当前位置:文档之家› 路由算法的比较及电路交换与包交换的优缺点

路由算法的比较及电路交换与包交换的优缺点

路由算法的比较及电路交换与包交换的优缺点
路由算法的比较及电路交换与包交换的优缺点

LS路由算法与DV路由算法的比较

徐雄博20050830226 信息安全 2 班

摘要:当一个分组要从源主机带目的主机时,网络层必须确定从发送方到接受方的分组所采用的路径。选路算法的目的就是给定一组路由器以及连接路由器的链路,选路算法要找到一条从源路由器到目的路由器的“好”的路径,即具有最低费用的路径。根据算法是全局性的还是分布式的,选路算法可分为两种:具有全局状态信息的链路状态算法(link state algorithm, LS)以及分散式的选路算法距离向量算法(distance-vector, DV)。本文将通过对这两种算法的比较来找出两个算法在不同的情况下,每种算法的适应环境。

关键词:路由算法;RIP路由协议;OSPF路由协议;LS路由算法;DV路由算法

Abstraction:When a packet want to round from source host to destination host, the network layer must nonetheless determine the path that packets take from senders to receivers. The purpose of a routing algorithm is that given a set of routers, with links connecting the router, a routing algorithm finds a “good” path from source router to destination router. Typically, a good path is one that has the least cost. According to whether the algorithms are global or decentralized, the routing algorithm can be classified into two types: algorithms with global state information are often referred to as link-state (LS) algorithms, and the decentralized routing algorithm called a distance-vector (DV) algorithm. Through this passage we will find the environment which suits each algorithm most.

Keywords:routing algorithm,RIP,OSPF,LS,DV

1.概述

随着社会的发展,计算机技术已经越来越普及。不同的网络层提供的不管是数据服务还是虚电路服务,网络层都必须确定为从发送方到接受方的分组所采用的路径。我们看到选路的工作是从发送方到接受方通过路由器的网络决定的好路径。选路算法的目的是简单的,即给定一组路由器以及连接路由器的链路,选路算法要找到一条从源路由器到目的路由器的“好”的路径,。通常一条好的路径指具有最低费用的路径。对选路算法分类的一种方法是根据该算是全局性的还是分散式的可分为全局选路算法(global routing algorithm)和分散式选路算法(decentralized routing algorithm)[1]。而根据这两个路由选路算法,历史上曾有两个选路协议曾被广泛用于Internet上自治系统内的选路:选路信息协议(Routing Information Protocol,RIP)与开放最短路径优先(Open Shortest Path First,OSPF)[2]。

2.路由算法

路由算法在路由协议中起着至关重要的作用,采用何种算法往往决定了最终的寻径结果,因此选择路由算法一定要仔细。通常需要综合考虑以下几个设计目标:

——(1)最优化:指路由算法选择最佳路径的能力。

——(2)简洁性:算法设计简洁,利用最少的软件和开销,提供最有效的功能。

——(3)坚固性:路由算法处于非正常或不可预料的环境时,如硬件故障、负载过高或操作失误时,都能正确运行。由于路由器分布在网络联接点上,所以在它们出故障时会产生严重后果。最好的路由器算法通常能经受时间的考验,并在各种网络环境下被证实是可靠的。

——(4)快速收敛:收敛是在最佳路径的判断上所有路由器达到一致的过程。当某个网络事件引起路由可用或不可用时,路由器就发出更新信息。路由更新信息遍及整个网络,引发重新计算最佳路径,最终达到所有路由器一致公认的最佳路径。收敛慢的路由算法会造成路径循环或网络中断。

——(5)灵活性:路由算法可以快速、准确地适应各种网络环境。例如,某个网段发生故障,路由算法要能很快发现故障,并为使用该网段的所有路由选择另一条最佳路径。

路由算法按照种类可分为以下几种:静态和动态、单路和多路、平等和分级、源路由和透明路由、域内和域间、链路状态和距离向量。前面几种的特点与字面意思基本一致,下面着重介绍链路状态和距离向量算法[3]。

3.链路状态算法(link state algorithm, LS)

链路状态算法(也称最短路径算法)发送路由信息到互联网上所有的结点,然而对于每个路由器,仅发送它的路由表中描述了其自身链路状态的那一部分。链路-状态路由选择算法的基本思想很简单,可以分成以下五个部分叙述:

⑴每个节点必须找出它的所有邻居

当一个节点启动后,通过在每一条点到点的链路上发送一个特殊的HELLO报文,并通过链路另一端的节点发送一个应答报文告诉它自己是谁。

⑵每个节点测量到它的每个邻居的时延或其他参数

链路-状态路由选择算法要求每个节点都知道到它的每个邻居的时延。

测量这种时延的最直接的方法是在它们之间的链路上发送一个特殊的ECHO响应报文,并且要求对方收到后立即再将其发送回来。将测量得到的来回时间除以2,即可得到一个比较合理的估计。为了得到更准确的结果,可以将测试重复多次,取平均值。

⑶建立链路-状态报文

收集齐了用于交换的信息后,下一步就为每一个节点建立一个包含所有数据的报文。报文以发送者的标识符开始,随后为顺序号以及它的所有邻居的列表。对于每一个邻居,给出到此邻居的时延。

建立链路-状态报文很容易,困难是决定何时建立它们。一种可行的方法是每隔一段规律的时间间隔周期性地建立它们。另一种可行的方法是当节点检测到了某些重要事件的发生时建立它们。例如,一条链路或一个邻居崩溃或恢复时,建立它们。

⑷分发链路-状态报文

基本的分发算法是使用顺序号的洪泛法。这种分发算法由于循环使用顺序号、某个节点曾经崩溃或某个顺序号曾经被误用过等原因,可能会使不同的节点使用不同版本的拓扑结构,这将导致不稳定、循环、到达不了目的机器及其他问题。为了防止这类错误的发生,需要在每个报文中包含一个年龄域,年龄每秒减1,当年龄减到 0时,丢弃此报文。

⑸计算新路由

一旦一个节点收集齐了所有来自于其他节点的链路-状态报文,它就可以据此构造完整的网络拓扑结构图,然后使用Dijkstra算法在本地构造到所有可能的目的地的最短通路。

链路-状态路由选择算法具有各节点独立计算最短通路、能够快速适应网络变化、交换的路由信息少等优点,但相对于距离向量路由选择算法,它较复杂、难以实现[4]。

4.距离向量路由选择算法(Distance Vector,DV)

各节点周期性地向所有相邻节点发送路由刷新报文,报文由一组(V,D)有序数据对组成,V表示该节点可以到达的节点,D表示到达该节点的距离(跳数)。收到路由刷新报文的节点重新计算和修改它的路由表。

距离向量路由算法具有简单,易于实现的优点。但它不适用于路由剧烈变化的或大型的网络环境。因为某个节点的路由变化像波动一样从相邻节点传播出去,其过程 是非常缓慢的,称之为“慢收敛”。因此,在距离向量路由选择算法的路由刷新过程中,可能会出现路由不一致问题。距离向量路由选择算法的另一个缺陷是它需要 大量的信息交换,但很多都

可能是与当前路由刷新无关的[4]。

5. LS 与DV 的比较

本文复杂性、收敛速度和健壮性从三个方面进行比较。

1.报文复杂性。 LS 算法要求每个节点知道网络中每条链路的费用。这就要求要发送O(|N||E|)个报文。而且无论何时一条链路的费用改变,必须向所有节点发送新的链路费用。DV 算法要求在每次迭代时,在两个直接相连邻居之间交换报文。当链路费用改变时,DV 算法仅当在新的链路费用导致与该链路相连节点的最低费用路径发生改变时,才传播已改变的链路费用。

2.收敛速度。 LS 算法的实现是一个要求O(|N||E|)个报文的)|(|2

N O 算法。DV 算法收敛较慢。且在收敛时会遇到选路环路。

3.健壮性。 LS 算法下,路由计算是有些是孤立的,提供了一定程度的健壮性。DV 算法中一个不正确的节点计算值会扩展到整个网络。

6. 路由协议

根据是否在一个自治域内部使用,动态路由协议分为内部网关协议(IGP ,Internal Gateway Protocol )和外部网关协议(EGP ,External Gateway Protocol )。常用路由协议比较见表1[5]。

表1. 常用路由协议比较

(1) 路由信息协议(RIP ,Routing Information Protoco )

RIP 用更新(UNPDATES )和请求(REOUESTS )两种分组传输路由信息。更新信息用于广播路由表,其中每一项由两部分组成:局域网上能达到的IP 地址和与该网络的距离。请求信息用于寻找网络上能发出RIP 报文的其他设备。

RIP 使用UDP作为它的传输协议,端口是520。通过广播报文来交换路由信息,主要传递路由信息(路由表)来广播路由。每隔30秒,广播一次路由表,维护相邻路由器的关系,同时根据收到的路由表计算自己的路由表。在每30秒发送一次路由信息更新时。RIP 提供跳跃计数(hop count)作为尺度来衡量路由距离,跳跃计数是一个包到达目标所必须经过的路由器的数目。使用距离来决定最佳路径,如通过路由跳数来衡量。到这个路由器具有最低跳数的路径是被选中的路径。如果首选的路径不能正常工作,那么具有较高跳数的路径被作为备份。除到达目的地的最佳路径外,任何其它信息均予以丢弃。同时路由器也把所收集的路由信息用RIP协议通知相邻的其它路由器。这样,正确的路由信息逐渐扩散到了全网[6]。

其优点是:它简单、可靠,便于配置,障碍修复非常容易。

其缺点是:

①.没有子网地址的概念,无法区分子网号;RIP协议的原始版本不能应用可变长子网屏蔽(VLSM,Variable Length Subnet Masks),因此不能分割地址空间以最大效率地应用有限的IP地址。

②.路由度量忽略了吞吐率、往返时间、可靠性、实际距离、通信延迟、网络速度及带宽等一些应该考虑的因素或性能。如果到相同目标有二个不等速或不同带宽的路由器,但跳跃计数相同,则RIP认为两个路由是等距离的。RIP协议的另一个基本问题是,当选择路径时它忽略了连接速度问题。例如,如果一条由所有快速以太网连接组成的路径比包含一个10Mbps以太网连接的路径远一个跳数,具有较慢10Mbps以太网连接的路径将被选定作为最佳路径。

③.支持网络大小有限,只适用于小型网络。RIP最多支持的跳数为15,即在源和目的网间所要经过的最多路由器的数目为15,跳数16表示不可达。假定如果从网络的一个终端到另一个终端的路由跳超过15个,那么就认为一定牵涉到了循环。因此当一个路径达到16跳,将被认为是达不到的。对于规模较大的网络,或具有多余路径的网络,应该考虑使用其它路由协议。

④.而且RIP每隔30秒一次的路由信息广播也是造成网络的广播风暴的重要原因之一。

于1993年,RIP2是在RFC1388中对RIP定义进行完善扩充而产生的第二版本,它支持IPv6(Internet Protocol V ersion 6)规范的128位地址;通过引入子网屏蔽与每一路由广播信息一起使用实现了对可变长子网掩码(VLSM,V ariable Length Subnet Masks)的支持;除广播外还增加了多播功能,可以减少不收听报文的主机负载;提供简单的鉴别机制以及路由汇总功能。

在有多重路径到相同目标的网络中,RIP确定使用一条可选择的路径将花费许多时间。在RIP协议认识到路径不能达到前,它被设为等待,直到它已错过6次更新,总共180秒时间。然后,在使用新路径更新路由表前,它等待另一个可行路径的下一个信息的到来。这意味着在备份路径被使用前至少经过了3分钟,这对于多数应用程序超时是相当长的时间[5]。

(2)开放式最短路优先路由信息协议(OSPF,Open Shortest Path First)开放式最短路径优先协议(OSPF)是一种链路状态路由选择协议,链路是路由器接口的另一称法,因此也称为接口状态路由协议。采用Dijkstra算法,路由选择的变化基于网络中路由器物理连接的状态与速度,并且变化被立即广播到网络中的每一个路由器。它被用于单个自治系统来分发路由选择信息。

作为链接状态路由协议,OSPF与RIP和IGRP这些距离向量路由协议是不同的。使用距离向量算法的路由器的工作模式是在路由更新信息中把路由表全部或部分发送给其相邻的路由器。

而OSPF用链路状态算法来计算在每个区域中到所有目的的最短路径时,只有当一个路由器第一次被激活或者任一个路由变化发生,这个配备给OSPF的路由器使用OSPF的“hello协议”来发现与它连接的邻节点,将链路状态通告(LSA,Link State Advertisement)扩散到同一级区域内所有路由器,这些LSA包含这个路由器的接口的状态(包括与上、下、IP地址、网络类型筹)和路由器和它邻居间的联系,从这些LSA的收集中形成了链路状态数据库,在这个区域中的所有路由器都有一个特定的数据库,它由每个接口、对应邻节点和接口速度组成,被用来描述这个区域的拓扑结构。这个路由器于是就运行Diskjtra算法,这个算法根据到达这个网络的费用计算规则,利用链路状态数据库在该区域中形成以自己为根到所有目的的最短路径优先树(SPF树),从这个最短路径优先树(SPF树)中形成了IP路由表。如果网络中发主的任何改变都将会被链路状态包扩散出去,直到网络中的每个路由器收到了所有其它路由器的LSA,同时使路由器利用这些新信息,重新计算最短路径优先树(SPF树),形成新路由表。

OSPF是一种相对复杂的路由协议。

OSPF即不使用TCP,也不使用UDP作为它的传输协议,直接使用IP,在IP首部的协议(Protocol)字段,有其单独的值89。它通过传递链路状态来得到网络信息,LSA每30分钟被交换一次,除非网络拓扑结构有变化。例如,如果接口变化,信息立刻通过网络广播;如果有多余路径,收敛将重新计算SPF树。计算SPF树所需的时间取决于网络规模的大小。因为这些计算,路由器运行OSPF需要占用更多CPU资源[7]。

于1991年,在RFC1247中对第2版OSPF进行了描述,即OSPF2,也是第一次被标准化。

其优点是:

①.首先该协议是开放的,即其规范是公开的。OSPF协议是"开放式最短路优先"的缩写。"开放"是针对当时某些厂家的"私有"路由协议而言,而正是因为协议开放性,才使得OSPF具有强大的生命力和广泛的用途。

②.OSPF能服务于大型、异构网络。

③.OSPF可以对每个IP服务类型计算各自的路由集。实现对于任何目的,可以有多个路由表表项,每个表项对应着一个IP服务类型。

④.给每个接口指派一个无维数的费用,可以通过吞吐率、往返时间、可靠性或其他性能来进行指派。可以给每个IP服务类型指派一个单独的费用。

⑤.当对同一个目的地址存在着多个相同费用的路由时,可以平均分配流量。实现流量平衡。

⑥.OSPF支持子网,子网掩码与每个通告路由相连。允许将一个任何类型的IP地址分割成多个不同大小的子网(称之为变长度子网)。到一个主机的路由是通过全1子网掩码进行通告,默认路由是以IP地址为0.0.0.0网络掩码为全0进行通告的。

⑦.路由器之间的点对点链路不需要每端都有一个IP地址,实现无编号网络。节省IP 地址资源。

⑧.采用一种简单鉴别机制。可以采用类似于RIP2机制的方法指定一个明文口令。

⑨.OSPF采用多播,而不是广播形式,以减少不参与OSPF的系统负载[8]。

7.总结

路由算法使用了许多种不同的度量标准去决定最佳路径。复杂的路由算法往往采用多种度量来选择路由,通过的加权运算,合并为单个的复合度量、填入路由表,作为寻径的标准。通常所使用的度量有:路径长度、可靠性、时延、带宽、负载、最大传输单元和通信成本等。

从本质上来说,链路状态算法将少量更新信息发送至网络各处,而距离向量算法发送大

量更新信息至邻接路由器。由于链路状态算法收敛更快,它在一定程度上比距离向量算法更不易产生路由循环。但另一方面,链路状态算法要求比距离向量算法有更强的CPU能力和更多的内存空间。

但两种算法可以结合使用,互补不足。

参考文献

[1].James F. Kurose Keith W. Ross 计算机网络——自顶向上方法与Internet特色(第三版).

机械工业出版社.pp 234~235

[2].James F. Kurose Keith W. Ross 计算机网络——自顶向上方法与Internet特色(第三版).

机械工业出版社.pp 247

[3].路由器原理及路由算法[ES\OL] https://www.doczj.com/doc/c88179810.html,/detail/id-32325.html 2007-12-5

[4].动态路由算法[ES\OL] https://www.doczj.com/doc/c88179810.html,/club/sugh/ReadNews.asp?NewsID=283

2007-11-29

[5].细说路由协议[ES\OL] https://www.doczj.com/doc/c88179810.html,/archiver/tid-18289.html 2007-11-29

[6].C. L. Hendrick. Routing Information Protocol. RFC1058, June 1988. http:// www.rfc-

https://www.doczj.com/doc/c88179810.html,/rfc/rfc1058.txt

[7].J.Moy . OSPF Specification, RFC1131, October 1989. http: //www. https://www.doczj.com/doc/c88179810.html,/f tp/rfc/ rfc1131.

pdf

[8].J. Moy, “ OSPF Version 2,” RFC1247, July 1991.https://www.doczj.com/doc/c88179810.html,/rfcs/rfc1247.html

开放最短路径优先(OSPF)

2009-12-05

本文关键词:网络技术OSPF路由协议

一、背景

OSPF是由IETF的IGP工作组为IP网开发的路由协议。该工作组成立于1998年,专门设计用于因特网的基于最短路径优先(SPF)算法的IGP。与IGRP类似,OSPF创建的原因是到了八十年代中期,RIP不能服务于大型、异构网络的缺陷愈发明显。本文介绍OSPF的路由环境、基础的路由算法和基本的协议组件。

OSPF是由多个研究结果发展而来的,包括1978年为ARPANET开发的Bolt,Beranek,Newman(BBN)的SPF算法,Dr. Radia Perlman对路由信息容错性广播的研究(1988),BBN在区域路由的工作(1986)和OSI的IS-IS路由协议的早期版本。

OSPF有两个主要的特性。首先该协议是开放的,即其规范是公开的,公布的OSPF 规范是RFC1247。另一个基本的特性是OSPF基于SPF算法,该算法也称为Dijkstra算法,即以创建该算法的人来命名。

OSPF是个链接状态路由协议,在同一层的区域内与其它所有路由器交换链接状态公告(LSA)信息。OSPF的LSA中包含连接的接口、使用的metric及其它的变量信息。OSPF路由器积累链接状态信息,并使用SPF算法来计算到各节点的最短路径。

作为链接状态路由协议,OSPF与RIP和IGRP这些距离向量路由协议是不同的。使用距离向量算法的路由器的工作模式是在路由更新信息中把路由表全部或部分发送给其相邻的路由器。

二、路由层次

与RIP不同,OSPF的工作是有层次的,其层次中最大的实体是自治系统(AS),即遵循共同的路由策略统一管理下的网络群。虽然OSPF可以与其它AS中的路由器交换路由信息,但它们是一种AS内部(内部网关)路由协议。

一个AS可以分为多个区间,即一组连续的网络和相连的主机。拥有多个接口的路由器可以加入多个区间,这些路由器称为区间边缘路由器,分别为每个区间保存其拓扑数据库。拓扑数据库实际上是与路由器有关联的网络的总图,包含从同一区间所有路由器收到的LSA的集合。因为同一区间内的路由器共享相同的信息,所以它们具有相同的拓扑数据库。(术语域(domain)有时用于描述含有相同拓扑数据库的路由器组成的网络,通常与AS可互换。)

区间的划分产生了两种不同类型的OSPF路由,区别在于源和目的是在相同的还是不同的区间,分别为区间内路由和跨区间路由。

OSPF主干负责在区间之间分发路由信息,包含所有的区间边缘路由器、非全部属于某区间的网络及其相连的路由器。下图是一个分为若干区间的OSPF自治系统的例子。

上图中,路由器4、5、6、10、11和12构成了主干。如果区间3中的主机H1要给区间2中的主机H2发送数据,则先发给路由器13,它转发给路由器12,再转给路由器11,路由器11再沿主干转发给路由器10,然后通过两个区间内路由器(9和7)到达主机H2。

主干本身也是个OSPF区间,所以所有的主干路由器与其它区间路由器一样,使用相同的过程和算法来维护主干内的路由信息,主干拓扑对所有的跨区间路由器都是可见的。

可以以非连续主干的形式来定义区间,这时,主干的连接必须通过虚拟链接来保持。虚拟链接可以配置在任意共享非主干区间链接的路由器对之间,就象它们有直接链接一样工作。

运行OSPF的AS边缘路由器通过外部网关协议,如EGP或BGP,或通过配置信息来学习外部路由。

三、SPF算法

最短路径优先(SPF)路由算法是OSPF的基础。当SPF路由器加点后,它就初始化路由协议数据结构,然后等待下层协议关于接口已可用的通知信息。当路由器确认接口已准备好,就用OSPF Hello协议来获取邻居信息,即具有在共同的网络上接口的路由器。路由器向邻居发送Hello包并接收它们的Hello包。除了帮助学习邻居外,Hello

包也有keep-alive的功能。

在多重访问网络(支持多于两个路由器的网络)中,Hello协议选出一个“指派路由器”和一个备份指派路由器。指派路由器负责为整个多重访问网络生成LSA,它可以减少网络通信量和拓扑数据库的大小。

当两个相邻路由器的链接状态数据库同步后,就称为“邻接”。在多重访问网络中,指派路由器决定哪些路由器应该相邻接,拓扑数据库在邻接路由器对间进行同步。邻接控制路由协议分组的分发,只在邻接点间交换。

每个路由器周期性地发送LSA,提供其邻接点的信息或当其状态改变时通知其它路由器。通过对已建立的邻接关系和链接状态进行比较,失效的路由器可以很快被检测出来,网络拓扑相应地更动。从LSA生成的拓扑数据库中,每个路由器计算最短路径树,以自己为根。这个最短路径树就生成了路由表。

四、分组格式

所有的OSPF分组均有24字节的头,如下图:

其中各域为:

版本号--标识使用的OSPF版本。

类型--标识OSPF分组类型,为下列类型之一:

--Hello:建立和维持邻居关系。

--数据库描述:描述拓扑数据库内容,此类信息在初始化邻接关系时交换。

--链接状态请求:从相邻路由器发来的拓扑数据库请求。此类信息在路由器通过检查数据库描述分组发现其部分拓扑数据库过期后发送。

--链接状态更新:对链接状态请求分组的响应,也用于通常的LSA散发。单个链接状态更新分组中可以包含多个LSA。

--链接状态确认:确认链接状态更新分组。

分组长度--指示包括OSPF头在内的分组长度,以字节计。

路由器ID--标识分组来源。

区间ID--标识分组所属的区间。所有的OSPF分组都与某一个区间相关联。

校验码--对整个分组的内容检查传输中是否发生损坏。

认证类型--所有的OSPF协议交换均被认证。认证类型可以在每区间的基础上配置。

认证--包含认证信息。

数据--包含封装的上层信息。

五、附加特性

OSPF的附加特性包括等价、多路径路由和基于上层服务类型(TOS-type of service)请求的路由。基于TOS的路由支持可以指定特定服务类型的上层协议。例如,应用程序可能指定某些数据为紧急的,如果OSPF有高优先级的链接,就可用于传输紧急数据。

OSPF支持一个或多个metric。如果只用一个metric,则为任意的,且不支持TOS。如果使用多于一个metric,通过对由三个IP TOS位(延迟、吞吐量和可靠性)生成的八种组合各使用独立的metric(因此也是独立的路由表)可以支持TOS。例如,如果IP TOS 位指示低延迟、低吞吐量和高可靠性,OSPF就基于此TOS设计计算到所有目的的路由。

每个目的地址都含有IP子网掩码,允许VLSM(variable-length subnet mask)。通过VLSM,IP网可以分成各个不同大小的子网,这给了网管更大的网络管理的灵活性。

线路交换、报文交换和分组交换的各自特点是什么

线路交换特点: 优点:线路建立后,所有数据直接传输。因此数据传输可靠、迅速、有序(按原来的次序)。缺点:线路接通后即为专用信道,因此线路利用率低。例如,线路空闲时,信道容量被浪费。 线路建立时间较长,造成有效时间的浪费。例如,只有少量数据要传送时,也要花不少时间用于建立和拆除电路。 报文交换特点: 优点: ①报文交换不需要为通信双方预先建立一条专用的通信线路,不存在连接建立时延,用 户可随时发送报文。②由于采用存储转发的传输方式,使之具有下列优点:a. 在报文交换中便于设置代码检验和数据重发设施,加之交换结点还具有路径选择,就可以做到某条传输路径发生故障时,重新选择另一条路径传输数据,提高了传输的可靠性;b.在存储转发中容易实现代码转换和速率匹配,甚至收发双方可以不同时处于可用状态。这样就便于类型、规格和速度不同的计算机之间进行通信;c.提供多目标服务,即一个报文可以同时发送到多个目的地址,这在电路交换中是很难实现的;d. 允许建立数据传输的优先级,使优先级高的报文优先转换。③通信双方不是固定占有一条通信线路,而是在不同的时间一段一段地部分占有这条物理通路,因而大大提高了通信线路的利用率。 缺点: ①由于数据进入交换结点后要经历存储、转发这一过程,从而引起转发时延(包括接收 报文、检验正确性、排队、发送时间等),而且网络的通信量愈大,造成的时延就愈大,因此报文交换的实时性差,不适合传送实时或交互式业务的数据。②报文交换只适用于数字信号。③由于报文长度没有限制,而每个中间结点都要完整地接收传来的整个报文,当输出线路不空闲时,还可能要存储几个完整报文等待转发,要求网络中每个结点有较大的缓冲区。为了降低成本,减少结点的缓冲存储器的容量,有时要把等待转发的报文存在磁盘上,进一步增加了传送时延。 分组交换特点: 优点:①加速了数据在网络中的传输。 ②简化了存储管理。 ③减少了出错机率和重发数据量。 ④由于分组短小,更适用于采用优先级策略,便于及时传送一些紧急数据。 缺点:①尽管分组交换比报文交换的传输时延少,但仍存在存储转发时延,而且其结点交换机必须具有更强的处理能力。 ②分组交换与报文交换一样,每个分组都要加上源、目的地址和分组编号等信息,使传送的 信息量大约增大5%~10%,一定程度上降低了通信效率,增加了处理的时间,使控制复杂,时延增加。 ③当分组交换采用数据报服务时,可能出现失序、丢失或重复分组,分组到达目的结点时, 要对分组按编号进行排序等工作,增加了麻烦。若采用虚电路服务,虽无失序问题,但有呼叫建立、数据传输和虚电路释放三个过程。

离子交换树脂的原理及应用总结归纳(重点阅读)

精心整理如何筛分混合的阴阳离子交换树脂? 离子交换树脂的工作原理及优缺点分析 将离子性官能基结合在树脂(有机高分子)上的材料,称之为“离子交换树脂”。树脂表面带有磺酸(sulfonic acid) 者,称为阳离子交换树脂,而带有四级氨离子的,则为阴离子交换树脂。由於离子交换树脂可以有效去除水中阴阳离子,所以经常使用於纯水、超纯水的制造程序中。(见下图) 离子交换树脂上的官能基虽可去除原水(Feed water) (Fouling)。方。 原理 软水,这是软化水设备的工作过程。 当树脂上的大量功能基团与钙镁离子结合后,树脂的软化能力下降,可以用氯化钠溶液流过树脂,此时溶液中的钠离子含量高,功能基团会释放出钙镁离子而与钠离子结合,这样树脂就恢复了交换能力,这个过程叫作“再生”。

由于实际工作的需要,软化水设备的标准工作流程主要包括:工作(有时叫做产水,下同)、反洗、吸盐(再生)、慢冲洗(置换)、快冲洗五个过程。不同软化水设备的所有工序非常接近,只是由于实际工艺的不同或控制的需要,可能会有一些附加的流程。任何以钠离子交换为基础的软化水设备都是在这五个流程的基础上发展来的(其中,全自动软化水设备会增加盐水重注过程)。 反洗:工作一段时间后的设备,会在树脂上部拦截很多由原水带来的污物,把这些污物除去后,离子交换树脂才能完全曝露出来,再生的效果才能得到保证。反洗过程就是水从树脂的底部洗入,从顶部流出,这样可以把顶部拦截下来的污物冲走。这个过程一般 需要5-15分钟左右。 吸盐(再生) (只要进水有一定的压力即可) 慢冲洗(置换) 应用 1)水处理 水处理领域离子交换树脂的需求量很大,约占离子交换树脂产量的90%,用于水中的各种阴阳离子的去除。目前,离子交换树脂的最大消耗量是用在火力发电厂的纯水处理上,其次是原子能、半导体、电子工业等。

三层交换机配置实例

三层交换综合实验 一般来讲,设计方案中主要包括以下内容: ◆????? 用户需求 ◆????? 需求分析 ◆????? 使用什么技术来实现用户需求 ◆????? 设计原则 ◆????? 拓扑图 ◆????? 设备清单 一、模拟设计方案 【用户需求】 1.应用背景描述 某公司新建办公大楼,布线工程已经与大楼内装修同步完成。现公司需要建设大楼内部的办公网络系统。大楼的设备间位于大楼一层,可用于放置核心交换机、路由器、服务器、网管工作站、电话交换机等设备。在每层办公楼中有楼层配线间,用来放置接入层交换机与配线架。目前公司工程部25人、销售部25人、发展部25人、人事部10人、财务部加经理共15人。 2.用户需求 为公司提供办公自动化、计算机管理、资源共享及信息交流等全方位的服务,目前的信息点数大约100个,今后有扩充到200个的可能。 公司的很多业务依托于网络,要求网络的性能满足高效的办公要求。同时对网络的可靠性要求也很高,要求在办公时间内,网络不能宕掉。因此,在网络设计过程中,要充分考虑到网络设备的可靠性。同时,无论是网络设备还是网络线路,都应该考虑冗余备份。不能因为单点故障,而导致整个网络的瘫痪,影响公司业务的正常进行。 公司需要通过专线连接外部网络。 【需求分析】 为了实现网络的高速、高性能、高可靠性还有冗余备份功能,主要用于双核心拓扑结构的网络中。

本实验采用双核心拓扑结构,将三层交换技术和VTP、STP、EthernetChannel 综合运用。 【设计方案】 1、在交换机上配置VLAN,控制广播流量 2、配置2台三层交换机之间的EthernetChannel,实现三层交换机之间的高速互通 3、配置VTP,实现单一平台管理VLAN, 同时启用修剪,减少中继端口上不必要的广播信息量 4、配置STP,实现冗余备份、负载分担、避免环路 5、在三层交换机上配置VLAN间路由,实现不同VLAN之间互通 6、通过路由连入外网,可以通过静态路由或RIP路由协议 【网络拓扑】 根据用户对可靠性的要求,我们将网络设计为双核心结构,为了保证高性能,采用双核心进行负载分担。当其中的一台核心交换机出现故障的时候,数据能自动转换到另一台交换机上,起到冗余备份作用。 注意:本实验为了测试与外网的连通性,使用一个简单网络

电子数据交换即EDI

电子数据交换即EDI(Electronic Date Interchange)技术 根据联合国标准化组织的定义,是指将商业或行政事务处理按照一个公认的标准,形成结构化的事务处理或报文数据格式,从计算机到计算机的电子传输方法。 电子数据交换技术自问世以来,因其技术先进,可大大减少贸易文件及文件处理成本,因而受到世界各国普遍重视,发展迅速。现在,EDI用户根据国际通用的标准格式编制电文,以机器可读的方式将结构化的信息(如发票、海关申报单、进出口许可证等“经济信息”)按照协议经过通信网络传送。报文接受方按国际统一规定的语法规则对报文进行处理,通过相应的管理信息系统,完成综合的自动交换和处理。EDI遵循一定的国际标准或行业规则,自动地进行数据发送、传送及处理,而不需人工介入,从而实现事务处理或贸易自动化。 联合国欧洲经济理事会(UN/ECE)经过多年来的大量工作,于1987年公布了一套EDI 国际标准,命名为UN/EDIFACT,而国际标准化组织ISO为该标准制定了一套语法规则(SYNTAX RULES,ISO9735),UN/EDIFACT是联合国推荐的用于行政、商业和运输业的电子交换标准报文格式。EDI技术发展的重点任务之一是统一报文格式。目前,UN/EDIFACT 标准已占据全球EDI标准的主导地位。 集装箱运输是当今世界航运史上最先进的运输方式,而EDI技术是国际贸易、结算通关、数据处理等最佳通道,具有很好的应用前景,因此,目前国际航运界已广泛地应用了这一先进的科技成果。航运业大多数业务需要填制大量的卡片,而采用EDI技术后,带来了如下变化: 提高处理速度,减少雇员;准确程度提高;功能趋向多样化。 在集装箱管理中,采用电子数据交换技术,把所有描绘集装箱的常用数据,如重量、号码、尺寸等存储后,再输入所有与信息相关的集装箱营运情况尤其是集装箱运行及修理情况,就很容易获悉集装箱在各地的数量。利用这些信息能使运力调配达到最优化。此外,利用EDI还可以进行统计工作,计算出成本、净利润、周转率、总收入并进行收益分析。进而对托运人、集装箱或运输距离作出评价。 EDI通信方式 运用EDI技术实现从计算机到计算机的信息传递有两种方式: 1、直接方式。这种方式是指计算机通过一条通信线路直接向另一台计算机发送信息,通信线路可以是租借的,也可以是拨号电话线。这种方式的通信能力受到线路通信能力的制约。 2、间接方式。这种方式是将计算机用增值网络(V AN)连接起来,即所有计算机的信息传递和接收都通过EDI中心完成。由于使用了增值网,可以使更多的计算机连到一起。 EDI中心的主要功能是:

(完整版)电路交换、报文交换、分组交换方式及优缺点

电路交换、报文交换、分组交换方式及优缺点 目录 1 电路交换 (2) 1.1 电路交换过程 (2) 1.2 电路交换优缺点 (3) 2 报文交换 (3) 2.1 电路交换过程 (3) 2.2 报文交换优缺点 (4) 3 分组交换 (4) 3.1分组交换过程 (4) 3.2 分组交换优缺点 (5) 3.3.分组交换网与电路交换网比较 (6)

“交换”(switching)的含义就是转接——把一条线路转接到另一条线路,使它们连通来。从通信资源的分配角度来看,“交换”就是按照某种方式动态地分配传输线路的资源。在计算机网络及通信系统中常谈到的交换方式有电路交换(CS: Circuit Switching)、报文交换(MS: Message switching)、分组交换(PS: Packet Switching)等。本文先介绍这三种交换方式。 1 电路交换 1.1 电路交换过程 电路交换是通信网中最早出现的一种交换方式,也是应用最普遍的一种交换方式,主要应用于电话通信网中如图(1),完成电话交换,已有100多年的历史。电路交换过程包括(1)建立连接、(2)通信、(3)释放连接。电路交换在通信之前要在通信双方之间建立一条被双方独占的物理通路(由通信双方之间的交换设备和链路逐段连接而成)、电路交换一旦建立,就占用一条中继线路,即使我们不传送信息,别人也不能使用。 电路交换举例 图(1) 电路交换

电路交换优点:(1)由于通信线路为通信双方用户专用,数据直达,所以传输数据的时延非常小。(2)通信双方之间的物理通路一旦建立,双方可以随时通信,实时性强。(3)双方通信时按发送顺序传送数据,不存在失序问题。(4)电路交换既适用于传输模拟信号,也适用于传输数字信号。(5)电路交换的交换的交换设备(交换机等)及控制均较简单。 电路交换缺点:(1)电路交换的平均连接建立时间对计算机通信来说比较长。 (2)电路交换连接建立后,物理通路被通信双方独占,即使通信线路空闲,也不能供其他用户使用,因而信道利用低。(3)电路交换时,数据直达,不同类型、不同规格、不同速率的终端很难相互进行通信,也难以在通信过程中进行差错控制。 2 报文交换 2.1 电路交换过程 报文交换是一种以报文为数据传送单位,采用存储转发的信息传递方式。报文交换不要求在两个通信结点之间建立专用通路。结点把要发送的信息组织成一个数据包--报文,该报文中含有目标地址、源地址等信息完整的报文在网络中一站一站地向前传送。交换结点对各个方向上收到的报文排队,对找下一个转结点,然后再转发出去,这些都带来了排队等待延迟。每一个结点接收整个报文,检查目标结点地址,然后根据网络中的交通情况在适当的时候转发到下一个结点。经过多次的存储——转发,最后到达目标,因而这样的网络叫存储——转发网络。其中的交换结点要有足够大的存储空间(一般是磁盘),用以缓冲收到的长报文。报文交换的优点是不建立专用链路,线路利用率较高,这是由通信中的等待时延换来的。电子邮件系统(E-mail)适合采用报文交换方式。

离子交换树脂催化剂的优缺点

书山有路勤为径,学海无涯苦作舟 离子交换树脂催化剂的优缺点 离子交换树脂用催化剂的主要优点是它已商品化,购得方便。尽管它们比低分子量的酸、碱昂贵,但它们能根据不同的应用场合制得不同形状、不同结构和不同负载容量的树脂催化剂。常规的商品凝胶型树脂的功能基容量每克一般为3.5~5mg 当量。大孔树脂的负载容量虽然较低一些,但其活性基团一般处于大孔的表面上,容易为反应物所接近。在需要降低负载容量时可用酸碱滴定法使一些酸基团部分中和,或者通过部分离子交换法引入一些具有助催化作用的金属离子或基团,从而提高催化剂的活性或选择性。离子交换树脂的颗粒性和多孔结构使其适用于气相和液相反应,也可用于非水体系。由于树脂催化剂具有这种物理性质,因此反应完成后,催化剂可以通过简单的过滤方法从反应混合物中分离出来,免除了常规酸、碱催化剂使用需要进行中和、洗涤、干燥、蒸馏等后处理程序,也避免了废酸、碱液体对环境的污染。此外,也避免了使用硫酸时,由于其强的氧化性、脱水性和磺化性引起的不必要的副反应。大孔的离子交换树脂由于具有固定的结构,其体积受溶剂作用的影响很小。因此,适用于填充柱操作,实现生产连续化。在较低的压力下可以达到较高的流速,并可使用极性差别很大的反应溶剂。凝胶型离子交换树脂在干态或在非极性介质中内部处于收缩的微孔状态,在极性溶剂中则会处于高度溶胀的状态。如果溶剂极性的变化较大,低交联的树脂在经历这种变化后会发生较大的机械破损。 与常规酸、碱催化剂比较,离子交换树脂易于保存和运输。强酸树脂宜以 H+型和Na+型贮存。但强碱树脂中的OH-型会吸收空气中的CO2 而失活,因此一般以Cl-型贮存。使用前Na+型的强酸树脂和Cl-型的强碱树脂一般可分别用酸和碱处理组成相应的H+型和OH-型使其活化。

分组交换技术经验习题

填空题 1. 数据交换方式基本上分为三种:电路交换(Circuitswitch:CS、报文交换(MessageSwitch MS)和分组交换(Packetswitch: PS 2. 分组交换有两种方式:虚电路(VirtualCircuit: VC)方式和数据报(Datagram:DG)方式。 3. 快速分组交换在实现的技术上有两大类帧中继(FrameRelay和信元中继(CellRelay) 4. 帧中继是以分组交换__________ 术为基础的高速分组交换技术。 5. 虚电路服务是OSI—网络(第3)—层向运输层提供的一种可靠的数据传送服务,它确保所有 分组按发送顺序到达目的地端系统。 6. 按照实际的数据传送技术,交换网络又可分为电路交换网、报文交换网分组交换网。 7. 用电路交换技术完成的数据传输要经历电路建立、数据传输、电路拆除过程。 8. 在计算机的通信子网中,其操作方式有两种,它们是面向连接的虚电路和无连接的数据报。 9. 在数据报服务方式中,网络节点要为每个分组/数据报选择路由,在虚电路服务方式中,网络节 点只在连接建立时选择路由。 简答题 1、简答分组交换的特点和不足 答:优点: 1、节点暂时存储的是一个个分组,而不是整个数据文件 2、分组暂时保存在节点的内存中,保证了较高的交换速率 3、动态分配信道,极大的提高了通信线路的利用率缺点: 4、分组在节点转发时因排队而造成一定的延时 5、分组必须携带一些控制信息而产生额外开销,管理控制比较困难 2、请比较一下数据报与虚电路的异同? 答:见下表。 4、简述分组存储转发的工作方式 答: <1>传输报文被分成大小有一定限制的分组传输 <2>分组按目标地址在分组交换网中以点对点方式递交 <3>各交换节点对每一个到达的分组完整接受(存储)、经检查无错后选择下一站点地址往下 递交(转发) <4>最终分组被递交到目的主机 5、(数据报)交换与电路交换相比有什么特点?答:包交换与电路交换比在以下方面不同 <1>包交换不使用独占信道,而仅在需要时申请信道带宽,随后释放 <2>由于包交换一般采用共享信道,传输时延较电路交换大 <3>包交换传输对通信子网不透明,子网解析包地址等通信参数 <4>包交换采用存储转发方式通信,对通信有差错及流量控制,而电路交换不实现类似控制 <5>各包在交换时其传输路径是不定的,在电路交换中所有数据沿同一路径传输 来源网络

网络技术:二层、三层交换机和四层交换机的区别

网络技术:二层、三层交换机和四层交换机的区别 二层交换技术是发展比较成熟,二层交换机属数据链路层设备,可以识别数据包中的MAC 地址信息,根据MAC地址进行转发,并将这些MAC地址与对应的端口记录在自己内部的一个地址表中。具体的工作流程如下: (1) 当交换机从某个端口收到一个数据包,它先读取包头中的源MAC地址,这样它就知道 源MAC地址的机器是连在哪个端口上的;> (2) 再去读取包头中的目的MAC地址,并在地址表中查找相应的端口; (3) 如表中有与这目的MAC地址对应的端口,把数据包直接复制到这端口上; (4) 如表中找不到相应的端口则把数据包广播到所有端口上,当目的机器对源机器回应 时,交换机又可以学习一目的MAC地址与哪个端口对应,在下次传送数据时就不再需要对所有端口进行广播了。 不断的循环这个过程,对于全网的MAC地址信息都可以学习到,二层交换机就是这样建立和维护它自己的地址表。 从二层交换机的工作原理可以推知以下三点: (1) 由于交换机对多数端口的数据进行同时交换,这就要求具有很宽的交换总线带宽,

如果二层交换机有N个端口,每个端口的带宽是M,交换机总线带宽超过N×M,那么这交换机就可以实现线速交换; (2) 学习端口连接的机器的MAC地址,写入地址表,地址表的大小(一般两种表示方式:一为BEFFER RAM,一为MAC表项数值),地址表大小影响交换机的接入容量; (3) 还有一个就是二层交换机一般都含有专门用于处理数据包转发的ASIC (Applicati on specific Integrated Circuit)芯片,因此转发速度可以做到非常快。由于各个厂家采用ASIC不同,直接影响产品性能。 以上三点也是评判二三层交换机性能优劣的主要技术参数,这一点请大家在考虑设备选型时注意比较。 路由技术 路由器工作在OSI模型的第三层---网络层操作,其工作模式与二层交换相似,但路由器工作在第三层,这个区别决定了路由和交换在传递包时使用不同的控制信息,实现功能的方式就不同。工作原理是在路由器的内部也有一个表,这个表所标示的是如果要去某一个地方,下一步应该向那里走,如果能从路由表中找到数据包下一步往那里走,把链路层信息加上转发出去;如果不能知道下一步走向那里,则将此包丢弃,然后返回一个信息交给源地址。 路由技术实质上来说不过两种功能:决定最优路由和转发数据包。路由表中写入各种信息,由路由算法计算出到达目的地址的最佳路径,然后由相对简单直接的转发机制发送数据包。接受数据的下一台路由器依照相同的工作方式继续转发,依次类推,直到数据包到达目的路由器。

电路交换和分组交换的区别及优缺点(知识浅析)

从多方面比较电路交换、报文交换和分组交换的主要优缺点。 答:一、电路交换的优点: 1.在通话的全部时间内用户独占分配的传输线路,采用的静态分配策略 2.通信双方建立的通路中任何一点出现故障,就需要重新拨号建立连接才可以继续通话 3.计算机网络中传输的数据往往是突发式的,并且通信时线路上的很多时候都是空闲的,会造成资源的浪费。另外,由于各异的计算机和终端的传输数据的速率不相同,采用电路交换就很难相互通信。 电路交换的缺点: 1、虽然信息传输的时延较小,但是电路的接续时间较长 电路资源被通信双方独占,整个电路利用率低 3、有呼损,即可能出现由于对方用户终端设备忙或交换网负载过重而呼叫不通 二、报文交换的优点: 1、报文交换是以报文为单位的存储转发原理,根据目的地址的不同转发到不同线路上发送 2、在报文交换的过程中,没有电路接续的过程,来自不同用户的报文可以在一条线路上以报文为单位进行多路复用,线路可以以它的最高传输能力工作,大大提高线路的利用率

3、无须预约传输带宽,动态逐段利用传输带宽对突发式数据通信效率高,通信迅速。 报文交换的缺点: 1、信息通过交换机的时延大,并且时延的变化也大 2、交换机要有能力对报文进行存储。其中有的报文可能很长,要求交换机要有较强的处理能力和存储容量。 3、报文交换不运用于即时交互式数据通信 三、分组交换的优点: 1、 优点所采用的手段 高效在分组传输的过程中动态分配传输带宽,对通信链路是逐段占用 灵活为每一个分组独力地选择转发路由 迅速以分组为为传送单位,可以不先建立连接就能向其他主机发送分组 可靠保证可靠性的网络协议,分布式多路由的分组交换网,使网络有很好的生存性 分组交换的缺点: 1、分组在各路由器存储转发时需要排队,这就会造成一定的时延。此外还无法确保通信时端到端所需要的带宽。

MBBR工艺介绍和优缺点

MBBR工艺介绍和优缺点 MBBR是移动床生物膜反应器MBBR工艺原理是通过向反应器中投加一定数量的悬浮载体,提高反应器中的生物量及生物种类,从而提高反应器的处理效率。由于填料密度接近于水,所以在曝气的时候,与水呈完全混合状态,微生物生长的环境为气、液、固三相。载体在水中的碰撞和剪切作用,使空气气泡更加细小,增加了氧气的利用率。另外,每个载体内外均具有不同的生物种类,内部生长一些厌氧菌或兼氧菌,外部为好养菌,这样每个载体都为一个微型反应器,使硝化反应和反硝化反应同时存在,从而提高了处理效果。 MBBR工艺兼具传统流化床和生物接触氧化法两者的优点,是一种新型高效的污水处理方法,依靠曝气池内的曝气和水流的提升作用使载体处于流化状态,进而形成悬浮生长的活性污泥和附着生长的生物膜,这就使得移动床生物膜使用了整个反应器空间,充分发挥附着相和悬浮相生物两者的优越性,使之扬长避短,相互补充。与以往的填料不同的是,悬浮填料能与污水频繁多次接触因而被称为“移动的生物膜”。MBBR的主要特点是:①处理负荷高; ②氧化池容积小,降低了基建投资;③ MBBR工艺中可不需要污泥回流设备,不需反冲洗设备,减少了设备投资,操作简便,降低了污水的运行成本; ④MBBR工艺污泥产率低,降低了污泥处置费用;⑤ MBBR工艺中不需要填料支架,直接投加,节省了安装时间和费用。 生物流化床(Moving Bed Biofilm Reactor Process简称MBBR法)是生长生物膜的载体层在废水中不断流动的生物接触氧化法。载体是聚乙烯中空圆柱体,长5~7mm,直径10mm,内部有十字支撑,外部有翅片,密度0.95g/ cm2,空隙率88%,可供生物膜附着的比表面积约 800 m2/m3,能给微生物提供良好的生长环境;填充率可高达67%,可在好氧操作下以空气搅拌,或在兼/厌氧操作下以机械搅拌,使生物接触材在水中均匀的悬浮流动。这种载体的特殊形状使微生物在有保护的载体内表面生长而去除废水中的 BOD5。 生物流化床运用生物膜法的基本原理,并结合了传统活性污泥法的优点,而又超越了活性污泥法及生物膜法的缺点及限制。聚偏氟乙烯(PVDF)中空纤维膜的应用取代传统活性污泥法中的二沉池,进行固液分离,有效的达到了泥水分离的目的。膜的高效截留作用,可以使生物池中的菌种浓度大大提高,使生化效率大大增强,有效去除氨氮、磷及难于降解的大分子有机物。 生物流化床系统有如下优点: ①省地:占地仅为传统方法的五分之一至十分之一,并取消了二沉池。将传统的“初沉、生化及二沉”三个步骤合为一个步骤; ②省时:比传统方法快一倍,只需2~6小时; ③无须污泥回流或循环反冲洗;污泥产量极少; ④操作简单:过程可实现自动化,易于操作和控制;

现代分组交换技术的发展与应用

龙源期刊网 https://www.doczj.com/doc/c88179810.html, 现代分组交换技术的发展与应用 作者:赵振华肖智戈陈剑 来源:《速读·下旬》2015年第10期 摘要:分组交换技术是由数据通信发展而来的。分组交换是将用户传送的数据划分成一 定的长度,每个部分叫做一个分组。在每个分组的前面加上一个分组头,用以指明该分组发往何地址,然后由交换机根据每个分组的地址标志,将他们转发至目的地,这一过程称为分组交换。 关键词:分组交换技术;发展;应用 1 分组交换技术发展史 从交换技术的发展历史看,数据交换经历了报文交换、电路交换、分组交换和综合业务数字交换的发展过程。 报文交换就是将用户的报文存储在交换机的存储器中,当所需要的输出电路空闲时,再将该报文发向接收交换机或终端,以“存储—转发”方式在网内传输数据。电路交换就是计算机终端之间通信时,一方发起呼叫,独占一条物理线路。当交换机完成接续,对方收到发起端的信号,双方即可进行通信。 分组交换实质上是在“存储—转发”基础上发展起来的。分组交换在线路上采用动态复用技术传送,按一定长度分割为许多小段的数据分组。每个分组标识后,在一条物理线路上采用动态复用的技术,同时传送多个数据分组,把来自用户发端的数据暂存在交换机的存储器内,接着在网内转发。到达接收端,再去掉分组头将各数据字段按顺序重新装配成完整的报文。 2 分组交换的特点 2.1线路利用率高 分组交换以虚电路的形式进行信道的多路复用,实现资源共享。在一条物理线路提供多条逻辑信道,极大地提高了线路的利用率,使传输费用明显下降。 2.2不同种类的终端可以相互通信 分组网以x.25协议向用户提供标准接口,数据以分组为单位在网络内存储转发,使不同 速率终端、不同协议的设备经网络提供的协议变换功能后实现互相通信

三层交换技术的原理及应用

2007.7 43 1 西安科技大学计算机系 陕西 7100542 中国人民解放军西安通信学院 陕西 710106 三层交换技术的原理及应用 温钰1,2 龚尚福1 王照峰2 李红卫2 摘要:本文在分析比较二、三层交换技术的基础上介绍了三层交换技术的工作原理。从网络扩展能力、数据处理能力、多协议支持能力以及冗余通道等多方面阐述了三层交换技术的特点。对比分析了基于硬件结构和基于软件结构的两种三层交换技术的工作流程,阐述了三层交换技术在虚拟局域网中的应用。 关键词:三层交换技术;路由;VLAN 0 引言 计算机技术与通信技术的结合促进了计算机网络的迅猛发展,在计算机网络中,交换机和路由器起着至关重要的作用。随着20世纪90年代后期千兆交换式以太网的登台亮相,短短的30年间,局域网经历了从单工到双工、从共享到交换、从专用到普及、从第二层交换到多层交换的过程。网络初期,采用局域网技术组网时,使用的网络互联设备是集线器,主要工作在物理层,基于CS—MA/CD协议的用户数据的冲突检测和出错重发过程,使传输的效率很低,实现的功能主要局限于主机连接、文件和打印资料的共享,此时,多个用户共享10Mbps带宽即可满足要求。随着网络规模的日益扩大,这种网络系统已不能胜任。因此采用了工作在数据链路层上的设备网桥,它可起到使网段细化、减小冲突域,从而优化局域网性能的目的。但它是对高层(第三层以上)协议透明的设备,不能有效阻止广播风暴,因此引入了路由器的概念。路由器在子网间互连、安全控制、广播风暴限制等方面起了关键的作用,但复杂的算法、较低的数据吞吐量使其成为网络的瓶颈,为此迫切需要一种具有路由转发功能,同时还能减少网络瓶颈的技术,三层交换技术孕育而生。 1 三层交换技术的原理 三层交换是相对于传统的交换概念而提出的。传统的交换技术是在OSI网络参考模型中的第二层(数据链路层)进行操作,而三层交换技术是在网络模型中的第三层实现了数据包的高速转发。在大型局域网中,为了减小广播风暴的危害,必须把大型局域网按功能或地域等因素划分成一个个小的局域网,也就是一个个的小网段,这样必然导致不同网段之间存在大量的互访,单纯使用二层交换机没有办法实现网间的互访,传统访问方式是单纯使用路由器,但由于路由器端口数量有限,路由速度较慢,限制了网络的规模和访问速度,所以这种环境下,就出现了二层交换技术和三层路由技术有机结合而成的三层交换技术。二层与三层交换的示意图如图1 所示。目前,第三层交换技术在硬件上的实现主要通过与路由器有关的第三层路由硬件模块插接在第三层交换机的高速背板/总线上,使路由模块可以与需要路由的其他模块间高速地交换数据,从而突破了传统的外接路由器接口速率的限制(10Mbit/s——100Mbit/s)/。在软件方面,第三层交换技术也界定了传统基于软件的路由器软件,对数据封包的转发等有规律的过程通过物理设备高速实现。对如路由信息的更新、路由表维护以及路由计算、确定等功能则用软件来实现。 图1 二层及三层交换示意图 我们也可以将三层交换机定义为二层交换机+基于硬件的路由器,简单地将三层交换机理解为由一台路由器和一台二层交换机有机叠加构成。实际工作时两台处于不同子网的主机通信必须要通过路由,数据包必须要经过三层交换机中的路由处理器进行路由,而在同一子网中的主机通信不必再经过路由器处理。它解决了局域网中网段划分之后,网段中子网必须依赖路由器进行管理的局面,解决了传统路由器低速、复杂所造成的网络瓶颈问题。我们可通过一个具体的通信实例来说明三层交换的工作原理。两个使用lP协议的站点Tom和Rose通过第三层交换机进行通信时,发送站点Tom在开始发送数据时,把自己的IP地址与Rose站的IP地址进行比较,判断Rose站是否与自己在同一子网内。若站点Rose与发送站点Tom在同一子网内,则进行二层的转发,不需要三层路由功能,且此时交换机是工作在二层交换机功能下。若两个站点不在同一子网内,发送站Tom要与目的站Rose通信,发送站Tom要向“缺省网关”发出 ARP(地址解析)封包,而 作者简介:温钰(1980-),女,讲师,在读硕士研究生,主要研究方向:网络集成与数据库。

1分组交换网络的特点

分组交换网络的特点 和传统的电信网不同,这种新型的网络不是为了打电话,而是用于计算机之间的数据传送。 2. 新型的网络能够连接不同类型的计算机,而不局限于单一类型的计算机。 3. 所有的网络结点都同等重要。因为网络必须经受的住敌人的核打击,所以在网络中不能有某些特别重要的结点,否则敌人将首先瞄准和摧毁这些重要的结点。 4. 计算机在进行通信时,必须有冗余的路由。当网络中的某一结点或链路被破坏时,冗余的路由能够使正在进行的通信自动找到合适的路由,使通信维持畅通。 5. 网络的结构应当尽可能的简单,但能够非常可靠的传送数据。 分组交换的优点 向用户提供不同速率、不同代码、不同同步方式以及不同通信控制协议的数据终端间能够互相通信的灵活的通信环境。 2. 在网络负荷较轻的情况下,信息传输时延小,而且变化范围不大,能够较好的满足会话型通信实时性要求。 3. 实现线路的动态时分复用,通信线路的利用率高,在一条物理线路上可以同时提供多条信息通路。 4. 可靠性高。 5. 经济性好。 6. 能与公用电话网、用户电报网和低速数据网及其其他专用网相连。 缺点 由网络附加的传输信息多,对长报文通信的传输效率比较低。当把一份报文划分为许多分组在交换网内传输时,为了保证这些分组能够按照正确的路径安全准确地达到终点,就要给每个数据分组加上控制信息(分组头)。除此之外,还要设计许多不包含数据信息的控制分组,用以实现数据通路的建立、保持和拆除,并进行差错控制和流量控制等。 2.技术实现复杂。分组交换机要对各种类型的“分组”进行分析处理,为“分组”在网中的传输提供路由,并且在必要时自动进行路由调整;交换机还要为用户提供速率、代码和规程的变换,为网络的管理和维护提供必要的报告信息等。 在计算机网络的定义中,一个计算机网络包含多台具有______功能的计算机;把众多计算机有机连接起来要遵循规定的约定和规则,即_______;计算机网络的最基本特征是_________。自主_\通信协议\__资源共享 在ISO/OSI参考模型中,网络层的主要功能是_____。 A、提供可靠的端—端服务,透明地传送报文 B、路由选择、拥塞控制与网络互连 C、在通信实体之间传送以帧为单位的数据 D、数据格式变换、数据加密与解密、数据压缩与恢复

三层交换原理及示例详解

三层交换原理及示例详解 7.7.5 三层交换原理 二层交换机的二层数据交换一般都是使用ASIC(Application Specific Integrated Circuit ,专用集成电路)的硬件芯片中的CAM表来实现的,因为是硬件转发,所以转发性能非常高。而三层交换机的三层转发也是依靠ASIC芯片完成的(路由器的路由功能主要依靠CPU软件进行的),但其中除了二层交换用的CAM表外,还保存有专门用于三层转发的三层硬件转发表。 三层交换机的三层交换原理比较复杂,不同网络环境下、不同厂家的三层交换机的三层交换流程都不完全相同。如图7-55所示的仅一个直接连接在一台三层交换机上的两个不同网段主机三层交换的基本流程,各主要步骤解释如下: (1)源主机在发起通信之前,将自己的IP地址与目的主机的IP地址进行比较,如果源主机判断目的主机与自己位于不同网段时,它需要通过网关来递交报文的,所以它首先需要通过一个ARP请求报文获取网关的MAC地址(在源主机不知道网关MAC地址的情形下),即源主机先发送ARP请求帧以获取网关IP地址对应的MAC 地址。 (2)网关在收到源主机发来的ARP请求报文后以一个ARP应答报文进行回应,在应答报文中的“源MAC地址”就包含了网关的MAC地址。 (3)在得到网关的ARP应答后,源主机再用网关MAC地址作为报文的“目的MAC地址”,以源主机的IP 地址作为报文的“源IP地址”,以目的主机的IP地址作为“目的IP地址”,先把发送给目的主机的数据发给网关。 图7-55 三层交换基本流程 (4)网关在收到源主机发送给目的主机的数据后,由于查看得知源主机和目的主机的IP地址不在同一网段,于是把数据报上传到三层交换引擎(ASIC芯片),在里面查看有无目的主机的三层转发表。 (5)如果在三层硬件转发表中没有找到目的主机的对应表项,则向CPU请求查看软件路由表,如果有目的主机所在网段的路由表项,则还需要得到目的主机的MAC地址,因为数据包在链路层是要经过帧封装的。于是三层交换机CPU向目的主机所在网段发送一个ARP广播请求包,以获得目的主机MAC地址。 (6)交换机获得目的主机MAC地址后,向ARP表中添加对应的表项,并转发由源主机到达目的主机的灵气包。同时三层交换机三层引擎会结合路由表生成目的主机的三层硬件转发表。 以后到达目的主机的数据包就可以直接利用三层硬件转发表中的转发表项进行数据交换,不用再查看CPU中的路由表了。 以上流程适用位于不同VLAN(网段)中的主机互访时属于这种情况,这时用于互连的交换机作三层交换转发。这就是“一次路由,多次交换”的原理。 7.7.6 三层交换示例 在三层交换中,同一交换机上的不同网段主机通信和不同交换机上的不同网段主机通信的基本原理是一样的,只是具体流程有所区别。本节仅以比较简单的“同一交换机上的不同网段主机通信”这种情形来解释上节介绍的三层交换原理。

EDI电子数据交换

什么是EDI系统? EDI是Electronic Data Interchange的缩写,中文译为电子数据交换。EDI系统就是指能够将如订单、发货单、发票等商业文档在企业间通过通信网络自动地传输和处理的系统。 为什么要使用EDI系统? 大型企业的内部信息化系统往往是比较成熟完善的,有些系统已经实现了内部主要商业流程的自动化。这些企业的信息化发展将扩展到行业的合作伙伴,通过EDI的方式对接上下游企业能使整个供应链上的业务流程自动化节省人力成本,提高效率并降低错误率。而中小型企业往往是收到来自客户,供应商,政府和行业组织的邀请建议实施直连EDI的对接。EDI系统有哪些组成部分? 通信组件 首先是需要通过通信网络传输商业文档,企业第一步是需要了解合作伙伴的系统能够通过什么通信协议接收发送EDI文件。知行软件参与过上百家企业EDI对接项目,涉及到的EDI 通信协议有AS2,FTP,SFTP,FTP/s,HTTP,HTTP/s,OFTP等。(西安知行软件可以快速开发属于您的EDI解决方案,AS2+OFTP+SFTP) 目前国际上流行的EDI文件传输协议称为AS2协议。这种协议是基于HTTP/s的传输协议,也就是说有互联网连接的企业都可以使用。另外,这种协议可以将需要传输的商业文档进行

数字签名和加密,使得整个传输过程都非常安全。还有就是通过MDN回执可以确认商业文档的正常交付。在选择AS2通信软件时,可以参考第三方测试公司Drummond的评测结果。翻译组件 另外是需要将EDI系统接收到的标准EDI格式的商业文档进行解析成为内部系统可以处理的数据格式,如果需要发送EDI商业文档则需要将内部系统生成的数据转化封装为EDI标准格式。目前国际上流行的EDI标准有在北美地区广泛应用的ANSI X12和非北美地区使用的EDIFACT。而国际标准化组织GS1正在致力于开发出世界统一的EDI标准,目前有两套并行标准GS1 XML和GS1 EANCOM。作者本人是在北美零售行业从事EDI工作多年对ANSI X12相对熟悉,在中国、加拿大和澳大利亚参与过EDI的项目管理和实施,使用过综上所述的所有EDI标准。ANSI X12,EDIFACT和GS1 EANCOM都通过字段头标识符,字段分隔符等手段使用平文件表达结构化数据,优点是计算机处理速度快,缺点是人学习起来比较复杂不好理解。XML的数据本来就是结构化的,节点表示更为友好方便理解,但是由于数据冗余量较大,当数据量大时处理速度会受到影响。 内部系统集成组件 简单来说就是将收到的文件导入内部系统,或者通过内部系统生成将要发送的商业文档,我们也可以称之为内部系统的接口。这个环节往往需要内部系统的提供商参与设计实施。作者参与过与SAP的系统集成。建议使用规范的接口,如SAP 的IDoc。或者是定义清晰的XML,CSV或者中间表等自定义格式。

几种常用污水处理主要工艺及优缺点比较

几种常用污水处理主要工艺及优缺点 比较 汉赢创业(北京)科技有限公司 二〇二〇年六月十日

目录 第一章污水处理常见工艺 (1) 1.1概述 (1) 1.2污水处理工艺分类 (1) 1.2.1 物理法 (1) 1.2.2 化学法 (1) 1.2.3 物理化学法 (2) 1.2.4 生物法 (2) 第二章中小型生活污水处理工艺对比 (3) 2.1常用生活污水处理工业简介 (3) 2.1.1 氧化沟工艺 (3) 2.1.2 A/O法 (4) 2.1.3 SBR法 (7) 2.1.4 曝气生物滤池 (7) 2.1.5 MBR工艺 (8) 2.2各种工艺之比较 (9) 2.2.1 在生活污水中的应用 (9) 2.2.2 占地面积与总池容 (10) 2.2.3 投资费用 (10) 2.2.4 运行成本及管理 (10) 2.2.5 出水水质 (10) 2.3结论 (10)

第一章污水处理常见工艺 1.1 概述 生活污水处理工艺目前已相当成熟,其核心技术为活性污泥法和生物膜法,对活性污泥法(或生物膜法)的改进及发展形成了各种不同的生活污水处理工艺,传统的活性污泥法处理工艺在中小型生活污水处理已较少使用。根据污水的水量、水质和出水要求及当地的实际情况,选用合理的污水处理工艺,对污水处理的正常运行、处理费用具有决定性的作用。 1.2 污水处理工艺分类 目前,污水处理行业,常用的工艺有以下几种:物理法、化学法、物理化学法、生物法。 1.2.1 物理法 (1)沉淀法,主要去除废水中无机颗粒及SS; (2)过滤法,主要去除废水中SS和油类物质等; (3)隔油,去除可浮油和分散油; (4)气浮法,油水分离、有用物质的回收及相对密度接近于1的悬浮固体; (5)离心分离:微小SS的去除; (6)磁力分离,去除沉淀法难以去除的SS和胶体等。 1.2.2 化学法 (1)混凝沉淀法,去除胶体及细微SS; (2)中和法,酸碱废水的处理; (3)氧化还原法,有毒物质、难生物降解物质的去除; (4)化学沉淀法,重金属离子、硫离子、硫酸根离子、磷酸根、铵根等的去除。

交换技术作业与答案

第1章交换概论 1.2 通信网中用户线上传输的是什么信号?中继(E1)线上是什么信号?数据传输速率?答:模拟信号。数字信号。 2.048Mbps. 1.3 说明目前常用的交换方式有哪几种?各有什么特点及应用场合? 答:电路交换,多速率电路交换.快速电路交换,分组交换, 帧交换, 帧中继、ATM交换, IP交换, 多协议标记交换(MPLS), 光交换, 软交换.。 电路交换: ①信息传送的最小单位是时隙②同步时分复用(固定分配带宽) ③面向物理连接的工作方式④信息具有透明性⑤信息传送无差错控制⑥基于呼叫损失制的流量控制 多速率电路交换: 本质上还是电路交换,具有电路交换的主要特点。不同的是: 电路交换方式只提供64kbps的单一速率,多速率电路交换方式可以为用户提供多种速率。即多速率电路交换,有一个固定的基本信道速率,如64kbps、2Mbps等,几个这样的基本信道捆绑起来构成一个速率更高的信道,实现多速率交换。这个更高的速率一定是基本信道速率的整数倍。窄带综合业务数字网(N-ISDN)中,可视电话业务采用的就是多速率电路交换方式。 快速电路交换: 动态分配带宽和网络资源,用户不传输数据时,不建立传输通道和物理连接,当有信息传送时才快速建立通道。适应突发业务。 分组交换: 1.报文交换的特征是交换机要对用户的信息进行存储和处理,即信息是不透明传输。数据

通信——非话业务。 2分组交换: ①信息传送的最小单位是分组。②面向逻辑连接和无连接两种工作方式③统计时分复用(按需分配带宽) 基本原理是把时间划分为不等长的时间片,长短不同的时间片就是传送不同长度分组所需要的时间,每路通信按需分配时间片,当通信需要传送的分组多时,所占用时间片的个数就多,反之,所占用时间片的个数就少,不传输信息时不分配带宽。由此可见,统计时分复用是按需分配带宽(动态分配带宽)的。④标志化信道:在统计时分复用中,靠分组头中的标志来区分不同的通信分组。具有相同标志的分组属于同一个通信,也就构成了一个子信道,识别这个子信道的标志也叫做信道标志,该子信道被称为标志化信道。而同步时分复用靠时间位置来识别每路通信的分组,被称为位置化信道。⑤信息传送有差错控制,分组交换是专门为数据通信网设计的交换方式,为保证数据信息的可靠性,在分组交换中设有CRC校验、重发等差错控制机制。⑥信息传送不具有透明性。分组交换对所传送的数据信息要进行处理。⑦基于呼叫延迟制的流量控制。在分组交换中,当数据流量较大时,分组排队等待处理,其流量控制基于呼叫延迟分组交换的技术不适合对实时性要求较高的话音业务,而适合突发和对差错敏感的数据业务。 帧交换: 帧交换方式简化了协议,其协议栈只有物理层和数据链路层。 帧交换与分组交换、帧中继的技术特点

相关主题
文本预览
相关文档 最新文档