、钴活性组分的三叶草形催化剂。该催化剂具有活性组分匹配合理、活性金属高度分散、加氢脱硫和加氢脱氮活性高、装填密度低等特点。

FH-98催化剂已经分别在中国石化和中国石油天然气集团公司系统内六套工业装置上应用。

FH-98催化剂用于大庆柴油加氢典型结果

进口高硫柴油加氢精制催化剂及工艺

随着国内高硫原油进口量的逐年增加,必须加速发展加工高硫原油的成套技术,FRIPP针对进口高硫原油柴油的性质,开发了FDS-4、FH-5A催化剂,可用于从高硫原料生产优质低硫柴油。FDS-4催化剂主要以脱硫为主;FH-5A催化剂是FH-5催化剂的改进型,选用与FH-5催化剂相同的载体,Mo-Ni-Co为活性组分,采用新的制备技术,该催化剂活性金属高度分散,表面结构合理。由于FH-5A催化剂具有脱硫、脱氮活性兼顾的特点,因而对原料具有较强的适应性。工艺研究表明:FH-5A催化剂在缓和的工艺条件下对中东高硫原油的直馏柴油、二次加工柴油及其混合油进行加氢精制,可生产低硫、安定的优质柴油。

FH-5A催化剂于1999年11月已经在160×104t/a加氢精制装置上工业应用。该装置原设计进料为中东直馏柴油掺30%重油催柴。在实际应用中, 炼油厂为平衡全厂原料, 需增炼焦化柴油, 即掺入30%重催柴油和15%焦化柴油,进料硫含量高达0.8~1.9w%,增加了该装置加氢精制难度。

在反应压力4.0MPa、体积空速2.0 h-1条件下, 可从高硫原料(硫:1.46%)生产优质低硫柴油,脱硫率达96.7%、脱氮率80.4%。该催化剂的应用成功, 对于石化企业加工进口含硫原油, 生产低硫柴油(硫含量低于0.05w%)具有十分重要的意义。

FH-5、FH-5A催化剂典型的试验结果

FH-5A催化剂用于柴油加氢装置典型结果

焦化全馏分油加氢精制催化剂及工艺

焦化馏出油的油品性质较差,需要加氢精制才能满足汽油、柴油及蜡油产品的要求。FRIPP开发的FH-5、FH-98加氢精制催化剂可适合这类油品的加氢精制。FH-5催化剂已经在炼油厂焦化全馏分油加氢精制装置上工业应用。FH-98催化剂是FH-5催化剂的换代产品,其脱氮活性明显优于FH-5催化剂。

FH-5催化剂用于焦化全馏分油加氢精制工业应用典型结果

石蜡加氢精制催化剂及技术

石蜡产品已广泛地用于蜡烛、乳化蜡、建筑、造纸、橡胶、火工、食品、包装等多种行业。1998年我国石蜡总产量及出口量(占当年国际石蜡贸易份额75%)均居世界榜首。石蜡生产主要有酸-白土法和加氢精制法。我国从1979年发展起来的石蜡加氢精制技术,以其质量好、收率高、操作灵活及基本消除三废污染等优点而得以迅速发展。目前,我国已拥有石蜡加氢总加工能力约90万吨/年,占全国石蜡总产量85%左右。加氢石蜡产品除满足国内市场需求外,还以其质优价廉供货充裕的竞争优势,每年还有大宗石蜡产品出口到世界各地,经济效益、社会效益及创汇均有佳绩。

石蜡加氢精制是将原料石蜡在有氢气、催化剂及最佳工艺条件下生产高品质石蜡的过程。精制的目的旨在原则上不改变原料蜡基本构成和主要理化性质的情况下,脱除原料蜡中的稠环芳烃及含有硫、氮、氧等杂质的非烃类物质。

我国石蜡加氢精制技术经过20年的发展历程,总加工能力已达90万吨/年,共11套装置,单套装置最大加工能力15万吨/年,所加工的原料蜡范围很宽,有大庆油、沈北油、华北油、南阳油和部分进口原油等多种石蜡原料。所用的催化剂先后共有10个品牌,其中481-2B型催化剂的覆盖率占70%左右。FV型催化剂是1998年由抚顺石油化工研究院开发并投入工业应用的新一代石蜡加氢精制催化剂。

工业应用结果表明,上述催化剂虽然都可以满足中压下石蜡加氢精制对产品质量的要求,但以新开发的FV型催化剂具有更佳的应用效果,其特点是:

(1)活性高

FV型催化剂在较低的反应温度下(257~265℃)实现了较高空速(1.3h-1)下的石蜡加氢精制过程,在达到相同的石蜡质量(食品蜡)情况下,采用FV型催化剂进行操作,可以比481-2B及参比剂提高加工能力30%或更高。

(2)氢蜡比低

(3)机械强度较高

加氢精制催化剂

?汽油加氢精制

?煤油加氢精制

工业牌号:FDS-4A(性质见汽油加氢精制)。

?柴油加氢精制催化剂

?蜡油(VGO)加氢精制

加氢保护剂

焦化苯加氢精制工艺研究

纯苯是重要的石油化工基本原料,苯的产量 和生产技术水平也是一个国家石油化工发展水平的重要标志之一。 用于生产苯乙烯等化工产品的原料只能是石油苯,焦化苯是不能直接用作化工原料的,到目前为止焦化苯绝大多数用在溶剂和涂料等方面,然而石油苯资源是有限的,况且随着石油化工的发展,苯的需求量将猛增,为了适应石油化工的发展,扩大化工原料苯的来源迫在眉睫,因此对焦化苯进行精制是首选的课题[1]。我国的焦化苯资源极为丰富,约占我国苯总产量的20%,但由于含有各种噻吩等硫化物和碱性氮化物等含氮化合物杂质,特别是硫化物,如0.2%~1.66%的噻吩等,从而限制了它的进一步深加工利用,它不能直接用于有机化工合成,必须预先进行精制。 1 实验部分 1.1 加氢精制基本原理 焦化苯中含有的硫化物中主要有噻吩类和 硫醇类,氮化物中主要有碱性氮和有机氮化物。噻吩加氢生成硫化氢和烃类;氮化物加氢生成氨和烃类; 用水洗的方法将碱性氮、硫醇除掉。 焦化苯加氢精制工艺流程图见图1。 1.3催化剂性质 催化剂性质见表1。 表1催化剂性质Table 1 Catalyst properties 孔容/(mL ·g -1)比表面积/(m 2·g -1)形状侧压强度/(N ·cm -1)堆积密度/(g ·mL -1)0.416 198.9 条形 352.8 0.85 焦化苯加氢精制工艺研究* 第38卷第5期2009年10月当代化工Contemporary Chemical Industry Vo1.38, No.5October ,2009 *收稿日期:2009-09-14作者简介:苏波(1972-),男,辽宁辽阳人,工程师,1994年毕业于北京化工大学,现从事石油化工工艺设计。电话:0413-*******, E-mail :suboo@https://www.doczj.com/doc/c911731650.html, 。 苏波,曾蓬 摘要:介绍一种焦化苯加氢精制脱除杂质的工艺方法。该技术采用加氢精制,精制后的产品 噻吩脱除率99.99%以上、 总硫脱除率>99%、碱性氮脱除率100%、总氮脱除率>99%、液收>99%,精制苯中总硫质量分数<1×10-6,检测不出总氮。精制后的产品符合石油苯国家标准的质量要求,可用于有机化工合成。关 键 词:焦化苯;加氢;精制;脱硫; 中图分类号:TQ 241.1+1 文献标识码:A 文章编号:1671-0460(2009)05-0475-04 (中国石油集团工程设计有限责任公司抚顺分公司,辽宁抚顺113006) 图1 焦化苯加氢精制工艺流程图 Fig .1 Process flow diagram of coking benzene hydrorefining

加氢精制

使用寿命,减少对环境的污染。该工艺的反应条件一般为:压力4-8MPa,温度320-400℃。

(绝大多数的加氢过程采用固定床反应器)中。反应完成后,氢气在分 离器中分出,并经压缩机循环使用。产品则在稳定塔中分出硫化氢、氨、水以及在反应过程中少量分解而产生的气态氢。 也称[加氢处理,石油产品最重要的精制方法之一。指在氢压和催化 剂存在下,使油品中的硫、氧、氮等有害杂质转变为相应的硫化氢、水、氨而除去,并使烯烃和二烯烃加氢饱和、芳烃部分加氢饱和,以 改善油品的质量。有时,加氢精制指轻质油品的精制改质,而加氢处 理指重质油品的精制脱硫。 20世纪50年代,加氢方法在石油炼制工业中得到应用和发展,60年 代因催化重整装置增多,石油炼厂可以得到廉价的副产氢气,加氢精 制应用日益广泛。据80年代初统计,主要工业国家的加氢精制占原 油加工能力的38.8%~63.6%。 加氢精制可用于各种来源的汽油、煤油、柴油的精制、催化重整原料 的精制,润滑油、石油蜡的精制(见彩图),喷气燃料中芳烃的部分 加氢饱和,燃料油的加氢脱硫,渣油脱重金属及脱沥青预处理等。氢分 压一般分1~10MPa,温度300~450℃。催化剂中的活性金属组分常 为钼、钨、钴、镍中的两种(称为二元金属组分),催化剂载体主要 为氧化铝、或加入少量的氧化硅、分子筛和氧化硼,有时还加入磷作 为助催化剂。喷气燃料中的芳烃部分加氢则选用镍、铂等金属。双烯 烃选择加氢多选用钯。 加氢改质反应,则是提高十六烷指数,十六烷值是柴油燃烧性能的重要指标。

柴油馏分中,链烷烃的十六烷值最高,环烷烃次之,芳香烃的十六 烷值最低。同类烃中,同碳数异构程度低的烃类化合物具有较高的 十六烷值,芳环数多的烃类具有较低的十六烷值。因此,环状烃含 量低,链状烃含量多的柴油具有较高的十六烷值。催化柴油(LCO)中双环和三环芳烃,在MCI过程中,双环以上的芳烃只进行芳环饱 和和环烷开环,其分子碳数不变。由于双环和三环芳烃转化为烷基苯,柴油中的高十六烷值组分增加,故柴油的十六烷值可得到较大 幅度的提高。 加氢裂化 在较高的压力的温度下[10-15兆帕(100-150大气压),400℃左右],氢气经催化剂作用使重质油发生加氢、裂化和异构化反应,转化为轻质油(汽油、煤油、柴油或催化裂化、裂解制烯烃的原料)的加工过程。它与催化裂化不同的是在进行催化裂化反应时,同时伴随有烃类加氢反应。加氢裂化的液体产品收率达98%以上,其质量也 远较催化裂化高。虽然加氢裂化有许多优点,但由于它是在高压下操作,条件较苛刻,需较多的合金钢材,耗氢较多,投资较高,故没有像催化裂化那样普遍应用。 催化裂化时在高温和催化剂的作用下使重质油发生裂化反应,转变为干气、液化气、汽油、柴油、油浆等的过程。 加氢裂化是在高温高压下氢气经催化剂作用使重质油发生加氢、裂化和异构化反应,转化为轻质油(汽油、煤油、柴油或其他油料)的过程

加氢催化剂及其设备制作方法和应用与相关技术

本技术提供了一种加氢催化剂及其制备方法和应用。所述催化剂制备方法包括将成型的载体先负载活性金属镍得到载体S1,再负载磷源得到载体S2,然后将载体S2在氢氛围下活化得到含有金属磷化物NixPy的加氢催化剂,其中x:y为1:31:7;载体占所述加氢催化剂总重量的60%80%。该催化剂适用于缓和条件下柴油的加氢脱硫和加氢脱氮反应,其主要特点是在反应过程中具有较高的直接脱硫和/或脱氮选择性。 权利要求书 1.一种加氢催化剂的制备方法,其中,所述方法包括将成型的载体先负载活性金属镍得到载体S-1,再负载磷源得到载体S-2,然后将载体S-2在氢氛围下活化得到含有金属磷化物NixPy 的加氢催化剂,其中x:y为1:3-1:7;在制备得到的加氢催化剂中,载体占所述加氢催化剂总重量的60%-80%;优选负载活性金属镍和磷源时所用的镍原子与磷原子摩尔比为1:3-1:7。 2.根据权利要求1所述的制备方法,其中,所述方法中负载活性金属镍的步骤包括,将镍的前驱体与水配制成溶液A,通过等体积浸渍方法将镍负载到载体上,干燥后得到负载了活性金属镍的载体S-1;其中优选是在80-120℃下干燥;其中还优选干燥3-7h;优选通过等体积浸渍将镍负载到载体后,先室温放置8-16h,再干燥得到载体S-1。 3.根据权利要求1所述的制备方法,其中,所述方法中负载磷源的步骤包括,将磷的前驱体与水配制成溶液B,通过等体积浸渍方法将磷负载到载体S-1上,干燥后得到负载了磷的载体S-2;其中优选是在80-120℃下干燥;其中还优选干燥3-7h。 4.根据权利要求1所述的制备方法,其中,所述方法中活化的步骤包括,先将载体S-2在氢气气氛中,在750-900℃下活化,活化结束后降温至室温,在2%的O2/N2条件下钝化得到所述的加氢催化剂;优选氢气体积空速为600-3000h-1;优选载体S-2在氢气气氛中,以10℃/min 升温至300℃,保温30min后,再以1-10℃/min的速度升温至750-900℃进行活化;优选钝化的持续时间为3h。

加氢裂化工艺流程概述

加氢裂化工艺流程概述 全装置工艺流程按反应系统(含轻烃吸收、低分气脱硫)、分馏系统、机组系统(含PSA系统)进行描述。 1.1反应系统流程 减压蜡油由工厂罐区送入装置经原料升压泵(P1027/A、B)后,和从二丙烷罐区直接送下来的轻脱沥青油混合,在给定的流量和混合比例下原料油缓冲罐V1002液面串级控制下,经原料油脱水罐(V1001)脱水后,与分馏部分来的循环油混合,通过原料油过滤器(FI1001)除去原料中大于25微米的颗粒,进入原料油缓冲罐(V1002),V1002由燃料气保护,使原料油不接触空气。 自原料油缓冲罐(V1002)出来的原料油经加氢进料泵 (P1001A,B)升压后,在流量控制下与混合氢混合,依次经热高分气/混合进料换热器(E1002)、反应流出物/混合进料换热器(E1001A,B)、反应进料加热炉(F1001)加热至反应所需温度后进入加氢精制反应器(R1001),R1001设三个催化剂床层,床层间设急冷氢注入设施。R1001反应流出物进入加氢裂化反应器(R1002)进行加氢裂化反应,两个反应器之间设急冷氢注入点,R1002设四个催化剂床层,床层间设急冷氢注入设施。R1001反应流出物设有精制油取样装置,用于精制油氮含量监控取样。 由反应器R1002出来的反应流出物经反应流出物/混合

进料换热器(E1001)的管程,与混合原料油换热,以尽量回收热量。在原料油一侧设有调节换热器管程出口温度的旁路控制,紧急情况下可快速的降低反应器的入口温度。换热后反应流出物温度降至250℃,进入热高压分离器(V1003)。热高分气体经热高分气/混合进料换热器(E1002)换热后,再经热高分气空冷器(A1001)冷至49℃进入冷高压分离器(V1004)。为了防止热高分气在冷却过程中析出铵盐堵塞管路和设备,通过注水泵(P1002A,B)将脱盐水注入A1001上游管线,也可根据生产情况,在热高分顶和热低分气冷却器(E1003)前进行间歇注水。冷却后的热高分气在V1004中进行油、气、水三相分离。自V1004底部出来的油相在V1004液位控制下进入冷低压分离器(V1006)。自V1003底部出来的热高分油在V1003液位控制下进入热低压分离器(V1005)。热低分气气相与冷高分油混合后,经热低分气冷却器(E1003)冷却到40℃进入冷低压分离器(V1006)。自V1005底部出来的热低分油进入分馏部分的脱丁烷塔第29层塔盘。自V1006底部出来的冷低分油分成两路,一路作为轻烃吸收塔(T1011)的吸收油,吸收完轻烃的富吸收油品由T-1011的塔底泵P-1016再打回进冷低分油的进脱丁烷塔线。依次经冷低分油/柴油换热器(E1004)、冷低分油/减一线换热器(E1005A,B)、冷低分油/减二线换热器(E1014)和冷低分油/减底油换热器(E1015),分别与柴油、减一线油、减二

加氢催化剂及其设备制作方法和应用与制作流程

本技术提供了一种加氢催化剂及其制备方法和应用。所述方法包括将成型的载体先负载活性金属镍得到载体S1,再负载磷源得到载体S2,然后将载体S2在氢氛围下活化得到含有金属磷化物NixPy的加氢催化剂,其中x:y为1:31:7;载体占所述加氢催化剂总重量的 60%80%;优选负载活性金属镍和磷源时所用的镍原子与磷原子摩尔比为1:31:7。该催化剂适用于缓和条件下柴油的加氢脱硫和加氢脱氮反应,其主要特点是在反应过程中具有较高的直接脱硫和/或脱氮选择性。 权利要求书 1.一种加氢催化剂的制备方法,其中,所述方法包括将成型的载体先负载活性金属镍得到载体S-1,再负载磷源得到载体S-2,然后将载体S-2在氢气氛围下活化得到含有金属磷化物NixPy的加氢催化剂,其中x:y为(1:3)-(1:7);在制备得到的加氢催化剂中,载体占所述加氢催化剂总重量的60%-80%;(优选负载活性金属镍和磷源时所用的镍原子与磷原子摩尔比为1:3-1:7)。 2.根据权利要求1所述的制备方法,其中,所述方法中负载活性金属镍的步骤包括,将镍的前驱体与水配制成溶液A,通过等体积浸渍方法将镍负载到载体上,干燥后得到负载了活性金属镍的载体S-1;其中优选是在80-120℃下干燥;其中还优选干燥3-7h;优选通过等体积浸渍将镍负载到载体后,先室温放置8-16h,再干燥得到载体S-1。 3.根据权利要求1所述的制备方法,其中,所述方法中负载磷源的步骤包括,将磷的前驱体与水配制成溶液B,通过等体积浸渍方法将磷负载到载体S-1上,干燥后得到负载了磷的载体S-2;其中优选是在80-120℃下干燥;其中还优选干燥3-7h。 4.根据权利要求1所述的制备方法,其中,所述方法中活化的步骤包括,先将载体S-2在氢气气氛中,在750-900℃下活化,活化结束后降温至室温,在2%的O2/N2条件下钝化得到所述的加氢催化剂;优选氢气体积空速为600-3000h-1;优选载体S-2在氢气气氛中,以1-10℃/min

加氢车间工艺描述

加氢车间工艺描述 Prepared on 24 November 2020

加氢车间工艺描述 1、制氢装置: 制氢工艺采用轻烃蒸汽转化法制氢,制氢装置设计以催化干气为原料为主。转化制氢过程可分为原料净化、轻烃蒸汽转化、CO中温变换等过程。制氢装置全系统包括原料气压缩、原料气精制、轻烃蒸汽转化、CO中温转换、余热锅炉、PSA等部分。 制氢工艺基本过程是:原料气进入精制系统加氢、脱硫反应器,在一定的操作温度、氢气压力和空速条件下,在催化剂作用下,进行加氢烯烃饱和、脱硫、脱氯化学反,把原料气中有机硫化物、氯化物脱除,烯烃完全饱和。精制原料气进入转化炉炉管,并在一定压力、温度、空速、水碳比条件下,通过转化催化剂作用,生成氢气和一氧化碳、二氧化碳和少量的甲烷,进入中变反应器,通过中温变换催化剂的作用,使CO与水蒸汽进行中温变换反应生成氢气和。中变气进入PSA氢提纯装置,进行变压吸附脱除中变气中杂质,得到纯 CO 2 度%的高纯度氢气。 2、柴油加氢装置 加氢精制工艺主要是用于油品精制方面,其目的是除掉油品中的硫、氮、氧化合物,饱合油品中烯烃以及去掉油品中金属、非金属杂质。 本套以催化柴油、常柴的混合油为原料,经过加氢反应进行脱硫、脱氮、烯烃饱和等反应,生产满足国五要求的精制柴油。 工艺流程如下:混合原料经预热后热氢混合后进入反应炉加热升温。进入反应器进行加氢脱硫、脱氮、脱氧反应。加氢反应产物经冷却进入高、低压分离系统进行气、液、水三相分离。分离出的氢气进入循环氢压缩机建立临氢系统氢气循环。柴油进入汽提塔进行硫化氢汽提。汽柴油进入分馏塔进行分馏。

3、汽油加氢装置 汽油加氢装置根据催化裂化汽油中硫、烯烃、芳烃含量的分布特点,将催化裂化汽油切割为LCN和HCN两个汽油馏分。HCN部分在选择性加氢脱硫催化剂作用下,通过缓和条件进行加氢脱硫反应,,LCN部分不经过选择性加氢脱硫反应,从而使芳烃基本不饱和,烯烃也得到最大程度的保留,从而实现在脱硫的同时辛烷值损失最小。该装置由预加氢部分,预分馏部分,选择性加氢部分,汽提部分及公用工程部分组成,原料油为催化汽油。 工艺流程简述:原料油经过滤换热后进入预加氢反应器,预加氢反应流出物通过换热减压后进入预分馏塔,塔顶油气经冷凝冷却后进入预分馏塔顶回流罐进行油、气、水分离,闪蒸出的气体送出装置处理,油相经预分馏塔顶回流泵升压后分别作为塔顶回流一路作为轻汽油外出。重汽油进入HDS 第一反应器、HDS 第二反应器,进行深度加氢脱硫反应。反应流出物进入分离器进行气、油、水三相分离,分离器底部出来的低分油进入汽提部分;含硫污水送出装置处理;顶部出来的循环氢脱硫后与装置外来新氢混合后与重汽油混合作为混合进料。低分油进入汽提塔,塔顶油气进入汽提塔顶回流罐进行油、气、水分离,闪蒸出的气体送出装置处理,油相作为塔顶回流,塔底精制重汽油与轻汽油混合后作为产品送出装置。 加氢车间

加氢精制催化剂安全生产要点(2021新版)

The prerequisite for vigorously developing our productivity is that we must be responsible for the safety of our company and our own lives. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 加氢精制催化剂安全生产要点 (2021新版)

加氢精制催化剂安全生产要点(2021新版)导语:建立和健全我们的现代企业制度,是指引我们生产劳动的方向。而大力发展我们生产力的前提,是我们必须对我们企业和我们自己的生命安全负责。可用于实体印刷或电子存档(使用前请详细阅读条款)。 1工艺简述 用于油品精制的加氢精制催化剂品种很多,性能各异,基质均为氧化铝,浸渍不同金属做活性组分。RN—1加氢精制催化剂是加工成形为三叶草条状的r—Al2O3担体,分别浸渍氟和钨镍金属制成。简要生产工艺过程是将高纯氢氧化铝粉与胶溶剂,助挤剂等混捏后挤成三叶形条状,经干燥和活炉焙烧脱水成为担体。担体经含氟盐溶液浸渍、干燥焙烧、再经含镍、钨的溶液浸渍、干燥焙烧即制成RN—1加氢精制催化剂。 生产中使用的原料有硝酸、氟盐等强氧化剂和腐蚀性物质,炼厂干气做为燃料,系易燃易爆物质。 2重点部位 2.1浸渍工序此工序有前氟盐浸渍工序和后镍、钨浸渍工序。浸渍液制备和浸渍作业均与多种有毒、有害及腐蚀性物质接触,如果设备腐蚀可靠性不足或操作防护等失误将造成严重的伤害事故。

2.2成品焙烧炉该炉系用瓦斯加热空气进行浸渍金属后的催化剂成品干燥活化的高温设备。在此设备中,如果活化温度控制不当和物料太湿或粉状物太多,可能造成局部超温而烧料;燃料系统可因泄漏、带水等原因发生着火或其他事故;还可因防护用品等操作失误造成灼烫、伤害等危害。 3安全要点 3.1浸渍定期对浸渍液制备、浸渍罐等易被腐蚀的设备进行检查鉴定,防止物料因设备腐蚀而泄漏造成事故;经常对有毒、有害作业岗位作业人员的防护措施的正确实施进行检查,纠正冒险或违章作业,防止中毒和化学灼伤。 3.2成品焙烧炉对每批进行活化的催化剂进炉前,应检查控制粉状物不能太多和太湿;检查并严格控制活化温度在480?20℃和料层超温的紧急放料措施及操作机构应灵活好用;经常对燃料系统运行情况进行严格检查,随时督促消除发现的隐患;焙烧作业中特别是活化炉放料时,应督促作业人员佩戴防烫护具,防止烫伤。 3.3其他部位 3.3.1混捏挤条机的孔板和螺栓,在运转挤条前要经仔细检查,不能有裂纹等缺陷,防止挤条时折断伤人。

汽油加氢装置工艺流程培训教案

汽油加氢装置工艺流程培训教案 1 汽油加氢装置简介 1.1 概况 乙烯装置来的裂解汽油(C5—C9馏份)中含有大量的苯、甲苯、二甲苯等芳烃成份,是获得芳烃的宝贵原料。裂解汽油中除芳烃外,还含有单烯烃,双烯烃和烯基芳烃,还含有硫、氧、氮杂质。由于有不饱和烃的存在,裂解汽油是不稳定的。裂解汽油加氢的目的就是使不饱和烃变成饱和烃,并除去硫、氮、氧等杂质,为芳烃抽提装置提供稳定的高浓度芳烃含量的原料—加氢汽油。 1.2 原辅料及成品的特性 本装置在工艺上属于易燃、易爆、高温生产线,易发生着火、爆炸和气体中毒等事故。 裂解汽油为淡黄色芳香味挥发性液体,是芳香族和脂肪碳氢化合物的混合体。主要是由苯、甲苯、二甲苯、乙苯及C5-C9以上烃类组成。对人体存在危害作用。 氢气是种易燃易爆气体。氢气与空气混合,爆炸范围为4-74%(V)。 加氢汽油主要是由由苯、甲苯、二甲苯、乙苯及C5-C8饱和烷烃组成,对人体也存在危害作用。 过氧化氢异丙苯为无色或黄色油状液体,有特殊臭味,易分解引起爆炸。 硫化氢属于高危害毒物,密度比空气重,能沿地面扩散,燃烧时会产生二氧化硫有毒蒸汽,对人体存在危害作用。 2 工艺流程简介

2.1工艺特点 汽油装置采用国产化汽油加氢技术,其生产方法是先切除C 5馏份和C 9馏份,剩下的C 6—C 8馏份进行一段加氢,二段加氢,最终得到芳烃抽提的原料—加氢汽油。 2.2装置组成 汽油加氢装置由以下三部分组成: A :预分馏单元(主要包括切割C 5、脱砷、切割C 9) B :反应单元(主要包括一段加氢、二段加氢、压缩、和过热炉) C :稳定单元(主要包括脱硫化氢系统) 2.3工艺说明 2.3.1生产方法 利用裂解汽油中各组分在一定温度、压力的条件下,其相对挥发度不同,采用普通精馏的方法,将C 5馏份和沸点在其以下的轻馏份、C 9馏份和沸点在其以上的重组份,通过脱C 5塔和脱C 9塔分离,得到C 6—C 8馏份,然后通过钯或镍系催化剂和钴钼催化剂,进行选择性二次加氢,将C 6—C 8馏份中的不饱和烃加氢成饱和烃,并除去其中的有机硫化物、氧化物、氯化物,其主要化学反应有: (1)双烯加氢,在一段反应器进行。例如: (2)单烯及硫、氧、氮、氯化物加氢,在二段反应器进行。 例如: H 3C-CH=CH-CH=CH-CH 3+H 2 H 3C-CH=CH-CH 2-CH 2-CH 3 Pa Al 2O 3 CH 3-CH 2-CH=CH-CH 2-CH 3+H 2 CH 3-(CH 2)4-CH 3 Co+Mo Al 2O 3

柴油加氢精制工艺(工程科技)

柴油加氢精制工艺 定义:加氢精制是指在一定温度、压力、氢油比和空速条件下,原料油、氢气通过反应器内催化剂床层,在加氢精制催化剂的作用下,把油品中所含的硫、氮、氧等非烃类化合物转化成为相应的烃类及易于除去的硫化氢、氨和水。提高油品品质的过程。 石油馏分中各类含硫化合物的C—S键是比较容易断裂的,其键能比C—C或C—N键的键能小许多。在加氢过程中,一般含硫化合物中的C—S键先行断开而生成相应的烃类和H2S。但由于苯并噻吩的空间位阻效应,C-S键断键较困难,在反应苛刻度较低的情况下,加氢脱硫率在85%左右,能够满足目前产品柴油硫含量小于2000ppm 的要求。 柴油馏分中有机氮化物脱除较困难,主要是C-N键能较大,正常水平下,在目前的加氢精制技术中脱氮率一般维持在70%左右,提高反应压力对脱氮有利。 烯烃饱和反应在柴油加氢过程中进行的较完全,此反应可以提高柴油的安定性和十六烷值。 当然,在加氢精制过程中还有脱氧、芳烃饱和反应。加氢脱硫、脱氮、脱氧、烯烃饱和、芳烃饱和反应都会进行,只是反应转化率纯在差别,这些反应对加氢过程都是有利的反应。但同时还会发生烷烃加氢裂化反应,此种反应是不希望的反应类型,但在加氢精制的反应条件下,加氢裂化反应有不可避免。目前为了解决这个问题,主要是

调整反应温度和采用选择性更好的催化剂。 下面以我厂100万吨/年汽柴油加氢精制装置为例,简单介绍一下工艺流程: 60万吨柴油加氢精制 F101D201 D102 D101 SR101 P101P102E103E101 R101 K101 D106 E104 D103D104 D105 D107 P103 P201 E201A202 P202 A201 K101 E101E102E103A101 产品柴油 循环氢 低分气 C201 催化汽油选择性加氢脱硫醇技术(RSDS技术) 催化汽油加氢脱硫醇装置的主要目的是拖出催化汽油中的硫含量,目前我国大部分地区汽油执行国三标准,硫含量要求小于150ppm,烯烃含量不大于30%,苯含量小于1%。在汽油加氢脱硫的过程中,烯烃极易饱和,辛烷值损失较大,针对这一问题,石科院开发了RSDS技术。本技术的关键是将催化汽油轻重组分进行分离,重组分进行加氢脱硫,轻组分碱洗脱硫。采取轻重组分分离的理论基础是,轻组分中烯烃含量高,可达到50%以上,通过直接碱洗,辛烷值

加氢精制的催化剂

加氢精制的催化剂 加氢精制催化剂一般以钨、镍等为活性组分,以硅、铝等为载体(或担体)。 担体有两大类: 1、中性担体,如活性氧化铝、活性碳、硅藻土等 2、酸性担体,如硅酸镁、硅酸铝、分子筛等。 一般来说担体本身没有活性,在选择担体时一般选择中性担体。因为中性担体本身的裂解活性不高,用它制备的催化剂表现出较强的加氢活性和较弱裂解活性。 担体的作用: 1、担体具有较大的比表面,能使活性组分很好的分散在其表面上,从而更有效地发挥活性组分的作用,节省活性组分的用量。 2、担体做为催化剂的骨架起到提高催化剂的稳定性和机械强度的作用,并保证催化剂具有一定的形状和大小,减少流体阻力。 3、担体能够改善催化剂的导热性,防止活性组分因局部过热而引起烧结失活。 加氢装置催化剂的装填很重要,如果催化剂装填质量差,疏密不均,不但会造成催化剂装填量减少,更重要的是会使物料走“短路”或床层下陷,造成反应器床层物料和温度不均,物料和催化剂接触时间不等,严重影响到催化剂的寿命和产品的质量。 为确保催化剂的运输和装填安全,目前绝大多数催化剂在运

输时是氧化态,活性较低。为了使催化剂具有更高的活性和稳定性,提高催化剂抗中毒能力,催化剂在使用前需要预硫化。预硫化一般使用CS2或其它硫化物,在氢气的存在下先反应生成硫化氢,然后再进一步反应将催化剂中的活性组分转化成较高活性的“硫化态”。 硫化反应方程 CS2+4H2=CH4+2H2S 3NiO+H2+2H2S =Ni3S2+3H2O WO3+H2+2H2S = WS2+3H2O 催化剂的初活稳定(钝化):硫化后的催化剂活性极高,直接进质量较差的焦化汽柴油会立即积炭,使催化剂活性大幅度下降,因此需要用航煤或直硫柴油进行初活稳定,以适当降低催化剂活性,延长催化剂的使用周期。用直馏航煤做稳定油,因直馏航煤中的烯烃含量很低,进入反应系统后基本不会在催化剂表面积炭,起不到初活稳定的作用或初活稳定的作用很小。而直馏柴油的质量介于航煤和焦化柴油之间,在初活稳定期间可以在催化剂表面形成一定的积炭而适当降低催化剂的活性,从而保证在正常生产期间的温度控制。 催化剂在长期运行中表面会逐步结焦,其活性会逐步降低,因此当催化剂活性降低到一定程度后需要对催化剂进行烧焦再生。目前一般采用器外再生技术。 空速对加氢精制的影响 空速是单位时间的进料量与催化剂藏量之比,有体积空速和重量空速两种表示方式。降低空速意味着原料与催化剂接触时间的增加,加氢深度增加,因此产品质量可提高,但是降低空速可促进加氢裂化反应,降低产品液收,增加氢耗,增加催化剂的积炭,降低空速也意味着在反应器内的催化剂数量不变时,降低了处理量;加大空速会导致反应深度的下降,此时需提高反应温度来提高反应深度。空速高低变化可用提高或降低反应温度来补偿对反应深度的影响。 氢油比对加氢精制的影响

浅谈石油加氢精制催化剂用高纯三氧化钼的制备原理及生产工艺

浅谈石油加氢精制催化剂用高纯三氧化钼 的制备原理及生产工艺 马孝飞技术中心 摘要:对催化剂用高纯三氧化钼的制备原理以及生产工艺做了简单的分析,提出了生产过程中需要解决和避免的问题。 关键词:热解、晶型、温度、通风、溶解 Abstract :Of high purity molybdenum trioxide catalyst preparation principle and the production process to do a simple analysis, the production process need to address and avoid problems. Key words :pyrolysis, crystal, temperature, exhaust ,dissolved, 一、前言 金属钼是一种不可再生的矿产资源,我国钼资源储量居世界第二。钼具有优异的性能,可应用于化工、钢铁、生物、电子、医药和农业等领域。随着工业化水平的发展,钼的应用领域不断扩大。其中钼系催化剂已在石油、医药等工业领域广泛应用。 钼系列催化剂的特点是:具有不易中毒,使用寿命长;在催化反应过程中具有很高的活性、好的选择性和机械强度;不仅可处理一般原油,而且对品质低劣的重质油也很有效。因此,石油化工生产离不开催化剂,催化剂是炼油和石油化工技术的核心,在催化剂领域含钼催化剂占据着十分重要的地位,特别是石油加氢精制、加氢脱硫催化剂,需要在特定浸渍体系、浸渍条件下中具有高溶性的高纯三氧化钼(MoO3),其在催化剂中所占比例可达20%以上,因此三氧化钼

(MoO3)其及其化合物是石油化工和化学工业中一类非常重要且用量较大的的原料,发挥着愈来愈重要的作用。 二、生产原理 高纯三氧化钼可以分为两种,一种为催化剂用高纯三氧化钼,颜色为蓝灰色,另外一种为深加工用高纯三氧化钼,颜色为淡黄色。制备方法主要体现在热分解温度的不同。 高纯三氧化钼可以利用热分解钼酸铵来制取,钼酸铵在空气中加热焙解,使钼酸铵失去结晶水和氨转变为三氧化钼。 反应式为:MS A 加热MoO3 + NH3↑+ H2O↑ 由于钼酸铵转变为三氧化钼是热解过程,在不同的温度段存在着不同的相变过程。

加氢精制催化剂的组成、制备及其性能评价

加氢精制催化剂的组成、制备及其性能评价 前言: 加氢精制是石油加工的重要过程之一,它主要是通过催化加氢脱除原油和石油产品中的S、N、O以及金属有机化合物等杂质[1]。加氢精制主要包括加氢脱硫(HDS)、加氢脱氮(HDN)和加氢脱金属(HDM)等工艺,一般在催化加氢过程中是同时进行的。其具体流程图[1]如下所示: 近年来,由于原油的质量逐渐变差以及对重油的加工利用的比例逐渐增大,给加氢精制过程提出了更高的要求。出于对环保的重视,世界各国普遍制订了严格的环保法规,对汽油、柴油等燃料油中N和S含量作出了严格的限制。此外,又对汽油中的苯、芳烃、烯烃含量、含氧化合物的加入量以及柴油十六烷值和芳烃含量等也有严格的限制指标。这些清洁燃料的生产均与加氢技术的发展密切相关[2]。因而加氢精制技术已成为石油产品改质的一项重要技术,其核心又在于加氢精制催化剂的性能。 一、催化加氢催化剂的组成及其制备方法 1.加氢催化剂的组成 加氢精制催化剂一般都是负载型的,是有载体浸渍上活性金属组分而制成[3]。载体一般均是Al2O3。 (1)活性组分 其活性组分主要是由钼或钨以及钴或镍的硫化物相结合而成[4]。目前工业上常用的加氢精制催化剂是以钼或钨的硫化物为主催化剂,以钴或镍的硫化物为助催化剂所组成的。对于少数特定的较纯净的原料,以加氢饱和为主要目的时,也有选用含镍、铂或钯金属的加氢催化剂的。 钼或钴单独存在时其催化活性都不高,而两者同时存在时互相协合,表现出很高的催化活性。所以,目前加氢精制的催化剂几乎都是由一种VIB族金属与一种VIII族金属组合的二元活性组分所构成。 (2)载体 γ-Al2O3是加氢精制催化剂最常用的载体。一般加氢精制催化剂要求用比表面积较大的氧化铝,其比表面积达200~400m2/g,孔体积在0.5~1.0cm3/g之间。[1]氧化铝中包含着大小不同的孔。不同氧化铝的孔径分布是不同的,这取决于制备的方法和条件。此

加氢精制催化剂及工艺技术

加氢精制催化剂及工艺技术 ?加氢精制技术应用概况 ?加氢精制主要反应及模型化合物加氢反应历程 主要反应 模型化合物加氢反应历程 典型工艺流程 ?加氢精制工艺技术 重整原料预加氢催化剂及工艺 二次加工汽油加氢精制催化剂及工艺 煤油加氢精制催化剂及工艺 劣质二次加工柴油加氢精制催化剂及工艺 进口高硫柴油加氢精制催化剂及工艺 焦化全馏分油加氢精制催化剂及工艺 石蜡加氢精制催化剂及技术 ?加氢精制催化剂 加氢精制技术应用概况 抚顺石油化工研究院(FRIPP)是国内最早从事石油产品临氢催化技术开发的科研机构。几十年来,FRIPP在轻质馏分油加氢精制、重质馏分油加氢处理、石油蜡类加氢精制、渣油加氢处理和临氢降凝等领域已开发成功5大类共30个品牌的商业催化剂,先后在国内45个厂家共115套加氢精制/加氢处理工业装置上应用,累计加工能力超过4000万吨/年。 FRIPP加氢精制技术开发的经历:

?1950s 页岩油加氢技术 ?1960s 重整原料预精制技术 ?1970s 汽、煤、柴油加氢精制技术 ?1980s 石油蜡类加氢精制技术 ?1990s 重质馏分油加氢精制技术、渣油加氢处理技术 FRIPP加氢精制系列催化剂: ?轻质馏分油 481、481-3、FH-5、FH-5A、FDS-4、FDS-4A、FH-98 ?重质馏分油 3926、3936、CH-20、3996 ?柴油临氢降凝 FDW-1 ?石油蜡类 481-2、481-2B、FV-1 ?渣油 FZC-10系列、FZC-20系列、FZC-30系列、FZC-40系列、FZC-100系列、 FZC-200系列、FZC-300系列 FRIPP加氢精制催化剂工业应用统计(1999年): 加氢精制主要反应及模型化合物加氢反应历程 加氢精制主要反应 加氢精制主要反应为加氢脱硫、加氢脱氮、加氢脱氧、烯烃与芳烃的饱和加氢,以及加氢脱金属。其典型反应如下:

加氢 制造工艺过程

加氢反应器制造工艺设计 一:加氢反应器的设计背景 工程科学是关于工程实践的科学基础,现代过程装备与控制工程是工程科学的一个分支,因此,生产实习是工科学习的重要环节。在兰州兰石集团实习期间,对化工设备的发展前景和各种化工容器如反应釜、换热器、储罐、分液器和塔器等的有所了解和学习。生产实习的主要任务是学习化工设备的制造工艺和生产流程,将理论知识与生产实践相结合,理论应用于实际。因此,过程装备与检测的课程设计的设置是十分必要的。由于我们实习的加工车间正在进行加氢反应器的生产,而加氢反应器是石油化工行业的关键设备,其生产工艺和设计制造在化工设备中具有显著的代表性,为此,选择加氢反应器这一典型的化工设备作为课程设计的设计题目。 二:加氢反应器的主要设计参数 1:引用的主要标准及规范 国家质量技术监督局颁发的《压力容器安全技术监察规程》(99)版 GB150-1998 《钢制压力容器》 GB6654-1996 压力容器用钢板(含1、2号修改单) JB4708-2000 钢制压力容器焊接工艺评定 JB/T4709-2000 钢制压力容器焊接规程 JB4744-2000 钢制压力容器产品焊接试板的力学性能检验 JB/T4730-2005 承压设备无损检测 JB4726-2000 压力容器用碳素钢和低合金钢锻件 JB4728-2000 压力容器用不锈钢锻件 GB/4237-2007 不锈钢热轧钢板和钢带 GB/T3280-2007 不锈钢冷轧钢板和钢带 GB/T3077-1999 合金结构钢 GB/T14976-2002 流体输送用不锈钢无缝钢管 JB/T4711-2003 压力容器涂敷与运输包装 2 主要技术参数 表一 设计压力 5.75/0.1MPa 设计温度375/177℃ 最高工作压力 4.88MPa 最高工作温度343℃ 容器类别三类容器 容积78.2立方米 腐蚀裕量0 水压试验立式7.47/卧式7.55MPa 盛装介质石脑油、油气、氢气、硫化氢 主体材质15CrMoR 3 结构特点 该加氢精制反应器为板焊结构,其内径φ4000㎜,壁厚98㎜,由2节组成;封头内半径2022

渣油加氢工艺流程

第一节工艺技术路线及特点 一、工艺技术路线 300×104t/a渣油加氢脱硫装置采用CLG公司的固定床渣油加氢脱硫工艺技术,该工艺技术满足操作周期8000h、柴油产品硫含量不大于500ppm、加氢常渣产品硫含量不大于0.35w%、残炭不大于5.5w%、Ni+V不大于15ppm的要求。 二、工艺技术特点 1、反应部分设置两个系列,每个系列可以单开单停(单开单停是指装置二个系列分别进行正常生产和停工更换催化剂)。由于渣油加氢脱硫装置的设计操作周期与其它主要生产装置不一致,从全厂生产安排的角度,单开单停可以有效解决原料储存、催化裂化装置进料量等问题,并使全厂油品调配更灵活。 2、反应部分采用热高分工艺流程,减少反应流出物冷却负荷;优化换热流程,充分回收热量,降低能耗。 3、反应部分高压换热器采用双壳、双弓型式,强化传热效果,提高传热效率。 4、反应器为单床层设置,易于催化剂装卸,尤其是便于卸催化剂。 5、采用原料油自动反冲洗过滤器系统,滤除大于25μm以上杂质,减缓反应器压降增大速度,延长装置操作周期。 6、原料油换热系统设置注阻垢剂设施,延长操作周期,降低能耗,而且在停工换剂期间可减少换热器和其它设备的检修工作。 7、原料油缓冲罐采用氮气覆盖措施,以防止原料油与空气接触从而减轻高温部位的结焦程度。 8、采用炉前混氢流程,避免进料加热炉炉管结焦。 9、第一台反应器入口温度通过调节加热炉燃料和高压换热器旁路量来控制,其他反应器入口温度通过调节急冷氢量来控制。 10、在热高分气空冷器入口处设注水设施,避免铵盐在低温部位的沉积。 11、循环氢脱硫塔前设高压离心式分离器除去携带的液体烃类,减少循环氢脱硫塔的起泡倾向,有利于循环氢脱硫的正常操作。 12、设置高压膜分离系统,保证反应氢分压。 13、冷低压闪蒸罐的富氢气体去加氢裂化装置脱硫后去PSA回收氢气。 14、新氢压缩机采用二开一备,每台50%负荷,单机负荷较小,方便制造,且装置有备机。 15、分馏部分采用主汽提塔+分馏塔流程,在汽提塔除去轻烃和硫化氢,降低分馏塔材质要求。 分馏塔设侧线柴油汽提塔及中段回流加热原料油,降低塔顶冷却负荷,提高能量利用率,减小分馏塔塔径。 16、利用常渣产品发生部分低压蒸汽。通过对装置换热流程的优化,把富裕热量集中在温位较高的常渣产品,发生低压蒸汽。 17、考虑到全厂能量综合利用,正常生产时常渣在150℃送至催化裂化装置。在催化裂化装置事故状态下,将常渣冷却至90℃送至工厂罐区。 18、催化剂预硫化按液相预硫化方式设置。 三、工艺流程说明 (一)工艺流程简述 1、反应部分 原料油自进装置后至冷低压分离器(V-1812)前的流程分为两个系列,以下是一个系列的流程叙述: 原料油在液位和流量的串级控制下进入滤前原料油缓冲罐(V-1801)。原料从V-1801底部出来由原料油增压泵(P1801/S)升压,经中段回流油/原料油换热器(E-1801AB)、常渣/原料油换热器(E-1802AB、E-1803AB)分别与中段回流油和常渣换热,然后进入原料油过滤器(S-1801)以除去原料油于25μm的杂质。过滤后的原料油进入滤后原料油缓冲罐(V-1802),原料油从V-1802底部出来后由加氢进料泵(P1802/S)升压,升压后的原料油在流量控制下进入反应系统。 原料油和经热高分气/混合氢换热器(E-1805AB)预热后的混合氢混合,混合进料经反应流出物/反应进料换热器(E-1804)预热后进入反应进料加热炉(F-1801)加热至反应所需温度进入第一台加氢反应器(R-1801),R-1801的入口温度通过调节F-1801的燃料量和E-1804的副线量来控制,R-1801底部物流依次通过其它三台反应器(R-1802、R-1803、R-1804),各反应器的入口温度通过调节反应器入口管线上注入的冷氢量来控制。从R-1804出来的反应产物经过E-1804换热后进入热高压分离器(V-1803)进行气液分离, V-1803底部出来的热高分液分别在液位控制下减压后,进入热低压分离器(V-1804)进行气液分离,V-1803顶部出来的热高分气分别经热高分气/混合氢换热器、热高分气蒸汽发生器(E-1806)换热后进入热高分气空冷器(E-1807),冷却到52℃进入冷高压分离器(V-1806)进行气、油、水三相分离。 为了防止铵盐在低温位析出堵塞管路,在热高分气空冷器前注入经注水泵(P-1803/S)升压后的脱硫净化水等以溶解铵盐。 从V-1806顶部出来的冷高分气体(循环氢)进入高压离心分离器(V-1807)除去携带的液体烃类,减少循环氢脱硫塔(C-1801)的起泡倾向。自V-1807顶部出来的气体进入C-1801底部,与贫胺液在塔逆向接触,脱除H2S,脱硫溶剂采用甲基二乙醇胺(MDEA),贫胺液从贫胺液缓冲罐(V-1809)抽出经贫溶剂泵(P-1804/S)升压后进入C-1801顶部,从塔底部出来的富胺液降压后进入富胺液闪蒸罐(V-1810)脱气。富液脱气后出装置去溶剂再生,气体去硫磺回收。 自C-1801顶不出来的循环氢进入循环氢压缩机入口分液罐(V-1808)除去携带的胺液,V-1808顶部出来的循环氢分成两路,一路去氢提浓(ME-1801)部分,提浓后的氢气经提浓氢压缩机(K-1804)升压后与新氢压缩机(K-1802A.B.C)出口新氢汇合,释放气去轻烃回收装置;另一路进入循环氢压缩机(K-1801)升压,升压后的循环氢分为三部分,第一部分与新氢压缩机来的新氢混合,混合氢去反应部分;第二部分作为急冷氢去控制反应器入口温度;第三部分至E-1807前作为备用冷氢和K-1801反飞动用。循环氢压缩机选用背压蒸汽透平驱动的离心式压缩机。 从两个反应系列的冷高压分离器底部出来的冷高分液分别在液位控制下减压混合后,进入冷低压分离器(V-1812)进行气液分离,冷低分液体在液位控制下从罐底排出并进入热低分气/冷低分液换热器(E-1809)、柴油/冷低分油换热器(E-1811)、常渣/冷低分油换热器(E-1812)换热后进入汽提塔(C-1803)。V-1812顶部出来的冷低分气去轻烃回收装置脱硫。 冷高压分离器底部的含H2S、NH3的酸性水进入酸性水脱气罐(V-1823)集中脱气后送出装置。 两个反应系列的热低分油在液位控制下从V-1803底部排出去分馏部分。热低分气体经E-1809换热后进入热低分气空冷器(E-1810)冷却到54℃,然后进入冷低压闪蒸罐(V-1811)进行气液分离,为了防止在低温位的地方有铵盐析出堵塞管路,在E-1810前注水以溶解铵盐。V-1811顶部出来的富氢气体直接送至加氢裂化装置进行脱硫,然后去PSA装置回收氢气;从下部出来的冷低压闪蒸液进入到冷低压分离器。 新氢从全厂氢网送入,进入新氢压缩机经三段压缩升压后分两路分别与两个系列循环氢压缩机出口的循环氢混合,混合氢气分别返回到各自的反应部分。新氢压缩机设三台,二开一备,每一台均为三级压缩,每台的一级入口设入口分液罐,级间设冷却器和分液罐。 2、分馏部分 来自反应部分的热低分油与经加热后的冷低分液一起进入汽提塔(C-1803)。塔底采用水蒸汽汽提。塔顶部气相经汽提塔顶空冷器(E-1814)冷凝冷却后进入汽提塔顶回流罐(V-1814)进行气液分离,V-1814气体与冷低分气一起出装置送至轻烃回收统一脱硫;V-1814底部出来的液体经汽提

脱水技术在PTA加氢精制工艺中的应用

通用机械 脱 扬子石油化工股份有限公司化工厂副总工程师 沈品德 PTA 加氢精制工艺中的应用 图 PTA精制工艺流程图 1.混合罐 2.溶解罐 3.加氢反应器 4.第一结晶器 5.第二结晶器 6.第五结晶器 7.压力离心机 8.真空过滤机 9.干燥机 脱水技术在

2008年 第 4 期 33 通 二、压力离心机系统 PTA生产中,要保证压力离心机系统稳定运行。压力离心机系统是控制产品质量的重要环节,离心机分离效果的好坏直接影响到产品中PT酸和其他杂质的含量。因此,要定期对离心机系统进行检查,保证离心机油路系统的正常运行,并定期对离心机系统做一些常规处理。 由于T A料和P T酸易在压力离心机的转鼓、支架、进料管和出料管线处粘壁,降低压力离心机的处理能力,使得滤饼中的含湿量增加,从而影响到产品质量。另外由于压力离心机内转子和支架上的结料,会增加离心机的振动,使离心机的故障率增加,因此,要对离心机进行水洗和碱洗操作,包括定期和不定期的处理,从而延长离心机的运行周期,减少检修频次。 (1)水洗 切断离心机进料,切进冲洗水,对压力离心机进行在线冲洗,大约5~10m i n,水洗后恢复进料。保证每天水洗一次。 (2)碱洗 停机进料,切水冲洗;停止水洗,降温降压隔离;进料管进碱,根据工艺及设备要求确定碱洗时间;停止碱洗,切为水洗,至排出液呈中性为止;系统升温升压,解除隔离进料。一般情况下1个月碱洗1次;特殊情况下,根据产品的质量和离心机的运行情况而定,当产品中的P T酸含量偏高或离心机的振动偏大时,要进行碱洗。 三、真空过滤技术的应用 1.进料温度的控制 如果温度过高,会引起溶液闪蒸,造成滤布堵塞,控制时在过滤机进料处加入脱离子水,降低溶液的温度,使其降到89℃左右。 2.进料浓度的控制 进料浓度的控制主要是用来控制滤饼的厚度,滤饼过厚会引起洗涤效果差,滤饼的含湿量增加,影响产品的质量,因此料浆浓度应控制在35%~45%。 3.真空度的控制 真空度过高会引起滤饼厚度增加,造成过滤机的负荷过高,前后物料不能平衡,真空度过低会引起滤饼的含湿量增加,影响产品质量,因此过滤机的真空度应控制在-0.045~0.049MPa范围内。 4.溢流堰高度的调节 如果溢流堰太高会引起滤饼的厚度增加,造成滤 饼的含湿量增加,影响产品的质量,并造成前后物料不平衡。如果溢流堰过低,要增加过滤机的转速,同样造成滤饼的含湿量增加。 5.反吹气量的控制 反吹气量控制过低,滤饼不能有效地吹下,影响过滤效果,如果过高会造成料斗中浆料喷料,缩短滤布的使用周期,因此,生产中反吹气量应控制在15~40kPa。 6.洗涤水量的控制 洗涤水量的控制主要是用来控制产品的质量,洗涤水量过低会造成产品中的杂质含量高,影响产品的质量;如果洗涤水量过高会增加滤饼的含湿量,增加干燥机的能量损耗,因此洗涤水量控制在8~15m 3/h。 7.应用效果 以真空过滤机为核心设备的过滤系统取代常压离心机后,系统运转平稳,故障率低,完全满足生产工艺要求。 (1)检修费用低 常压离心机由于转鼓经常结料,因此维护保养较为困难,经常发生易熔塞化、剪切销断裂等故障,并需经常更换齿轮箱、大轴承和轴瓦等备件,每年检修费用约60万元/台。而采用真空过滤机后,除滤布定期更换外,其他基本上可实现每两年一修,大大降低了检修成本。 (2)运行成本低 该单元采用真空过滤机系统比采用常压离心机系统每小时可节能约200kW·h。同时每年可节约10~15万元的油脂、润滑油等费用。 (3)产品质量提供 采用真空过滤机后,产品中P T含量比采用常压离心机时整体下降了约10m g/k g,特别是可以通过调节真空过滤机洗液量来调节产品中的P T含量,解决了精制生产中P T酸波动幅度大的难题,产品质量得到了有效控制。 (4)处理能力大 常压离心机单台处理量小,产能低,满负荷生产时,3台离心机必须全部运行。采用真空过滤机后,实现了“一开一备”模式,且两套真空系统可以互为备用,极大地提高了精制单元后系统的处理能力。 四、PTA物料干燥 P T A物料干燥机为倾斜回转列管式干燥设备,用于干燥含湿量约10%~15%P T A滤饼,除去其中的水分,

相关主题
文本预览
相关文档 最新文档