当前位置:文档之家› 初二数学一元二次方程的解法练习题

初二数学一元二次方程的解法练习题

初二数学一元二次方程的解法练习题
初二数学一元二次方程的解法练习题

解一元二次方程

配方法

一:用直接开平方法解下列方程:

(1)2225x =; (2)2(1)9x -=; (3)2(61)250x --=. (4)281(2)16x -=.

二:用配方法解下列方程

(1)210x x +-= (2)23610x x +-= (3)21

(1)2(1)02x x ---+=

(4)22540x x --=

三: 用配方法证明:多项式42241x x --的值总大于4224x x --的值.

因式分解法

一:用因式分解法解下列方程:

(1)y 2+7y +6=0; (2)t (2t -1)=3(2t -1); (3)(2x -1)(x -1)=1.

(4)x 2+12x =0; (5)4x 2-1=0; (6)x 2=7x ;

(7)x 2-4x -21=0; (8)(x -1)(x +3)=12; (9)3x 2+2x -1=0;

(10)10x 2-x -3=0; (11)(x -1)2-4(x -1)-21=0.

二:已知x 2-

xy -2y 2=0,且

x ≠0,y ≠0,求代数式2

22

25252y xy x y xy x ++--的值.

公式法 用公式法解方程

(1)x 2+4x+2=0 ; (2)3x 2-6x+1=0; (3)4x 2-16x+17=0 ;

(4)3x 2+4x+7=0. (1)2x 2-x-1=0; (5)4x 2-3x+2=0 ;

(6)x 2+15x=-3x; (7)x 2-x+=0.

1.用直接开平方法解下列方程:

(1)25(21)180y -=; (2)2

1(31)644

x +=; (3)26(2)1x +=;

2.用配方法解下列方程

(1)210x x --=; (2)23920x x -+=. (3)2310y y ++=.

3. 方程22

103

x x -

+=左边配成一个完全平方式,所得的方程是 .

4. 关于x 的方程22291240x a ab b ---=的根1x = ,2x = .

5. 关于x 的方程22220x ax b a +-+=的解为

6. 用适当的方法解方程

(1)23(1)12x +=; (2)2410y y ++=; (3)2884x x -=;

7. 用配方法证明:

(1)21a a -+的值恒为正; (2)2982x x -+-的值恒小于0.

8. 已知正方形边长为a ,面积为S ,则( )

A.S =

B.a =

C.S 的平方根是a D.a 是S 的算术平方根

9. 解方程2

3270x +=,得该方程的根是( )

A.3x =± B.3x = C.3x =-

D.无实数根

10. x 取何值时,2

x -的值为2-?

因式分解法

1.方程(x -16)(x +8)=0的根是( ) A .x 1=-16,x 2=8

B .x 1=16,x 2=-8

C .x 1=16,x 2=8

D .x 1=-16,x 2=-8

2.下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( )

A ..x =21

B .x =2

C .x =1

D .x =-1

3.方程5x(x +3)=3(x +3)解为( ) A .x 1=5

3

,x 2=3 B .x =5

3

C .x 1=-5

3,x 2=-3

D .x 1=5

3,x 2=-3

4.方程(y -5)(y +2)=1的根为( ) A .y 1=5,y 2=-2 B .y =5 C .y =-2 D .以上答案都不对

5.方程(x -1)2-4(x +2)2=0的根为( ) A .x 1=1,x 2=-5 B .x 1=-1,x 2=-5 C .x 1=1,x 2=5 D .x 1=-1,x 2=5

6.一元二次方程x 2+5x =0的较大的一个根设为m ,x 2-3x +2=0较小的根设为n ,则m +n 的值为( ) A .1 B .2 C .-4 D .4

7.已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长是( ) A .5 B .5或11 C .6 D .11

8.方程x 2-3|x -1|=1的不同解的个数是( ) A .0 B .1 C .2 D .3

9.方程t(t +3)=28的解为_______. 10.方程(2x +1)2+3(2x +1)=0的解为__________.

11.方程(2y +1)2+3(2y +1)+2=0的解为______.

12.12.关于x 的方程x 2+(m +n)x +mn =0的解为______.

13.方程x(x -5)=5 -x 的解为__________.

14.用适当方法解下列方程: (1)x 2-4x +3=0; (2)(x -2)2=256; (3)x 2-3x +1=0; (4)x 2-2x -3=0;

(5)(2t +3)2=3(2t +3); (6)(3-y)2+y 2=9; (7)(1+2)x 2-(1-2)x =0;

2x 2-8x =7; (9)(x +5)2-2(x +5)-8=0.

16.已知x 2+3xy -4y 2=0(y ≠0),试求y

x y

x +-的值.

17.已知(x2+y2)(x2-1+y2)-12=0.求x2+y2的值.

18.已知x2+3x+5的值为9,试求3x2+9x-2的值.

公式法

1.用公式法解方程4x2-12x=3,得到().

A.x=B.x=C.x=D.x=

2.(m2-n2)(m2-n2-2)-8=0,则m2-n2的值是().

A.4 B.-2 C.4或-2 D.-4或2

3.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,条件是________.

4.当x=______时,代数式x2-8x+12的值是-4.

5.若关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根为0,则m的值是_____.

一元二次方程计算题_解法练习题(四种方法)

一元二次方程解法练习题 一、用直接开平方法解下列一元二次方程。 1、0142=-x 2、2)3(2=-x 3、()162812 =-x 二、 用配方法解下列一元二次方程。 1、.0662=--y y 2、x x 4232=- 3 、9642=-x x 三、 用公式解法解下列方程。 1、0822=--x x 2、223 14y y -= 3、y y 32132=+ 4、01522=+-x x 5、1842-=--x x 6、02322=--x x

四、 用因式分解法解下列一元二次方程。 1、x x 22= 2、 x 2+4x -12=0 3、0862=+-x x 4、03072=--x x 五、用适当的方法解下列一元二次方程。(选用你认为最简单的方法) 1、()()513+=-x x x x 2、x x 5322=- 3、2 260x y -+= 4、01072=+-x x 5、()()623=+-x x 6、()()03342 =-+-x x x

7、()02152 =--x 8、0432=-y y 10、()()412=-+y y 11、()()1314-=-x x x 12、()025122 =-+x 13、22244a b ax x -=- 14、36 31352=+x x 15、()()213=-+y y 16、)0(0)(2≠=++-a b x b a ax 17、03)19(32 =--+a x a x 18、012=--x x 19 、02932=+-x x 20、02222=+-+a b ax x

一元二次方程应用题经典题型汇总含答案

z一元二次方程应用题经典题型汇总 一、增长率问题 例1恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率. 解设这两个月的平均增长率是x.,则根据题意,得200(1-20%)(1+x)2=193.6,即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1(舍去). 答这两个月的平均增长率是10%. 说明这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2=n求解,其中m<n.对于负的增长率问题,若经过两次相等下降后,则有公式m(1-x)2=n即可求解,其中m>n. 二、商品定价 例2益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少? 解根据题意,得(a-21)(350-10a)=400,整理,得a2-56a+775=0, 解这个方程,得a1=25,a2=31. 因为21×(1+20%)=25.2,所以a2=31不合题意,舍去. 所以350-10a=350-10×25=100(件). 答需要进货100件,每件商品应定价25元. 说明商品的定价问题是商品交易中的重要问题,也是各种考试的热点.

例3王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税) 解设第一次存款时的年利率为x. 则根据题意,得[1000(1+x)-500](1+0.9x)=530.整理,得90x2+145x-3=0. 解这个方程,得x1≈0.0204=2.04%,x2≈-1.63.由于存款利率不能为负数,所以将x2≈-1.63舍去. 答第一次存款的年利率约是2.04%. 说明这里是按教育储蓄求解的,应注意不计利息税. 四、趣味问题 例4一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗? 解设渠道的深度为x m,那么渠底宽为(x+0.1)m,上口宽为(x+0.1+1.4)m. 则根据题意,得(x+0.1+x+1.4+0.1)·x=1.8,整理,得x2+0.8x-1.8=0. 解这个方程,得x1=-1.8(舍去),x2=1. 所以x+1.4+0.1=1+1.4+0.1=2.5. 答渠道的上口宽2.5m,渠深1m. 说明求解本题开始时好象无从下笔,但只要能仔细地阅读和口味,就能从中找到等量关系,列出方程求解.

一元二次方程及解法经典习题及解析

一元二次方程及解法经典习题及解析 知识技能: 一、填空题: 1.下列方程中是一元二次方程的序号是 . 42=x ① 522=+y x ② ③01332=-+x x 052=x ④ 5232=+x x ⑤ 412=+x x ⑥ x x x x x x 2)5(0143223-=+=+-。。。。⑧⑦ 2.已知,关于2的方程12)5(2=-+ax x a 是一元二次方程,则a 3.当=k 时,方程05)3()4(22=+-+-x k x k 不是关于X 的一元二次方程. 4.解一元二次方程的一般方法有 , , , · 5.一元二次方程)0(02=/=++a c bx ax 的求根公式为: . 6.(2004·沈阳市)方程0322=--x x 的根是 . 7.不解方程,判断一元二次方程022632 =+--x x x 的根的情况是 . 8.(2004·锦州市)若关于X 的方程052=++k x x 有实数根,则k 的取值范围是 . 9.已知:当m 时,方程0)2()12(22=-+++m x m x 有实数根. 10.关于x 的方程0)4(2)1(222=++-+k kx x k 的根的情况是 . 二、选择题: 11.(2004·北京市海淀区)若a 的值使得1)2(42 2-+=++x a x x 成立,则a 的值为( ) A .5 8.4 C .3 D .2 12.把方程x x 332-=-化为02=++c bx ax 后,a 、b 、c 的值分别为( ) 3.3.0.--A 3.3.1.--B 3.3.1.-C 3.3.1.--D 13.方程02=+x x 的解是( ) x A .=土1 0.=x B 1,0.21-==x x C 1.=x D

(完整版)一元二次方程解法及其经典练习题

一元二次方程解法及其经典练习题 方法一:直接开平方法(依据平方根的定义) 平方根的定义:如果一个数 的平方等于a ( ),那么这个数 叫做a 的平方根 即:如果 a x =2 那么 a x ±= 注意;x 可以是多项式 一、 用直接开平方法解下列一元二次方程。 1.0142=-x 2、2)3(2=-x 3、()162812=-x 4..25)1(412=+x 5.(2x +1)2=(x -1)2. 6.(5-2x )2=9(x +3)2. 7..063)4(22 =--x 方法二:配方法解一元二次方程 1. 定义:把一个一元二次方程的左边配成一个 ,右边为一个 ,然后利用开平方数求解,这种解一元二次方程的方法叫做配方法。 2. 配方法解一元二次方程的步骤:(1) (2) (3) 4) (5) 二、用配方法解下列一元二次方程。 1、.0662=--y y 2、x x 4232=- 39642=-x x 、 4、0542=--x x 5、01322=-+x x 6、07232=-+x x

方法三:公式法 1.定义:利用求根公式解一元二次方程的方法叫做公式法 2.公式的推导:用配方法解方程ax 2+bx +c = 0(a ≠0) 解:二次项系数化为1,得 , 移项 ,得 , 配方, 得 , 方程左边写成平方式 , ∵a ≠0,∴4a 2 0,有以下三种情况: (1)当b 2-4ac>0时,=1x , =2x (2)当b 2-4ac=0时,==21x x 。 (3)b 2-4ac<0时,方程根的情况为 。 3.由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因 (1)式子ac b 42-叫做方程ax 2+bx +c = 0(a ≠0)根的 ,通常用字母 “△” 表示。当△ 0时, 方程ax 2+bx+c=0(a ≠0)有 实数根; 当△ 0时, 方程ax 2+bx+c=0(a ≠0)有 实数根; 当△ 0时, 方程ax 2+bx+c=0(a ≠0) 实数根。 (2)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c = 0,当ac b 42-≥0时,?将a 、b 、c 代入式子=x 就得到方程的根.这个式子叫做一元二次方程的求根公式,利用求根公式解一元二次方程的方法叫公式法. 4.公式法解一元二次方程的步骤:(1) (2) (3) (4) (5) 二、用公式解法解下列方程。 1、0822=--x x 2、22 314y y -= 3、y y 32132=+

一元二次方程应用题(含答案)整理版

一元二次方程应用题 1、某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元? 解:设没件降价为x,则可多售出5x件,每件服装盈利44-x元, 依题意x≤10 ∴(44-x)(20+5x)=1600 展开后化简得:x2-44x+144=0 即(x-36)(x-4)=0 ∴x=4或x=36(舍) 即每件降价4元 2.游行队伍有8行12列,后又增加了69人,使得队伍增加的行、列数相同,增加了多少行多少列? 解:设增加x (8+x)(12+x)=96+69 x=3 增加了3行3列 3.某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价关系式 解: (1)若销售单价为x元,则每千克降低了(70-x)元,日均多售出2(70-x)千克,日均销售量为[60+2(70-x)]千克,每千克获利(x-30)元. 依题意得: y=(x-30)[60+2(70-x)]-500 =-2x^2+260x-6500 (30<=x<=70) (2)当日均获利最多时:单价为65元,日均销售量为60+2(70-65)=70kg,那么获总利为1950*7000/70=195000元,当销售单价最高时:单价为70元,日均销售60kg,将这批化工原料全部售完需7000/60约等于117天,那么获总利为(70-30)*7000-117*500=221500 元,而221500>195000时且221500-195000=26500元. ∴销售单价最高时获总利最多,且多获利26500元. 4.现有长方形纸片一张,长19cm,宽15cm,需要剪去边长多少的小正方形才能做成底面积为77平方cm的无盖长方形的纸盒? 解:设边长x 则(19-2x)(15-2x)=77 4x^2-68x+208=0 x^2-17x+52=0

专题复习:一元二次方程的五种常用解法(后附答案)【精品】

专题:一元二次方程的5种解法 方法1 形如x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程用直接开平方法求解 1.用直接开平方法解下列方程: (1)9x2=25; (2)x2-√=0; (3)(2t-1)2=9; (4)(x-3)2-9=0. (5)2(x-1)2-18=0. 用直接开平方法解一元二次方程的三个步骤: (1)看:看是否符合x2=p或(mx+n)2=p(p≥0)的形式; (2)化:对于不符合x2=p或(mx+n)2=p(p≥0)形式的方程先化为符合的形式; (3)求:应用平方根的意义,将一元二次方程化为两个一元一次方程求解.

方法2 当二次项系数为1,且一次项系数为偶数时,用配方法求解 2.用配方法解下列方程: (1)x 2-10x+9=0; (2)x 2+2x=2; (3)2x 2-4x+1=0. 3. 用配方法解下列方程: (1)3x 2 +6x -5=0; (2)12 x 2 -6x -7=0; (3)2x 2+7x -4=0. 用配方法解一元二次方程的“五步法” (1)移项:使方程的左边为二次项和一次项,右边为常数项. (2)化1:当方程的二次项系数不为1时,在方程的两边同除以二次项系数,把二次项系数化为1. (3)配方:在方程的两边同时加上一次项系数一半的平方,把原方程化成(x +n)2=p 的形式. (4)开方:若p ≥0,则两边直接开平方得到一元一次方程;若p <0,则原方程无解. (5)求解:解所得到的一元一次方程,求出原方程的解.

方法3 易化成一般形式(二次项系数不为1)时,用公式法求解4.用公式法解方程: (1)x2+3x+1=0; (2)2x2-5x-7=0; (3)(x+1)(x-1)+2(x+3)=8; (4)y2-2√2y+2=0; (5)(x+1)(2x-6)=1; (6)x2+5x+18=3(x+4).

一元二次方程概念和解法测试题

一元二次方程概念与解法测试题 姓名: 得分: ⑤2 2230x x x +-=;⑥x x 322 +=;⑦231223x x -+= ;是一元二次方程的是 。 1. 把下列一元二次方程化成一般形式,并写出相应的二次项系数、一次项系数、常数项: 3.下列关于x 的方程中,一定是一元二次方程的是( ) A .2(2)210m x x ---= B .2530k x k ++= C 21203x --= D.22 340x x +-= 4、已知关于x 的一元二次方程5)12(2 =+--a x a x 的一个解为1,则a= 。 5.方程22(4)(2)310m x m x m -+-+-=,当m = 时,为一元一次方程; 当m 时,为一元二次方程。 6.已知关于x 的一元二次方程22(2)340m x x m -++-=有一个解是0,则m = 。 8、2 2 ___)(_____6+=++x x x ; 2 2 ____)(_____3-=+-x x x 9、方程0162 =-x 的根是 ; 方程 0)2)(1(=-+x x 的根是 ; 10、如果二次三项式16)122 ++-x m x ( 是一个完全平方式,那么m 的值是_______________. 11、下列方程是关于x 的一元二次方程的是( ); A 、02 =++c bx ax B 、 2112 =+x x C 、122 2-=+x x x D 、)1(2)1(32+=+x x 12、方程()()2 4330x x x -+-=的根为( ); (A )3x = (B )125x = (C )12123,5 x x =-= (D )1212 3,5x x == 13、解下面方程:(1)()2 25x -=(2)2 320x x --=(3)2 60x x +-=,较适当的方法分别为( ) (A )(1)直接开平法方(2)因式分解法(3)配方法(B )(1)因式分解法(2)公式法(3)直接开平方法 (C )(1)公式法(2)直接开平方法(3)因式分解法(D )(1)直接开平方法(2)公式法(3)因式分解法

一元二次方程应用题精选含答案

一元二次方程应用题精选 一、数字问题 1、有两个连续整数,它们的平方和为25,求这两个数。 2、一个两位数,十位数字与个位数字之和是6,把这个数的个位数字与十位数字对调后,所得的新两位数与原来的两位数的积是1008,求这个两位数. 二、销售利润问题 3、某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增 加赢利,尽快减少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.求: (1)若商场平均每天要赢利1200元,每件衬衫应降价多少元? (2)要使商场平均每天赢利最多,请你帮助设计方案. 4.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家 电下乡”政策的实施,商场决定采取适当的降价措施,调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台,商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元? 5.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价O.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利2O0元,应将每千克小型西瓜的售价降低多少元?

三、平均变化率问题增长率 (1)原产量+增产量=实际产量. (2)单位时间增产量=原产量×增长率. (3)实际产量=原产量×(1+增长率). 6. 某钢铁厂去年一月份某种钢的产量为5000吨,三月份上升到7200吨,这两个月平均每月增长的百分率是多少? 7. 某产品原来每件600元,由于连续两次降价,现价为384元,如果两个降价的百分数相同,求每次降价百分之几? 四、形积问题 8、有一块长方形的铝皮,长24cm、宽18cm,在四角都截去相同的小正方形,折起来做成一个没盖的盒子,使底面积是原来面积的一半,求盒子的高. 9、如图,在一块长为32m,宽为20m长方形的土地上修筑两条同样宽度的道路,余下部分作为耕地要使耕地的面积是540m2,求小路宽的宽度.

一元二次方程典型例题解析

龙文教育学科辅导学案 教师: 学生: 年级: 日期:2013. 星期: 时段: 学情分析 课 题 一元二次方程章节复习及典型例题解析 学习目标与 考点分析 学习目标:1、通过对典型例题、自身错题的整理,抓住本章的重点、突破学习的难点; 2、通过灵活运用解方程的方法,体会四种解法之间的联系与区别,进一步熟练根据方程特征找出最优解法; 3、通过实际问题的解决,进一步熟练运用方程解决实际问题,体会方程思想在解决 问题中的作用 考点分析:1一元二次方程的定义 、解法、及根与系数的关系 学习重点 理解并掌握一元二次方程的概念及解法 学习方法 讲练说相结合 学习内容与过程 一 回顾梳理旧的知识点(这些知识点必须牢牢掌握) 一元二次方程 1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。 2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。 一元二次方程的解法 1、直接开平方法: 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如b a x =+2)(的一元二次方程。根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。 2、配方法: 配方法的理论根据是完全平方公式2 22)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。 配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式 3、公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

用因式分解法解一元二次方程练习题

用因式分解法解一元二次方程 一.公因式: (一)1.解方程 x2-5x=0 x(x-1)=0 3x2=6x x2-5x=7x t(t+3)=28 x2=7x x2+12x=0(1+2)x2-(1-2)x=0 (3-y)2+y2=9 (二)1.解方程 4x(x+3)+3(x+3)=0 3x(x+1)+4(x+1)=0 (2x+1)2+3(2x+1)=0 x(x-5)=5-x (2t+3)2=3(2t+3) 二、平方差,解方程: (x+5)(x-5)=0 x2-25=0 4x2-1=0 (x-2)2=256 0 1 92x 三、十字交叉,解方程: 4x2-4x+1=0 (x+3)(x+2)=0 x2-5x+6=0 x2-2x-3=0 x2-4x-21=0 (x-1)(x+3)=12 3x2+2x-1=0 (x-1)2-4(x-1)-21=0 5x2-(52+1)x+10=0 四、完全平方,解方程: x2-6x+9=04X2-4X+1=0 (Y-1)2+2(Y-1)+1=0 五、三角形的一边长为10,另两边长为方程x2-14x+48=0的两个根,求三角形的周长? 六、解关于x的方程(1)x2-2mx-8m2=0;(2)x2+(2m+1)x+m2+m=0 七、6.已知x2+3xy-4y2=0(y≠0),试求 y x y x 的值 八、已知(x2+y2)(x2-1+y2)-12=0.求x2+y2的值. 九、已知x2+3x+5的值为9,试求3x2+9x-2的值 十、一跳水运动员从10米高台上跳水,他跳下的高度h(单位:米)与所用的时间t(单位:秒)的关系式h=-5(t-2)(t+1).求运动员起跳到入水所用的时间.

解一元二次方程练习题汇编

一元二次方程练习题 1. 用直接开平方法解下列方程: (1)2225x =; (2)2 1440y -=. 2. 解下列方程: (1)2 (1)9x -=; (2)2 (21)3x +=; (3)2 (61)250x --=. (4)2 81(2)16x -=. 3. 用直接开平方法解下列方程: (1)25(21)180y -=; (2)21 (31)644 x +=; (3)2 6(2)1x +=; (4)2 ()(00)ax c b b a -=≠,≥ 4. 填空 (1)28x x ++( )=(x + )2 . (2)22 3x x - +( )=(x - )2. (3)2b y y a -+( )=(y - )2 . 5. 用适当的数(式)填空: 23x x -+ (x =- 2); 2x px -+ =(x - 2) 23223(x x x +-=+ 2)+ . 6. 用配方法解下列方程

1).210x x +-= 2).23610x x +-= 3).21 (1)2(1)02 x x ---+= 7. 方程22 103 x x - +=左边配成一个完全平方式,所得的方程是 . 8. 用配方法解方程. 23610x x --= 22540x x --= 9. 关于x 的方程22291240x a ab b ---=的根1x = ,2x = . 10. 关于x 的方程22220x ax b a +-+=的解为 11. 用配方法解方程 (1)210x x --=; (2)23920x x -+=. 12. 用适当的方法解方程 (1)2 3(1)12x +=; (2)2 410y y ++=; (3)2884x x -=; (4)2 310y y ++=. 13. 已知关于x 的一元二次方程2 2 (21)10m x m x +-+=有两个不相等的实数根,则m 的取值范围是 .

最新一元二次方程应用题精选(含答案)

1:某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元? 解:设没件降价为x,则可多售出5x件,每件服装盈利44-x元, 依题意x≤10 ∴(44-x)(20+5x)=1600 展开后化简得:x2-44x+144=0 即(x-36)(x-4)=0 ∴x=4或x=36(舍) 即每件降价4元 要找准关系式 2.游行队伍有8行12列,后又增加了69人,使得队伍增加的行·列数相同,增加了多少行多少列? 解:设增加x (8+x)(12+x)=96+69 x=3 增加了3行3列 3.某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价 解: (1)若销售单价为x元,则每千克降低了(70-x)元,日均多售出2(70-x)千克,日均销售量为[60+2(70-x)]千克,每千克获利(x-30)元. 依题意得: y=(x-30)[60+2(70-x)]-500 =-2x^2+260x-6500 (30<=x<=70) (2)当日均获利最多时:单价为65元,日均销售量为60+2(70-65)=70kg,那么获总利为1950*7000/70=195000元,当销售单价最高时:单价为70元,日均销售60kg,将这批化工原料全部售完需7000/60约等于117天,那么获总利为(70-30)*7000-117*500=221500 元,而221500>195000时且221500-195000=26500元. ∴销售单价最高时获总利最多,且多获利26500元.

解一元二次方程配方法练习题

- 1 - 解一元二次方程练习题(配方法) 步骤:(1)移项; (2)化二次项系数为1; (3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为(x+m )2=n 的形式; (5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解. 1.用适当的数填空: ①x 2+6x+ =(x+ )2;② x 2-5x+ =(x - )2; ③x 2 + x+ =(x+ )2 ;④ x 2 -9x+ =(x - )2 2.将二次三项式2x 2-3x-5进行配方,其结果为_________. 3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______. 4.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2 =b 的形式为_______,?所以方程的根为_________. 5.若x 2 +6x+m 2 是一个完全平方式,则m 的值是( ) A .3 B .-3 C .±3 D .以上都不对 6.用配方法将二次三项式a 2-4a+5变形,结果是( ) A .(a-2)2+1 B .(a+2)2-1 C .(a+2)2+1 D .(a-2)2-1 7.把方程x+3=4x 配方,得( ) A .(x-2)2=7 B .(x+2)2=21 C .(x-2)2=1 D .(x+2)2=2 8.用配方法解方程x 2+4x=10的根为( ) A .2 B .-2 C . D . 9.不论x 、y 为什么实数,代数式x 2+y 2+2x-4y+7的值( ) A .总不小于2 B .总不小于7 C .可为任何实数 D .可能为负数 10.用配方法解下列方程: (1)3x 2 -5x=2. (2)x 2 +8x=9 (3)x 2 +12x-15=0 (4)4 1 x 2-x-4=0 (5)6x 2-7x+1=0 (6)4x 2-3x=52 11.用配方法求解下列问题 (1)求2x 2-7x+2的最小值 ;(2)求-3x 2+5x+1的最大值。 12.将二次三项式4x 2-4x+1配方后得( ) A .(2x -2)2+3 B .(2x -2)2-3 C .(2x+2)2 D .(x+2)2-3 13.已知x 2-8x+15=0,左边化成含有x 的完全平方形式, 其中正确的是( ) A .x 2-8x+(-4)2=31 B .x 2-8x+(-4)2=1 C .x 2+8x+42=1 D .x 2-4x+4=-11 14.已知一元二次方程x 2-4x+1+m=5请你选取一个适当的m 的值,使方程能用直接开平方法求解,并解这个方程。 (1)你选的m 的值是 ;(2)解这个方程. 15.如果x 2-4x+y 2 ,求(xy )z 的值

一元二次方程解法(知识点和经典例题)

一元二次方程 知识要点 1 ?方程中只含有 _个未知数,并且整理后未知数的最高次数是这样的__________ 方程叫做一元二次方程。 通常可写成如下的一般形式(a 、b、c、为常数,a_」。 2.一元二次方程的解法: (1)直接开平方法:当一元二次方程的一边是一个含有未知数的__________ 的平方,而另一边是一个 ________ 时,可以根据 ________ 的意义,通过开平方法求出这个方程的解。 (2)配方法:用配方法解一元二次方程ax2 bx c o a 0的一般步骤是: ①化二次项系数为 ____ ,即方程两边同时除以二次项系数; ②移项,使方程左边为 ______ 项和_______ 项,右边为______ 项; ③配方,即方程两边都加上 _________________ 的平方; ④化原方程为(x m)2 n的形式, 如果n是非负数,即n 0,就可以用_____________ 法求出方程的解。 如果n v O,则原方程_______ 。 (3)公式法:方程ax2 bx c 0(a ______________ 0),当b2 4ac 0 时,x = (4)因式分解法:用因式分解法解一元二次方程的一般步骤是: ①将方程的右边化为_______ ; ②将方程的左边化成两个_____ 的乘积; ③令每个因式都等于______ ,得到两个_________ 方程; ④解这两个方程,它们的解就是原方程的解。 3. 一元二次方程的根的判别式 (1) b24ac >0 一兀二次方程ax2 bx c0 a 0有两个的实数根 即x,x2 (2) b24ac =0 一兀二次方程有两个的实数根,即xi X2 , (3) b24ac <0 一兀二次方程ax2 bx c0 a 0 实数根。 4.元 —二次方程根与系数的关系 ( 韦达定理) 如果一元二次方程ax2 bx c 0(a0)的两根为X i,X2,则% x2,x-i x2

一元二次方程应用题

实际问题与一元二次方程(3) 教学目标: 1、会列一元二次方程解应用题; 2、进一步掌握解应用题的步骤和关键; 3、通过一题多解使学生体会列方程的实 质,培养灵活处理问题的能力. 教学重点:列方程解应用题. 教学难点:会用含未知数的代数式表示题目里的中间量(简称关 系式);会根据所设的不同意义的未知数,列出相应的方程。 教学过程: 一、复习引入 1、上一节,我们学习了解决“平均增长(下降)率问题”,现在,我们要学习解决“面积、体积问题。 2.直角三角形的面积公式是什么??一般三角形的面积公式呢? 3.正方形的面积公式是什么呢?长方形的面积公式又是什么? 4.梯形的面积公式是什么? 5.菱形的面积公式是什么? 6.平行四边形的面积公式是什么? 7.圆的面积公式是什么? 二、探究: 要设计一本书的封面,封面长27㎝,宽21㎝,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何 设计四周边衬的宽度? 解法一: 分析:这本书的长宽之比是9:7,依题知正中央的矩形两 边之比也为9:7 设正中央的矩形两边分别为9xcm ,7xcm 依题意得 解得 故上下边衬的宽度为: 2331=x ),(2332舍去不合题意-=x 21274379??=?x x 8.143275422339272927≈-=?-=-x

左右边衬的宽度为: 解法二: 分析:这本书的长宽之比是9:7,正中央的矩形两边之比也为9:7,由此判断上下边衬与左右边衬的宽度之比也为9:7 设上下边衬的宽为9xcm ,左右边衬宽为7xcm 依题意得 解方程得 (以下同学们自己完成) 三、例题讲解: 用20cm 长的铁丝能否折成面积为30cm 2的矩形,若能够,求它的长 与宽;若不能,请说明理由. 解:设这个矩形的长为x cm,则宽为 cm, 即 x 2-10x+30=0 这里a=1,b=-10,c=30 ∴此方程无解. ∴用20cm 长的铁丝不能折成面积为30cm 2的矩形. 四、学生练习: 1.如图是宽为20米,长为32米的矩形耕地,要修筑同样宽的三条道路(两条纵向,一条横向,且互相垂直),把耕地分成六块大小相等的试验地,要使试验地的面积为570平方米,问:道路宽为多少米? 2.如图,长方形ABCD,AB=15m,BC=20m, 四周外围环绕着宽度相等 4.14 3214222337212721≈-=?-=-x 212743)1421)(1827(??=--x x 4336±=x )220(x -30)220(=-x x 0 203014242)10(<-=??-=-∴-ac b

一元二次方程的四种解法

龙文教育个性化辅导教案提纲教师:陈燕玲学生:年级九日期: 星期: 时段: 课题一元二次方程的概念及解法 学情分析 教学目标与考点分析1.掌握一元二次方程的概念及其一般形式,能指出一元二次方程的各项及其系数。2 能根据具体一元二次方程的特征,灵活选择方程的解法。体会解决问题方法的多样性。 教学重点难点教学重点: 掌握常用四种一元二次方程的解法。教学难点: 灵活选用适当方法解一元二次方程 教学方法讲解法合作探究法 教学过程 一、一元二次方程的概念: 问题(1)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形的边长是多少? 如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.整理,得:________. 归纳: (1)只含一个未知数x;(2)最高次数是2次的;(3)?整式方程. 因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程. 一般地,任何一个关于x的一元二次方程,?经过整理,?都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式. 一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项. 例1.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项. 注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号. 例2.将方程(x+1)2+(x-2)(x+2)=?1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.

一元二次方程解法及其经典练习题

一元二次方程解法及其经典练习题 方法一:直接开平方法(依据平方根的定义) 如果 a x =2那么 a x ±= 注意;x 可以是多项式 一、用直接开平方法解下列一元二次方程。 1.0142=-x 2、2)3(2=-x 3、()162812=-x 4..25)1(412=+x 5.(2x +1)2=(x -1)2. 6.(5-2x )2=9(x +3)2. 7..063)4(22=--x ] 方法二:配方法解一元二次方程 1. 定义:把一个一元二次方程的左边配成一个 ,右边为一个 ,然后利用开平方数求解,这种解一元二次方程的方法叫做配方法。 配方法解一元二次方程的步骤: 二、用配方法解下列一元二次方程。 1、.0662=--y y 2、x x 4232=- 39642=-x x 、 * 4、0542=--x x 5、01322=-+x x 6、07232=-+x x

方法三:公式法 1.定义:利用求根公式解一元二次方程的方法叫做公式法 2.公式的推导:用配方法解方程ax 2+bx +c = 0(a ≠0) (1)当b 2-4ac>0时,=1x ,=2x 。 (2)当b 2-4ac=0时,==21x x 。 (3)当b 2-4ac<0时,方程根的情况为 。 $ 二、用公式解法解下列方程。 1、0822=--x x 2、22314y y -= 3、y y 32132=+ 4、01522=+-x x 5、1842-=--x x 6、02322=--x x 7.x 2+4x -3=0 8. .03232=--x x 方法四:因式分解法 因式分解的方法: (1)提公因式法: (2)… (3)公式法:平方差: 完全平方: (4)十字相乘法: 一、 用因式分解法解下列一元二次方程。 1、x x 22= 2、0)32()1(22=--+x x 3、0862=+-x x 4、22)2(25)3(4-=+x x 5、0)21()21(2=--+x x 6、0)23()32(2=-+-x x

一元二次方程应用题(含答案)

一元二次方程应用题(含答案) 学习了一元二次方程的解法以后,就会经常遇到解决与一元二次方程有关的生活中的应用问题,即列一元二次方程解应用题,不少同学遇到这类问题总是左右为难,难以下笔,事实上,同学们只要能认真地阅读题目,分析题意,并能学会分解题目,各个击破,从而找到已知的条件和未知问题,必要时可以通过画图、列表等方法来帮助我们理顺已知与未知之间的关系,找到一个或几个相等的式子,从而列出方程求解,同时还要及时地检验答案的正确性并作答.现就列一元二次方程解应用题中遇到的常见的十大典型题目,举例说明. 一、增长率问题 例1恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率. 解设这两个月的平均增长率是x.,则根据题意,得200(1-20%)(1+x)2=193.6, 即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1(舍去). 答这两个月的平均增长率是10%. 说明这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2=n求解,其中m<n.对于负的增长率问题,若经过两次相等下降后,则有公式m(1-x)2=n即可求解,其中m>n. 二、商品定价 例2益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少? 解根据题意,得(a-21)(350-10a)=400,整理,得a2-56a+775=0,

23.2.5一元二次方程的解法(五)应用题1 学案

23.2.5《一元二次方程的解法》学案(5) 学习目标: 1、使学生能根据量之间的关系,列出一元二次方程的应用题。 2、提高学生分析问题、解决问题的能力。 3、培养学生数学应用的意识。 学习重难点: 认真审题,分析题中数量关系,适当设未知数,寻找等量关系,列出方程是本节课的重点,也是难点。 学习过程: 一、课前预习: 1、叙述列一元一次方程解应用题的步骤。 2、一元二次方程有哪些解法 3、用多种方法解方程22 -=++ (31)69 x x x 二、课上探究: 自主探究: 绿苑小区规划设计时,准备在每两幢楼房之间,安排面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少? 解:设宽为x米,可列出方程 解出方程: 合作交流: 列一元二次方程解应用题的步骤: 。 (鼓励用自己的语言总结出解题步骤。) 自主学习: 例1.如图,一块长和宽分别为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方米.求截去正方形的边长。 分析:设截去正方形的边长x厘米,底面(图中虚线线部分)长等于 厘米,宽等于厘米,S底面= 。 请同学们自己列出方程并解这个方程,讨论它的解是否符合题意。

精讲点拨: 注意:检验方程的解是否符合题意。 自主学习: 例2:学校生物小组有一块长32m,宽20m的矩形试验田,为了管理方便,准备沿平行于两边的方向纵、横各开辟一条等宽的小道.要使种植面积为5402 m, 小道的宽应是多少? 解: 精讲点拨: 要注意分析题意,抓住主要的数量关系,列出方程,把实际问题转化为数学问题来解决。求得方程的根之后,要注意检验是否符合题意,然后得到原问题的解答 自主探究: 思考:是否还有其它的办法解决问题? 合作交流: 通过本节课的学习你有什么收获?在二次根式的化简时注意什么问题? 当堂检测: A组 1、用一块长80cm、宽60cm的薄钢片,在四个角上截去四个相同的边长为xcm的小正方形,然后做成底面积为1500cm的无盖长方体盒子。为求出x,根据题意,列方程并整理得() A、x2-70x+825=0 B、x2+70x-825=0 C、x2-70x-825=0 D、x2+70x+825=0 2、要用一条长为24cm的铁丝围成一个斜边长为10cm的直角三角形,则两条直角边的长分别为() A、4cm,8cm B、6cm,8cm C、4cm,10cm D、7cm,7cm

解一元二次方程练习题公式法

解一元二次方程练习题——公式法 一.填空题。(每小题5分,共25分) 1.一般地,对于一元二次方程ax2+bx+c=0(a≠0),当b2-4ac≥0时,它的根是_____,当b-4ac<0时,方程_________. 2.方程a x2+bx+c=0(a≠0)有两个相等的实数根,则有________,?若有两个不相等的实数根,则有_________,若方程无解,则有__________. 3.若方程3x2+bx+1=0无解,则b应满足的条件是________. 4.用公式法解方程x2=-8x-15,其中b2-4ac=_______,x1=_____,x2=________. 5.已知一个矩形的长比宽多2cm,其面积为8cm2,则此长方形的周长为________. 二.选择题。(每小题5分,共25分) 6.用公式法解方程4y2=12y+3,得到() A... D. 7.不解方程,判断所给方程:①x2+3x+7=0;②x2+4=0;③x2+x-1=0中,有实数根的方程有()A.0个 B.1个 C.2个 D.3个 8.关于x的一元二次方程kx2+2x-1=0有两个不相等的实数根,则k的取值范围是() A、k>-1 B、k>1 C、k≠0 D、k>-1且k≠0 9.下列方程中有两个相等的实数根的是() A、3x2-x-1=0; B、x2-2x-1=0; C、9x2=4(3x-1); D、x2+7x+15=0. 10.(m2-n2)(m2-n2-2)-8=0,则m2-n2的值是(). A. 4或-2 B. -4或2 C. 4 D.-2 11.(20分)用公式法解方程 (1)x2+15x=-3x; (2)x2+x-6=0; (3)3x2-6x-2=0; (4)4x2-6x=0

相关主题
文本预览
相关文档 最新文档