当前位置:文档之家› 空气源热泵+太阳能

空气源热泵+太阳能

空气源热泵+太阳能
空气源热泵+太阳能

PHNIX “空气源热泵+太阳能”酒店热水系统设计

本工程为广西省东莞市某宾馆,根据相关要求:为该宾馆提供65套房间的生活用热水,满员130人。现设计选用芬尼克兹空气源热泵热水机组+太阳能为该宾馆提供热水。

项目概况

本工程为广西省东莞市某宾馆,根据相关要求:为该宾馆提供65套房间的生活用热水,满员130人。现设计选用芬尼克兹空气源热泵热水机组+太阳能为该宾馆提供热水。

设计思路

酒店热水供应,水温55℃~60℃,采用太阳能和空气源热泵综合应用提供热水,热水系统采用机械加压送水,并设置保温储水箱

考虑经济、节能、环保等要求,经研究采用“太阳能+空气热泵”综合应用供应热水

在夏季阳光充足时利用太阳能提供所需的热水,在冬季和阴雨天气太阳能不足时利用空气源热泵热水机组来补充提供热水。这样不管春夏秋冬、白天黑夜、下雨下雪、系统都可以源源不断的从空气中吸收低品位热量用于制生活热水所需要的热量,保证用水温度及用水量,最大程度节能

设计依据

《采暖通风与空气调节设计规范》(GB50019-2003

建筑给水排水设计规范》(GB50015-2003

《给水排水制图标准》(GB/T50106-2001

建筑给排水及采暖工程施工质量验收规范》(GB50242-2002

《建筑给排水设计手册

现场所堪探的相关资料

芬尼克兹空气源热泵和太阳能综合应用相关技术资料

设备选型

日用水量

空气源热泵选型

根据机组性能曲线,PASHW060SB-2-C热泵机组额定制热量20kw/台。在标准工况下:1台PASHW060SB-2-C热泵机组产60℃热水490kg/h,2台机组每天工作13个小时产水12740kg,可完全满足用水需求

在冬天当环境温度降低时,空气源热泵热水机组选型重点在于冬季能满足高峰期的热水使用量。冬季室外环境温度较低为10℃时,设自来水进水温度15℃,设定热水出水温度60℃、即需温升45℃

高峰期总热负荷即12000L*45℃=540000千卡

设备选型: 选PHNIX(芬尼克兹)双热源热泵热水机组PASHW060SB-2-C,在冬季单台机组额定小时供水量约为340L ,2台机组运行18个小时,则每天机组制热量为:

机组额定供水量:340L×2×18小时=12240 升

高峰期间总热量12000L<2台机组额定供水量12240L,故能满足实际需求

综上所述:选用2台芬尼克兹空气源热泵热水机PASHW060SB-2-C机组,在冬季环温最低的情况下每天只需运行18个小时即可满足酒店热水要求。在夏季的阴雨天气,2台空气源热水机组运行13个小时即可满足热水要求。故选用PASHW060SB-2-C空气源热泵机组2台。如酒店在某时段用水较多,热水供水不足时可由太阳能补充所需的热水量

保温水箱选型

=12000(L

酒店日用水量m

考虑宾馆用热水较为集中,所以选用2个5吨保温水箱

太阳能设计计算

板式太阳能夏季每天每片制热水(60℃)200升,那么每天产12000升热水需太阳能板的片数为:12000÷200=60;取60片

热泵热水设备、保温水箱、太阳能等放在建筑屋面,综合考虑太阳能采用板式太阳能板。用角钢制作支架,倾斜叠放在建筑物顶层。将60片太阳能板按每6片串接成一组,共10组并联连接

由于太阳能加热为循环加热,所以需配置容积为1 m3的不锈钢保温加热水箱1个

水泵选型

PHNIX空气源热泵机组每台机自带循环水泵(威乐水泵),所以热泵供水系统不需要另配水泵

太阳能系统需配置太阳能循环加热水泵2台(一用一备),选GDR40-20,流量11.4m3/h,扬程20m。太阳能热水泵2台,选TP25-50/2R流量:6m3/h,扬程5.5m 热水供水增压水泵是将热水送入向各宾馆房间,同时循环主管路热水水温避免用热水时要放出管道内的冷水。选2台GDR50-30(1用1备),流量18m3/h,扬程30m

PASRW060SB-2-C空气源热泵热水机组2台,5吨热水箱2个(不锈钢保温水箱),GDR40-20太阳能循环加热泵2台(1用1备),TP25-50/2R太阳能加热泵2台(1用1备),热水供水泵2台GDR50-30(1用1备),太阳能智能控制系统1套,热泵热水系统控智能控制系统1套

使用说明(见热水供应系统图

热泵供水系统

保温水箱→各用水单元

设定热水水温(设定在55℃~60℃),启动热泵机组工作,吸收酒店冷水机组的冷却水中热量和空气中热量,将进入机组的冷水直接加热至使用温度后贮入保温水箱,再经加压水泵系统(热水供水泵)进入管网供用水单元使用(各房间2.太阳能供热水系统:太阳能→太阳能加热水箱→保温水箱→各用水单元。

设定热水水温(设定在55℃~60℃),启动太阳能加热水泵,水在太阳能中被循环加热,当温度达到设定温度时,太阳能热水泵启动将热水送入大保温水箱,再经加压水泵系统(热水供水泵)进入管网供用水单元使用(各房间

3.循环系统:热水管末端→回水管→保温水箱→热泵机组

热水管末端装回水管,回水管设置电磁阀,当回水管网最不利点水温低于使用温度时,电磁阀打开,多余热水回至保温水箱

当保温水箱水温低于使用温度时,循环泵工作,将水箱水抽回热泵重新加热,确保保温水箱、管网水温在55℃~60℃

整套系统设备全自动运行,无须专人值守

运行费用分析计算

节能才是硬道理,芬尼克兹“空气源热泵热水机组+太阳能”综合应用解决热水方案,是综合利用热能技术,热泵机组采用直热式供水,循环恒温。真正做到在太阳能充足时利用太阳能,在太阳能不足时利用空气源热泵提供热水保证了热水的供应,提高制了能效综合利用效率

热负荷计

日用水量m =12000kg

所需热负荷Q=cm△t=1×12000×(60℃~20℃)=480000(kcal

太阳能运行费用

太阳能为可利用的环保能源提供热水。太阳能热水产品是吸收太阳能量加热冷

水,所以其运行费用为0

空气源热泵运行费用

电发热值860kcal/度,空气源热泵效率300%~450%,全年综合能效以350%计,管道热损失5%,电0.8元/度

耗电量:480000÷860÷3.5÷0.95=167.86(度/天

运行费用:167.86×0.8=134.29(元/天

平均费用:11.19(元/吨

费用可为免费,在太阳能不足时利用空气源热泵制热水工况工作,出水为直热式,热水源稳定,大大提高了综合能效,节能效果非常可观

太阳能与空气源热泵技术要求

B8太阳能及热泵集中热水系统技术条款 一、招标范围: 1、按国家相关技术标准、规范、热水系统图纸和招标文件的要求完成太阳能供热及空气源热泵辅助加热系统的施工图深化设计、设备采购供应、安装、调试工程等所有项目。 2、供应设备包括但不限于:太阳能集热器、保温承压水罐、膨胀罐、循环水泵组、热水回水泵组、空气源热泵、不锈钢管、各种阀门、电磁阀、自动化仪表及控制系统、机房内设备连接管路以及管路保温。安装内容包括集热装置、热泵系统、热水循环管路及部件、储水箱、配套水泵的安装及其管道连接。自动化仪表及控制系统包括温度计、压力表、传感器、循环水泵和热水回水泵的控制系统及与楼控系统的接口。 2.总承包单位负责提供冷水补水管道及接驳,楼内热水系统热水供水管道及回水管道的设备、管材、附件(包含水表井内的热水供水总管、热水回水总管、给水管的安装和水表井至各住户的热水供水支管、给水支管)的安装和预留预埋(含各种套管、预埋铁等)、太阳能集中供热水及空气源热泵辅助加热系统工程的混凝土结构工程(含设备基础等);中标单位提供施工详图及现场校核配合。 3.给排水:室内生活热水供回水管道、冷水补水管道以进入太阳能及热泵机房内的第一个阀门为界,阀门之前的管道安装由总包负责,阀门之后的管道及设备安装由中标单位负责。太阳能及热泵系统的调试由中标人负责,生活热水系统的联合调试由中标人配合总包完成。机房的排水及照明、通风设施由总包负责。 4.电气:太阳能及热泵专用开关箱进线电缆的采购和安装由总承包单位负责;太阳能及热泵专用开关箱之后的配电箱、控制箱、电缆等的设计、采购、安装等由中标单位完成;中标人负责按总包图纸要求完成机房内设备与大楼防雷接地系统的连接。 5.其他未详界面由中标人严格按太阳能集中供热水及空气源热泵辅助加热系统设备采购、安装、调试施工图纸的整体配套集成要求进行完成。 二、技术要求:

太阳能空气源热泵空调系统的可行性分析报告

太阳能空气源热泵空调系统的可行 性分析 诚信太阳能节能设备

目录 一、热泵的低位热源 (3) 二、空气作为热泵的低位热源 (4) 三、太阳能作为热泵的低位热源 (7) 1. 太阳能的优点 (7) 2. 太阳能的缺点 (8) 3. 作为热泵的低温热源 (8) 四、太阳能在建筑采暖中的利用 (10) 1. 太阳能采暖系统 (10) 2. 太阳能热泵采暖系统 (10) 五、太阳能空气源热泵采暖制冷系统 (10) 1、太阳能空气源热泵的技术经济优势 (10) 2.系统整体方案说明 (11) 3.系统技术说明 (11) 4、太阳能空气源热泵的系统形式 (12) 5、系统工作原理 (13) 6.系统设计关键点: (14) 7、系统特点 (15) 六、经济性分析 (16) 七、结论 (16)

随着经济的发展和人民生活水平的不断提高,我国正面临着越来越大的能源压力,特别是用于采暖、空调建筑能耗的增加,已成为我国不少城市缺电的诱因。地球上的化石燃料——煤、石油、天然气等将逐渐开采枯竭,开发包括太阳能、风能在的可再生能源利用的任务已十分迫切。所以,在提高太阳能热利用应用技术水平的同时,应积极创造条件,将现有成熟技术在实际工程中推广应用,以积累经验,通过实践进行技术的改善、提高,起到样板和示作用。 一、热泵的低位热源 被热泵吸收热量的物体一般称为热泵的低位热源。热泵的低位热源有很多种,主要有:空气、地下水、河湖水、土壤热、太阳能、工业废热。这些热源可以大量的无偿获得。 表1热泵的各种热源 选择低位热源时,一般要综合考虑以下几个原则: 1、低位热源要有较高的品位和足够的容量。热泵的热源温度的高低是影响 热泵运行性能的与经济性能的主要因素之一。在一定的供热温度下,热 泵热源温度与供热温度之间的温差越小,热泵的理论能效比就越大。 2、应该没有任何的附加费用或附加费用极少。 3、输送热量的载体的动力消耗要尽可能的少,以减少系统的输送费用,提

太阳能热泵原理及技术分析

太阳能热泵原理及技术分析 热泵技术是一种新型的节能制冷供热技术,长期以来主要应用于建筑物的采暖空调领域。因热泵制热在节能降耗及环保方面的良好表现,卫生热水供应系统也越来越多的采用热泵设备作为热源[2]。其中以室外空气为热源的空气源热泵,结构简单,不需要专用机房,安装使用方便,在卫生热水供应方面具有不可替代的优势,除了比较大型的空气源热泵热水系统外,现在已有多个品牌的小型的家用空气源热泵热水器也投放市场。但空气源热泵的一个主要缺点是供热能力和供热性能系数随着室外气温的降低而降低,所以它的使用受到环境温度的限制,一般适用于最低温度-10℃以上的地区[3]。 将热泵技术与太阳能结合供应生活热水,国内外进行了许多这方面的研究,主要有两种方式,一种是直接以空气源热泵作为太阳能系统的辅助加热设备,另一种是利用太阳能热水为低温热源或将太阳能集热器作为热泵的蒸发器的太阳能热泵系统。前者以太阳能直接加热为主以空气源热泵为辅,解决太阳能供热的连续性问题,但仍旧无法摆脱环境温度对热泵制热性能的影响;后者完全以太阳能作为热泵热源,大大提高了太阳能的利用效率,但太阳能资源不足时仍需要增加其它辅助热源,并且热泵供热能力受太阳能集热量的限制,规模一般比较小。 在大型的太阳能中央热水系统中,空气源热泵无疑是一种比较理想的辅助加热设备,为了改善空气源热泵在低温环境下制热运行的性能,扩大它的使用区域,结合国内外太阳能热泵研究中的先进经验,我们研制了一种适合于低温环境中工作的太阳能—热泵中央热水系统。该系统采用一种新型的采用低温太阳能辅助的空气源热泵机组和太阳能集热系统结合,太阳能和热泵互为辅助热源,最大限度的利用太阳能,解决阴雨天气及冬季环境温度较低太阳能资源不足时热水供应保证率,做到全年、全天候供应热水。 1太阳能—热泵中央热水系统组成 1.1太阳能—热泵中央热水系统基本组成 太阳能—热泵中央热水系统的主要组成部分为太阳能集热器和太阳能辅助加热空气源热泵机组,其他辅助设备与常规的中央热水系统相同,包括太阳能循环泵、热水加热环泵、换热器、热水箱及控制器等。 1.2太阳能辅助加热空气源热泵机组 1.2.1太阳能辅助加热空气源热泵机组工作原理 为使空气源热泵在低温环境中高效、稳定、可靠的运行,国内外众多科研单位和生产企业进行了研发和改进,归纳起来主要有三种方式。一是依靠外界辅助热源来提高热泵低温制热性能,比如通过电加热提高热泵制热出水温度、采用燃烧器辅助加热室外换热器、在压缩机周围敷设相变蓄热材料以增加低温条件下制热运行出力等等;二是通过改善制冷剂循环系统来提高热泵的低温制热性能,比如采用双级压缩的空气源热泵,设中间补气回路的空气源热泵等;三是采用变频系统,低温工况下让压缩机高速工作增加工质循环量,同时向压缩机工作腔喷液以防止其过热,从而使热泵机组能够正常运行。 太阳能辅助加热空气源热泵机组是基于上述第一种方式而产生的,如图2所示。在机组的蒸发器上增加了一辅助换热器。热泵在低温环境下制热运行时,高于环境温度的太阳能热水流经该辅助换热器,与将进入蒸发器的室外空气进行热量交换提高其温度,从而使制冷剂在

空气源热泵太阳能热水器一体化

空气源热泵热水器应用技术及太阳能热水器与建筑一体化 应用技术指引 一、空气源热泵热水器 1、工作原理 热泵技术的基本原理基于逆卡诺循环原理。通俗的说,如同在自然界中水总由高处流向低处一样,热量也总是从高温传向低温。但人们可以用水泵把水从低处提升到高处,从而实现水的由低处向高处流动,热泵同样可以把热量从低温热源传递到高温热源。所以热泵实质上是一种热量提升装置。热泵的作用即是能从周围环境中吸取热量(这些被吸取的热量可以是地热、太阳能、空气的能量),并把它传递给被加热的对象(温度较高的媒质)。 热泵热水装置,主要由蒸发器、压缩机、冷凝器和膨胀阀四大部分组成,通过让工质不断完成蒸发(吸取环境中的热量)→压缩→冷凝(放出热量)→节流→再蒸发的热力循环过程,从而将环境里的热量转移到水中。热泵热水器工作时,蒸发器吸收环境热能,压缩机吸入常温低压介质气体,经过压缩机整合成为高温高压气、液体状态,进入冷凝器,高温介质泄热制取热水,经膨胀阀变成低温低压气体进入蒸发器进行吸热后进入压缩机进行高温压缩,开始下一轮制热生产,如此循环,从而达到不断制热的目的。 热泵原理示意图如下: 热泵在工作时,把环境介质中贮存的能量Q A 在蒸发器中加以吸收;热泵本 身做功消耗的能量,部分转化为热能Q B ;通过工质循环系统在冷凝器中放热Q C , Q C =Q A +Q B ,由此可以看出,热泵输出的能量为机组做功产生的热能Q B 和热泵从环

境中吸收的热量Q ;因此,采用热泵技术可以节约大量的电能(热泵的节能原理 A 如下图所示)。 性能系数COP = 输出能量/输入能量,热泵热水器的COP约为4.6,即消耗1KW的电能得到4.6KW热能。 2、机组特点 ?机组具有宽广的环境温度适应性。其工作环境温度范围-10℃~50℃。 ?户外安装,不占室内安装空间。 ?专门针对热水工况的换热器设计,水质适应性强。 ?专门针对热水工程的自动运行控制设计,方便、节能、省电。 ?智能化自动除霜,并且可实现除霜参数的区域化调整与设定。确保除霜可靠与节能。 ?没有污染物的排放,安全环保。 ?智能化的故障显示、分析与处理系统。既方便用户使用,又利于维护保养。 ?可靠的系统设计,完善的保护功能,延长机组使用寿命。 常见应用领域:酒店热水系统、洗浴用水系统、单位集体宿舍用水系统、住宅热水系统、会所热水系统等。 3、热泵热水器冬季使用 空气源热泵热水器的经销商和用户最为担心的问题就是:在冬天气温寒冷、湿度较大的地区,热泵热水机组能否顺利过冬? 空气源热泵热水器在冬天出现的问题,大多是因为系统匹配不合理的原因造

空气源与太阳能投资及运行费用分析表

空气源热泵与太阳能 投资及运行费用分析表 1、空气源热泵热水设备及节能原理 (1)【空气源热泵热水设备简介】它是当今世界上最先进的制热设备之一。它由压缩机、冷凝器、膨胀阀、蒸发器及控制部件组成,以环保型制冷剂为媒介,通过逆卡诺循环原理,将空气中的热量源源不断地吸收并搬运到水中,从而实现对水的加热。 (2)【空气源热泵热水设备工作原理】 热泵热水设备开始工作时,压缩机通电运转,蒸发器中低温低压的气态介质被压缩机吸入,并被压缩成高温高压的气态介质后输送进入冷凝器。高温高压的气态介质在冷凝器中由于受到外围低温水的冷却,介质能量被水吸收并由高温气态冷凝成低温液态。低温高压的液态介质进一步经膨胀阀节流降压,变成低温低压的液态介质后进入蒸发器。由于介质的蒸发温度比较低(如R22的蒸发温度为零下40C),远远低于一般环境温度。在这种工况下,低温低压的液态介质在蒸发器中就很容易产生蒸发现象,蒸发的同时也就吸收了外围环境中大量的热量,变成高温低压的气态介质。至此,热泵系统完成一个周期循环,但循环并未停止。蒸发后产生的气体再次被吸入压缩机,又开始下一轮同样的工作流程。正是通过这种连续不断、周而复始的循环工作过程,热泵热水设备不断将热量从外围环境中搬运到水中,从而实现对水的加热,最终生产出需要的生活热水。

Q3 (热水获得的热量)二Q1 (输入电能转化的热量)+Q2 (从环境中吸 收的热量) (3)【空气源热泵热水设备节能原理】 通过以上的文字介绍和图示说明, 我们可以得出一个结论,即:热泵热水设 备不是等同于燃煤、燃油、燃气锅炉等那样的能量转化设备(把一种化学能转化 为热能),而是一种热量搬运设备。它类似于水泵,只不过它搬运的介质不是水, 而是热”能量在转化的过程中,不可能100%都进行转化(损耗是必然的), 即热效率会小于1。而在通过热泵获得的热量中,大部分热量是从免费的空气中 获得的,只有一小部分是通过消耗电能而转化而成的, 两者之比为倍数级。因此, 其产出与消耗之比(即热效率)就会大于 1。由此可见热泵的节能 Ql 电能输 入「0 Q2 晞液Mt 过遽器盛脈闽 Q3 A

太阳能与空气双热源联合供热水的解决方案.

太阳能与空气双热源联合供热水的解决方案 肖香见骆名文 (广东美的商用空调设备有限公司) 摘要:通过对当前国内各热水制取方式的系统性能、安装工艺、成本分析,总结出太阳能与空气源联合使用的优点。分析现有太阳能与空气双热源联合热水的现状,总结太阳能与空气双热源联合热水的系统设计原则,并设计出可行性较强的热水系统 关键词:太阳能;空气源热泵;联合热水 The solution of solar and air heat source water heater Xiao Xiangjian Luo Mingwen (Guangdong Midea Commercial Air-conditioner Equipment Co., Ltd Abstract: According to the analysis of the existing system for water heating systems in performance, installation techniques and cost, summed up the air and solar sources water heater’s advanta ges. Analysis of the existing air and solar water heating combined two-heat the status quo, summing up the air and solar energy combined two-heat the hot water system design principles, and design a water heating system with high feasibility. Key words: solar source; air source heat pump; joint water heater 1 前言 上世纪七十年代以来,世界能源形势变得日益严峻,能源的大量消耗对环境恶化也日益加剧。今年世界各国政府也越来越重视环境保护及废气的排放,联合国政府间气候变化专业委员会第27次全体会议指出全球气候变暖已经成为不争的事实,我国政府也出台了诸多相应的政策法规。

太阳能与空气源热泵供暖供热水系统

太阳能与空气源热泵供暖供热水能源监控与管理系统 新时空(北京)节能科技有限公司 2009-7

目录 一、项目概况................................................................................. 错误!未定义书签。 二、能源监控与管理系统选型......................................................... 错误!未定义书签。 三、BEMS系统功能设计 ............................................................... 错误!未定义书签。 1、组态画面图例: ................................................................................................................ 错误!未定义书签。 2、节能与减排数据分析计算依据 ....................................................................................... 错误!未定义书签。 四、各系统监控方案....................................................................... 错误!未定义书签。(一)暖通空调系统监控............................................................................................................. 错误!未定义书签。 1、太阳能集热、供热、蓄热................................................................................................ 错误!未定义书签。 2、热泵空调............................................................................................................................... 错误!未定义书签。 3、末端冷/温水循环系统 ........................................................................................................ 错误!未定义书签。(二)安全与简易运行模式......................................................................................................... 错误!未定义书签。(三)计量系统 ............................................................................................................................. 错误!未定义书签。(七)集中管理 ............................................................................................................................. 错误!未定义书签。 五、总体效果................................................................................. 错误!未定义书签。 1、高效性 ....................................................................................................................................... 错误!未定义书签。 2、安全性 ....................................................................................................................................... 错误!未定义书签。 4、控制节能效果........................................................................................................................... 错误!未定义书签。 六、控制点数表.............................................................................. 错误!未定义书签。附件一、设计总则.......................................................................... 错误!未定义书签。 1、系统设计原则........................................................................................................................... 错误!未定义书签。 2、设计依据................................................................................................................................... 错误!未定义书签。附件二、新时空BEMS能源监控与管理系统的特点 ........................ 错误!未定义书签。 1、控制系统技术领先................................................................................................................... 错误!未定义书签。 2、网络可靠,结构简单 .............................................................................................................. 错误!未定义书签。 3、先进的系统软件与操作显示画面.......................................................................................... 错误!未定义书签。

太阳能与空气源热泵结合在浙江应用案例分析

太阳能与空气源热泵在浙江应用案例分析 杭州普桑能源科技有限公司/袁新毓徐平 北京四季沐歌太阳能技术集团有限公司/宋利波李帅 一、引言 由于我国太阳能资源十分丰富,年日照时间为2500小时的地区占国土面积的2/3以上,有的地区高达3000小时,开发利用太阳能潜力巨大,在能源危机和环境污染双重压力下,太阳能逐渐成为可再生能源中最引人注目、研究开发最多、应用最为广泛的清洁能源,在太阳能技术的研究利用中,太阳能热水系统是太阳能利用中最成熟、最具经济性的利用方式,也是目前经济上最具有竞争力的绿色能源技术。随着能源紧缺日益扩大,人们的节能意识逐渐增强。近几年国家和地方政府纷纷出台相应的政策法规,鼓励或规定在建筑中优先使用太阳能热水系统。而空气源热泵技术也是一种很好的节能型供热技术,是利用少量高品位的电能作为驱动能源,从低温热源空气中高效吸取低品位热能,并将其传输给高温热源,以达到加热的目的。随着人们对获取生活用热水的要求日趋提高,具有间断性特点的太阳能难以满足全天候供热。要解决这一问题,热泵技术与太阳能利用相结合无疑是一种好的选择方法。 二、空气源热泵技术 所谓热泵,就是靠电能驱动,迫使热量从低位热源流向高位热源的装置。也就是说,热泵可以把不能直接利用的低品位热能(空气、土壤、井水、河水、太阳能、工业废水等)转换为可以利用的高位能,从而达到节约部分高位能(煤、石油、燃气、电能等)的目的。在矿物能源逐渐短缺、环境问题日益严重的当今世界,利用低位能的热泵技术已引起人们的关注和重视。 空气源热泵的历史以压缩式空气源热泵最悠久。它可追溯到18世纪初叶,可以说1824年卡诺循环的发表即奠定了热泵研究的基础。空气源热泵热水机组的制造、推广和使用在我国只是最近十几年的事情,但由于其相对传统制取热水设备的高效节能、环保、安全、智能化控制、不占用永久性建筑空间等优点而引起了市场日益广泛的关注。热泵热水机组以清洁再生原料(空气+电)为能源,既不使用也不产生对人体有害的气体,同时也减少了温室效应和大气污染。目前,在我国电力资源短缺的前提下,采用热泵热水机组制取热水,既能以最小的电力

太阳能热泵工作原理

太阳能热泵工程原理图 太阳能热泵原理及技术分析 热泵技术是一种新型的节能制冷供热技术,长期以来主要应用于建筑物的采暖空调领域。因热泵制热在节能降耗及环保方面的良好表现,卫生热水供应系统也越来越多的采用热泵设备作为热源。其中以室外空气为热源的空气源热泵,结构简单,不需要专用机房,安装使用方便,在卫生热水供应方面具有不可替代的优势,除了比较大型的空气源

热泵热水系统外,现在已有多个品牌的小型的家用空气源热泵热水器也投放市场。但空气源热泵的一个主要缺点是供热能力和供热性能系数随着室外气温的降低而降低,所以它的使用受到环境温度的限制,一般适用于最低温度-10℃以上的地区。 将热泵技术与太阳能结合供应生活热水,国内外进行了许多这方面的研究,主要有两种方式,一种是直接以空气源热泵作为太阳能系统的辅助加热设备,另一种是利用太阳能热水为低温热源或将太阳能集热器作为热泵的蒸发器的太阳能热泵系统。前者以太阳能直接加热为主以空气源热泵为辅,解决太阳能供热的连续性问题,但仍旧无法摆脱环境温度对热泵制热性能的影响;后者完全以太阳能作为热泵热源,大大提高了太阳能的利用效率,但太阳能资源不足时仍需要增加其它辅助热源,并且热泵供热能力受太阳能集热量的限制,规模一般比较小。 在大型的太阳能中央热水系统中,空气源热泵无疑是一种比较理想的辅助加热设备,为了改善空气源热泵在低温环境下制热运行的性能,扩大它的使用区域,结合国内外太阳能热泵研究中的先进经验,我们研制了一种适合于低温环境中工作的太阳能—热泵中央热水系统。该系统采用一种新型的采用低温太阳能辅助的空气源热泵机组和太阳能集热系统结合,太阳能和热泵互为辅助热源,最大限度的利用太阳能,解决阴雨天气及冬季环境温度较低太阳能资源不足时热水供应保证率,做到全年、全天候供应热水。 1.太阳能—热泵中央热水系统组成 1.1太阳能—热泵中央热水系统基本组成 太阳能—热泵中央热水系统的主要组成部分为太阳能集热器和太阳能辅助加热空气源热泵机组,其他辅助设备与常规的中央热水系统相同,包括太阳能循环泵、热水加热环泵、换热器、热水箱及控制器等。 1.2太阳能辅助加热空气源热泵机组 1.2.1太阳能辅助加热空气源热泵机组工作原理 为使空气源热泵在低温环境中高效、稳定、可靠的运行,国内外众多科研单位和生产企业进行了研发和改进,归纳起来主要有三种方式。 一是依靠外界辅助热源来提高热泵低温制热性能,比如通过电加热提高热泵制热出水温度、采用燃烧器辅助加热室外换热器、在压缩机周围敷设相变蓄热材料以增加低温条

空气源热泵加太阳能酒店热水系统设计

空气源热泵加太阳能酒店热水系统设计 本工程为**省**市某宾馆,根据相关要求:为该宾馆提供65套房间的生活用热水,满员130人。现设计选用芬尼克兹空气源热泵热水机组+太阳能为该宾馆提供热水。 项目概况 本工程为**省**市某宾馆,根据相关要求:为该宾馆提供65套房间的生活用热水,满员130人。现设计选用芬尼克兹空气源热泵热水机组+太阳能为该宾馆提供热水。 设计思路 酒店热水供应,水温55℃~60℃,采用太阳能和空气源热泵综合应用提供热水,热水系统采用机械加压送水,并设置保温储水箱 考虑经济、节能、环保等要求,经研究采用“太阳能+空气热泵”综合应用供应热水 在夏季阳光充足时利用太阳能提供所需的热水,在冬季和阴雨天气太阳能不足时利用空气源热泵热水机组来补充提供热水。这样不管春夏秋冬、白天黑夜、下雨下雪、系统都可以源源不断的从空气中吸收低品位热量用于制生活热水所需要的热量,保证用水温度及用水量,最大程度节能 设计依据 《采暖通风与空气调节设计规范》(GB50019-2003

建筑给水排水设计规范》(GB50015-2003 《给水排水制图标准》(GB/T50106-2001 建筑给排水及采暖工程施工质量验收规范》(GB50242-2002 《建筑给排水设计手册 现场所堪探的相关资料 芬尼克兹空气源热泵和太阳能综合应用相关技术资料 设备选型 日用水量 日用热水定额(60℃ 用水单元数量消费人次每人用水定额(L) 日用水量(L) 额房65间 120人100 12000 合计 12000升 根据上表计算得日用热水量约为12 m3 空气源热泵选型 根据机组性能曲线,PASHW060SB-2-C热泵机组额定制热量20kw/台。在标准工况下:1台PASHW060SB-2-C热泵机组产60℃热水490kg/h,2台机组每天工作13个小时产水12740kg,可完全满足用水需求 在冬天当环境温度降低时,空气源热泵热水机组选型重点在于冬季能满足高峰期的热水使用量。冬季室外环境温度较低为10℃时,设自来水进水温度15℃,设定热水出水温度60℃、即需温升45℃

基于太阳能加空气源热泵热水系统的应用研究

基于太阳能加空气源热泵热水系统的应用研究 发表时间:2018-11-16T11:40:02.760Z 来源:《红地产》2017年5月作者:田三平 [导读] 太阳能、空气都是可再生能源,在节能降耗的发展下,备受关注。在分析两种能源的优缺点的基础上,指出了太阳能与空气源热泵联合热水系统在热水供应稳定节能环保方面的优势。通过实际情况分析应用情况,结果显示,太阳能结合空气源热泵联合热水系统在经济性和节能性方面优于传统热水器,实现了热水工程过程的稳定、节能,值得广泛推广。 近年来,中国经济保持了较快的增长速度。与此同时,能源短缺的矛盾越来越突出。中国的能源资源相对稀缺,人均能源资源远远低于世界平均水平。另一方面,能源行业技术水平较低,能耗较高,能源利用率较低,加剧了国内能源短缺。目前,我国九成以上建筑不符合节能标准,建筑物建设和使用中直接和间接消耗的能源占全社会能源消费总量50%,为了缓解当前的能源危机,节能减排,新能源的开发利用备受关注。 1 太阳能在建筑热水系统中的应用建筑热水系统的传统加热方式主要包括燃煤锅炉加热,燃气锅炉加热,燃油锅炉加热或者电加热。这些加热方法消耗不可再生的能量,并且具有利用效率低,燃烧不完全和热损失大的缺点。因此,不仅造成巨大的能源浪费,而且还排放氮氧化物,二氧化碳和二氧化硫等废气也对环境造成很大危害。在这种情况下,探索一些新的可再生和无污染的清洁替代能源是不可避免的趋势。太阳能热水系统可分为集中式太阳能热水系统和分布式太阳能热水系统。常用的集中式太阳能热水系统包括直流系统,自然循环直接加热系统,强制循环直接加热系统,强制循环间接加热系统等;常用的分散式太阳能热水系统包括紧凑型系统,独立的直接加热系统,独立的间接加热系统等。太阳能热水系统由三部分组成:太阳能集热器,热水储水箱和热水输送管网。其中,太阳能集热器是决定其热效率的关键部件。在太阳能热水系统中,接收太阳辐射并将热量传递给其内部介质(水)的部件称为太阳能集热器。目前,主要有三种类型的太阳能集热器,如平板型,全玻璃真空管和真空热管。扁平型太阳能集热器是金属管板式结构,热效率高,热水供应量大,承压,空气阻力大,性价比高,但无抗冻性。适用于广东,云南,海南等冬季的不结冰。区域。全玻璃真空管太阳能集热器具有一定的防冻能力。适用于冬季温度为-20~0°C的区域,但不能承受高压。使用时,不能缺水,玻璃管容易爆裂。真空热管太阳能集热器具有很强的防冻能力,适用于冬季温度在-40到0℃之间的区域。它可以压制,防风,不易爆裂。 2 热泵在建筑热水系统中的应用热泵是解决能量水平不合理使用的有效手段。它可以利用高能量的潜力从周围环境中提取能量或将会发出的“废热”,提高其温度,产生比直接转换这些高能量能量时更多的热量,具体如图一所示。热泵机组使用COP(性能系数)=加热(冷)功率/输入功率来评估其工作效率。如果动力热泵热水器的COP为3,即消耗1kW?h的电力,则可以获得3kW?h的热能。与只能交换1:1电能的电热水器相比,热泵可以节省2/3的能量。在标准操作条件下,热泵单元通常具有大于4的COP值。对于不同的泵送流体,不同的压缩机类型,不同容量和类型的热泵单元,COP值将变化。影响热泵机组运行期间COP值的主要因素是蒸发器和冷凝器的外部介质(空气或水)的工作温度,以及它们之间的温差。 COP值越低,蒸发器的外部介质的温度越低或冷凝器的外部介质的温度越高,通常在单元允许的温度范围内。图一 3 太阳能加空气源热泵热水系统的应用 3.1 初投资、运行维护费用经济分析初期投资,运营和维护成本经济方面考虑最大限度地利用太阳能来实现全年供暖和蓄热的目的,太阳能集热器的初期投资占很大比例。经过计算,项目的初始投资通过2.59年的节约和维护成本得以恢复,系统寿命优于其他锅炉组合。结合设备更新和其他因素的考虑,随后每年节省的运营成本相当可观。 3.2 工程节能效果分析太阳能集热器实现免费热水制备,热水储罐实现年度供热和蓄热。作为辅助热源,空气源热泵从空气中获得大量的热能,仅消耗电热水器的四分之一。系统综合能效比在3.5以上,完成了热源“净化”和冷源准备。低温储能和蓄热具有显着的节能效果。 3.3 工程能源利用有效性分析太阳能系统直接供热和储热,特殊加热热管具有超低温传导吸热,有效提高太阳能集热效率。热泵系统采用特殊制冷剂在封闭式保温罐内运行,防止热量和冷量损失。 3.4 工程环境、社会效益分析利用太阳能和空气源可再生能源,不向环境释放污染物,保持高能效,节约循环系统能源,获得国家节能补贴,降低税费,获得更好的环境经济效益。 3.5 工程安全性分析实现智能无人值守控制理念,建立精确监控,温度控制,平稳调整等安全监控单元。办公区域的计算机终端可以解决所有空调和热水问题,节省安装空间和综合成本。该系统没有直接参与供暖的电能,最大限度地利用太阳能与空气源热泵相结合,协助全天候空调系统安全运行,以及每年的供暖热量储备。季节性和早冬加热可用于满足系统操作而无需打开热泵。 4结束语综上所述,太阳能热水器的应用越来越受欢迎,但传统的太阳能热水器易受天气影响而无法全天候运行。空气源热泵热水器作为一种节能装置,越来越受到人们的重视和开发利用。然而,当室外温度降低时,空气源热泵机组的供热和效率也降低,特别是在冬季。当室外温度低于0°C时,设备会出现结霜和除霜的问题。通过实际情况分析,将太阳能与空气源热泵结合热水系统相结合,取代传统的热源热水系统,一方面可以节省柴油,天然气,电力等传统能源。缓解当前日益严重的能源危机,创造更大的另一方面,由于太阳能是一种清洁,无污染的可再生能源,空气源热泵是一种高效,低污染的热力发动机,并且使用这两者大大减少了建筑物本身对周围环境的污染。随着国家对建筑节能的重视不断增加,这一应用领域将迎来更广阔的发展空间。参考文献 [1]乔大磊.太阳能辅热空气源热泵热水系统在酒店中的应用实践[J].给水排水,2015,51(S1):294-296. [2]陈生.太阳能和空气源热泵在某公寓楼热水系统中的应用[J].发电与空调,2012,33(01):78-80+86. [3]翁东风,何洲汀.太阳能-空气源热泵热水系统在办公建筑中的应用[J].后勤工程学院学报,2011,27(01):16-19+57. [4]林飞庆.太阳能和空气源热泵组合热水系统应用与分析[J].山西建筑,2009,35(16):197-199. [5]吴燕国,金钊,章海成.太阳能和空气源热泵组合热水系统工程应用与分析[J].太原科技,2008(07):72-73+75. 作者简介:田三平,1977年,男,湖南湘阴人,本科,工程师,工作方向:给排水

太阳能-空气双热源式热泵及热水系统的探讨(精)

摘要:本文介绍了太阳能辅助热泵的几种主要形式,分析了各自的特点。在双热源式太阳能辅助热泵的基础上提出了一种太阳能-空气双热源式热泵及热水系统,它适用于面积在 100m2以上住宅或别墅的户式中央空调系统中,同时又能一年四季提供生活热水。分析了这种系统的特点以及实际应用前需要解决的问题。 关键词:太阳能辅助热泵户式中央空调太阳能-空气双热源式热泵太阳能 0引言 随着面积超过100m2的住宅和别墅的出现,以及人们对空调房间内空气品质的要求越来越高,研究开发一种经济效益和环保效益均优的户式中央空调系统(有的称家用中央空调)已经迫在眉睫。同时,研究开发和利用新能源,已经成为世界各国能源研究与开发的共同战略目标。20世纪70年代能源危机以来,太阳能作为可利用的新能源,逐步成为国内外研究的重点。最近研究表明:到2050年,核能将占第一位,太阳能占第二位;21世纪末,太阳能将取代核能占第一位。太阳能以其取之不尽、安全、无需运输、清洁无污染等特点受到人们的重视。由于太阳能受季节和天气影响较大、热流密度低,导致各种形式的太阳能直接热利用系统在应用上都受到一定的限制。随着生活水平的提高,热用户对于供热的要求也越来越高,太阳能利用的一些局限性日益显现出来:(1)在太阳辐照时间少的国家和和地区,其应用受到很大限制;(2)白天集热板板面温度的上升会导致集热效率下降;(3)在夜间或阴雨天没有足够的太阳辐射时,无法实现24h的连续供热,如采用辅助加热方式,势必又要消耗大量的其它能源;(4)加热周期较长;(5)传统的太阳集热器与建筑不易结合,在一定程度上影响了建筑的美观;(6)常规的太阳热水器需要在房顶设水箱,在夜间气温较低时,储水箱和集热器向外界散热造成大量的热量损失。为了克服太阳能利用中的上述问题,人们又提出了采用太阳能加热系统作为蒸汽压缩式热泵系统的热源。蒸汽压缩式热泵在实际应用中最大的问题是当冬天的大气温度很低时,热泵系统的效率比较低。而太阳能热利用系统中的集热器在低温时集热效率较高,而热泵系统在其蒸发温度较高时系统效率较高,那么可以考虑采用太阳能加热系统来作为热泵系统的热源。这样既克服了太阳能加热系统的问题

太阳能热水系统与热泵热水系统的比较分析

太阳能热水系统与热泵热水系统的比较分析 中国建筑科学研究院黄涛袁东立 南京朗诗置业股份有限公司程洪涛 摘要:本文以南京地区某11层楼为研究对象,设计了太阳能热水系统,利用气象数据库的气象资料模拟计算了该系统的全年太阳能保证率,并分别从节能性和运行费用上与热泵热水系统进行了比较和分析。 关键词:太阳能保证率热泵经济性热水系统 1 前言 太阳能的优点在于环保、可免费使用;但其缺点恰恰是每天的太阳辐射具有不确定性。另外,随着季节变化,太阳辐射量也有较大的变化。因此,仅靠太阳能来满足全天24小时供应热水是不现实的。通常的做法是采用太阳能与其它辅助能源联合供应热水的方法,优先利用太阳能产生的热水,当太阳不足时,再利用辅助能源补充。 热泵热水系统是热泵技术在生产热水方面的一个应用,它的供热方式与传统的热水系统截然不同,是以空气、水、土壤等为低温热源,以电能为动力从低温热源吸取热量来加热生活用水,热水通过循环系统直接送入用户。热泵热水系统是一种高效的供能技术,避免了传统燃油、燃气和电热水器能耗大、污染严重、费用高等缺点。 那么对于太阳能热水系统和热泵热水系统,到底哪个更经济,更节能下文将做进一步分析。本文以11层楼某单元为计算对象,用户数量为22户,每户按人计算,用水定额按50L/cap·d计算,最高日用水量为22**50=吨。 2 太阳能热水系统的性能模拟 设计了一套太阳能热水系统,系统采用真空管集热器,并以南京地区的气象条件为参数,模拟计算太阳能热水系统全年的能量利用情况。 计算模型 (1)集热器效率计算模型

)( )(T a i L R R i I T T U F F --=ταη 式中:R F ——迁移因子; Ti ——集热器入口温度,℃; Ta ——环境温度,℃; τα——有效投射率-吸收率乘积; It ——太阳辐射量,W/m 2 。 在本文模拟计算中采用国家太阳能热水器质检中心提供的集热器的瞬时效率: )( 97.26842.0T a i i I T T --=η 气象数据库提供的太阳辐射量都是指水平面上接收的太阳辐射。实际使用中,为了保证集热器全年最大量的接收到太阳辐射,一般集热器都是倾斜安放的(β>0),因此要通过修正因子把水平面上的辐射量转换到倾斜面上。 倾斜面和水平面上接收到的太阳辐射量之比,称为修正因子R b 。 δ?ωδ?δ β?ωδβ?sin sin cos cos cos sin )sin(cos cos )cos(+-+-= b R ?——当地地理纬度 β——表面倾角 δ——赤纬角 ω ——时角 (2)水箱温度的计算模型 T i c u I A Q η= u p Q dt dT mC = 用简单的欧拉法把方程改写成: T i c p J J J I A C m t T T η?+=' 式中J m ——集热器中的水容量kg 。

浅谈太阳能—热泵的应用

浅谈太阳能—热泵的应用 廖汉光热泵技术是一种新型的节能制冷供热技术,其中以室外空气为热源的空气源热泵,结构简单,不需要专用机房,安装使用方便,在卫生热水供应方面具有不可替代的优势。但空气源热泵的一个主要缺点是供热能力和供热性能系数随着室外气温的降低而降低,所以它的使用受到环境温度的限制,一般适用于最低温度-10℃以上的地区。 将热泵技术与太阳能结合供应生活热水,国内外进行了许多这方面的研究,主要有两种方式,一种是直接以空气源热泵作为太阳能系统的辅助加热设备,另一种是利用太阳能热水为低温热源或将太阳能集热器作为热泵的蒸发器的太阳能热泵系统。前者以太阳能直接加热为主以空气源热泵为辅,解决太阳能供热的连续性问题;后者完全以太阳能作为热泵热源,大大提高了太阳能的利用效率,但太阳能资源不足时仍需要增加其它辅助热源,并且热泵供热能力受太阳能集热量的限制,规模一般比较小。 在大型的太阳能中央热水系统中,空气源热泵无疑是一种比较理想的辅助加热设备,为了改善空气源热泵在低温环境下制热运行的性能,扩大它的使用区域,结合国内外太阳能热泵研究中的先进经验,我们研制了一种适合于低温环境中工作的太阳能—热泵中央热水系统。该系统采用新型的空气源热泵机组和太阳能集热系统结合,太阳能和热泵互为辅助热源,最大限度的利用太阳能,解决阴雨天气及冬季环境温度较低太阳能资源不足时热水供应保证率,做到全年、全天候供应热水。 PHNIX(芬尼克兹)集团——全身心致力于新能源技术,以节能、环保事业为企业的发展方向;集热泵、太阳能、风能等新能源领域产品开发、生产及提供全套解决方案的国际化企业。 PHNIX利用其卓越的研发技术并结合国内外的使用情况,把热泵和太阳能充分的结合在一起,提供一套完美的中央热水解决方案,做到全年、全天候不间断供应热水。PHNIX 热水解决方案已应用在全国各地(如速8全国连锁酒店、杭州宋城大酒店等),并且得到客户的充分肯定。

太阳能与热泵联合使用

空气源热泵与太阳能联合使用 一、简介:本项目是河南省三门峡烟草大厦改造工程,该酒店原使用燃气锅炉,由于每年热水运行费用居高不下,故取消燃气锅炉,对热水工程进行改造。安装空气源热泵机组与太阳能联合使用,空气源热泵机组与太阳能热水器都是利用自然环保能源产生热水的装置,但它们有着本质的区别。空气源热泵机组是以空气热量为能源的,但它获取能量的方式是主动的,因而不受阴天下雨白天黑夜影响。太阳能热水器获得能量的方式是被动的,它依靠太阳光直接辐射才有较好的效果,因而只能在晴天里才能够产生热水,其它时间必须依赖传统加热方式如:电热辅助、柴油炉辅助、煤气炉、空气源热泵机组等。(由第九项费用分析可知,空气源热泵机组加太阳能是最经济,最可靠,最安全的。) 该酒店共107间客房使用热水,另供92户家庭用热水及2个职工浴池,每天60人洗浴。宾馆和家庭、浴池不能用一个系统,故分两个系统设计、安装。 二、系统总体设计要求 1、先进性 2、可靠性 3、安全性 4、规范性 三、方案设计 1、本方案须考虑产热水设备、贮水设备、自控电气系统、管道动力系统及其之间的管道连接。 2. 气象资料: 三门峡市属于北温带大陆性气候,年平均气温 14.3℃,平均降水量640.9毫米。四季分明并各具特色,一年中7月最热,平均气温 27.3℃,1月最冷,平均气温 -0.3℃。 3、三门峡市自来水水温(平均值):冬季7 0C、春秋季12 0C、夏季21 0C,最低水温5 0C、最高水温23 0C. 四、热水日用量计算 根据甲方提供的数据,该酒店日用热水量 55℃的热水量为20吨;家庭及淋浴用热水量55℃的热水量为25吨. 1、酒店每日热水用水量为20吨,制热20吨热水所需热量为: Q=CM△T=1Kcal/kg.℃*20T*1000Kg/T*(55-5)℃=1000000Kcal(自来水温度按冬季5℃计算) 选定主机能力应不小于: 1000000Kcal÷860 Kcal/(KW〃h)÷16h=73KW(机组冬季最长工作时间不超过18小时) 设备选型配比: 由上式计算可知,为了达到热水用量设计要求,主机能力不应小于73KW,故选择主机台数N=73KW÷25KW =2.9(冬季最冷月份机组热量衰减为25KW),故选择3台RSJ-380/S-820-C 主机。 另配10吨太阳能联合使用。 2、家庭及淋浴每日热水用水量为25吨,制热25吨热水所需热量为: Q=CM△T=1Kcal/kg.℃*25T*1000Kg/T*(55-5)℃=1250000Kcal(自来水温度按冬季5℃计算) 选定主机能力应不小于: 1250000Kcal÷860 Kcal/(KW〃h)÷16h=90KW(机组冬季最长工作时间不超过18小时) 设备选型配比:

相关主题
文本预览
相关文档 最新文档