当前位置:文档之家› 传感器组成

传感器组成

传感器组成
传感器组成

1.传感器组成:敏感原件.转换原件.转换电路

2.传感器静态特性指针:线性度,灵敏度,迟滞,重复性

3.动态特性:瞬态回应法(一阶) H(s)=k/τs+1 Y(s)=1/τs+1*1/s

频率响应法(二阶)H(s)=Wn’/s’+2ξWnS+Wn’ Y(s)=Wn’/S(S’+2ξWnS+Wn’)

4.标定:确定性能:动态:确定传感器的动态特性参数

静态:确定传感器的静态特性指针

校准:重复测试性能

5.示值与真值之间的差值:

测量误差的表示方法:绝对误差:△X=X-Ao Ao≈х

相对误差:实际:Ya=△X/A*100%

示值:Yx=△X/X*100%

满度:

6.△X与约定值之比:随机误差:

7.应变效应:金属丝的电阻随着它所受的机械形变的大小而发生相应的变化的现象。

(金属)形变效应:几何尺寸变化而引起的电阻的相对变化。

(半导体)压阻效应:材料电阻率变化

横向效应:应变片的横栅部分将纵向栅部分的电阻变化抵消了一部分从而降低了整个电阻应变片的灵敏度。

8.金属电阻应变片:丝式,箔式,薄膜式(电桥补偿。自补偿)

(性能稳定,精度较高,但应变灵敏度较小)

半导体应变片:体型,扩散型(灵敏度温度补偿,零点温度补偿)

(灵敏系数高,横向效应和机械滞后极小但温度稳定性和线性度不好)9.输出电压:

非线性误差:半桥:

灵敏系数:全桥:

10. 灵敏度线性度行程制造

变气隙δ高差小难

变面积S 中好大较难

螺线管低差单线圈大易

差动

11.差动变压器:非电量—线圈互感量根据变压器基本制成

结构形式有:变δ,变S,螺线管式

12.电容传感器可分为:变极距形,变面积型,变介电常数型

静态灵敏度:

(a太小的话会因边缘电场影响增大而影响传感器的非线性)

13.电涡流式传感器工作原理:高频信号施加于临近金属一侧的产生的高频磁场作用于金属板的表面,由于趋肤效应高频电磁场不能有一定厚度的金属板而仅作用于表面薄层内尔金属板表面感应的涡流i产生的电磁场又反作用于线圈L上改变了电感的大小(变化程度取于L的外形尺寸,L至金属板距离,电阻率ρ,磁导率μ及is的频率等)

14.压磁效应:某些铁磁物质在外界机械力的作用下其内部产生机械应力从而引起磁导率的改变

磁质伸缩:某些铁磁物质在外界磁场的作用下会产生变形有的伸长有的压缩

正磁致伸缩:当某些材料受拉时,在手里方向上磁导率增高而在与作用力相垂直的方向

上磁导率降低。

负磁致伸缩:当某些材料受拉时,在受力方向上磁导率降低而在于作用力相垂直的方向上磁导率增高。

15.压磁传感器的3种基本形式:用一个方向上磁导率的变化的传感器。维捷曼效应

用两个方向上磁导率的变化的传感器。

电阻式传感器:应变式传感器光电式传感器:光纤传感器温度传感器:热电阻传感器压阻式传感器光栅传感器热电偶传感器变阻抗式传感器:自感式传感器,电容式传感器,电涡流式传感器,压磁式传感器

电动势式传感器:磁电式传感器:位移,加速度,速度

霍尔传感器:电流,磁场,位移,压力

压电式传感器:加速度,动态力,压力

16.外光电效应:在光线作用下使物体的电子逸出表面的现象。

内光电效应:在光线作用下能使物体电阻率改变的现象。

光生伏特效应:在光线作用下能使物体产生一定方向的电动势的现象

光电元件有光敏二极管(处于反向工作状态),光敏晶闸管(光信号—电信号并将信号电流加以放大)光电池光敏电阻

17.光纤传感器的分类

按功能分:功能型,非功能型,拾光型;按调制光分:强度调制型,偏振调制型,频率调制型,相位调制型;按光纤模式分:阶跃,渐变;按膜分:单膜,多膜

工作原理:全反射现象

光纤传感器的特点:电绝缘抗电磁干扰非侵入性高灵敏度容易实现对被测信号的远距离监控18.莫尔条纹的特点1位移放大作用2运动对应关系3误差的平均效应

栅距 A+B=W A=B=W/2

19.磁电式传感器的工作原理:磁通量的变化可以通过改变次且与线圈之间的相对运动磁路中的磁阻恒定磁场中线圈面积的变化

分类:动圈式磁电传感器磁阻式磁电传感器

20.霍尔效应:半导体薄片置于磁场中当他的电流方向与磁场方向不一致时半导体薄片上平行于电流和磁场方向的两个面之间产生的电动势(载流子在磁场中受洛仑兹力横向漂移的结果)

21.霍尔元件的误差处理:不等位电势误差的补偿,温度误差及其补偿

22.压电式传感器的工作原理是压电效应

正压电效应:某些物质在沿一定方向受到压力或拉力作用而发生改变时其表面会产生电荷若将外力去掉又重新回到不变电状态

逆压电效应:在压电材料的两个电极面上如果加一交流电压那么压电片产生机械振动即压电片在电极方向上有伸缩现象

23.两极板出现异性电荷中间为绝缘体等效为一个电容

并联:输出电荷大,本身电容大,时间常数大适于慢变信号,电荷作为输出量

串联:输出电压大,本身电容小适于电压作为输出输入阻抗高

24.电压放大器:电路简单元件少价格便宜工作可靠但精度不佳

电荷放大器:灵敏度与电缆长度无关

25.温度测量都是以电热平衡为基础的(接触非接触)

90度国际温标1. 温度单位T开尔文K t=T-273.15 2.定义固定温度点3.复现固定温度点的方法

温标的三个条件:固定温度点,测量仪器,温标方程

热电阻式传感器的工作原理:利用导体或半导体材料的电阻率随温度变化的特性

热电偶测温原理:不同金属材料组成两端存在温度差

26.匀质导体定律,中间导体定律,连接导体定律

27.流量检测的方法1.体积流量:容积法,速度法2.质量流量:直接法,间接法

差压流量计:流体连续性方程的波努力方程

电磁流量计:法拉第电磁感应定律

涡流流量计

28.成分分析仪组成:取样装置,预处理系统,分离装置,检测系统,信号处理系统,显示环节

原理:利用不同气体对红外波长的电磁波能量具有特殊吸收特性

传感器的基本概念

传感器的基本概念 传感器的定义及组成传感器的概念来自“感觉(sensor)”一词,人们为了研究自然现象,仅仅依靠人的五官获取外界信息是远远不够的,于是发明了能代替或补充人五官功能的传感器,工程上也将传感器称为“变换器”。 根据国标(GB7665-87),传感器的定义为:“能感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。”这一定义所表述的传感器的主要内涵包括: 1)从传感器的输入端来看:一个指定的传感器只能感受规定的被测量,即传感器对规定的物理量具有最大的灵敏度和最好的选择性。例如温度传感器只能用于测温,而不希望它同时还受其它物理量的影响。 2)从传感器的输出端来看:传感器的输出信号为“可用信号”,这里所谓的“可用信号”是指便于处理、传输的信号,最常见的是电信号、光信号。可以预料,未来的“可用信号”或许是更先进更实用的其它信号形式。 3)从输入与输出的关系来看:它们之间的关系具有“一定规律”,即传感器的输入与输出不仅是相关的,而且可以用确定的数学模型来描述,也就是具有确定规律的静态特性和动态特性。 传感器的基本功能是检测信号和信号转换。传感器总是处于测试系统的最前端,用来获取检测信息,其性能将直接影响整个测试系统,对测量精确度起着决定性作用。传感器的组成按其定义一般由敏感元件、变换元件、信号调理电路三部分组成,有时还需外加辅助电源提供转换能量,如图4.1.1所示。 图中的敏感元件直接感受被测量(一般为非电量)并将其转换为易于转换成电量的其他物理量;再经变换元件转换成电参量(电压、电流、电阻、电感、电容等);最后信号调理电路将这一电参量转换成易于进一步传输和处理的形式。 当然,不是所有的传感器都有敏感、变换元件之分,有些传感器是将两者合二为一,还有些新型的传感器将敏感元件、变换元件及信号调理电路集成为一个器件。在机械量(如力、压力、位移、速度等)测量中,常采用弹性元件作为敏感元件。这种弹性元件也叫弹性敏感元件或测量敏感元件,它可以把被测量由一种物理状态变换为所需要的另一种物理状态。 传感器的分类传感器的种类繁多,往往同一种被测量可以用不同类型的传感器来测量,而同一原理的传感器又可测量多种物理量,因此传感器有许多种分类方法。常用的分类方法有: 1.按被测量分类1)机械量:位移、力、速度、加速度、……2)热工量:温度、热量、流量(速)、压力(差)、液位、……3)物性参量:浓度、粘度、比

传感器的分类_传感器的原理与分类_传感器的定义和分类

传感器的分类_传感器的原理与分类_传感器的定义和分类 传感器的分类方法很多.主要有如下几种: (1)按被测量分类,可分为力学量、光学量、磁学量、几何学量、运动学量、流速与流量、液面、热学量、化学量、生物量传感器等。这种分类有利于选择传感器、应用传感器 (2)按照工作原理分类,可分为电阻式、电容式、电感式,光电式,光栅式、热电式、压电式、红外、光纤、超声波、激光传感器等。这种分类有利于研究、设计传感器,有利于对传感器的工作原理进行阐述。 (3)按敏感材料不同分为半导体传感器、陶瓷传感器、石英传感器、光导纤推传感器、金属传感器、有机材料传感器、高分子材料传感器等。这种分类法可分出很多种类。 (4)按照传感器输出量的性质分为摸拟传感器、数字传感器。其中数字传感器便干与计算机联用,且坑干扰性较强,例如脉冲盘式角度数字传感器、光栅传感器等。传感器数字化是今后的发展趋势。 (5)按应用场合不同分为工业用,农用、军用、医用、科研用、环保用和家电用传感器等。若按具体便用场合,还可分为汽车用、船舰用、飞机用、宇宙飞船用、防灾用传感器等。 (6)根据使用目的的不同,又可分为计测用、监视用,位查用、诊断用,控制用和分析用传感器等。 主要特点传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造和更新换代,而且还可能建立新型工业,从而成为21世纪新的经济增长点。微型化是建立在微电子机械系统(MEMS)技术基础上的,已成功应用在硅器件上做成硅压力传感器。 主要功能常将传感器的功能与人类5大感觉器官相比拟: 光敏传感器——视觉 声敏传感器——听觉 气敏传感器——嗅觉 化学传感器——味觉 压敏、温敏、传感器(图1) 流体传感器——触觉 敏感元件的分类: 物理类,基于力、热、光、电、磁和声等物理效应。 化学类,基于化学反应的原理。 生物类,基于酶、抗体、和激素等分子识别功能。 通常据其基本感知功能可分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类(还有人曾将敏感元件分46类)。 1)光纤传感器 光纤传感器技术是随着光导纤维实用化和光通信技术的发展而形成的一门崭新的技术。光纤传感器与传统的各类传感器相比有许多特点,如灵敏度高.抗电磁干扰能力强,耐腐蚀,绝缘性好,结构简单,体积小.耗电少,光路有可挠曲性,以及便于实现遥测等. 光纤传感器一般分为两大类,一类是利用光纤本身的某种敏感特性或功能制成的传感器.称为功能型传感器;另一类是光纤仅仅起传输光波的作用,必须在光纤端面或中间加装其他敏感元件才能构成传感器,称为传光型传感器。无论哪种传感器,其工作原理都是利用被测量的变化调制传输光光波的某一参数,使其随之变化,然后对已调制的光信号进行检测,从而得到被测量。

传感器概念总结

概念总结 1.2.传感器 定义:能感受(或响应)规定的被测量,并按照一定的规律转换成可用输出信号的器件或置。组成:一般由敏感元件、转换元件、其他辅助元件组成。 1.敏感元件——感受被测量,并输出与被测量成确定关系的其他量的元件。 2.转换元件——直接感受被测量而输出与被测量成确定关系的电量。 3.信号调理与转换电路——能把传感元件输出的电信号转换为便于显示、记录和控制 的有用信号的电路。 组成框图: 1.4.静态特性、性能指标 静态检测:测量时,检测系统的输入、输出信号不随时间变化或变化很慢。静态检测时系统所表现出的响应特性称为静态响应特性。一般用标定曲线来评定静态特性;用最 小二乘法原理求出标定曲线的拟合直线。 性能指标:1.测量范围:最小输入量和最大输入量之间的范围。 2.灵敏度:指输出增量与输入增量的比值,即 3.非线性度:标定曲线与拟合直线的偏离程度。非线性度=,B为最大 偏差,A为全量程 4.回程误差:输入量增大或减小时,对于同一输入量得到的两个输出量的差值与 全量程的比值。 5.稳定度和漂移:稳定度指规定的条件下保持其测量特性不变的能力。 漂移指输出量发生于输入量无关的、不需要的变化。 漂移包括零点漂移、灵敏度漂移。二者又可分为时间漂移、温 度漂移 6.重复性:输入量按同一方向多次测量时所得特性曲线不一致的程度。 7.分辨力:表示检测系统或仪表装置能够检测被测量最小变化量的能力。通常 以最小量程单位表示。 8.精确度:精密度(测量结果分散性)、正确度(偏离真值程度)、精确度(综 合优良程度)

1.5.动态特性、性能指标 动态特性:检测时,输入量改变,其输出量能立即随之不失真的改变的特性。 研究方法:1.微分方程2.传递函数3.频率响应函数4.单位脉冲响应函数 不失真测量条件:检测系统的幅频特性为常数,相频特性为线性。 3.1电阻式传感器 定义:把被测参量转换为电阻变化的传感器。 类型:电位器式、电阻应变式、热敏效应式。 电阻应变式传感器核心部件:电阻应变片,作用是实现应变——电阻的转换。应变片可分为 金属电阻应变片和半导体应变片。 1.金属电阻应变片工作原理:利用金属材料的电阻定律。应变片结构尺寸发生变化时,其 电阻也发生相应变化。 2.半导体应变片工作原理:基于半导体材料的压阻效应。半导体材料的某一轴受到外力作 用时,其电阻率发生变化。 电阻式传感器测量电路:桥式电路。其指标有桥路灵敏度、非线性、负载特性。 桥臂比: 灵敏度:电压值: 其中单臂系数为1/4,半桥为1/2,全桥为1。 减小或消除非线性误差的方法:1.提高桥臂比2.采用差动电桥3.采用高内阻的恒流源电桥 应用举例:1.柱力式传感器 2.电阻应变仪:测量电阻应变片应变量的仪器,分为静态、动态两类。 3.2.电容式传感器 定义:利用将非电量的变化转换为电容量的变换来实现对物理量测量。 特点:1.受本身发热影响小2.静态引力小3.动态响应好4.结构简单,适应性强5.非线性测量结构:两个金属极板、中间夹一层电介质构成。电容器时间上是一种存储电场能的原件。类型:变极距型、变极板面积型、变介质型 1.变极距型:常做成差动形式,可减少极距增加灵敏度。 2.变极板面积型:有线位移、角位移两种。线位移又分为平面线位移、圆柱线位移。 灵敏度比变极距型低。 3.变极板面积型:可做测厚仪。 电容式传感器测量电路:桥式电路,调频震荡电路、运算放大式电路、脉冲调宽型电路。应用举例:1.测厚仪2.测电缆偏心3.加速度计4.压力传感器 3.3.电感式传感器 定义:利用电磁感应原理将被测非电量的变化转换为线圈的自感系数L或互感系数M的变化的装置 类型:自感式、互感式。 1.自感式传感器:通过改变磁路磁阻来改变自感系数。又分为:气隙厚度变化型、

传感器课后答案解析

第1章概述 1.什么是传感器 传感器定义为能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置,通常由敏感元件和转换元件组成。 传感器的共性是什么 传感器的共性就是利用物理规律或物质的物理、化学、生物特性,将非电量(如位移、速度、加速度、力等)输入转换成电量(电压、电流、电容、电阻等)输出。 传感器由哪几部分组成的 由敏感元件和转换元件组成基本组成部分,另外还有信号调理电路和辅助电源电路。 传感器如何进行分类 (1)按传感器的输入量分类,分为位移传感器、速度传感器、温度传感器、湿度传感器、压力传感器等。(2)按传感器的输出量进行分类,分为模拟式和数字式传感器两类。(3)按传感器工作原理分类,可以分为电阻式传感器、电容式传感器、电感式传感器、压电式传感器、磁敏式传感器、热电式传感器、光电式传感器等。(4)按传感器的基本效应分类,可分为物理传感器、化学传感器、生物传感器。(5)按传感器的能量关系进行分类,分为能量变换型和能量控制型传感器。(6)按传感器所蕴含的技术特征进行分类,可分为普通型和新型传感器。 传感器技术的发展趋势有哪些 (1)开展基础理论研究(2)传感器的集成化(3)传感器的智能化(4)传感器的网络化(5)传感器的微型化 改善传感器性能的技术途径有哪些 (1)差动技术(2)平均技术(3)补偿与修正技术(4)屏蔽、隔离与干扰抑制(5)稳定性处理 第2章传感器的基本特性 什么是传感器的静态特性描述传感器静态特性的主要指标有哪些 答:传感器的静态特性是指在被测量的各个值处于稳定状态时,输出量和输入量之间的关系。主要的性能指标主要有线性度、灵敏度、迟滞、重复性、精度、分辨率、零点漂移、温度漂移。 传感器输入-输出特性的线性化有什么意义如何实现其线性化 答:传感器的线性化有助于简化传感器的理论分析、数据处理、制作标定和测试。常用的线性化方法是:切线或割线拟合,过零旋转拟合,端点平移来近似,多数情况下用最小二乘法来求出拟合直线。 利用压力传感器所得测试数据如下表所示,计算其非线性误差、迟滞和重复性误差。设压力为0MPa 时输出为0mV,压力为时输出最大且为. 非线性误差略 正反行程最大偏差Hmax=,所以γH=±%=±%=±% 重复性最大偏差为Rmax=,所以γR=±=±%=±% 什么是传感器的动态特性如何分析传感器的动态特性 传感器的动态特性是指传感器对动态激励(输入)的响应(输出)特性,即输出对随时间变化的输入量的响应特性。

传感器简答题DOC

第一章简答题 第一节:机电一体化系统常用传感器 知识点一:传感器的定义、组成和功能。(第一节) 1、简述传感器的定义。 2、传感器一般由哪几部分组成?试说明各部分的作用。(1-1) 3、画出传感器组成原理框图。 知识点二:传感器的分类。(第一节及表1-1) 4、什么是物性型传感器?什么是结构型传感器?试举例说明。

5、按传感器输出信号的性质可将传感器分为哪几类? 6、能量转换型传感器和能量控制型传感器有何不同?试举例说明。 第三节:传感器与检测系统基本特性的评价指标与选用原则。 7、什么是传感器的特性?如何分类。 8、什么是传感器的静态特性?试举出三个表征静态特性的指标。(200625) 9、传感器检测系统主要有哪些静态评价指标?(套110422)

10、什么是传感器的动态特性?举例说明表征动特性的主要性能指标? 11、选用传感器的主要性能要求有哪些? 12、什么是传感器的测量范围、量程及过载能力? 13、什么是传感器的灵敏度?如何表示? 14什么是传感器的线性度?如何计算(200825)?

15、生么是传感器的重复性?如何衡量? 16、一般情况下,如何表示传感器的稳定性?(200725) 17、选用传感器时要考虑哪些环境参数?(200525) 第四节:传感器的标定与校准 18、什么是传感器的标定?什么是传感器的校准?

19、传感器的标定系统有哪几部分组成?(0625)(套110722) 20、什么是传感器的静态标定?标定指标有哪些? 21、什么是传感器的动态标定?标定指标有哪些? 第五节:传感器与检测技术的发展方向。 22、简要说明传感器与检测技术的发展方向?(1325)

传感器复习题与答案(20200514000120)

传感器原理与应用复习题 第一章传感器概述 1.什么是传感器?传感器由哪几个部分组成?试述它们的作用和相互关系。 (1)传感器定义:广义的定义:一种能把特定的信息(物理、化学、生物)按一定的规律转换成某种可用信号输出的器件和装置。广义传感器一般由信号检出器件和信号处理器件两部分组成;狭义的定义:能把外界非电信号转换成电信号输出的器件。 我国国家标准对传感器的定义是:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置。 以上定义表明传感器有这样三层含义:它是由敏感元件和转换元件构成的一种检测装置;能按一定规律将被测量转换成电信号输出;传感器的输出与输入之间存在确定的关系。 (2)组成部分:传感器由敏感元件,转换元件,转换电路组成。 (3)他们的作用和相互关系:敏感元件是直接感受被测量,并输出与被测量成确定关系的物理量;转换元件把敏感元件的输出作为它的输入,转换成电路参量;上述电路参数接入基本转换电路,便可转换成电量输出。 2.传感器的总体发展趋势是什么?现代传感器有哪些特征,现在的传感器多以什么物理量输出? (1)发展趋势:①发展、利用新效应;②开发新材料;③提高传感器性能和检测范围;④微型化与微功耗;⑤集成化与多功能化;⑥传感器的智能化;⑦传感器的数字化和网络化。 (2)特征:由传统的分立式朝着集成化。数字化、多动能化、微型化、智能化、网络化和光机电一体化的方向发展,具有高精度、高性能、高灵敏度、高可靠性、高稳定性、长寿命、高信噪比、宽量程和无维护等特点。 (3)输出:电量输出。 3.压力、加速度、转速等常见物理量可用什么传感器测量?各有什么特点? 名称特点应用 电阻式传感器电阻式传感器具有体积小、质量轻、 结构简单、输出精度较高、稳定性好、 适于动态和静态测量等特点。 用于力、力矩、压力、位移、加速度、 重量等参数的测量 电容式传感器小功率、高阻抗;具有很高的输入阻 抗;静电引力小,工作所需作用力小; 有较高的频率,动态响应特性好;结 构简单,可进行非接触测量。优点是 电容式传感器用于位移、振动、角度、 加速度等机械量精密测量。逐渐应用 于压力、压差、液面、成份含量等方 面的测量。

传感器课后答案解析

第1章概述 1.什么是传感器? 传感器定义为能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置,通常由敏感元件和转换元件组成。 1.2传感器的共性是什么? 传感器的共性就是利用物理规律或物质的物理、化学、生物特性,将非电量(如位移、速度、加速度、力等)输入转换成电量(电压、电流、电容、电阻等)输出。 1.3传感器由哪几部分组成的? 由敏感元件和转换元件组成基本组成部分,另外还有信号调理电路和辅助电源电路。 1.4传感器如何进行分类? (1)按传感器的输入量分类,分为位移传感器、速度传感器、温度传感器、湿度传感器、压力传感器等。(2)按传感器的输出量进行分类,分为模拟式和数字式传感器两类。(3)按传感器工作原理分类,可以分为电阻式传感器、电容式传感器、电感式传感器、压电式传感器、磁敏式传感器、热电式传感器、光电式传感器等。(4)按传感器的基本效应分类,可分为物理传感器、化学传感器、生物传感器。(5)按传感器的能量关系进行分类,分为能量变换型和能量控制型传感器。(6)按传感器所蕴含的技术特征进行分类,可分为普通型和新型传感器。 1.5传感器技术的发展趋势有哪些? (1)开展基础理论研究(2)传感器的集成化(3)传感器的智能化(4)传感器的网络化(5)传感器的微型化 1.6改善传感器性能的技术途径有哪些? (1)差动技术(2)平均技术(3)补偿与修正技术(4)屏蔽、隔离与干扰抑制 (5)稳定性处理 第2章传感器的基本特性 2.1什么是传感器的静态特性?描述传感器静态特性的主要指标有哪些? 答:传感器的静态特性是指在被测量的各个值处于稳定状态时,输出量和输入量之间的关系。主要的性能指标主要有线性度、灵敏度、迟滞、重复性、精度、分辨率、零点漂移、温度漂移。 2.2传感器输入-输出特性的线性化有什么意义?如何实现其线性化? 答:传感器的线性化有助于简化传感器的理论分析、数据处理、制作标定和测试。常用的线性化方法是:切线或割线拟合,过零旋转拟合,端点平移来近似,多数情况下用最小二乘法来求出拟合直线。 2.3利用压力传感器所得测试数据如下表所示,计算其非线性误差、迟滞和重复性误差。设压力为0MPa 时输出为0mV,压力为0.12MPa时输出最大且为16.50mV. 非线性误差略 正反行程最大偏差?Hmax=0.1mV,所以γH=±?Hmax0.1100%=±%=±0.6%YFS16.50 重复性最大偏差为?Rmax=0.08,所以γR=±?Rmax0.08=±%=±0.48%YFS16.5 2.4什么是传感器的动态特性?如何分析传感器的动态特性? 传感器的动态特性是指传感器对动态激励(输入)的响应(输出)特性,即输出对随时间变化的输入量的响应特性。 传感器的动态特性可以从时域和频域两个方面分别采用瞬态响应法和频率响应法来分析。瞬态响应常采用阶跃信号作为输入,频率响应常采用正弦函数作为输入。

传感器的主要知识点

绪论 一、传感器的定义、组成、分类、发展趋势 能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件构成。 如果传感器信号经信号调理后,输出信号为规定的标准信号(0~10mA,4~20mA;0~2V,1~5V;…),通常称为变送器, 分类: 按照工作原理分,可分为:物理型、化学型与生物型三大类。物理型传感器又可分为物性型传感器和结构型传感器。 按照输入量信息: 按照应用范围: 传感器技术: 是关于传感器的研究、设计、试制、生产、检测和应用的综合技术. 发展趋势: 一是开展基础研究,探索新理论,发现新现象,开发传感器的新材料和新工艺;二是实现传感器的集成化、多功能化与智能化。 1.发现新现象; 2.发明新材料; 3.采用微细加工技术; 4.智能传感器; 5.多功能传感器; 6.仿生传感器。 二、信息技术的三大支柱

现在信息科学(技术)的三大支柱是信息的采集、传输与处理技术,即传感器技术、通信技术和计算机技术。 课后习题 1、什么叫传感器,它由哪几部分组成?它们的作用与相互关系? 传感器(transducer/sensor):能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置(国标GB7665—2005)。通常由敏感元件和转换元件组成。 敏感元件:指传感器中能直接感受或响应被测量并输出与被测量成确定关系的其他量(一般为非电量)部分。 转换元件:指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的可用输出信号(一般为电信号)部分。 信号调理电路(Transduction circuit) :由于传感器输出电信号一般较微弱,而且存在非线性和各种误差,为了便于信号处理,需配以适当的信号调理电路,将传感器输出电信号转换成便于传输、处理、显示、记录和控制的有用信号。 第一章传感器的一般特性 1.传感器的基本特性 动态特性静态特性 2.衡量传感器静态特性的性能指标 (1)测量范围、量程 (2)线性度 传感器静态特性曲线及其获得的方法

传感器的含义

1、传感器的定义 英文名称:transducer / sensor 传感器是一种物理装置或生物器官,能够探测、感受外界的信号、物理条件(如光、热、湿度)或化学组成(如烟雾),并将探知的信息传递给其他装置或器官。 国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 2、传感器的分类 可以用不同的观点对传感器进行分类:它们的转换原理(传感器工作的基本物理或化学效应);它们的用途;它们的输出信号类型以及制作它们的材料和工艺等。 根据传感器工作原理,可分为物理传感器和化学传感器二大类:传感器工作原理的分类物理传感器应用的是物理效应,诸如压电效应,磁致伸缩现象,离化、极化、热电、光电、磁电等效应。被测信号量的微小变化都将转换成电信号。 化学传感器包括那些以化学吸附、电化学反应等现象为因果关系的传感器,被测信号量的微小变化也将转换成电信号。

有些传感器既不能划分到物理类,也不能划分为化学类。大多数传感器是以物理原理为基础运作的。化学传感器技术问题较多,例如可靠性问题,规模生产的可能性,价格问题等,解决了这类难题,化学传感器的应用将会有巨大增长。 按照其用途,传感器可分类为: 压力敏和力敏传感器位置传感器 液面传感器能耗传感器 速度传感器热敏传感器 加速度传感器射线辐射传感器 振动传感器湿敏传感器 磁敏传感器气敏传感器 真空度传感器生物传感器等。 以其输出信号为标准可将传感器分为: 模拟传感器——将被测量的非电学量转换成模拟电信号。 数字传感器——将被测量的非电学量转换成数字输出信号(包括直接和间接转换)。 膺数字传感器——将被测量的信号量转换成频率信号或短周期信号的输出(包括直接或间接转换)。 开关传感器——当一个被测量的信号达到某个特定的阈值时,传感器相应地输出一个设定的低电平或高电平信号。

传感器的定义

传感器的定义 传感器(sensor)曾被称为换能器或变送器(Transducer),近年国际上多用“Sensor”一词。按我国国家标准“传感器通用术语”中的定义:“传感器是能感受规定的被测量并按一定规律将其转换为有用信号的器件或装置”。又指出“传感器通常由敏感器件、转换器件和电子线路组成”。在有些传感器中敏感器件和转换器件是合为一体的。 在信息社会里,各行各业和人们日常生活中所遇到的信号大部分是非电量的,对于这些非电量信号,即使能检测出来也难以放大、处理和传输。因此传感器通常是用于检测这些非电量信号并将其转变成便于计算机或电子仪器所接受和处理的电信号。从传感器的作用来看,实质上就是代替人的五种感觉(视、听、触、嗅、味)器官的装置(图1-1).人们把外界信息通过五官收集起来,传递给大脑,在大脑中处理信息,得出一个“结果”,发出指令。在电子设备中完成这一过程时,电子计算机相当于大脑,传感器作为电脑的五官,就像人的眼、耳、鼻、舌、皮肤那样可以收集各种信息,这些信息送入电脑后,由电脑进行判断处理,并发出各种控制执行机构,从而满足各种社会需求。20世纪80年代后期,由于电子技术的进步,微型计算机的功能不断提高,价格却在不断下降,微型计算机在多方面迅速普及,而且已开始进入家庭。相比之下,传感器处于较落后地位。不少传感器尚不能很好地满足现

代信息系统对其准确度、速度和价格的要求。传感器技术已成为微型计算机应用中的关键技术。近年来,随着科学技术的迅速发展,特别是微电子加工技术、计算机芯片及外围扩展电路技术、新型材料技术的发展、使得传感器技术的开发和应用进入了一个崭新的阶段。 生物医学传感器(Biomedical Sensors)是获取人体生理和病理信息的工具,是生物医学工程学中的重要分支,对于化验、诊断、监护、控制、治疗和保健等都有重要作用。来自海洋兴业。

传感器原理及应用习题及答案

习题集及答案 第1章概述 什么是传感器?按照国标定义,“传感器”应该如何说明含义? 传感器由哪几部分组成?试述它们的作用及相互关系。 传感器如何分类?按传感器检测的范畴可分为哪几种? 答案 答: 从广义的角度来说,感知信号检出器件和信号处理部分总称为传感器。我们对传感器定义是:一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。从狭义角度对传感器定义是:能把外界非电信息转换成电信号输出的器件。 我国国家标准(GB7665—87)对传感器(Sensor/transducer)的定义是:“能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置”。定义表明传感器有这样三层含义:它是由敏感元件和转换元件构成的一种检测装置;能按一定规律将被测量转换成电信号输出;传感器的输出与输入之间存在确定的关系。按使用的场合不同传感器又称为变换器、换能器、探测器。 答: 组成——由敏感元件、转换元件、基本电路组成; 关系,作用——传感器处于研究对象与测试系统的接口位置,即检测与控制之首。传感器是感知、获取与检测信息的窗口,一切科学研究与自动化生产过程要获取的信息都要通过传感器获取并通过它转换成容易传输与处理的电信号,其作用与地位特别重要。 答:(略)答: 按照我国制定的传感器分类体系表,传感器分为物理量传感器、化学量传感器以及生物量传感器三大类,含12个小类。按传感器的检测对象可分为:力学量、热学量、流体量、光学量、电量、磁学量、声学量、化学量、生物量、机器人等等。 第3章电阻应变式传感器 何为电阻应变效应?怎样利用这种效应制成应变片? 图3-31为一直流电桥,负载电阻R L趋于无穷。图中E=4V,R1=R2=R3=R4=120Ω,试求:①R1为金属应变片,其余为外接电阻,当R1的增量为ΔR1=Ω时,电桥输出电压U0=? ② R1、R2为金属应变片,感应应变大小变化相同,其余为外接电阻,电桥输出电压U0=? ③ R1、R2为金属应变片,如果感应应变大小相反,且ΔR1=ΔR2 =Ω,电桥输出电压U0=? 答案 答: 导体在受到拉力或压力的外界力作用时,会产生机械变形,同时机械变形会引起导体阻值的变化,这种导体材料因变形而使其电阻值发生变化的现象称为电阻应变效应。 当外力作用时,导体的电阻率 、长度l、截面积S都会发生变化,从而引起电阻值R的变

传感器定义

传感器定义;能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。 敏感元件:直接感受被测量,并输出与被测量成确定关系的某一物理量的元件。 转换元件:将敏感元件的输出转换成电路参数。 基本转换电路:将电路参数接入基本转换电路,可以转换成电量输出。 静特性: 输入量为常量或变化极慢时输入与输出的关系; 动特性: 输入量随时间较快的变化时输入与输出的关系; 线性度(非线性误差): 采用直线拟合线性化时,输出输入校正曲线与其拟合线之间的最大偏差,称之为线性度 迟滞 传感器在正(输入量增大)反(输入量减小)行程中输出输入曲线不重合称迟滞。(迟滞误差又称回程误差) 重复性 传感器在输入按同一方向连续多次变动时所得特性曲线不一致的程度。 灵敏度:传感器输出的变化量与引起该变化量的输入变化量之比。 稳定性指传感器在长时间工作的情况下输出量发生的变化,也称之谓零点漂移(或长时间工作稳定性)。 静态误差动态测量输入信号的“标准”输入只有三种:正弦周期输入、阶跃输入和线性输入 指传感器在其全量程内任一点的输出值与其理论值的偏离程度。 过渡函数是指输入为阶跃信号的响应。 允许误差范围内所经历的时间称为稳定时间 电阻式传感器;指将被测的输入量(非电量)转换成电阻值的变化,在通过转换电路变成电压或电流输出的一类传感器 ?应变效应;导体或半导体在受到外界力的作用时,产生机械变形,机械变形导致其阻值变化,这种因形变而使阻值发生变化的现象称为应变效应。 蠕变:温度一定,恒定机械应变,电阻值随时间变化而变化 零漂;在温度保持恒定,不受机械应变时,其带电阻值随时间变化,的特性 膜片式应变式压力传感器原理 应变式加速度传感器原理 固体在受到作用力时,电阻率产生变化,这种效应称为压阻效应。一般用于半导体材料 电感式传感器原理:把被测位移转换成线圈的自感或互感的变化,从而实现测量的一类传感器。变气隙型,变截面积型和螺管型三种传感器。 转换电路包括:调幅、调频、调相电路。 轴向自感式传感器p53与p54

传感器的定义及分类(精)

传感器的定义及分类 一、传感器的定义 信息处理技术取得的进展以及微处理器和计算机技术的高速发展,都需要在传感器的开发方面有相应 的进展。微处理器现在已经在测量和控制系统中得到了广泛的应用。随着这些系统能力的增强,作为信息采集系统的前端单元,传感器的作用越来越重要。传感器已成为自动化系统和机器人技术中的关键部件, 作为系统中的一个结构组成,其重要性变得越来越明显。 最广义地来说,传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。国际电工委员会 (IEC:International Electrotechnical Committee)的定义为:“传感器是测量系统中的一种前置部件,它将输 入变量转换成可供测量的信号”。按照Gopel等的说法是:“传感器是包括承载体和电路连接的敏感元件”,而“传感器系统则是组合有某种信息处理(模拟或数字)能力的传感器”。传感器是传感器系统的一个组成部分,它是被测量信号输入的第一道关口。 传感器系统的原则框图示于图1-1,进入传感器的信号幅度是很小的,而且混杂有干扰信号和噪声。 为了方便随后的处理过程,首先要将信号整形成具有最佳特性的波形,有时还需要将信号线性化,该工作是由放大器、滤波器以及其他一些模拟电路完成的。在某些情况下,这些电路的一部分是和传感器部件直 接相邻的。成形后的信号随后转换成数字信号,并输入到微处理器。 德国和俄罗斯学者认为传感器应是由二部分组成的,即直接感知被测量信号的敏感元件部分和初始处 理信号的电路部分。按这种理解,传感器还包含了信号成形器的电路部分。 传感器系统的性能主要取决于传感器,传感器把某种形式的能量转换成另一种形式的能量。有两类传 感器:有源的和无源的。有源传感器能将一种能量形式直接转变成另一种,不需要外接的能源或激励源(参阅图1-2(a))。 有源(a)和无源(b)传感器的信号流程 无源传感器不能直接转换能量形式,但它能控制从另一输入端输入的能量或激励能 传感器承担将某个对象或过程的特定特性转换成数量的工作。其“对象”可以是固体、液体或气体,而它们 的状态可以是静态的,也可以是动态(即过程)的。对象特性被转换量化后可以通过多种方式检测。对象的 特性可以是物理性质的,也可以是化学性质的。按照其工作原理,传感器将对象特性或状态参数转换成可 测定的电学量,然后将此电信号分离出来,送入传感器系统加以评测或标示。 各种物理效应和工作机理被用于制作不同功能的传感器。传感器可以直接接触被测量对象,也可以不 接触。用于传感器的工作机制和效应类型不断增加,其包含的处理过程日益完善。 常将传感器的功能与人类5大感觉器官相比拟: 光敏传感器——视觉声敏传感器——听觉 气敏传感器——嗅觉化学传感器——味觉 压敏、温敏、流体传感器——触觉

1 传感器的概念

一、传感器的概念 1、传感器:把特定的被测信息(包括物理量、化学量、生物量等)按一定规律转换成某种可用信号输出的器件或装置。 这里“可用信号”是指便于处理、传输的信号。当今电信号最易于处理和便于传输,因此,可以把传感器狭义地定义为: 传感器(狭义定义):能将外界非电信号转换成电信号输出的器件。 当人类进入光子时代,光信息成为更便于快速、高效地处理与传输的可用信号时,传感器的概念也可以变为:能把外界信息转换成光信号输出的器件。 2、传感器技术:是涉及传感(检测)原理、传感器设计、传感器开发和应用 的综合技术。 传感技术的含义则更为广泛,它是传感器技术、敏感功能材料科学、细微加工技术等多学科技术相互交叉渗透而形成的一门新技术学科——传感器工程学。 3、传感(检测)原理:是指传感器工作所依据的物理、化学和生物效应,并受相应的定律和法则所支配。如:物理基础的基本定律包括:守恒定律(能量、动量、电荷等),场的定律(包括动力场运动定律、电磁场的感应定律等,其作用与物体在空间的位置及分布有关。),物质定律(如虎克定律、欧姆定律、半导体材料的各种效应等,表示本身内在性质的定律),统计法则(它把微观系统与宏观系统联系起来的物理法则,它们常与传感器的工作状态有关)。 敏感材料:是传感技术发展的物质基础;此外,传感器的加工技术也是传感技术必不可少的组成部分,现代的微细加工技术、光学刻划技术、光学镀磨技术、扩散及各向异性腐蚀技术等新型加工方法的引入,使传感器的加工上了一个大台阶。 二、传感器的组成 传感器一般由三部分组成:敏感元件、转换元件、测量电路组成。 图0-1传感器的组成 其中,能把非电信息转换成电信号的转换元件,是传感器的核心。敏感元件是传感器预先将被测非电量变换为另一种易于变换成电量的非电量,然后再变换为电量,如弹性元件。因此,并非所有传感器都包含这两部分,对于物性型传感器,一般就只有转换元件;而结构型传感器就包括敏感和转换元件两部分。 测量电路,将转换元件输出的电量变成便于显示、记录、控制和处理的有用电信号的电路。传感器的测量电路,经常采用电桥电路、高阻抗输入电路、脉冲

传感器常用参数的含义

真空传感器是工业实践中最常用的一种压力传感器,现已广泛应用于各种工业自控环境。每种仪器在使用的时候,我们都力求能够使其测量结果精准,而首要的就是对该产品相关信息要有了如指掌,才能够为其安装使用奠定坚实的基础。下面就让艾驰商城小编对传感器常用参数的含义来一一为大家做介绍吧。 1、传感器:能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。通常有敏感元件和转换元件组成。 (1)敏感元件是指传感器中能直接(或响应)被测量的部分。 (2)转换元件指传感器中能较敏感元件感受(或响应)的北侧量转换成是与传输和(或)测量的电信号部分。 (3)当输出为规定的标准信号时,则称为变送器。 2、测量范围:在允许误差限内被测量值的范围。 3、量程:测量范围上限值和下限值的代数差。 4、精确度:被测量的测量结果与真值间的一致程度。 5、从复性:在所有下述条件下,对同一被测的量进行多次连续测量所得结果之间的符合程度: 6、分辨力:传感器在规定测量范围圆可能检测出的被测量的最小变化量。 7、阈值:能使传感器输出端产生可测变化量的被测量的最小变化量。 8、零位:使输出的绝对值为最小的状态,例如平衡状态。 9、激励:为使传感器正常工作而施加的外部能量(电压或电流)。 10、最大激励:在市内条件下,能够施加到传感器上的激励电压或电流的最大值。 11、输入阻抗:在输出端短路时,传感器输入的端测得的阻抗。 12、输出:有传感器产生的与外加被测量成函数关系的电量。 13、输出阻抗:在输入端短路时,传感器输出端测得的阻抗。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品

传感器习题解答

思考与作业 绪论 .列出几项你身边传感测试技术的应用例子。 解:光电鼠标,电子台称,超声波测距,超声波探伤等。 第1章传感器的基本概念 1. 什么叫做传感器的定义? 最广义地来说,传感器是一种能把物理量、化学量以及生物量转变成便于利用的电信号的器件。 2.画出传感器系统的组成框图,说明各环节的作用。 答: 1).敏感元件:直接感受被测量,并输出与被测量成确定关系的某一物理量的元件。 2).转换元件:以敏感元件的输出为输入,把输入转换成电路参数。 3).转换电路:上述电路参数接入转换电路,便可转换成电量输出。 3.传感器有哪几种分类? 按被测量分类——物理量传感器——化学量传感器——生物量传感器 按测量原理分类阻容力敏光电声波 按输出型式分类数字传感器模拟传感器 按电源型式分类无源传感器有源传感器 4. 传感器的静态特性是什么?

静态特性表示传感器在被测量各个值处于稳定状态时的输入输出关系。也即当输入量为常量,或变化极慢时,这一关系就称为静态特性。 5. 传感器的动态特性是什么? 动态特性是指传感器对随时间变化的输入量的响应特性,反映输出值真实再现变化着的输入量的能力。 6. 为什么要把传感器的特性分为静态特性和动态特性? 传感器所测量的非电量一般有两种形式:一种是稳定的,即不随时间变化或变化极其缓慢,称为静态信号;另一种是随时间变化而变化,称为动态信号。由于输入量的状态不同,传感器所呈现出来的输入—输出特性也不同,因此存在所谓的静态特性和动态特性。 第2章电阻式传感器 1. 如何用电阻应变计构成应变式传感器? 电阻应变计把机械应变信号转换成ΔR/R后,由于应变量及其应变电阻变化一般都很微小,既难以直接精确测量,又不便直接处理。因此,必须采用转换电路或仪器,把应变计的ΔR/R变化转换成电压或电流变化(通常采用电桥电路实现这种转换。根据电源的不同,电桥分直流电桥和交流电桥)。 2. 金属电阻应变片测量外力的原理是什么? 金属电阻应变片的工作原理是基于金属导体的应变效应,即金属导体在外力作用下发生机械变形时,其电阻值随着它所受机械变形(伸长或缩短)的变化而发生变化的现象。 3. 电子秤中所使用的应变片应选择 B 应变片;为提高集成度,测量气体压力应选择 D 。 A.金属丝式 B.金属箔式 C.电阻应变仪 D.固态压阻式传感器 4. 应变测量中,希望灵敏度高、线性好、有温度自补偿功能,应选择 C 测量转换

传感器题库及答案汇总

第一章 检测技术的基本概念 一、填空题: 1、传感器有 、 、 组成 2、传感器的灵敏度是指稳态标准条件下,输出 与输入 的比值。 3、从输出曲线看,曲线越陡,灵敏度 。 4、下面公式是计算传感器的 。 9)-(1 %100min max max L L ?-=y y Δγ 5 12 3、456789 三、 判断题 1、回差在数值上等于不灵敏度 ( ) 2、灵敏度越大,仪表越灵敏 ( ) 3、同一台仪表,不同的输入输出段灵敏度不同 ( ) 4、灵敏度其实就是放大倍数 ( ) 5、测量值小数点后位数越多,说明数据越准确 ( ) 6、测量数据中所有的非零数字都是有效数字 ( )

7、测量结果中小数点后最末位的零数字为无效数字() 四、问答题 1、什么是传感器的静态特性,有哪些指标。 答:指传感器的静态输入、输出特性。有灵敏度、分辨力、线性度、迟滞、稳定性、电磁兼容性、可靠性。 2、产生随机误差的原因是什么,如何减小随机误差对测量结果的影响。 答:是测量中独立的、微小的、偶然的因素引起的结果。既不能用实验的方法消除,也不能修正。可以通过增加测量次数,利用概率论的一些理论和统计学的方法进行数据结果处理,服从正态分布。 3、系统误差分几类,怎样减小系统误差。 答:分为恒值误差,例如刻度盘分度差错。变值误差,环境温度的影响、零点漂移等。系统误差有规律。可以通过实验的方法引入修正值的方法计算修正,也可以重新调整测量仪表的有关部件予以剔除。 4、如何判断系统中存在粗大误差。 答:粗大误差是测量人员的粗心大意及电子测量仪器收到突然强大的干扰所引起的,粗大误差明显超过正常条件下的误差。 五、分析与计算题 1、有一温度计,它的测量范围为0—2000C,精度为0.5级,求 1)该表可能出现的最大绝对误差。 2)当示值分别为200C、1000C的示值相对误差。 2、预测240V左右的电压,要求测量示值相对误差的绝对值不大于0.6%,问 1)若选用量程250V的电压表,精度选哪一级。 2)若选用量程300V、500V的电压表,精度各选哪一级。 3、已知预测拉力约为70N。有两只测力仪表,一只为0.5级,测量范围为0—500N,另一 只为1.0级,测量范围为0—500N,问选哪一只仪表好,为什么。

传感器的定义、组成及分类讲课教案

传感器的定义、组成 及分类

传感器 一.传感器的定义 传感器是一种能感受规定的被测量件并按照一定的规律转换成可用信号的 器件或装置,通常由敏感元件和转换元件组成”。 传感器是一种以一定的精确度把被测量转换为与之有确定对应关系的、便于应用的某种物理量的测量装置。其包含以下几个方面的含义: 1.传感器是测量装置,能完成检测任务 2.它的输入量是某一被测量,可能是物理量,也可能是化学量、生物量等 3.输出量是某种物理量,这种量要便于传输、转换、处理、显示等等,这种量可以是气、光、电量,但主要是电量。 4.输入输出有对应关系,且应有一定的精确度。 二.传感器的组成 传感器一般由敏感元件、转换元件、转换电路三部分组成: 1.敏感元件(Sensitive element):直接感受被测量,并输出与被测量成确定关系的某一物理量的元件。 2.转换元件(Transduction element):以敏感元件的输出为输入,把输入转换成电路参数。 3.转换电路(Transduction circuit):上述电路参数接入转换电路,便可转换成电量输出。 实际上,有些传感器很简单,仅由一个敏感元件(兼作转换元件)组成,它感受被测量时直接输出电量。如热电偶。

有些传感器由敏感元件和转换元件组成,没有转换电路。 有些传感器,转换元件不止一个,要经过若干次转换。 三.传感器的分类 一、根据输入物理量可分为:位移传感器、压力传感器、速度传感器、温度传感器及气敏传感器等。 二、根据工作原理可分为:电阻式、电感式、电容式及电势式等。 三、根据输出信号的性质可分为:模拟式传感器和数字式传感器。即模拟式传感器输出模拟信号,数字式传感器输出数字信号. 四、根据能量转换原理可分为:有源传感器和无源传感器。有源传感器将非电量转换为电能量,如电动势、电荷式传感器等;无源程序传感器不起能量转换作用,只是将被测非电量转换为电参数的量,如电阻式、电感式及电容光焕发式传感器等。 传感器分类表

传感器原理及应用复习(简答题)

一.简答题(40分) 1.传感器的基本概念及基本功能 传感器就是借助于检测元件(敏感元件)接受一定形式的信息,并按一定的规律将它转换成另一种信息的装置。它获取的信息,可以是各种物理量、化学量和生物量,而转化后的信息也有各种形式。目前,将传感器接收到的信息转化为电信号是最常用的一种形式(电信号包括电压,电流及频率信号) 基本功能:信息收集,信号数据的转换 2.传感器的基本组成并说出每部分的功能 传感器通常是由敏感元件,转换元件和调节转换电路三部分组成 其中敏感元件是指传感器中能够直接感受或响应被测量的部分;转换元件是指传感器中能够将敏感元件感受或响应的被测量转换成电信号的部分;调节转换电路是指将非适合电量进一步转换成适合电量的部分。 3.传感器的发展趋势 1新特性(努力实现传感器的新特性) 2可靠性(确保传感器的可靠性,延长其使用寿命) 3集成智能(体感传感器的集成化和智能化程度) 4微型(传感器微型化) 5仿生(发展仿生物传感器)

6新材料(新型功能材料开发) 7多融合(多传感器信息融合) 4.按被测量的不同传感器可以分为哪几类 1按感知外界信息基本效应不同分为物理传感器,化学传感器,和生物传感器等 2按被测量不同分为力学量/热量/液体成分/气体成分/真空/光/磁/离子/放射线传感器等 2按敏感材料不同分为金属/半导体/光纤/陶瓷/高分子材料/复合材料传感器等 3按工作原理不同分为应变式/电感式/电容式/压电式/磁电式/光电式/热电式/气敏/湿敏传感器等 5.传感器的特性及其概念 6.传感器的静态特性包括那几个重要指标 传感器的特性是指传感器的输入量和输出量之间的对应关系。通常分为 静态特性:输入不随时间变化而变化的特性(重要指标包括线性度、灵敏度、重复性、迟滞、零点漂移、温度漂移等) 动态特性:输入随时间变化而变化的特性(可从时域和频率方面即对应阶跃响应法和频率响应法方面分析) 7..电感式传感器的概念及每类传感器的基本概念 1应变式传感器:基于电阻应变片的应变效应(对半导体应变片而言为压阻效应)。 2电感式传感器:基于电磁感应原理,利用磁路磁阻变化引起传感器线圈的电感(自感系数或互感系数)变化来检测非电量的一种机电转换装置。常见有自感式,互感式,涡流式等。 3电容式传感器:可以把某些非电量的变化通过一个可变电容器转换成电容量变化的装置。常见有变极距型,变面积型,变介质型。 4压电式传感器:基于压电材料受力作用而变形时,其表面会有电荷产生,从而实现非电量测量原理。压电式传感器是典型的有源传感器,常见有单向力,双向力,三向力。 5磁电式传感器:利用电磁感应原理将运动速度转换成感应电动势输出的传感器。又称感应式或电动式

相关主题
文本预览
相关文档 最新文档