当前位置:文档之家› 电子管功放简易设计

电子管功放简易设计

电子管功放简易设计
电子管功放简易设计

电子管功放简易设计,写给初学者!

发烧之路2009-06-1012:15:30阅读202评论0字号:大中小

常见的电子管功放是由功率放大,电压放大和电源供给三部分组成。电压放大和功率放大组成了放大通道,电源供给部分为放大通道工作提供多种量值的电能。

一般而言,电子管功放的工作器件由有源器件(电子管,晶体管)、电阻、电容、电感、变压器等主要器件组成,其中电阻,电容,电感,变压器统称无源器件。以各有源器件为核心并结合无源器件组成了各单元级,各单元级为基础组成了整个放大器。功放的设计主要就是根据整机要求,围绕各单元级的设计和结合。

这里的初学者指有一定的电路理论基础,最好有一定的实做基础

且对电子管工作原理有一定了解的

(1)整机及各单元级估算

1,由于功放常根据其输出功率来分类。因此先根据实际需求确定自己所需要设计功放的输出功率。对于95db的音箱,一般需要8W输出功率;90db的音箱需要20W左右输出功率;84db音箱需要60W左右输出功率,80db音箱需要120W左右输出功率。当然实际可以根据个人需求调整。

2,根据功率确定功放输出级电路程式。

对于10W以下功率的功放,通常可以选择单管单端输出级;10-20W可以选择单管单端功放,也可以选择推挽形式;而通常20W以上的功放多使用推挽,甚至并联推挽,如果选择单管单端或者并联单端,通常代价过高,也没有必要。

3,根据音源和输出功率确定整机电压增益。

一般现代音源最大输出电压为2Vrms,而平均电压却只有0.5Vrms左右。由输出功率确定输出电压有效值:Uout=√ ̄(P·R),其中P为输出功率,R为额定负载阻抗。例如某8W输出功率的功放,额定负载8欧姆,则其Uout=8V,输入电压Uin记0.5V,则整机所需增益A =Uout/Uin=16倍

4,根据功率和输出级电路程式确定电压放大级所需增益及程式。(OTL功放不在讨论之列)

目前常用功率三极管有2A3,300B,811,211,845,805

常用功率束射四极管与五极管有6P1,6P14,6P6P,6P3P(807),EL34,FU50,KT88,EL156,813

束射四极管和五极管为了取得较小的失真和较低的内阻,往往也接成三极管接法或者超线性接法应用。下面提到的“三极管“也包括这些多极管的三极管接法。

通常工作于左特性曲线区域的三极管做单管单端甲类功放时,屏极效率在20%-25%,这里的屏极效率是指输出音频电功率与供给屏极直流电功率的比值。

工作于右特性曲线区域的三极管,多极管超线性接法做单管单端甲类功放时,屏极效率在25%-30%。

而标准接法的多极管做单管单端甲类功放时,屏极效率可以达到35%左右

关于电子管特性曲线的知识可以参照

三极管及多极管的推挽功放由于牵涉到工作点,电路程式,负载阻抗,推动情况等多种因素左右,所以一般由手册给出,供选择。

在决定输出级用管和电路程式之后,根据输出级功率管满功率输出时所需推动电压Up(峰峰值)和输入音源信号电压U'in(这里的U'in需要折算成峰峰值)确定电压放大级增益。Au=Up/U'in。例如2A3单管单端所需推动电压峰峰值为90V,输入信号峰峰值为1.4V,则所需增益Au=90/1.4=64倍,若为开环放大,则取1.1倍余量,实际所需开环放大量Au'=70倍。对于多极管或者推挽功放,常施加整机环路负反馈,这时取2倍余量Au'=128倍,整机反馈量也可以控制在6db以内。

如所需增益小于50倍,可以采用三极管或者五极管做单级电压放大。如所需增益大于50倍,可以采用三极管的多级电压放大或者五极管做单级电压放大,这些将在下面的电压放大级设计里提到。

2,电压放大级设计概要

电子管电压放大级通常由单管共阴放大器组成,其基本电路如下图所示:

放大电路分为无信号输入时的静态工作情况和有信号输入后的动态工作情况。对放大电路工作情况分析有两种方法:图解分析法和等效电路分析法。作为简易设计,这里主要介绍图解分析法。对于电子管工作原理及特性曲线尚不了解的,\

一、静态工作情况分析

分析静态工作情况,主要分析其屏极电压Ua,屏极电流Ia和栅极偏压Ug。下面采用图解分析法进行分析。简易分析参照链接如下:/

二、动态工作情况分析

静态工作情况选择是为了动态工作具备良好的条件。电压放大级工作于小信号,只要电路设计得当,非线性失真度较小,基本可以忽略不计。所以,对电压放大级动态情况分析主要有电压放大倍数,频率失真程度及输入、输出阻抗等。

(一)电压放大倍数简易分析

根据图一所示,其交流等效负载R'L=Ra·RL/(Ra+RL)

其放大倍数(中频段)A=────────

1+ra/RL+ra/Ra

式中,u为电子管放大系数,ra为电子管内阻。

对于五极管,由于其内阻远大于R'L,所以其放大倍数可由下式计算:

A=gm·R'L

式中,gm为五极管跨导

(二)幅频响应简易定性分析

在其他参数一定的情况下,低频响应主要受到输出耦合电容C和阴极旁路电容Ck的影响输出耦合电容越大,阴极旁路电容越大,低频截至频率越低

高频响应主要受到信号源内阻,电子管极间电容(主要是Cga,屏栅间电容,由它产生密勒电容效应,粗略估算为u倍的Cga),本级输出阻抗和下一级输入对地电容的影响。

信号源内阻减小,电子管极间电容减小,本级输出阻抗减小以及下一级输入对地电容的减小都可以有效的提高高频上限截至频率。

(三)输入、输出阻抗简易分析

在一般情况下,输入阻抗主要由输入栅漏电阻Rg决定。高频段由于输入电容开始显现作用,逐渐成容性。

输出阻抗:在忽略分布电容的影响下,输出阻抗为电子管工作实际内阻和R'L的并联值

因此尽量选择较小内阻的电子管以降低输出阻抗,避免分布电容对高频段的影响。

做放大倍数简易分析:

设6N1u=35,ra=10k,图中RL=150K,Ra=75K

则放大倍数A=35/(1+10/150+10/75)=29倍

另外需要注意的地方是

1、电压放大级的最大输出电压能力要大于下一级需要的最大输入电压

2、实际电子管手册中往往给出电压放大管做共阴放大的各种工作条件和特性

给出的参数主要有电压放大倍数A,最大输出电压Eo

例如6SN7电子管手册中,所给出的条件如图所示:

可以方便的查阅,以供设计便利

电子五极管和电子三极管做RC耦合单级共阴放大的选择问题:

当输出信号幅值远小于可能输出最大电压幅值时,则选用五极管电路失真较小

当输出信号幅值较大时,则选用三极管电路失真较小

但五极管电路增益较高,输出幅值较高u三极管来得大

由于五极管电路输出阻抗较大,不适于后级输入电容较大的电路,因此五极管更适宜做为小信号输入级,或者驱动输入电容较小的束射四极管、五极管标准接法电路。

电压放大级信号相位的判断:

对于电子管电压放大器,共有三种电路放大程式,共阴放大器、共栅放大器、阴极输出器他们的特点一一对应晶体管电路中的共发射极电路、共基极电路、射极输出器(共集电极电路)。

在常见的电子管共阴放大器中,如果把栅极看作对地短路,没有信号输入,此时在阴极施加信号,则形成了共栅放大。

共阴放大中,栅极输入信号和屏极输出信号反相,此时阴极和栅极信号同相

共栅放大中,阴极输入信号和屏极输出信号同相

用(+)表示同相,(-)表示反相,则同时标注在图中如下:

图中黑色标号表示栅极做输入端,红色表示阴极做输入端

采用这种相位标注法可以为日后判断反馈相位提供一定的基础

倒相级简易介绍

倒相级也属于电压放大器的一种,它的分析计算方法原理同普通电压放大单元,

它负责产生一对幅值相等,相位相反的信号以提供推挽输出级使用。

常见的倒相电路如图所示:

相位已经标注在图上分析。这种倒相主要是从上管的输出信号Usc1中取出一部分信号Usr2供给下管进行放大,得到一对倒相信号Usc1和Usc2。

此种倒相形式较为简单,其原理是利用了电子管栅极输入信号时,屏极和阴极输出信号相反来达到目的的。

长尾倒相级是差分放大器的变形。相位已经标注在图上。

信号由V1管栅极输入,同时通过屏极和阴极输出一对相位相反的信号

V1管阴极输出阴极信号耦合到V2管阴极输入,V2管栅极交流信号对地通过电容C短路,是共栅放大器。由V2管屏极输出和V2管阴极相位相同的信号,可见是和V1阴极信号同相的,和V1屏极反相的,从而获得了一对倒相信号。由于电子管屏阴放大倍数不同,阴极耦

合程度越高倒相对称度越好,因此可以增加阴极电位,即通过Rk2来抬高电位,增加耦合度,Rk1,Rg1,Rg2保证两管的正常静态工作点。较大的阴极电阻Rk2就是通常称作的”长尾巴“,在差分电路里常用恒流源替代,因为恒流源等效交流内阻趋向无穷大。Rg1和Rg2是和普通共阴放大器电路中Rg一样的栅漏电阻。

由于长尾电路V1管栅极需要高电位来确保”长尾巴“,所以常和前一级电路进行直耦,变形为我们熟悉的长尾电路,如图所示,其电路原理是相同的

由于长尾倒相的尾巴不可能无限长,故对称性始终受到限制,上管的放大倍数略大于下管一般设计时,使下管的屏极电阻值为上管的1.1倍,以平衡输出电压幅值。而差分放大则没有这个缺点。

3,功率放大级设计概要

功率放大级设置在放大通道的末级,工作于大信号状态,屏极接的是输出变压器、负载是具有电抗性质的扬声器,所以是非线性失真、频率失真的主要产生级。功率放大级着重考虑的问题是失真尽可能的小,在满足这点的情况下,输出信号功率尽可能的大,转换效率尽可能的高。

功率放大管主要有如下的重要定额和特性:

1,最大屏极耗散功率,最大屏极电流,最大屏极脉冲电流

多极管和工作于有栅流电路的功率管还有这些特性:最大帘栅极耗散功率,最大栅极耗散功

率,最大栅极电流。

2,输出功率。所能输出功率的大小,主要决定于功率管的型号和功放级采用的电路程式。不同型号的功率管采用不同的电路程式。功率管栅极的推动信号电压或功率强度也有不同的要求,

3,非线性失真。功放级工作于大信号状态,所以正常情况下整机的非线性失真主要主要产生于功率放大级。功放级的非线性失真程度除了与电路设计有关外,功放管本身产生的非线性失真常达5%左右,有的甚至达到10%左右。

静态情况分析:

功率放大级基本工作电路结构如图所示:

图中所示的是束射四极管,屏极直流回路是变压器初级绕组,绕组的直流电阻很小,所以屏极电压Ua近似等于供电电压Ea

分析功率放大级的静态工作情况,主要分析他的屏极功耗Pa,屏流Ia,静态屏压Ua,静态栅偏压Ug。其分析方法主要和电压放大级类似,但是直流负载线是过Ua的一条垂直于横坐标的直线。

动态情况分析和其他的简易分析参见如下链接:

功率放大级的放大类型与工作状态分析:

电压放大级和单管单端放大级为了减小非线性失真,静态工作点Q应该选择在负载直线的中央部分。如图所示:

图也表明了不同的负载线造成的不同工作情况带来的失真

然而,为了提高效率,只要配合一定的电路程式,静态工作点也可以工作于更低的偏置

为此,功率放大级分为A类(甲类)、B类(乙类),AB类(甲乙类)

仔细分,还可以分为A1类,A2类,B1类,B2类,AB1类,AB2类

这里的1类表示始终功率管工作于没有栅流的驱动状态,2类表示允许出现栅流

常见A类,AB1类的简易定性分析:

A类放大,在信号整个周期内屏极回路均有屏流,它屏流变化非常小,非线性失真小,屏极效率低,屏极回路直流分量大。

AB1类放大,静态工作点稍靠近屏流的截至点,整个信号周期内会有屏流截至状态出现,造成较大的非线性失真,但是屏极效率较高。为了解决非线性失真的问题,在电路程式上采用推挽放大,由两管轮流工作,弥补了屏流截至部分造成的失真,但是需要一对幅值相等,相位相反的推动信号来驱动。

AB1类推挽放大的设计通常可以查询所用功率电子管手册来完成,或者掌握原理,利用特性

曲线求解。

例如EL34电子管手册上给出了多组AB1类推挽工作状态,如下图所示的是其中一组:

4,电源供给部分概要

从负载特性可以看出,在大电流变化场合,电感输入式(Γ型滤波)滤波是最佳选择

但是对于电感参数选择有具体要求,其主要目的是保证电感的续流,故负载电流过小不适宜应用。

表中还可以看出,对于半波整流电路,电容输入式滤波,在接近空载的轻负载,小电流特性下,输出电压近似接近全波整流。

另外,桥式整流也是全波整流,输出特性是一致的,不应该特殊化

电子管整流由于和晶体管整流原理相同,不多做解释

5,整机设计及负反馈介绍

负反馈放大器介绍:

取放大器输出信号反馈到输入电路中,称为负反馈放大器,亦称闭环放大器。反馈信号强度与输出信号电压成正比的,称电压负反馈;反馈信号强度与输出信号电流成正比的,称电流负反馈。

负反馈除减小电路的放大倍数以外,也能在一定程度上改善放大器的性能。主要是:拓展了频率带宽,减小了失真,降低了噪声。

从反馈信号和输入信号的引入方式上,又可以将负反馈分为并联负反馈和串连负反馈两类。顾名思义,串连负反馈即反馈信号和输入信号呈串连关系。

综合起来,反馈可以细分成:电压串连负反馈,电流串连负反馈,电压并联负反馈,电流并联负反馈。他们除了具有负反馈的共同特点以外,还不同程度的影响了输入输出阻抗。

其中,电压反馈降低了输出阻抗,电流反馈增加了输出阻抗;并联反馈降低了输入阻抗,串连反馈增加了输入阻抗。例如,电压并联负反馈既降低了输入阻抗,又降低了输出阻抗;而电流串连负反馈则同时增加了输出,输入阻抗。

设反馈信号和输出信号的比值为β,称为反馈系数。对于电压反馈,反馈信号为Uf,输出信号为Uout,则反馈系数β=Uf/Uout

设系统开环放大倍数为Ko,则加入负反馈后的闭环放大倍数Kf可由以下简略公式计算得出:

Kf=Ko/(1+βKo)

若开环增益Ko足够大,且反馈深度较深的情况下,即βKo》1时(通常当βKo>10时可以认为βKo》1),公式可以简化为Kf=1/β,即与开环放大倍数无关,这就是在晶体管运算放大器电路中常见的闭环情况。

典型的单级电压并联负反馈如图所示:

这里只作简易分析:放大系数Kf=Ko/(1+βKo)=Ko/(1+Ko·RF/Rs),

Rs为图中信号源内阻,由于栅漏电阻Rg往往远大于Rs,故此处忽略不计。

输入阻抗Rif=Rg||[Rf/(1+Ko)]

而此时的电子管等效内阻raf=ra/(1+uβ),等效放大系数u=u/(1+uβ)

这表明,u值很高的束射四极管和五极管,当β值较大的情况下,其等效内阻可以接近甚至小于三极管的内阻值。

典型的单级电流串连负反馈如图所示:

uR'L

放大倍数Kf=────────

ra+R'L+(1+u)Rk

其输入阻抗Rif和原输入阻抗Ri的关系为Rif=(1+βKo)Ri,是增大的

而此时电子管的等效内阻raf=ra+(1+u)Rk,可见电流串连负反馈将开环时的管内阻增大了(1+u)Rk倍。

特殊的电压串连负反馈电路:阴极输出器,简易分析见下链接

串连电压负反馈和并联电流负反馈多用于多级反馈电路,可以利用上述方法分析。

多种负反馈组合使用称为混合负反馈电路。

简易实例分析:

电路由三部分组成:共阴电压放大单元(V1,Ra,Rk组成),阴极输出单元(V2及其周边元件组成),负反馈网络(Rf和Rs组成),另有120K电阻和33uF电容组成了电源退耦部分。

共阴放大单元简易计算:

查表得12AX7特性如下,ra=50K,u=100

电路采用直耦,由于阴极输出器输入阻抗甚高,忽略不计,故交流等效阻抗R‘L=Ra=220K 可以看出,电压放大级是典型的电流串连负反馈电路,套用上述分析公式,得

本级放大倍数K1=100×220K/[50K+220K+(1+100)×2K]=46.6倍

阴极输出器放大倍数小于且约等于1,设阴极输出器放大倍数K2=0.9

则,整机开环放大倍数Ko=K1·K2=46.6×0.9=42倍

由于反馈信号由电阻Rf与信号源内阻Rs分压获得(电子管V1输入阻抗甚大,忽略不计),故反馈系数

β=Uf/Uo=Rf/Rs=100K/1M=0.1

整机环路负反馈属于典型的电压并联负反馈,故闭环放大倍数套用上述公式,得

Kf=Ko/(1+βKo)=42/(1+0.1×42)=8倍

实际实验结果证明,采用此线路程式,选用12AX7管,实测闭环放大倍数为7.9倍

选用放大系数u=70的6N9P管,实测闭环放大倍数为7.8倍

可以认为计算结果合理,也可以看出,负反馈稳定了电路参数。

附,反馈深度对数计算方法:

反馈深度Ku=20lg(Kf/Ko)

如果反馈后,放大倍数Kf=0.5Ko

则反馈深度Ku=20lg0.5=-6db,即反馈降低了6db电压增益

需要特别指出的是,深度负反馈电路在降低谐波失真的同时,却可能引入新的互调,瞬态互调失真,因此需要谨慎应用。

简易单管单端功放电路设计实例:

设计一输出功率为8W的功率放大器。要求谐波失真小于5%。

1、选用功率放大管。目前常用的功率放大管中,查手册可知EL34五极管做单端A1类放大,其输出功率可达11W,但实际电路中往往存在各类损耗和误差,但输出8W功率还是不成问题,所以选择EL34做输出管比较合适。同时由于功率输出级失真较大,需要引入负反馈。

2、确定电路程式。输出级已经确定采用A1类单端放大,为了稳定起见,采用阴极自给偏置提供栅极所需要的偏置电压。查手册可知EL34满功率输出需要推动电压8.2Vrms,设输入音频信号为0.5Vrms,则电压放大级需要16.4倍放大量。由此可见采用三极管做一级共阴放大即可满足要求。由于满功率输出时EL34功率管失真达10%,需要施加一定量的负反馈,故设定电压放大级电压增益Au=32倍。满功率输出8W在8欧姆负载上电压有效值Uo=

8Vrms,输入电压0.5Vrms,整机闭环增益Kf=16倍。

3、功率级电路具体结构依照手册中EL34功放管A1类放大应用值数据和要求安排。如图所示:

4、根据图示数据和要求,做出功率放大级单元电路,如图所示:

实际取Rk=200欧姆

由于流过Rk的电流包括帘栅极电流和屏极电流,Ik=83+13=96mA

保守计算设Ik=100mA,则Rk实际承受功率P=Ik·Ik·Rk=0.1A×0.1A×200Ω=2W

为了长时间工作保证稳定,选取标称功率5W的电阻

阴极旁路电容耐压为了安全起见,选取两倍于阴极电阻两端的电压值。阴极电阻两端电压值Uk=Rk·Ik=96mA×200Ω=19.2V,取系列耐压值50V的电解电容

阴极旁路电容的容量依据功放工作最低截至频率而定,

设最低截至频率fL=20Hz,则Ck不应小于如下公式计算值:

Ck≥3/2π·fL·Rk=3/(2×3.14×20×200)=0.00012F=120uF

这里取Ck=330uF

功率输出级电压增益:Au1=1(计算略)

5、电压放大级计算。已经设定电压放大级增益Au≥32倍,通常选择电压放大管u=2·Au=64,查手册12AT7放大系数u=70,符合要求。故选择12AT7做电压放大管。

常用负反馈引入方法如图所示:

为电压串连负反馈,反馈回路由Rf和Rk2组成,反馈系数β=Rk2/Rf

同时注意到为了引入整机的电压串连负反馈,Rk2同时引入了电压放大级本级的电流串连负反馈,在计算电压放大级时要一并考虑。

电压放大级电路结构如图所示:

查手册得12AT7参数,内阻ra=10K,放大系数u=70

设定供电电压为Ea=250V,通常屏极电阻Ra为内阻得2-10倍,这里选取Ra=24K

功率放大级计算时已确定EL34栅漏电阻Rg=240K,10倍于Ra,可以忽略不计

故电压放大级交流负载电阻R‘L=Ra=24K

利用手册上12AT7特性曲线图做静态分析(具体方法参见电压放大级分析,此处略),

得出12AT7静态工作点,栅偏压Ug=-1V,屏压Ua=124V,屏流Ia=5mA

作图中得出最大输出峰峰值电压Upp已远大于EL34满功率驱动电压峰峰值,故无需验证。电压放大级增益计算,Au2=35倍,满足预先要求得32倍

整机开环增益,Ko=Au1·Au2=1×35=35倍

整机需要闭环增益根据前述,已经计算得Kf=16倍,反馈系数β=1/Kf-1/Ko≈0.03

反馈电阻Rf=Rk1/β=200/0.03=6.6K,选取Rf=6.2K

耦合电容C应该满足系统低频下限

C≥3/2π·fL·Rg=1/(2×3.14×20×240K)=0.1uF,取0.22uF,耐压应大于本级直流供给电压,采用400V耐压系列。

电源部分设计各类资料介绍较多,不做详细计算。

整机电路如图所示:

各项验算工作从略。

推挽放大电路也有由各单元级组成,其工作原理是相同的,作为简易设计也比较容易,不再举例。

关于输出变压器的选择:输出变压器是为了电路服务的,只有针对某一电路设计的输出变压器,而没有什么输出变压器可以同时套用几个电路,即使它的初级阻抗一致。

在其他参数一定的情况下,输出变压器的分布电容基本和漏感成反比,是一对矛盾。

而不同的电路,不同的功率管所需的输出变压器初级电感量必然是不同的

常见的误区是:不结合电路和所用功率管,只讨论输出变压器是不合理的。

在相同的低频参数指标下,低内阻的300B只需要10-20H初级电感量就可以满足要求,而此时的6P3P却需要几十H的电感量,所以两者的分布参数也必然不同。

对于低内阻管而言,所需初级电感量小,影响高频的主要因素是漏感

对于高内阻管而言,所需初级电感量大,影响高频的主要因素是分布电容。

音频功率放大器设计详解

音频功率放大器设计 一、设计任务 设计一个实用的音频功率放大器。在输入正弦波幅度≤5mV,负载电阻等于8Ω的 条件下,音频功率放大器满足如下要求: 1、最大输出不失真功率P OM≥8W。 2、功率放大器的频带宽度BW≥50Hz~15KHz。 3、在最大输出功率下非线性失真系数≤3%。 4、输入阻抗R i≥100kΩ。 5、具有音调控制功能:低音100Hz处有±12dB的调节范围,高 音10kHz处有±12dB的调节范围。 二、设计方案分析 根据设计课题的要求,该音频功率放大器可由图所示框图实现。 下面主要介绍各部 分电路的特点及要求。 图1 音频功率放大器组成框图 1、前置放大器 音频功率放大器的作用是将声音源输入的信号进行放大,然后输

出驱动扬声器。声音源 的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低

电子管基础知识(最适合初学者)

一起来学习电子管基础知识(最适合初学者) 常见的电子管功放是由功率放大,电压放大和电源供给三部分组成。电压放大和功率放大组成了放大通道,电源供给部分为放大通道工作提供多种量值的电能。 一般而言,电子管功放的工作器件由有源器件(电子管,晶体管)、电阻、电容、电感、变压器等主要器件组成,其中电阻,电容,电感,变压器统称无源器件。以各有源器件为核心并结合无源器件组成了各单元级,各单元级为基础组成了整个放大器。功放的设计主要就是根据整机要求,围绕各单元级的设计和结合。 这里的初学者指有一定的电路理论基础,最好有一定的实做基础 且对电子管工作原理有一定了解的 (1)整机及各单元级估算 1,由于功放常根据其输出功率来分类。因此先根据实际需求确定自己所需要设计功放的输出功率。对于95db的音箱,一般需要8W输出功率;90db的音箱需要20W左右输出功率;84db音箱需要60W左右输出功率,80db音箱需要1 20W左右输出功率。当然实际可以根据个人需求调整。 2,根据功率确定功放输出级电路程式。 对于10W以下功率的功放,通常可以选择单管单端输出级;10-20W可以选择单管单端功放,也可以选择推挽形式;而通常20W以上的功放多使用推挽,甚至并联推挽,如果选择单管单端或者并联单端,通常代价过高,也没有必要。3,根据音源和输出功率确定整机电压增益。 一般现代音源最大输出电压为2Vrms,而平均电压却只有0.5Vrms左右。由输出功率确定输出电压有效值:Uout=√ ̄(P·R),其中P为输出功率,R为额定负载阻抗。例如某8W输出功率的功放,额定负载8欧姆,则其Uout=8V,输入电压Uin记0.5V,则整机所需增益A=Uout/Uin=16倍 4,根据功率和输出级电路程式确定电压放大级所需增益及程式。(OTL功放不在讨论之列) 目前常用功率三极管有2A3,300B,811,211,845,805 常用功率束射四极管与五极管有6P1,6P14,6P6P,6P3P(807),EL34,F U50,KT88,EL156,813 束射四极管和五极管为了取得较小的失真和较低的内阻,往往也接成三极管接法或者超线性接法应用。下面提到的“三极管“也包括这些多极管的三极管接法。 通常工作于左特性曲线区域的三极管做单管单端甲类功放时,屏极效率在20%-25%,这里的屏极效率是指输出音频电功率与供给屏极直流电功率的比值。工作于右特性曲线区域的三极管,多极管超线性接法做单管单端甲类功放时,屏极效率在25%-30%。 而标准接法的多极管做单管单端甲类功放时,屏极效率可以达到35%左右 关于电子管特性曲线的知识可以参照 以下链接:/dispbbs.asp?boardID=10&ID=15516&replyID=154656&skin=0 三极管及多极管的推挽功放由于牵涉到工作点,电路程式,负载阻抗,推动情况等多种因素左右,所以一般由手册给出,供选择。

#用EL34制作的合并式电子管功放调整

用EL34制作的合并式电子管功放(上) 作者:徐松森文章来源:《无线电和电视》点击数:18122 更新时间:2005-5-16 15:10:53 电子管功放音色纯真而柔美,谐韵丰富,胆味浓郁,深受广大发烧友青睐。今特推荐一款适合普通家庭使用和欣赏音乐的电子管合并式功放。本机通用性强,制作简便,成功率高,升级换代方便。 电子管功放的负载能力很强,当额定输出功率能达到30W+30W时,其音乐功率可达120W+120W,可带动一对中型音箱,完全能满足家庭影院和欣赏各种室内乐的要求。 本功放电路采用通用型设计方案,功率放大管可采用6L6、6P3P、EL34、6CA7、KT88、6550等,工作状态根据制作者的偏爱,可分别制成A类或AB类放大形式,电路基本不变,只要调整功放栅极负压和部分元件参数即可。 常用功率管作A类和AB类推挽功放使用参考数据表: 一、合并式功放电路简析

图1 电子管合并式功放电原理图 图l为电子管合并式功放电原理图。输入电压放大级采用目前最流行的SBPP电路,由双三极电子管6N11担任,该管屏流和跨导值大,屏极线性范围宽,输入动态范围大。输入的音频信号由下管栅极输入,工作于共阴极方式;上管工作于共栅极方式,经放大后的音频信号由上管阴极输出。本输入级的特点是:输入阻抗高,输出阻抗低,因此,本前级放大具有传输损耗小,抗干扰性能好,频率响应特性好,特别是高频特性极佳,高频瞬态响应特性好的优点。 倒相放大级采用长尾式倒相电路,将输入级的音频信号直接耦合至倒相级。这样不但拓宽了频响;同时又减少了因极间耦合电容带来的相位失真。本电路由双三极电子管6N1l或6N6来担任。上管为激励管;下管为倒相管。两管共用阴极电阻,并具有深度电流负反馈的作用,故稳定性能好,相移失真小,共模抑制能力强。对上管来说是串联输入;对下管来说是并联输入。当有音频信号输入时,利用两管阴极的互耦作用,使屏极和阴极电流均随之变化,由于两管屏极负载电阻的阻值相同,两管输出电压的幅值相等,而两管屏极的输出电压方向相反,从而完成了倒相放大工作。 值得注意的是:前级输入放大管和倒相级放大管的阴极电位均接近100V,所以在选用双三极电子管代用时不能忽视,因为一般的双三极电子管,其阴极和灯丝之间的耐压均不超过100V,超过此极限电压时,将会导致灯丝和阴极间的击穿。故比较适合使用的双三极管有:6Nll、6N6、12AX7、12AU7等。 此外,还必须注意的是倒相管栅极对地电容的容量可从0.1—0.22μF,耐压400V以上,不允许有丝毫的漏电,否则将会影。向倒相级的工作状态,因此必须选用高质量的CBB电容为最佳。

电子管功放

认真看完这个帖子,相信你就可以做成电子管功放了. 1,图纸可同时用于6P3P(6L6GC)家族和6550家族,这两种管子现在各厂都在生产。其中6P3P,6N8P库存较多,不容易被炒作涨价。 2,采用6P3P输出功率为20W,采用6550输出功率为60W。 3,额定功率失真小于0.4%,功率管已配对。 4,R2参考中心值15K,调节R2使帘栅极供电电压为285V。如有条件,帘栅极请采用稳压供电。 5,采用6P3P时,R1参考中心值75K,调节R1使6P3P屏流为32mA;采用6550时,R1参考中心值51K,调节R1使6550屏流为41mA。

直到今日,我评测一个胆机的最重要指标仍然是失真,尽管在很多主观流派中认为失真并不重要,甚至失真低=没韵味。然而多年的实际测试和听音经验告诉我,越是低失真的胆机,给我带来的主观听感越好,韵味更丰富。 如果你一个无视指标的爱好者,看到这里也可以结束了,本帖并不适合你。 下面开始介绍推挽胆机的一些设计理念和tips,我希望对于自己设计的爱好者能起到帮助作用。 在传统的推挽电路结构中,常见结构为以下几种: 1,电压放大+长尾倒相+功率级。优点是增益高,用管少,开环频响较好;缺点是长尾倒相级对称性一般,需仔细调试。 2,差分放大+(驱动)+功率级。优点是倒相对称性优秀,开环频宽较好;缺点是需要多一组负电源,不增加驱动级开环增益较低。 3,自平衡倒相+(驱动)功率级。优点是用管少,增益适中;缺点是倒相级对称性一般,频响较窄。 4,电压放大+屏阴分割+(驱动)+功率级。优点是用管少,倒相级无需调试;缺点是不加设驱动级增益低,频宽较窄。 由于架构1在用管,增益和稳定性方面都适中,比较适合初学者制作,本帖讨论将以一个电压放大+长尾倒相的推挽胆机架构作为分析对象。 A,输入级:架构1的输入级主要作用是提高电路的开环增益,为长尾倒相级提供合适的直流偏置。 由于长尾倒相级自身有一定增益,并不需要太大的输入电压,输入级可由多种方式组成:共阴,SRPP,叠串,u跟随 为了比较这些放大方式,我做了一次实验来测试比较它们的失真度,见表1

一个简单功放设计制作与电路图分析

一个简单功放设计制作与电路图分析|电路图 - dickmoore的日志 - 网易博客 默认分类 2009-11-09 19:01 阅读32 评论0 字号:大中小 一个简单功放设计制作与电路图分析|电路图 电子资料 2009-11-06 11:15 功放电路图 一个简单功放设计制作与电路图分析 我的电脑音响坏了快一年了,每次看电影都用耳机,每次用的耳朵都痛,很不爽.因此就想亲手做一个小功放用用,前几天又去了趟电子市场发现有LM386,很便宜,所以干脆用386做了一个单声道的功放先用着,有时间把另外一个声道也加上.在这里把功放设计到调试基本完成的过程写写,纪念这个过程. 1.设计 我们是听听就算的门外汉,对20~20K的音域也不是完全敏感.所以幅频特性不用考虑太多,但是自己要用得爽声音一定要大,因此LM386一般的输出功率肯定是不够拉(好像极限功率也就1W左右,具体还是看芯片资料吧),所以就浪费些多加个LM386做成BTL电路,提高一倍再说.设计出来的电路就是这个样子,原理很简单,就不说了 2.调试 a. 两个104的电容本来是用来隔直的,不过好像电脑主板和声卡上出来的音频都不带直流成份,而且用104时输入电平 比较高的时候声音有失真,(估计是低频过滤在输入电平高的时候人听起来比较明显).于是去掉两个104的电容. b. 在这个时候上电(我用的是12V),接上我的MP3一听,嗯!还不错,可是就是杂声比较厉害,调了调R1的大小,当R1被 调到最大的时候杂声没有了,最小的时候也没有了(这不是废话么,最小的时候输入都没有了 .把连接到功放的音频线拔了也没杂音了,原因可能有两个音频线上有电容在输入电阻R1比较小的时候,和LM386自激产生杂音,一放大就不得了了.于是决定R1就直接调到50K,音量就让MP3调去吧. c. 好像一切都没有问题了,拿到电脑上吧,刚接上去,嗯声音停大,不错!!刚以为要完事,电脑里一首歌就放完了,本来该是安静的却听见喇叭里噼噼啪啪,这个噪声奇了怪了,开始还是以为是R1的问题,索性就把R1去掉(反正LM386也不希罕从前级得到能量),噪音仍然存在,怀疑是主板上的高频噪声,于是在输入端并上一个102的电容---不起作用.这个电容也不敢并大了,大了要影响高频特性.又怀疑是功率大了C1吃不消,于是又在电源上并了一个100uF的电容,还是不行....... d. 就在这个时候用手一抓我的功放输入端的焊点,好了!没杂音了,仔细一想,原来是这样:我从电脑接出来的线是一个声

6p3p电子管功放制作心得

电子报/2013年/7月/14日/第015版 音响技术 6P3P电子管功放制作心得 江苏陈洪伟 胆机是音响放大器中古老而又经久不衰的长青树,其显著的优点是声音甜美柔和自然,尤其动态范围之大,线性之好,绝非其他放大器所能轻易替代。对于刚刚接触电子管放大器的爱好者来说,选择简洁、优秀的单端甲类电路为首选。单端甲类电子管功放具有音色圆润、甜美,制作成功率高的特点。本文介绍的线路采用524P整流,6N1前级输入,6P3P功率放大,采用标准接法。6P3P为入门级产品,品质相当出众,低廉的价格使制作成本较低。只要设计合理,精心制作,也能将6P3P玩到发烧境界。更重要的是,本线路让那些刚刚喜欢上电子管功放的初级发烧友,通过尝试逐步熟悉电子管功放的制作。 一、电路原理 如图1所示。该电路具有失真小、噪声低、频响宽等特点,是目前电子管功放电路中常见的优秀线路之一。功率管6P3P采用标准接法,信号由控制栅极(⑤脚)输入,帘栅极(④脚)与电源相连。这种接法的特点是放大效率高。6P3P栅-负压19V,屏极电压300V,屏级电流60mA。输出功率约7.5W,能够满足一般家居环境放音要求。 电源电路采用传统的电子管整流,CLC型滤波器,使整机音色达到和谐与平衡。电子管整流在开机时的预热过程具有保护功率电子管的作用,这一点在使用天价电子管时显得尤为重要。CLC型滤波方式滤波效果好,电源内阻低,对降低噪音,提高整机动态有极大的益处。 输出变压器是电子管功放电路的重要部件,如果自制条件不具备,可以构买成品。本机所用输出变压器铁芯为32mmx65mm,初极3300圈,分两层。线径为Φ0.82mm;次级共172圈,分三层,所用线径为Φ0.82mm。硅钢片空气隙0.08mm,工作电流70mA、功率10W。 二、装配 本机线路简洁,所用元件较少,可采用搭棚焊接,制作调试简单,成功率高。制作时可以三焊接电源与灯丝供电部分,电源正常之后再焊接放大电路,要注意的是,电源空载时,电压稍高,电容耐压一定要满足要求。 三、检测与调试 首先检查电路焊接有无质量问题,有无虚焊,漏焊,短路,断路,焊渣线头是否清理干净。 通电前测直流高压电源对地(高压电路两端)电阻,数值应接近或等于泄放电阻的阻值。测量交流进电电路与地之间的阻值,数值应该无穷大。测量输出有无开路(阻值无穷大)或短路(阻值约为零),正常数值应接近负载的直流电阻。测量电压放大级、推动级电源对地电阻,数值应大于泄放电阻。 通电测量:不插功放管通电测量功放管阳极直流电压值,空载数值应是交流电压有效直的1.2~1.4倍。测量次高压电压,空载直流电压应接近或等于阳极电压。测量功放管栅极偏压,数值应接近预定电压值。同时应将每只功放管的栅极负压调至最大值(负)。测量电压放大级、推动级电压值,每级阳极电压应接近或等于设置的工作电压值。 调整功放管静态电流插上功效管接好音箱,断开环路负反馈电路。开机,将直流电压表红表笔接阴极,黑表笔插在机箱的螺丝孔内,调整固定栅偏压可调电阻,边调边观察电压读数。这个过程中一定要细心,动作要慢,每次调整电位器的幅度一定要小。用电压读数除以阴极电阻值,即是管子的静态电流。 四、注意事项

电子管功放布局工艺.

用电子管制作的功放,被发烧友称作胆机。电子管自1904年英国工程师菲利明(Fleming)发明,1914年美国通用电器公司开始生产,已经历经一个世纪。到了信息时代的今天,电子管在电子世界的大部分领域已销声匿迹,被体积小、寿命长、重量轻、耗电省的晶体管取而代之。但在一些中短波广播电台、电视台的发射机等特殊领域中,电子管还拥有无法代替的地位,特别是在音响发烧器材的庞大队伍中,电子管还有着晶体管无法体现的引人入胜的独特魅力,用电子管制作的高保真音频功率放大器、激光唱机、Hi-Fi前置放大器和均衡器等音响器材,以其独有的特色、醇厚优美的音质,被一批喜欢胆机的音响发烧友和怀旧的老音乐谜所推崇。 随着电子信息技术的飞速发展,电子管本身及电子管电路的设计和制造也在不断地改进和完善,同时也随着发烧友们自身综合素质的不断提高,计算机CAD技术的引进,为发烧友们自己动手安装高保真的胆机,打下了良好基础。当发烧友们陶醉在自己安装的胆机推动音箱所产生的这种在Hi-Fi历史上崭新的柔美醇厚“原汁原味”音响效果时,一定为这全新的玩法而心旷神怡。 有过装机实践的发烧友一定明白,制作一台胆机,即使使用统一器材,用统一电路,倘若整机的结构装配工艺水平不同,质量性能就可能有很大差异。由于工艺结构不妥,可能人为地千万噪声和其他干扰,甚至引起自激啸叫;整机放大器级数愈多,增益越高,结构工艺的要求就愈严格。高增益和稳定性是一对矛盾,增益越高不稳定的可能性越大,矛盾的解决,除电路上采取各种稳定措施加以控制外,还有赖于整机的结构工艺来实现,何况在胆机的噪声电平中,电路设计原因造成的只占30%,而70%取决于整机工艺结构设计和安装。为此笔者根据自己在装实践过程中经验和体会,对胆机的整机布局结构及装配工艺谈几点意见。 一、元器件的排列布局 1、电子管功放的主要元件是电子管、输出变压器、电源变压器、电位器和电阻、电容等元件。它们都座落在金属底板上,因为金属底板是导体,对隔离电磁场是有效的,但应尽量避免使用磁性金属材料做底板,因为磁性金属材料是顺磁性的,它会使各种变压器的漏磁在底板上传播造成干扰源,一般采用金属铁底板较好。为了防止放大器前后级之间电场和磁场的影响,排线电路布局要合理,电路布局的不合理,易造成高寄生振荡,一般都按电路的前后顺序作一字型排列,不能随意胡乱安排,切不可前后级排成U型。元件的分布要考虑信号传输路径最短,干扰最小,立体声胆机的整体布局要对称,分布均衡,以保证多声道电路的对称性和平衡性。 2、电源变压器与输出变压器都必须是磁感应器件,由于制作工艺、采用材料等原因,难免会产生较大的泄漏磁场,它们之间的摆位应尽量相距远些,并注意它们磁通的方向,使相应位置昼避免电磁感应交连,一般采取远离或垂直放置。周围元件的引线不要距离变压器输入端引线太

功放电路设计说明书

功率放大器(OTL ) 一、基本原理及原理图 下图为乙类推挽功率放大器的电路原理图。图中,Q1和Q2为两个特 性配对的互补功率管(NPN 型和PNP 型);若忽略功率管发射结导通电压,则当V1正半周时,NPN 型Q1管导通、PNP 型Q2管截止,i 1C (≈i 1E )为处于正半周的半个正弦波;当V1负半周时,Q1管截止、Q2管导通,i 1C (≈i 1E )为处于负半周的半个正弦波,通过R L 的电流i L = i 1E -i 2E ,合成完整的正弦波。但在实际电路中由于有导通电压,零偏置会使输出电压波形产生交越失真,图中选用二极管偏置电路为互补功率管加合适的偏置电压,使之工作在乙类状态,减小失真且具有高热稳定性;采用单电源供电(加大容量的C3)使两互补管电压均是2 1V CC ;互补管间加两个电阻帮助两管散热;输入信号为互补功率管提供振幅接近电源电压的推动电压,产生自举效应;设计合适的参数使此电路高效地使功率放大相应的倍数驱动负载。 功率放大器电路原理图 二、设计步骤 1.设计要求: (分立元件)设计并仿真功率放大器(OTL ),要求: ① 电压增益:5倍以上

②负载:0.5W以上(8Ω扬声器) ③频率范围:20Hz~20kHz 2.设计过程: ①电源的选取: 由P=I2R L =U2/R L (R L =8Ω)得U=2V ∴U P P-=2×2√2≈5.7V ∴V CC =15V ②电阻的选取: P=I2R L =U2/R L ,令U=3v,I L R = 2 1U P P- /R L ≈350mA (β=100) ∴i 1 B =I L R /β=3.5mA 取i 3 R =20mA ∴R 5+R 6 =3/(20mA)≈150 ∴R 5 =10Ω,R 6 =90Ω ∵R2/(R 1+R 2 +R 9 )=3+0.7=3.7 即R 1 /(R 2 +R 9 )≈4 取调试好的R 1=10kΩ,R 2 =41kΩ(R 2 为1kΩ,起保护作用;R 9 可 调) 令R 3=600Ω,R 4 可调,不要取太大,起到作用即可 取R 7=R 8 =1Ω(一般取小点) ③电容的选取: C1=10uF,C2=47uF,C3=470 uF (电容大,交流压降趋于零) 三、仿真调试 1. 仿真电路图:

运算放大器的电路仿真设计

运算放大器的电路仿真设计 一、电路课程设计目的 错误!深入理解运算放大器电路模型,了解典型运算放大器的功能,并仿真实现它的功能; 错误!掌握理想运算放大器的特点及分析方法(主要运用节点电压法分析); ○3熟悉掌握Multisim软件。 二、实验原理说明 (1)运算放大器是一种体积很小的集成电路元件,它包括输入端和输出端。它的类型包括:反向比例放大器、加法器、积分器、微分器、电 压跟随器、电源变换器等. (2) (3)理想运放的特点:根据理想运放的特点,可以得到两条原则: (a)“虚断”:由于理想运放,故输入端口的电流约为零,可近似视为断路,称为“虚断”。 (b)“虚短”:由于理想运放A,,即两输入端间电压约为零,可近似视为短路,称为“虚短”. 已知下图,求输出电压。

理论分析: 由题意可得:(列节点方程) 011(1)822A U U +-= 0111 ()0422 B U U +-= A B U U = 解得: 三、 电路设计内容与步骤 如上图所示设计仿真电路. 仿真电路图:

V18mV R11Ω R22Ω R32Ω R44Ω U2 DC 10MOhm 0.016 V + - U3 OPAMP_3T_VIRTUAL U1 DC 10MOhm 0.011 V + - 根据电压表的读数,, 与理论结果相同. 但在试验中,要注意把电压调成毫伏级别,否则结果误差会很大, 致结果没有任何意义。如图所示,电压单位为伏时的仿真结 果:V18 V R11Ω R22Ω R32Ω R44Ω U2 DC 10MOhm 6.458 V + - U3 OPAMP_3T_VIRTUAL U1 DC 10MOhm 4.305 V + - ,与理论结果相差甚远。 四、 实验注意事项 1)注意仿真中的运算放大器一般是上正下负,而我们常见的运放是上负下正,在仿真过程中要注意。

电子管功放的安装步骤

第二节电子管功放的安装步骤 现代电子管功放除了声道分立的高档机型外,大都为合并式的立体声功放。下面即以立体声功放为例,介绍其安装程序。 按照事先设计好的地位,先将各种小零部件装上。如电子管管座、开关、电位器、输入与输出接线端子、插口、接线支架、接地焊片等逐一装好。 电子管灯座在安装时必须认清图示的方向,这样可保持走线距离最近。管脚识别,可将电子管管脚朝向自己方。功放管用瓷八脚灯座时,从中心对正缺口开始,按顺时针方向,分别为1→8号接脚;前级放大与推动管为九脚灯座时,从开档较大处开始,按顺时针方向,分别为1→9号接脚。特殊管座的管脚识别 大都是在特定标志下按上述方法识别。 左、右声道输出变压器、电源变压器、阻流圈等因较为笨重,在安装焊接各种零件时,底板要四面翻动,容易损伤外表漆皮,应当在全部阻容元件和接线焊接完毕后,最后再装上。安装电源变压器与输出变压器时,必须在螺丝上加装弹簧垫片,使之不易松动,以防止变压器通电后与底板之间产生振动,从而引起 涡流损耗与交流声。 1 合理的接地方式 电子管功放中的接地走线,对功故机的信噪比与电性能的优劣有重要影响。特别是在增益较高的多级放大器中,其接地走线的布局方式尤为重要。因为功放机中的接地线具有双重作用,既是直流电压与电流供给回路,又是音频信号的通路,其间通过的直流电压电流大小及交流信号的强弱亦不相同。 虽然用万用电表测量功放机内的所有接地回路,其阻值均为0Ω,但对交流信号而言,各接地通路之间仍存在着电位差。如果采用高频微伏表测量时,其

间的电位差可达数微伏以上。在高增益的多级功放机中,如接地走线布局不当,在高增益的输入端如混入数微伏的交流杂波信号,经过多级放大器逐级放大后, 将给功放机的信噪比带来极大的影响。 目前比较流行的接地方式有两种:母线接地方式与单点接地方式。 功放机的母线接地方式是采用直径为左右的粗裸铜丝或镀银铜丝作为接地母线,在功放机的底板上按照放大器的电子管位置就近顺序排列。一般由输入端子至第一级、再至倒相级、推动放大级、功率放大级,最后至电源变压器的接地端。接地走线的次序切不可前级与后级颠倒。立体声功放的接地走线必须左右声道严格分开,并各自按照顺序排列。同时必须注意输出端的大电流接地线切不可与输入端小电流接地线直接相通。图8-10为母线接地方式示意图。 单点接地方式一般使用在高增益放大器的输入级,或者当功放机中部分采用电路板时,其接地走线的原则也必须按照功放级的前后级顺序排列,切不可前 级与后级颠倒。 单点接地方式所强调的是,每一级的通地必须接在同一接地点上(就是我们常说的“一点接地”),其中该级的栅极电阻、阴极栅负压电阻及旁路电容的通地尤为重要,两者之间不允许再有导线存在。因为导线难免存在电阻,它可能存在的电位差,对高灵敏的放大器来说,等于在放大管阴极与栅极之间串接了一个交流电源,经过逐级放大后,即会产生严重的交流声。

扩音机电路的设计

课程设计报告 课程名称:模拟电子技术基础 设计名称:扩音机电路设计 姓名: 学号: 班级: 成绩: 指导教师: 起止日期:2009年12月28日至2010年1月1日

课程设计任务书

扩音机电路的设计 一、 设计的目的和意义 (一)、实验目的 1,了解扩音机电路的形成和用途。 2,掌握音频放大电路的一种实现方法。 3,提高独立设计电路和验证试验的能力。。 (二)、意义:对以后的毕业设计打下基础,锻炼个人的学习和查阅资料的能力以及对课外相关本专业知识的了解。 二、 设计原理 扩音机电路的工作原理与音频功率放大器的工作原理相似,具有放大音频先好并将其还原纯真声音信号的电子装置。扩音机电路时一个典型的多级放大器,其原理如下图所示。 前置级主要完成对小信号的放大。一般要求输入阻抗要高,输出阻抗低,频带宽度要宽,噪声要小。音调控制级主要实现对输入信号高、低音的提升和衰减。功率放大器决定了整机的输出功率、非线性失真系数等指标,要求效率高、失真尽可能小、输出功率大。首先根据技术指标要求,对整机电路作适当安排,确定各级的增益分配,然后对各级电路进行具体的设计计算。 因为P0max=8W 。所以此时的输出电压:V0=RL P m ax *0 =8V 。要使输入为5mv 的信号放大到8v 的输出,所需要的总放大倍数为1600倍,扩音机中各级增益的分配为:前置级电压放大倍数为80;音调控制级中频电压放大倍数为1;功率放大级电压放大倍数为20。 三、 详细设计及实验步骤 1、 前置放大级 由于信号源提供的信号非常微弱,因此在音调控制器前面要加一级前置放大级。该前置放大级的下限频率要小于音调控制器的低音转折频率,前置放大器的

电子管功放电路大全

电子管功放电路大全

本贴图纸都经过实做验证,转载请注明出处。 6L6G(6P3P推挽1,输出功率25W THD=0.3% EL84(6P14)推挽,输出功率15W

前级 1(12AX7+12AU7) Lin XU in. 1G0/3V 4.71 迁 imv V4/V7 Fl 再4 ETB5 CT/C1D 卜 0血. mny FT 翻 B20 /I23 WB0 6SK Rir/Tr ' F=,制 1? R1/E2 ■=20 I 3LIK .K22 ^TOK CJ L/D12 seouF EUd^TJl ^L.D Lkai t i bv Jul a 6h hifidir Cft/ra F 「I -; T WO'/ ㈣ 3K Lfb/'Rfl

Lin /Kir 150K R3/R7 15K R2/R6 1.2K稳庄 10u 22K-- RW5 150K L _ 1 0.1 u0.1 U J-. C1/C2 厂。眈4 厂 信号 输入 R1/R8 IM R12R13 /R1 7 470K75tJ 4-30 CIV C5 lOu* 385/ + R14 /R15 56K 12/IU7 1U 05)06豔Xt RI9 /R19 4 7 Oik 1DK R12 R10/R11 前级2(12AX7+6DJ8) Gir o 4K +30(V Lin 信号 /Kin辆天 2K ZIOK R5 R4卜 /R41 3.3K 270K R2 ZR2 ‘ 3 " 1 $4 压 至 r VI, V2^12AX7; V3=E36CC/6S2£ C3/C3P 4.TuF Lout /Rout R9 4.70K lOuf RIO IO皿 Ell LOOK CUD

电子管功放的调整

电子管功放的调整 电子管功放(胆机)的线路比晶体管机简单,容易制作成功,并且有较好的音乐重播效果,特别是在感情表达方面更是专长,所以胆机复起以后很受发烧友的青睐。胆机最重要的特点就是胆味,阁下所焊的胆机是否也具有温暖、醇厚、顺滑、甜美的胆味呢?如果没有,声底和晶体管机差不多,或比晶体管机还硬、还干涩,或自制的胆前级、缓冲器接入放音系统中,放音系统音色的改变并不像媒体所说的那样“立杆见影”时,就应该测量一下各管的工作点,是否工作在最佳状态上,否则就要进行认真、仔细地调整。只有各电子管工作在最佳工作状态,才能发挥线路和每只胆管的魅力,达到满意的放音效果。 工作点未调好的胆机,除了音色表现不佳以外,还有音量轻和失真的现象出现。一台放大器音质的好坏,影响的因素虽然很多,但最终还是决定于制作的水平。发烧友在制作器材时,一般是根据手中积攒的胆管和元件,再选择优秀的线路或按照名机的线路按图索骥,进行焊接,元件的规格、数值虽然与线路图上的要求相差不大,但由于元件的排位,走线的长短、焊接的质量,或其它方面的差异,如B+电压的高低等原因,都会影响到放音的表现,所以焊出的胆机,不一定是胆味浓浓的。没有胆味不要紧,只要通过适当、合理地调整、校验,使放大器各级胆管工作在最佳状态,便能达到放音的要求。 胆机调整工作的内容,除了将噪声降低至可以接受的程度和更换输入、输出耦合电容的牌号或容量,以改变音色以外,最重要的是调整屏压、屏流和栅负压,使胆管工作在合适的工作点上,使放音系统放出好声,而这一点正是一些文章中谈得较少或用很简单的二句描述带过去了,要不就是“不需任何调整”就可以工作。如果胆管没有进入工作状态,再换名牌电容,胆味也不会出来。 调整胆机时,要根据电子管手册上提供的数据,作为电路的依据,无电子管手册时,要尊重线路图中所给的参数数值或附加的胆管资料进行。三极管的工作点由屏压和栅负压决定,屏压确定后可调整栅负压来调工作点,束射管或五极管的屏压升高到一定程度后,帘栅压的变压会对工作点有较大的影响,因此可调整帘栅压和栅负压来选定工作点。 降低胆机噪音和更换耦合电容调整音色的方法,一些文章已有介绍,本文不再重复,这里就调整胆管工作点的方法谈一谈体会。 一、栅负压电路 调整胆管的工作点时,经常会涉及到栅负压,因此首先将栅负压电路说一下。电子管是电压控制元件,三大主要电极(灯丝、栅极和屏极)是要供给适当电压的,供给灯丝的称甲电,供给栅极的称丙电,供给屏极的称乙电。栅极电压一般是接的负压,习惯上称“栅负压”或“栅偏压”。为了使胆管工作稳定,栅负压必须用直流电来供给。按胆管的工作类别不同,栅负压的供给有二种方法:一种是利用电子管屏流(或屏流+帘栅流)流经阴极电阻所产生的电压降,使栅极获得负压,则称自给式栅负压,一般用在屏流较稳定的甲类放大电路上。另一种是在电源部分设一套负压整流电路,供给栅负压,称作固定栅负压,主要用于屏极电流变化大的甲乙2类或乙类功率放大级。使用自给式栅负压,胆管比较安全,采用固定式栅负压时,当负

一部电子管放大器组装完成

一部电子管放大器组装完成,试音正常,还只是完成了工作量的一部分,要想出好声,还有大量细致的工作要做,那就是调 试和校声,因为只有经过仔细、合理的调整、校验,使放大器各级放大管均工作在最佳的工作点上,并且再经过校声,使放大器 的音色圆润,音乐感丰富,动态凌厉、频响宽阔,才会乐声细致、清澈、悦耳动听。校声工作需要多花精力,需要的时间较长, 甚至几个月才能完成,因此要有毅力,有耐心。下面就谈谈电子管放大器的调试和校声的方法。 发烧友焊机时,一般是根据手中现有的元件,再选择优秀线路或照名机的线路按图索骥,进行焊接,元件的规格、数值虽然 与线路图上的要求相差不大,甚至有的元件档次还要高级一些,但元件的排、走线的长短、焊接的质量,或其他方面的差异,如 B+电压的高低,电流的大小等,都会影响放音的效果,所以焊出胆机不一定开声就靓,需要经过精心的调试,使各放大器工作在 量佳的工作状态,才能充分发挥每只胆管和线路的魅力,达到满意的放音效果。 胆机的调整和校声的内容包括:将噪音、交流声降低到可以接受的水平;调整电子管的屏压、屏流和栅负压,使电子管工作 在较佳的工作点上;更换级间耦合电容的容量和品牌,更换B+滤波电容的容量和品牌,甚至更换机内小信号线、电阻、电子管的 品牌等,使放音系统放出好声。 关于交流声的消除方法,过去已有较多文章介绍,本文不再重复。如果音量电位器开大后有“咝、咝”声,说明电路有自激 的现象,是元件排列、走线不合理引起的交连感应。可拨动某些导线或元件听有无反应,要逐根引线,逐个元件的查找,然后改 换位置消除感应。当音量电位器开度小时放音系统并无噪音,但扭到某一位置时突然有噪音,过了这个位置再开大,噪音反而消 失,这是输入部分的元件排列不合理造成的。消除的办法是输入部分的元件重新排列,改变走线。 三极管的工作点由屏压和栅负压决定。屏压确定后可调整栅负压来调工作点。五极管的屏压升高到一定程度后,帘栅压的变 化会对工作点有较大的影响,因此可调整帘栅压和栅负压来选定工作点。当电源的容量较大,内阻较低时,调整屏流的大小,B+ 电压一般不会有变化,若电源的富裕量不大,屏流调得较大时B+电压会有较大的下降。 一、栅负压电路 电子管的栅极一般是接负压,习惯上称“栅负压”或“栅偏压”。栅负压的供给有两种方法:一种是利用电子管屏流(或屏 流加帘栅流)流经阴极电阻所产生的电压降,使栅极获得负压,称自给式栅负压,一般用于屏流较稳定的甲类放大器电路上。另 一种是在电源部分设一套负压整流电路(电源来自变压器的单独绕组或者从B+电源的负端抽取)供给栅负

电子管OTL功放电路及原理

电子管OTL功放电路及原理 OTL 是英文Output Transformer Less Amplifier 的简称,是一种无输出变压器的功率放大器。 一.OTL 电子管功放电路的特点普通电子管功率放大器的输出负载为动圈式扬声器,其阻抗非常低,仅为4~16Ω。而一般功放电子管的内阻均 比较高,在普通推挽功放中屏极至屏极的负载阻抗一般为5~10kΩ,故不能直接驱动低阻抗的扬声器,必须采用输出变压器来进行阻抗变换。由于输 出变压器是一种电感元件,通过变压器的信号频率不同,其电感线圈所呈现的 阻抗也不同。为了延伸低频响应,线圈的电感量应足够大,圈数也就越多,因 此在每层之间的分布电容也相应增大,使高频扩展受到限制,此外还会造成非 线性失真与相位失真。为了消除这些不良影响,各种不同形式的电子管OTL 无输出变压器功率放大器应运而生,许多适用于OTL 功放的新型功率电子管 在国外也不断被设计制造出来。电子管OTL 功率放大器的音质清澄透明,保 真度高,频率响应宽阔,高频段与低频段的频率延伸范围一般可达 10HZ~100kHz,而且其相位失真、非线性失真、瞬态响应等技术性能均有明 显提高。 二电子管OTL 功放电路的形式图1(a)~图1(f)是OTL 无输出功放基本电路。图1(a)和图1(b)为OTL 功放两种供电结构的方式,即正负双电源式和单电源供电方式。在正负双电源式OTL 功放中,中心为地电位。这样可保证推挽 电路的对称性,因此可以省略输出电容,使功放的频率响应特性更佳。单电源 式OTL 电路为了使两只推挽管具有相同的工作电压,必须使中心点的工作电 压等于电源电压的一半。同时,其输出电容C1 的容量必须足够大,不影响输 出阻抗与低频响应的要求。图1(c)和图1(d)为OTL 功放电子管栅极偏置的取

大功率功率放大器电路设计

大功率功率放大器电路设计 大功率功率放大器电路设计 一. 设计理念及实现方式 (1)能推4Ω、2Ω等双低音的“大食”音箱以及专业类大粗音圈的各类专业箱。 (2)要省电、噪声小,发热量小。 (3)音质要好,能适合家居使用和专业使用。 第一点的实现就是要有大的推动功率。由于目前居室客厅面积有不断扩大的趋势,100W ×2以下功放已显得有些“力不从心”,所以本功放设计为4ΩQ时360W ×2,2Ω时720W ×2。 第二点的实现就是电路工作在静态时的乙类小电流,靠大水塘级电容和电阻进行滤波降噪,使功放级噪声极小。而电路的工作状态又决定了电路元件的发热量很小,与一般乙类电路相当。配备的大型散热系统是为了应付连续大功率、低阻抗输出时的安全、可靠。 第三点的实现是本功放板的主要目标。目前公认的是:甲类、MOS、电子管音质好,所以本功放要达到甲类、MOS、电子管的音质。 二.大功率输出的实现 要实现大功率,首先是电源容量要大。本功放配置的电源是在截面积为35mm ×60mm的环形铁心上绕制的环牛。一次侧为1.0mm线绕484圈,二次侧为1.5mm 双线并绕100圈。 整流为两只40A全桥做双桥整流,滤波为4只47000 uF电容 2只2.7kΩ 电阻并接在正负电源上,使电压稳定在±62V。如电压过高可减小电阻到2.2kΩ,过低可加大电阻到3kΩ,功率用3W以上的。 除电源外,要实现大功率输出,特别是驱动“大食”音箱,要求功放输出电流能力要强,本功放每声道选用6对2SD1037管做准互补输出,可驱动直流电阻低达0.5Ω的“大食”音箱。所以4Ω时360W×2、2Ω时720W×2是有保障的。 三. 甲类、MOS、电子管音质的实现 目前人们公认的甲类、MOS、电子管的音质最好,所以本功放电路设计动态时工作于甲类的最佳状态,偏流随信号大小而同步增减,所以音质是有技术保障的。而在此工作状态下,即使更换几只一般的MOS管,对音质的提高也不明显。下面给出其原理图,如图1所示。从图1上可见到本原理图相当简洁,比一般乙类或甲乙类准互补电路还节省元件。而通过在电路板上改变一只电阻的接法就可方便地在本电路与准互补乙类或甲乙类之间变换。

常见的电子管功放设计

常见的电子管功放是由功率放大、电压放大和电源供给三部分组成。电压放大和功率放大组成了放大通道 电源供给部分为放大通道工作提供多种量值的电能。 一般而言 电子管功放的工作器件由有源器件 电子管、晶体管 、电阻、电容、电感、变压器等主要器件组成 其中电阻、电容、电感、变压器统称无源器件。以各有源 器件 为核心并结合无源器件组成了各单元级 各单元级为基础组成了整个放大器。功放的设计主 要就是根据整机要求 围绕各单元级的设计和结合。 这里的初学者指有一定的电路理论基础 最好有一定的实做基础 且对电子管工作原理有一定了解 一、整机及各单元级估算 1、由于功放常根据其输出功率来分类。因此 先根据实际需求确定自己所需要设计功 放的 输出功率。 对于95db的音箱 一般需要8W输出功率 90db的音箱需要20W左右输出功率

84db音箱需要60W左右输出功率 80db音箱需要120W左右输出功率。当然 实际可以根据个人需求调整。 2、根据功率确定功放输出级电路程式。 对于10W以下功率的功放 通常可以选择单管单端输出级 10~20W可以选择单管 单端功放 也可以选择推挽形式 而通常20W以上的功放多使用推挽 甚至并联推挽 如 果选择单管单端或者并联单端 通常代价过高 也没有必要。 3、根据音源和输出功率确定整机电压增益。 一般 现代音源最大输出电压为2Vrms 而平均电压却只有0.5Vrms左右。由输出 功率确定输出电压有效值 Uout √ˉ(P?R) P为输出功率 R为额定负载阻抗 。例如 某8W输出功率的功放 额定负载8欧姆 则其Uout 8V 输入电压Uin记0.5V 则整 机所需增益A Uout/Uin 16倍。

实用功放电路设计

题目五:实用低频功率放大器 一、设计任务与要求: (一)、任务: 设计并制作具有弱信号放大能力的低频功率放大器。 其原理示意图如下: (二)、要求: 1.在放大通道在正弦信号输入电压幅度为(5-700)mV,等效负值载电阻R1。:812下,放大通道应满足: a、额定输出功率P oK≥10W; b、带宽BW≥(50-1000)HZ; c、在P oK下和BW内的非线性失真系数≤3%; d、在P oK下的效率≥55%; e、在前置放大级输人端交流短路接地时,R L=8Ω上的交流声功率≤10mV。 2。自行设计并制作满足设计要求的稳压电源。 (三)、发挥部分(选作部分): 1. 测放大器的时间响应: a、方波发生器:由外供正弦信号源经变换电路产生正、负极性的对称方波。频率为1000HZ;上升和下降时间1≤uS;峰一峰值电压为200mV b、用上述方波激励放大通道时,在R8下,放大通道应满足 (1)、额定验出功率P ok≥10W; (2)、P oK下,输出波形上升或下降时间12≤uS; (3)、在P oK下,输出波形顶部斜降≤2% (4)、在P oK下,输出波形过冲电压≤5% (四)、设计电路、画布线图、编写调试步骤以及调试方法:根据任务要求,设计该低频功率 放大电路及电源电路,要求有电路、有参数及设计过程,画出布线图,并在面包板上插接、调试。 (五) 答辨: 答辨前必须完成下列资料 1.设计说明书:方案选择、设计过程、原理图、布线图及说明; 2.总结调试方法、测试技术指标: 整理原始记录数据 故障处理、(出现何现象、原因及解决办法)。 (六)、参考元器件型号: STK465 集成功率放大电路 uA741 0P-27/0P-37 电阻、电容、电位器、稳压块等。

电子管基础知识

常见的电子管功放是由功率放大,电压放大和电源供给三部分组成。电压放大和功率放大组成了放大通道,电源供给部分为放大通道工作提供多种量值的电能。 一般而言,电子管功放的工作器件由有源器件(电子管,晶体管)、电阻、电容、电感、变压器等主要器件组成,其中电阻,电容,电感,变压器统称无源器件。以各有源器件为 核心并结合无源器件组成了各单元级,各单元级为基础组成了整个放大器。功放的设计主要就是根据整机要求,围绕各单元级的设计和结合。 这里的初学者指有一定的电路理论基础,最好有一定的实做基础且对电子管工作原理有一 定了解的 (1)整机及各单元级估算1,由于功放常根据其输出功率来分类。因此先根据实际需求确定自己所需要设计功放的输出功率。对于95db的音箱,一般需要8W输出功率;90db的音箱需要20W左右输出功率;84db音箱需要60W左右输出功率,80db音箱需要120W 左右 输出功率。当然实际可以根据个人需求调整。 2,根据功率确定功放输出级电路程式。 对于10W以下功率的功放,通常可以选择单管单端输出级;10- 20W可以选择单管单端功放,也可以选择推挽形式;而通常20W以上的功放多使用推挽,甚至并联推挽,如果选择单管单端或者并联单端,通常代价过高,也没有必要。3,根据音源和输出功率确定整机电压增益。 一般现代音源最大输出电压为2Vrms,而平均电压却只有左右。由输出功率确定输出电压有效值:Uout="—(P?R),其中P为输出功率,R为额定负载阻抗。例如某8W俞出功率的功放,额定负载8欧姆,则其Uout= 8V,输入电压Uin记, 则整机所需增益A= Uout/Uin = 16倍 4,根据功率和输出级电路程式确定电压放大级所需增益及程式。(OTL功放不 在讨论之列) 目前常用功率三极管有2A3,300B,811,211,845,805 常用功率束射四极管与五极管有6P1,6P14,6P6P,6P3P(807),EL34,FU50,KT88,EL156,813 束射四极管和五极管为了取得较小的失真和较低的内阻,往往也接成三极管接法或者超线性接法应用。下面提到的“三极管“也包括这些多极管的三极管接法。 通常工作于左特性曲线区域的三极管做单管单端甲类功放时,屏极效率在20%- 25%,这 里的屏极效率是指输出音频电功率与供给屏极直流电功率的比值。 工作于右特性曲线区域的三极管,多极管超线性接法做单管单端甲类功放时,屏极效率在25%- 30%。 而标准接法的多极管做单管单端甲类功放时,屏极效率可以达到35%左右关于电子管特性曲线的知识可以参照 以下链接:/boardID=10&ID=15516&replyID=154656&skin=0 三极管及多极管的推挽功放由于牵涉到工作点,电路程式,负载阻抗,推动情况等多种因素左右,所以一般由手册给出,供选择。 链接如下: /boardID=10&ID=8354&skin=0 在决定输出级用管和电路程式之后,根据输出级功率管满 功率输出时所需推动电压Up(峰峰值)和输入音源信号电压U'in (这里的U'in需要折算成峰峰值)确定电压放大级增益。Au= Up/U'in。例如2A3单管单端所需推动电压峰峰

相关主题
文本预览
相关文档 最新文档