当前位置:文档之家› 化工热力学课程介绍

化工热力学课程介绍

化工热力学课程介绍
化工热力学课程介绍

化工热力学课程介绍

课程简介:

何为化工热力学?

化工热力学是国内外化学

工程与工艺专业最重要的必修

课之一,是化工过程研究、开发

和设计的理论基础,是化学工程

的精髓。化工热力学最根本任务

就是利用热力学第一、第二定律

给出物质和能量的最大利用极

限,有效地降低生产能耗,减少污染,从而从本质上指导如何减缓熵增的速度。因此毫不夸张地说:化工热力学就是直接为节能减排而生的!所以,学好化工热力学可以帮助我们培养正确的“节能减排”意识,从科学的层面节能减排,以减缓有效资源和有效能量的耗散速度。同时,化工热力学也是一门训练逻辑思维和演绎能力的课程。演绎法是化工热力学理论体系的基本科学方法,它主要以数学方法进行,这决定了化工热力学的数学公式纷繁复杂,理论概念严谨、抽象。但演绎法,“似至晦,实至明;似至繁,实至简;似至难,实至易”的特点又决定了化工热力学抽象复杂的背后是多快好省,是一门非常“聪明”的学科。

化工热力学》课程特点

1978年,《化工热力学》课程由我国化工教育的一代宗师时

钧院士亲手建立并授课,至今已有三十多年的教学历史。在时先生

的引领下,兄弟院校纷纷设立此课程。在他直接教导下,本校该专

业培养了多名有较高国际知名度的教授,有多达二十多位教授参与教学。高起点科研成果反哺教学,奠定了研究型教学的坚实基础。

2002年至今,聆听过多位国际化工热力学大师授课的冯新教授任课程负责人,陆小华教授为总指导。在冯新教授和陆小华教授的努力下,《化工热力学》课程教学进行了深入且层次丰富的改革:授课方式由单一化变为多种化,有中英文双语教学,开了化工学院双语教学的先河;有多媒体和传统黑板教学,并采用挂牌授课的方式,即给学生提供了三种不同的教学模式、四个不同的授课教师;课件易于理解、生动活泼、信息量大,受到了学生们和校内外同行与作家的好评并纷纷索要本课程课件;例题和习题实践性强,强调“从生活中来到生产中去”的教学理念;在2005年天津大学召开的全国高校《化工热力学》课程教学会议上,冯新教授的重点发言引起了与会同行的一致好评。在2008年,冯新教授主持的《化工热力学》荣获江苏省精品课程称号,更于2009年荣获国家精品课程称号。课题组主编并出版了《Molecular Thermodynamics of Complex Systems》及教育部高等学校化学工程与工艺专业教学指导委员会推荐的《化工热力学》等多本教材,发表了多篇教学相关的论文。

近五年来本课程依托与国际一流化工热力学同行交流与合作的优势,对教学内容和方法进行顶层设计,增加学生接触前沿的机会;提出“做人+专业思想+课程学习三结合”的教学观念,提升教学效果;提出“定性化工热力学”的概念,实现由“解题”到“解决问题”的转变;提出“从生活中来到生产中去”的教改思路,实现知识“定量—定性—定量”的螺旋上升; 提出“激励、激发”的教学方法,提升学习热情,挖掘研究潜能。

教学方法:

本课程针对不同学生的特质和社会需求,制定了三个不同层次的培养目标和教学方法:

1.最底层:以责任心为保障,履行学生的基本职责,理解化工热力学中最重

要的基本概念,在将来从事非化学工程专业工作时,起到不同领域的桥梁作用;

2.中间层:以激励为手段,提高学习的热情,为“多快好省”解决化工企业

的复杂问题打下基础;

3.最高层:老师现身说法,介绍本人、本团队或国际最新科研成果,

让学生看到科学研究对人类的贡献以及科研本身带来的愉悦—因为“了解事

物的本质是令人愉快的!”,培养他们对科学研究的热爱和科学献身精神,

挖掘他们从事难度更大的研究工作的潜力。

课程负责人简介:

冯新教授,博士生导师,主要从事化学工程学科中分子界面化学工程和材料化工方向的研究,承担本科生“化工热力学”、“化学工程与工艺”、“文献检索与阅读”等课程及研究生课程的教学工作。对工作,她严谨认真,勇于探索;对学生,她耐心教导,富有爱心。

教育部高等学校化工教指委推荐教材《化工热力学》主编,国家精品课程《化工热力学》课程负责人;国外名校名著《流体相平衡的分子热力学》译著主审;在多次全国教改会上的重点发言得到专家同行的关注;是化学工程与工艺专业国家教学团队、化学工程与工艺国家特色专业、江苏省材料化学工程复合型人才培养模式创新实验基地、江苏省高校实验教学示范中心的核心人员;获江苏省高校优秀共产党员,首届校青年教学名师,首届“校优秀教学质量奖”,“校教书育人先进个人”。

在世界著名化工模拟软件公司美国Aspen Tech以及德国Kaiserslauten大学从事化工热力学的相关工作;主持国家自然科学基金、江苏省高技术重大项目多项;发表教学科研论文90多篇;以第一发明人获得发明专利多项,专利实施得到显著经济效益,获2008年中国石化协会技术发明一等奖(2/6)、2009年国家技术发明奖初评通过(2/6)。

化工热力学答案课后总习题答案详解

化工热力学答案_课后总习题答案详解 第二章习题解答 一、问答题: 2-1为什么要研究流体的pVT 关系? 【参考答案】:流体p-V-T 关系是化工热力学的基石,是化工过程开发和设计、安全操作和科学研究必不可少的基础数据。(1)流体的PVT 关系可以直接用于设计。(2)利用可测的热力学性质(T ,P ,V 等)计算不可测的热力学性质(H ,S ,G ,等)。只要有了p-V-T 关系加上理想气体的id p C ,可以解决化工热力学的大多数问题。 2-2在p -V 图上指出超临界萃取技术所处的区域,以及该区域的特征;同时指出其它重要的点、线、面以及它们的特征。 【参考答案】:1)超临界流体区的特征是:T >T c 、p >p c 。 2)临界点C 的数学特征: 3)饱和液相线是不同压力下产生第一个气泡的那个点的连线; 4)饱和汽相线是不同压力下产生第一个液滴点(或露点)那个点的连线。 5)过冷液体区的特征:给定压力下液体的温度低于该压力下的泡点温度。 6)过热蒸气区的特征:给定压力下蒸气的温度高于该压力下的露点温度。 7)汽液共存区:在此区域温度压力保持不变,只有体积在变化。 2-3 要满足什么条件,气体才能液化? 【参考答案】:气体只有在低于T c 条件下才能被液化。 2-4 不同气体在相同温度压力下,偏离理想气体的程度是否相同?你认为哪些是决定偏离理想气体程度的最本质因素? 【参考答案】:不同。真实气体偏离理想气体程度不仅与T 、p 有关,而且与每个气体的临界特性有 ()() () () 点在点在C V P C V P T T 00 2 2 ==?? ?

关,即最本质的因素是对比温度、对比压力以及偏心因子r T ,r P 和ω。 2-5 偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗? 【参考答案】:偏心因子ω为两个分子间的相互作用力偏离分子中心之间的作用力的程度。其物理意义为:一般流体与球形非极性简单流体(氩,氪、氙)在形状和极性方面的偏心度。为了提高计算复杂分子压缩因子的准确度。 偏心因子不可以直接测量。偏心因子ω的定义为:000.1)p lg(7.0T s r r --==ω , ω由测定的对比温度为0.7时的对比饱和压力的数据计算而得,并不能直接测量。 2-6 什么是状态方程的普遍化方法?普遍化方法有哪些类型? 【参考答案】:所谓状态方程的普遍化方法是指方程中不含有物性常数a ,b ,而是以对比参数作为独立变量;普遍化状态方程可用于任何流体、任意条件下的PVT 性质的计算。普遍化方法有两种类型:(1)以压缩因子的多项式表示的普遍化关系式 (普遍化压缩因子图法);(2)以两项virial 方程表示的普遍化第二virial 系数关系式(普遍化virial 系数法) 2-7简述三参数对应状态原理与两参数对应状态原理的区别。 【参考答案】:三参数对应状态原理与两参数对应状态原理的区别在于为了提高对比态原理的精度,引入了第三参数如偏心因子ω。三参数对应态原理为:在相同的 r T 和r p 下,具有相同ω值的所有 流体具有相同的压缩因子Z ,因此它们偏离理想气体的程度相同,即),P ,T (f Z r r ω=。而两参数对应状态原理为:在相同对比温度r T 、对比压力 r p 下,不同气体的对比摩尔体积r V (或压缩因子z ) 是近似相等的,即(,) r r Z T P =。三参数对应状态原理比两参数对应状态原理精度高得多。 2-8总结纯气体和纯液体pVT 计算的异同。 【参考答案】: 由于范德华方程(vdW 方程)最 大突破在于能同时计算汽、液两相性质,因此,理论上讲,采用基于vdW 方程的立方型状态方程能同时将纯气体和纯液体的性质计算出来(最小值是饱和液体摩尔体积、最大值是饱和气体摩尔体积),但事实上计算的纯气体性质误差较小,而纯液体的误差较大。因此,液体的p-V-T 关系往往采用专门计算液体体积的公式计算,如修正Rackett 方程,它与立方型状态方程相比,既简单精度又高。 2-9如何理解混合规则?为什么要提出这个概念?有哪些类型的混合规则? 【参考答案】:对于混合气体,只要把混合物看成一个虚拟的纯物质,算出虚拟的特征参数,如Tr ,

化工热力学实验讲义

化工热力学试验讲义 李俊英 齐鲁工业大学 化学与制药工程学院 化学工程与工艺实验室 2013.10

实验一二氧化碳临界状态观测及p-v-t关系测定气体的压力、体积、温度(p、v、t)是物质最基本的热力学性质:pvt数据不仅是绘制真实气体压缩因子固的基础,还是计算内能、始、嫡等一系列热力学函数的根据。在众多的热力学性质中,由于pvt参数可以直接地精确测量,而大部分热力学函数都可以通过pvt参数关联计算,所以气体的pvt性质是研究其热力学性质的基础和桥梁。了解和掌握真实气体pvt性质的测试方法,对研究气体的热力学性质具有重要的意义。 一、实验目的 1. 了解CO2临界状态的观测方法,增加对临界状态概念的感性认识。 2. 加深对课堂所讲工质的热力状态、凝结、汽化、饱和状态等基本概念的理解。 3. 掌握CO2的p-v-t关系的测定方法,学会用实验测定实际气体状态变化规律的方法和技巧。 4. 学会活塞式压力计、恒温器等部分热工仪器的正确使用方法。 二、实验内容 1. 测定CO2的p-v-t关系。在p-v坐标图中绘出低于临界温度(t=20℃)、临界温度(t=31.1℃)和高于临界温度(t=40℃)的三条等温曲线,并与标准实验曲线及理论计算值相比较,并分析差异原因。 2. 测定CO2在低于临界温度时,饱和温度与饱和压力之间的对应关系。 3. 观测临界状态 (1) 临界状态时近汽液两相模糊的现象。 (2) 汽液整体相变现象。 (3) 测定的CO2的t c,p c,v c等临界参数,并将实验所得的v c值与理想气体状态方程和范德华方程的理论值相比较,简述其差异原因。 三、实验装置 实验装置由压力台、恒温器、试验本体、及其防护罩三大部分组成。 1.整体结构:见图1。 2.本体结构:见图2。

化工热力学课程论文

化工热力学课程论文 专业班级:10级核化101班 姓名:高超 学号:20104150120 任课老师:阳鹏飞 日期:2012年12月28日

空气分离 -----热力学第二定律在空分中的应用 摘要:热力学第二定律作为判定与热现象有关的物理过程进行方向的定律,本文分析了热力学第二定律的涵义以及意义,并阐述了它在在空分中的应用。 关键字:空分制冷 Abstract: the second law of thermodynamics as a judge and thermal phenomena related to the physical process of the direction of the law, this paper analyses the meaning and significance of the second law of thermodynamics, and expounds its application in air separation. Keywords: air separation refrigeration 引言 空气中的主要成分是氧和氮,它们分别以分子状态存在,均匀地混合在一起,通常要将它们分离出来比较困难,目前工业上主要有3种实现空气分离方法:吸附法、膜分离法和深冷法(也称低温法)。深冷法是目前工业上应用最广泛的空气分离方法。 其基本过程是先将混合物空气通过压缩、膨胀和降温,直至空气液化,然后利用氧、氮汽化温度(沸点)的不同进行精馏分离。流程可分为:空气过滤系统、空气压缩机系统、空气预冷系统、空气净化系统、空气压缩膨胀制冷系统、空气分离系统。其中空气压缩膨胀制冷系统对整个空气分离过程来说至关重要。 制冷按照制冷温度大小,分为三类:普通制冷:t>-120℃;深度制冷:-120℃>t>-253℃;超低温制冷:t<-253℃。空气的液化技术属于深度制冷。 工业制冷主要方法之一为气体膨胀制冷:将高压气体做绝热膨胀,使其压力、温度下降,利用降温后的气体来吸取被冷却物体的热量从而制冷。 0.制冷的原理

化工热力学教学大纲

中国海洋大学本科生课程大纲 课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修 一、课程介绍 1.课程描述: 化工热力学是化学工程的重要分支和基础学科,是热力学基本定律应用于化学工程领域中而形成的一门学科。本课程主要研究化工过程中各种形式的能量之间相互转化的规律及过程趋近平衡的极限条件,主要涉及能量及组成的计算。能量计算包括功能互换,也包括物理热和化学热的计算,前者包括温度、压力对焓的影响及各种相变热,后者主要是反应热。组成计算包括化学平衡和相平衡。化学平衡包括平衡常数及平衡组成的计算,并确定反应方向;相平衡包括在不同温度、压力条件下各相组成的确定。化工热力学是化工过程研究、开发与设计的理论基础,是一门理论性与应用性均较强的课程,是化学工程与工艺专业的专业基础课程。 2.设计思路: 化工热力学应用热力学基本定律研究化工过程中能量的有效利用、各种热力学过程、相平衡和化学平衡,还研究与上述内容有关的基础数据,如物质的p-V-T关系和热化学数据。 本课程主要包括四部分的内容,各部分的内容和基本要求如下: 第一部分,流体的p-V-T关系,要求掌握各种p-V-T关系使用范围,会应用各种p-V-T关系进行基本的p-V-T 计算。 第二部分,纯物质(流体)的热力学性质,要求掌握应用p-V-T关系求解纯物质的热力学性质的方法。 第三部分,热力学基本定律及其应用,要求掌握化工过程能量分析的方法,了解和掌握化工热力学原理的应用(压缩、膨胀、动力循环与制冷循环等)。 第四部分,均相混合物热力学性质,掌握利用混合规则求解均相混合物热力学性质的方法。 第五部分,相平衡,掌握气液相平衡的计算方法。 3. 课程与其他课程的关系: 本课程适宜安排在修完高等数学、大学物理、物理化学(上)等有关基础课课程之后开设,内容上注意与物理化学的衔接。 二、课程目标 通过本课程的学习,学生将系统地掌握运用化工热力学的基本概念、理论和计算方法,分析和解决化工生产中有关能量转换和有效利用、相平衡和化学变化的实际问题的能力,能利用化工热力学的方法对化工中涉及的物

《化工热力学》第三版课后习题答案

化工热力学课后答案 第1章 绪言 一、是否题 1. 封闭体系的体积为一常数。(错) 2. 封闭体系中有两个相βα, 。在尚未达到平衡时,βα,两个相都是均相敞开体系; 达到平衡时,则βα,两个相都等价于均相封闭体系。(对) 3. 理想气体的焓和热容仅是温度的函数。(对) 4. 理想气体的熵和吉氏函数仅是温度的函数。(错。还与压力或摩尔体积有关。) 5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相 等,初态和终态的温度分别为T 1和T 2,则该过程的? =2 1 T T V dT C U ?;同样,对于初、终态 压力相等的过程有? =2 1 T T P dT C H ?。(对。状态函数的变化仅决定于初、终态与途径无关。) 二、填空题 1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。 2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的 功为() f i rev V V RT W ln =(以V 表示)或() i f rev P P RT W ln = (以P 表示)。 3. 封闭体系中的1mol 理想气体(已知ig P C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则 A 等容过程的 W = 0 ,Q =() 1121T P P R C ig P ??? ? ??--, U =( )11 2 1T P P R C ig P ??? ? ? ?--,H = 112 1T P P C ig P ??? ? ??-。 B 等温过程的 W =21ln P P RT -,Q =2 1ln P P RT ,U = 0 ,H = 0 。 C 绝热过程的 W =( ) ???? ????? ? -???? ??--112 11ig P C R ig P P P R V P R C ,Q = 0 ,U = ( ) ??????????-???? ??-11211ig P C R ig P P P R V P R C ,H =1121T P P C ig P C R ig P ??????????-???? ??。

应用化工热力学课程设计任务书

应用化工热力学课程设计任务书

题目一: 设计完全互溶体系低压条件下,气液平衡泡点温度和气相组成的计算程序。并采用该程序计算甲醇(1)—水(2)体系: 1,压力为101.325KPa,液相组成x1=0.40时的泡点温度和气相组成. 2,压力为101.325KPa,液相组成x1=0.30时的泡点温度和气息组成. 已知该体系液相活度系数满足Wilson方程,A12=0.2972,A21=1.3192。

涉及公式 Wilson方程:lnr1=-ln(x1+x2*A12)+x2[A12/(x1+x2*A12)-A21/(x2+x1*A12)]; lnr2=-ln(x2+x1*A21)+x1[A21/(x2+x1*A21)-A12/(x1+x2*A21)]; 其中A12=0.2972,A21=1.3192; r1:甲醇的活度,r2表示水的活度; x1:液相中甲醇的摩尔分数;x2:液相中水的摩尔分数; 查得的安托万方程lnP i s=A-B/(T+C),P i s单位是mmHg,T的单位是K。 甲醇安托万方程参数如下:A=18.5875,B=3626.55,C=-34.29, 水的安托万方程参数如下:A=18.3036,B=3816.44,C=-46.13 y1= x1* r1* P1s/p; y2= x2* r2* P2s/p; P1s:甲醇的饱和蒸汽压,单位:Pa; P2s:水的饱和蒸汽压,单位:Pa y1:气相中甲醇的摩尔分数;y2:气相中水的摩尔分数; p:给定环境压力,单位:Pa;T:所求温度,单位:T 题目二: 有一台并流换热器,燃气的压力为0.1013Mpa,温度为1400K,换热后温度降至810K。水以1.2吨/h,1Mpa,423K进入换热器,产生1Mpa,533K的过热 =4.56KJ/Kg· K。大气环境温度为298K,燃气可蒸汽送出,燃气的平均热容C p 燃 视为理想气体,忽略换热过程压降,假设燃气放出的热量全部被水吸收。 ⑴计算该过程的有效能损失及目的有效能效率。 ⑵试画出换热器的热利用线图,并由此图讨论如何降低换热器换热过程的有效能损失。

化工热力学气体p-V-T关系的编程计算论文

气体p-V-T关系的编程计算 摘要 本文运用c语言编程的方法,解决化工热力学中的气体p-V-T关系的计算。 在化热力学气体p-V-T关系的计算过程中,有很多复杂的计算,有些需要进行复杂的小数计算,还有谢问题需要通过反复迭代才能得到结果。在解决这些问题时通过编程计算成为大家选择的最佳途径之一。本文系统的对这些程序做了汇集、汇编、整理,得到了可以直接应用的程序。 本程序充分考虑了人机语言转换的障碍,在人机交流的过程中会自动提示使用者进行操作:在输入数据时,会有输入格式说明等提示;在结果输出时,会把运算公式、计算迭代过程以及运算结果一并输出,方便使用者解决问题。 程序中使用的是C语言做计算,程序中使用了if,for,switch语句等基础函数语句和函数调用的基本方法,函数之间结合比较简单,使用者也可以按自己的需求自行改动函数语句。 本程序的主函数部分如下: #include #include void main( ) { char fch,jg,sql; float p,V,T; int i,n; printf("欢迎进入物质p-V-T关系计算环境,程序正在编写中,欢迎交流学习!"); printf("\n请输入所用方程和所求量。\n公式代号说明:1 理想气体状态方程;2 维里方程;3 范德华方程;4 RK方程;5 SRK(RKS)方程。\n所求量为p,V,T"); printf("\n请输入所选方程代号fch=");scanf("%s",&fch); printf("\n请输入所求量sql="); scanf("%s",&sql); xzfch(fch,sql); } 本文运用本文成功的解决了计算中遇到的大部分题。在数值计算、迭代计算等复杂问题中得到了方便的应用。程序能解决的问题如表一: 表一:程序能解决的计算

《化工传递过程》课程教学大纲

《化工传递过程》课程教学大纲 一、课程说明 课程编码4302026 课程类别专业主干课 修读学期第五学期学分 2 学时48 课程英文名称Transfer Processes in Chemical Engineering 适用专业化学工程与工艺 先修课程物理化学、化工原理、化工热力学 二、课程的地位及作用 《化工传递过程》是针对化学工程与工艺方向的必修课。是一门探讨自然现象和化工过程中动量、热量和质量传递速率的课程。化学工程中各个单元操作均被看成传热、传质及流体流动的特殊情况或特定的组合,对单元操作的任何进一步的研究,最终都是归结为这几种传递过程的研究。将化工单元操作(化工原理)的共性归纳为动量、热量和质量传递过程(三传)的原理系统地论述,将化学工程的研究方法由经验分析上升为理论分析方法。各传递过程既有独立性又有类似性,虽然课程中概念、定义和公式较多,基本方程又相当复杂,给学习带来一定的困难,但可运用三传的类似关系进行研究理解,使学生掌握化学工程专业中有关动量、热量和质量传递的共性问题。该课程的学习有助于学生深入了解各类传递过程的机理,为改进各种传递过程和设备的设计,操作和控制提供理论基础;为今后的科学研究提供各种的基础数学模型;为速度、温度、浓度分布及传递速率的确定提供必要的帮助,为分析和解决过程工程和强化设备性能等问题提供坚实的理论基础。 三、课程教学目标 1. 侧重于熟悉掌握传递过程的各种基本理论;正确的提供所求强度量的分布规律及传递速率表达式; 2. 掌握传递过程的微分方程并达到能够熟练地运用方程的水平;

3. 能够正确地分析、简化三传基本微分方程;对实际情况建立必要的数学模型; 4. 了解传递过程的发展趋势、方向和其在化学工程中的具体运用领域; 5. 通过学习加深对化学工程基本原理的理解,使学生能顺利学习后续的专业课,提高自学与更新本专业知识的能力。 四、课程学时学分、教学要求及主要教学内容 (一) 课程学时分配一览表 章节主要内容总学时 学时分配讲授实践 第1章传递过程概论 2 2 0 第2章动量传递概论与动量传递微分方程 6 6 0 第3章动量传递方程的若干解 6 6 0 第4章边界层流动 6 4 0 第5章湍流 6 4 0 第6章热量传递概论与能量方程 6 6 0 第7章热传导 2 2 0 第8章对流传热 2 2 0 第9章质量传递概论与传质微分方程 4 4 0 第10章分子传质 4 4 0 第11章对流传质 2 2 0 第12章多种传递同时进行的过程 2 2 0 (二) 课程教学要求及主要内容 第一章传递过程概论 教学目的和要求: 1.流体流动的基本概念; 2.掌握传递过程的类似性; 3.传递过程的衡算方法。 教学重点和难点:

《化工热力学》课程标准

《化工热力学》课程标准 英文名称:Chemical Engineering Thermodynamics 课程编号: 适用专业:应用化学本科学分数:2 一、课程性质 所属一级学科——化学工程,二级学科——化学工程基础学科。 《化工热力学》是应用化学专业的重要专业方向课程。该课程包括化工基础理论,热力学案例分析、化工节能创新等化工技能,是化工类专业教学体系和人才培养体系中比较重要的专业课。 先修课程为《高等数学》、《物理化学》、《化工原理》等。 二、课程理念 1、该课程是化学工程的精髓 《化工热力学》课程属于工学学科门类下化学工程学科,是化工过程研究、开发和设计的理论基础,在科研和生产领域具有不可缺少的地位。它是从化学工程的角度,分析并给出化工过程经历的实质性变化,在原理和计算方法上指导各种化工过程的进行和优化。 该课程是应用化学专业的重要专业方向课程,是化学工程的精髓,是所有单元操作的基础,是《化工原理》、《反应工程》、《化工分离过程》等课程的基础和指导。 该课程在化学化工类人才培养中起着重要的承前启后、由基础到专业的桥梁作用,是化工类人才持续深造和研究开发必须打好的知识功底。 2、理论与工程应用相结合,培养学生的工程与开发能力 该课程定位为工程学科专业方向课,故在培养学生科学素质的同时,始终强调工程能力的培养,将化工热力学理论,模型与工程应用融为一体,旨在培养学生能够应用和建立热力学模型解决化学工程和工艺开发中的问题。 3、砸实热力学知识,培养学生扎实的学习能力和创造能力 该课程是以化工热力学、工程热力学和统计热力学为学科基础,以计算机及其技术为工具,培养学生从热力学角度分析解决现代化工技术的复杂工程问题。为了培养创新型高素质人才,既要给学生以干粮——扎实的热力学知识,又要给学生以猎枪——获取和创造知识的能力。 4、重视过程与动态评价 采用平时表现与考试成绩相结合的评价理念。学生在完成课后作业、课堂讨论、口试等内容和环节后,获得参加考试资格。知识和能力之间应树立一种内在联系,多看重教学过程中学生的参与程度和提高程度,不把期末考试作为教学评价的唯一标准,坚持“过程评价”和“动态评价”。 三、课程目标 总目标: 通过介绍化工热力学的起源、现状和发展,使学生了解热力学在化工过程中的主要实际应用;引导学生构建化工热力学课程的知识网络,使学生掌握化工热力学的基本概念和基本原理,利用化工热力学的方法对化工中物系的热力学性质和其它化工物性进行关联及推算,利用化工热力学的原理和模型进行化工过程能量、相平衡分析和研究;训练学生理论联系实际的思维,使学生具备利用热力学知识分析解决化工领域中有关实际问题的初步能力,形成基本知识扎实、应用能力突出的专业素养。 分目标:

化工热力学习题集及答案

模拟题一 一.单项选择题(每题1分,共20分) T 温度下的纯物质,当压力低于该温度下的饱和蒸汽压时,则气体的状态为( ) 饱和蒸汽 超临界流体 过热蒸汽 T 温度下的过冷纯液体的压力P ( ) >()T P s <()T P s = ()T P s T 温度下的过热纯蒸汽的压力P ( ) >() T P s <() T P s =() T P s 纯物质的第二virial 系数B ( ) A 仅是T 的函数 B 是T 和P 的函数 C 是T 和V 的函数 D 是任何两强度性质的函数 能表达流体在临界点的P-V 等温线的正确趋势的virial 方程,必须至少用到( ) 第三virial 系数 第二virial 系数 无穷项 只需要理想气体方程 液化石油气的主要成分是( ) 丙烷、丁烷和少量的戊烷 甲烷、乙烷 正己烷 立方型状态方程计算V 时如果出现三个根,则最大的根表示( ) 饱和液摩尔体积 饱和汽摩尔体积 无物理意义 偏心因子的定义式( ) 0.7lg()1s r Tr P ω==-- 0.8lg()1 s r Tr P ω==-- 1.0 lg()s r Tr P ω==- 设Z 为x ,y 的连续函数,,根据欧拉连锁式,有( ) A. 1x y z Z Z x x y y ???? ?????=- ? ? ?????????? B. 1y x Z Z x y x y Z ?????????=- ? ? ?????????? C. 1y x Z Z x y x y Z ????????? = ? ? ?????????? D. 1y Z x Z y y x x Z ????????? =- ? ? ?????????? 关于偏离函数MR ,理想性质M*,下列公式正确的是( ) A. *R M M M =+ B. *2R M M M =- C. * R M M M =- D. *R M M M =+ 下面的说法中不正确的是 ( ) (A )纯物质无偏摩尔量 。 (B )任何偏摩尔性质都是T ,P 的函数。 (C )偏摩尔性质是强度性质。(D )强度性质无偏摩尔量 。 关于逸度的下列说法中不正确的是 ( ) (A )逸度可称为“校正压力” 。 (B )逸度可称为“有效压力” 。 (C )逸度表达了真实气体对理想气体的偏差 。 (D )逸度可代替压力,使真实气体的状态方程变为fv=nRT 。 (E )逸度就是物质从系统中逃逸趋势的量度。 二元溶液,T, P 一定时,Gibbs —Duhem 方程的正确形式是 ( ). a. X1dln γ1/dX 1+ X2dln γ2/dX2 = 0 b. X1dln γ1/dX 2+ X2 dln γ2/dX1 = 0 c. X1dln γ1/dX 1+ X2dln γ2/dX1 = 0 d. X1dln γ1/dX 1– X2 dln γ2/dX1 = 0 关于化学势的下列说法中不正确的是( ) A. 系统的偏摩尔量就是化学势 B. 化学势是系统的强度性质 C. 系统中的任一物质都有化学势 D. 化学势大小决定物质迁移的方向 15.关于活度和活度系数的下列说法中不正确的是 ( ) (A )活度是相对逸度,校正浓度,有效浓度;(B) 理想溶液活度等于其浓度。 (C )活度系数表示实际溶液与理想溶液的偏差。(D )任何纯物质的活度均为1。 (E )的偏摩尔量。 16 组成的均相体系中,若A 的偏摩尔体积随浓度的改变而增加,则B 的偏摩尔体积将:( ) A. 增加 B. 减小 C. 不变 D. 不一定 17.下列各式中,化学位的定义式是 ( ) 18.混合物中组分i 的逸度的完整定义式是 。 j j j j n nS T i i n T P i i n nS nV i i n nS P i i n nU d n nA c n nG b n nH a ,,,,,,,,]) ([.)([.])([.)([.??≡??≡??≡??≡μμμμ

教学大纲格式

《化工分离工程》课程教学大纲 课程名称:化工分离工程 课程类型: 专业基础课 总学时:54 讲课学时:54 学分:3 适用对象: 化学工程与工艺 先修课程:《化工原理》、《化工热力学》 一、课程性质、目的和任务 本课程是高等学校化工类专业的一门专业基础课,是学生在具备了物理化学、化工原理、化工热力学、传递过程原理等技术基础知识后的一门必修课。它是利用这些课程有关相平衡热力学、动力学、分子及其聚状态的微观机理,传热、传质和动量传递理论来研究化工生产实际中复杂物系的分离和提纯技术。 二、教学基本要求 通过本课程的学习,要求学生掌握有关特殊精馏、化学萃取、膜分离、吸附与离子交换及其它分离技术的基本概念、原理及过程。 三、教学内容及要求 1 绪论(2学时) 介绍分离操作在化工生产中的重要性;分离过程的分类,每一类分离过程的定义和实例分析。 2 特殊精馏(10学时) 2.1 恒沸精馏:定义,基本概念,恒沸精馏的基本原理及相关的工艺流程,恒沸精馏塔的计算。(2学时) 2.2 萃取精馏:萃取剂作用的微观机理;萃取精馏的定义,萃取剂的选择,萃取精馏的基本原理及相关的工艺流程。(2学时) 2.3 加盐精馏:盐效应定义和机理,溶盐精馏过程、应用及优缺点分析,加盐萃取精馏的基本原理及工艺过程。(2学时) 2.4 反应精馏:反应精馏的定义,分类,每类过程的原理及应用。(2学时) 2.5 作业及讨论:分组,每组自选一种特殊精馏过程为主题,查阅相关文献,写一篇课程小论文并制作PPT,每组派一个代表讲解,全班讨论。(2学时) 3 化学萃取(10学时) 3.1 化学萃取:概述,化学萃取过程的分类及每类过程的主要特点,化学萃取的相平衡,化学萃取过程的控制步骤。(2学时) 3.2 络合萃取法的应用:物理萃取与络合萃取的区别与联系,过程的特征,萃取体系选择,典型举例。(1学时) 3.3 液膜分离技术:概述,分类及每类过程的主要特点,液膜分离过程机理,影响液膜传质的因素及影响规律,工艺流程及应用。(3学时)

化工工艺学课程标准

《化工工艺学》教学大纲 一、课程属性 1.课程的性质 《化工工艺学》课程是化学工程与工艺专业的核心课程。本课程从化工生产工艺角度出发,运用化工过程的基本原理,介绍典型化工产品的生产方法与原理、流程组织、关键设备、操作条件以及介绍生产中的设备材质安全技术、三废治理、节能降耗等问题。 2.课程定位 本课程在第6学期开设,是一门专业核心课程,在基础课和专业课之间起着承前启后、由理及工的桥梁作用。其前导课程是化工原理、物理化学、化工热力学等,与其平行学习的专业课为分离过程、化学反应工程等。 3.课程任务 本课程的主要任务是使学生全面的掌握石油化工生产方面的知识以及各个生产工艺流程。通过本课程的学习,培养学生分析和解决有关单元操作各种问题的能力,以便在石油化工生产、科研和设计工作中达到强化生产过程。为使学生在今后的学习和工作中能正确而有效的联系石油化工生产实际打下坚实的基础。 二、课程目标 知识目标 1.掌握化工工程的基本原理。 2.掌握化工工艺的基本概念和基本理论。 3.掌握典型化工产品的生产方法与工艺原理、典型流程与关键设备、工艺条件与节能降耗分析。 4.了解化工生产中设备材质、安全生产、三废治理等问题。 能力目标 培养学生应用已学过的基础理论解决实际工程问题的能力,使学生了解当今化学工业的概貌及发展方向,使学生在以后的生产与开发研究工作中能掌握基本的方法,做到触类旁通、灵活应用,不断开发应用新技术、新工艺、新产品和新设备,降低生产过程中的原料与能源消耗,提高经济效益,更好地满足社会需要。 素养目标 1.培养具有良好的职业道德、精湛的专业技能、较强的竞争能力和可持续发展的学习与适应能力的德、智、体等方面全面发展的高端高级技能型专门人才。 2.具备从事本专业领域实际工作的基本能力和基本技能,并且熟悉某些石油化工生产流程、某些化工车间管理的高素质技能型专门人才。 3.养成认真细致、积极探索的科学态度和工作作风,形成理论联系实际、自主学习和探索创新的良好习惯。 三、课程内容及实施 1、课程结构

化工热力学答案解析

化工热力学第二章作业解答 2.1试用下述三种方法计算673K ,4.053MPa 下甲烷气体的摩尔体积,(1)用理想气体方程;(2)用R-K 方程;(3)用普遍化关系式 解 (1)用理想气体方程(2-4) V = RT P =68.3146734.05310 ??=1.381×10-3m 3·mol -1 (2)用R-K 方程(2-6) 从附录二查的甲烷的临界参数和偏心因子为 Tc =190.6K ,Pc =4.600Mpa ,ω=0.008 将Tc ,Pc 值代入式(2-7a )式(2-7b ) 2 2.50.42748c c R T a p ==2 2.56 0.42748(8.314)(190.6)4.610???=3.224Pa ·m 6·K 0.5·mol -2 0.0867c c RT b p = =6 0.08678.314190.64.610 ???=2.987×10-5 m 3·mol -1 将有关的已知值代入式(2-6) 4.053×106 = 5 8.314673 2.98710 V -?-?-0.553.224(673)( 2.98710)V V -+? 迭代解得 V =1.390×10-3 m 3·mol -1 (注:用式2-22和式2-25迭代得Z 然后用PV=ZRT 求V 也可) (3)用普遍化关系式 673 3.53190.6 r T T Tc === 664.053100.8814.610r P P Pc ?===? 因为该状态点落在图2-9曲线上方,故采用普遍化第二维里系数法。 由式(2-44a )、式(2-44b )求出B 0和B 1 B 0=0.083-0.422/Tr 1.6=0.083-0.422/(3.53)1.6 =0.0269 B 1=0.139-0.172/Tr 4.2=0.139-0.172/(3.53)4.2 =0.138 代入式(2-43) 010.02690.0080.1380.0281BPc B B RTc ω=+=+?= 由式(2-42)得 Pr 0.881110.0281 1.0073.53BPc Z RTc Tr ???? =+=+?= ??? ???? V =1.390×10-3 m 3 ·mol -1 2.2试分别用(1)Van der Waals,(2)R-K ,(3)S-R-K 方程计算27 3.15K 时将CO 2压缩到比体积为550.1cm 3 ·mol -1 所需要的压力。实验值为3.090MPa 。 解: 从附录二查得CO 2得临界参数和偏心因子为 Tc =304.2K Pc =7.376MPa ω=0.225

化工热力学教学大纲新编

化工热力学教学大纲新 编 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

《化工热力学》教学大纲 一、课程基本信息 课程中文名称:化工热力学 课程英文名称:Chemical Engineering Thermodynamics 课程编号:06131050 课程类型:学科基础课 总学时:54 学分:3 适用专业:化学工程与工艺 先修课程:物理化学、化工原理 开课院系:化工与制药学院 二、课程的性质与任务 化工热力学是化学工程学的一个重要分支,是化工类专业必修的专业基础课程。它是化工过程研究、开发与设计的理论基础,是一门理论性与应用性均较强的课程。该门课系统地介绍了将热力学原理应用于化学工程技术领域的研究方法。它以热力学第一、第二定律为基础,研究化工过程中各种能量的相互转化及其有效利用,深刻阐述了各种物理和化学变化过程达到平衡的理论极限、条件和状态。 设置本课程,为了使考生能够掌握化工热力学的基本概念、理论和专业知识;能利用化工热力学的原理和模型对化工中涉及到的化学反应平衡原理、相平衡原理等进行分析和研究;能利用化工热力学的方法对化工中涉及的物系的热力学性质和其它化工物性进行关联和推算;并学会利用化工热力学的基本理论对化工中能量进行分析等。 三、课程教学基本要求 通过本课程学习,要求 1.正确理解化工热力学的有关基本概念和理论; 2.理解各个概念之间的联系和应用; 3.掌握化工热力学的基本计算方法; 4.能理论联系实际,灵活分析和解决实际化工生产和设计中的有关问题。 四、理论教学内容和基本要求

教学内容 第一章绪论 热力学发展简史 化工热力学的主要研究内容 化工热力学的研究方法及其发展 化工热力学在化工中的重要性 第二章流体的p-V-T关系 纯物质的p –V –T关系 气体的状态方程 2.2.1理想气体状态 2.2.2 维里方程 2.2.3 立方型状态方程 2.2.4 多参数状态方程 对应态原理及其应用 2.3.1 对比态原理 2.3.2 三参数对应态原理 2.3.3 普遍化状态方程 真实气体混合物的p-V-T关系 2.4.1 混合规则 2.4.2气体混合物的虚拟临界性质 2.4.2 气体混合的第二维里系数 2.4.3 混合物的状态方程 液体的p –V -T关系 2.5.1 饱和液体体积 2.5.2 压缩液体(过冷液体)体积 2.5.3 液体混合物的p –V -T关系 第三章纯流体的热力学性质 热力学性质间的关系 3.1.1 热力学基本方程 3.1.2 Maxwell关系式 焓变与熵变的计算 3.2.1 热容

中高职课程体系衔接的探讨

中高职课程体系衔接的探讨 中等职业教育和高等职业教育是职业教育的两个重要层次,做好二者衔接至关重要,关键是以课程衔接体系为重点,利用好资源,统筹兼顾,合理安排。 一、中高职课程设置中存在的主要问题 1.在教学目标上存在背离现象 中职以专业技能为导向,培养的是实用型人才,学校因此减少了文化基础课;高职以文化理论为基础,培养的是理论型高层次高技能人才。 2.在课程标准上不衔接 中职的课程标准往往偏低,高职有时又过高,导致二者在课程标准上缺乏对接,你教你的,我教我的。 3.在专业课程内容和教材上存在重复和滥用的现象 中职的很多专业教材选自高职院校,导致在中职学过的内容到了高职又学一遍,既浪费学生的时间,也浪费人力、教学资源。 二、中高职应用化工技术专业课程体系衔接框架 总体框架如下:整体规划,以能力为本位;统筹兼顾,以岗位为要求;分段实施、以理实为一体教学,构建以岗位能力为基础的模块化课程体系。 模块化课程体系,包括公共基础课、职业基础课、职业核心课、职业技能课四个模块。公共基础课模块,指中高职学校各个专业都要开设的文化基础课;职业基础课模块,是以职业岗位共同的知识和技能为基础构建的课程;职业核心课模块,是根据各个职业技能共有的职业能力和职业技术的职业核心课程;职业技能课模块,指根据职业岗位的工作要求,按照职业能力的要求和岗位工作任务设置的课程。 三、中高职应用化工技术专业课程模块设置 根据“工学结合、学做合一、理实一体、知行统一”的思路,进行

课程模块设置。根据每门课程的知识结构和能力结构,组织设计许多不同的教学模块,再将不同的单元设计成学历层级,实现教学内容的衔接。 1.课程模块衔接总要求 课程模块衔接以职业能力为中心,以理实一体化教学为模式,将公共基础课服务到专业基础课,专业基础课融合到专业核心课,专业核心课运用到专业技能课中。课程模块设计要结合中高职学生的心理特点,由浅入深,对中职学生在实践中加强理论学习,注重知识的趣味性、操作的实用性。对高职学生在实践中总结理论知识,注重知识的系统性、操作的原理性。 2.各模块内容的选取 课程模块内容的选取要按照知识的系统性与连续性,注意避免教学内容重叠或遗漏。依据国家职业资格标准,重构课程模块体系,由浅入深,以子课题、分课题的形式将职业资格的要求融入教学中,做到理论培养和技能操作训练有机结合。以职业技能训练课题为方向,将专业基础课程和职业核心课程紧密地融会贯通。 3.课程模块设置的具体内容 (1)公共基础课程模块设置。模块一:语文、数学、物理、英语、体育、德育、计算机应用基础。模块二:大学英语、体育、高等数学、思想道德修养与法律基础、中国近现代史纲要、形势与政策、数据库。 (2)专业基础课程模块设置。模块一:无机化学、有机化学、化工原理、化工制图、环境化学、化工设备机械基础、化工仪表自动化。模块二:反应工程、化工热力学、物理化学、分析化学、分析仪器的使用和维护。 (3)专业核心课程模块设置及层级关系。模块一:无机化学工艺、有机化学工艺、仪器分析、工业分析、化学物料识用与分析、化工生产技术应用。模块二:化工设计基础、精细无机、精细有机、环境检测、企业经营战略概论、煤化学、化工文献检索。

化工热力学(第三版)课后答案完整版_朱自强

第二章 流体的压力、体积、浓度关系:状态方程式 2-1 试分别用下述方法求出400℃、下甲烷气体的摩尔体积。(1) 理想气体方程;(2) RK 方程;(3)PR 方程;(4) 维里截断式(2-7)。其中B 用Pitzer 的普遍化关联法计算。 [解] (1) 根据理想气体状态方程,可求出甲烷气体在理想情 况下的摩尔体积id V 为 33168.314(400273.15) 1.381104.05310id RT V m mol p --?+= ==??? (2) 用RK 方程求摩尔体积 将RK 方程稍加变形,可写为 0.5()()RT a V b V b p T pV V b -=+-+ (E1) 其中 2 2.50.427480.08664c c c c R T a p RT b p == 从附表1查得甲烷的临界温度和压力分别为c T =, c p =,将它们代入 a, b 表达式得

2 2.5 6-20.560.427488.314190.6 3.2217m Pa mol K 4.6010 a ??==???? 53160.086648.314190.6 2.9846104.6010 b m mol --??==??? 以理想气体状态方程求得的id V 为初值,代入式(E1)中迭代求解,第一次迭代得到1V 值为 5168.314673.15 2.9846104.05310 V -?=+?? 350.563353.2217(1.38110 2.984610)673.15 4.05310 1.38110(1.38110 2.984610) -----??-?-??????+? 355331 1.38110 2.984610 2.1246101.389610m mol -----=?+?-?=?? 第二次迭代得2V 为 3535 20.56335355 331 3.2217(1.389610 2.984610)1.38110 2.984610673.15 4.05310 1.389610(1.389610 2.984610)1.38110 2.984610 2.1120101.389710V m mol ------------??-?=?+?-??????+?=?+?-?=??1V 和2V 已经相差很小,可终止迭代。故用RK 方程求得的摩尔体积近 似为 3311.39010V m mol --=?? (3)用PR 方程求摩尔体积 将PR 方程稍加变形,可写为 ()()()RT a V b V b p pV V b pb V b -=+-++-

热力学论文

北京化工大学 课程论文 课程名称:高等化工热力学 任课教师:密建国 专业:化学工程与技术 班级: 姓名: 学号:

活性炭吸附储氢过程的热力学分析 摘要 储氢过程中热效应的不利影响是氢气吸附储存应用于新能源汽车需要解决的关键问题之一。文章首先介绍了活性炭吸附储氢过程的热力学分析模型,包括吸附等温线模型,吸附热的热力学计算以及气体状态方程。对吸附等温线模型的研究意义及选取、吸附过程中产生吸附热的数值确定方法、不同储氢条件下气体状态方程的适用性及选取进行了探讨。 关键词:活性炭;吸附;储氢;热力学 第一章绪论 1.1研究背景及意义 1.1.1研究背景 氢能,因其具有众多优异的特性而被誉为21世纪的绿色新能源。首先,氢能具有很高的热值,燃烧1kg氢气可产生1.25x106 kJ的热量,相当于3kg汽油或4.5kg焦炭完全燃烧所产生的热量;其次,氢燃烧释能后的产物是水,对环境友好无污染,是绿色清洁能源;此外,氢是宇宙中最丰富的元素,来源广泛,可通过太阳能、风能、地热能等自然能分解水而产生,为可再生能源,不会枯竭。当前,世界上许多国家都在加紧部署实施氢能战略,迎接氢经济时代的到来,如美国针对规模制氢的FutureGen计划,日本的NewSunshine和欧洲的Framework计划等。 持久的城市空气污染、对较低或零废气排放的交通工具的需求、减少对外国石油进口的需要、二氧化碳排放和全球气候变化、储存可再生电能供应的需求等多种因素的汇合增加了氢能经济的吸引力[1]。 目前,氢能的利用己经有了长足的进步。液氢发动机的成功研制使氢气的应用进入到航空领域,氢能的众多优点使得氢燃料驱动的铁路机车及一般汽车的研制也相当活跃。宝马氢能7系的氢动力汽车已经实现了量产,不过这种技术目前还难以普及,其主要瓶颈在于氢的存储和运输。氢是非常活跃的,以现有技术很难让其安稳长久的保存在储气罐中,如果氢动力汽车一个月不开,里面的氢就会挥发殆尽[2]。此外,氢还是一种易燃易爆的气体,在使用中必须保证安全,因此,一种安全、高能量密度(包括体积能量密度和重量能量密度)、低成本、使用寿命长的氢储、运输技术的应用需求已越来越迫切[3]。 传统的氢气存储方式主要有气态和液态两种。气态方式较为简单方便,也是目前储存压力低于70MPa氢气的常用方法,但体积密度较小是该方法严重的技术缺陷,而且气态氢在运输和使用过程中也存在易爆炸的极大安全隐患。液态储氢方法的体积密度(70kg/m3)高,但氢气的液化需要冷却到20K的超低温下才能实现,此过程消耗的能量约占所储存氢能的25%一45%。而且液态氢使用条件苛刻,对储罐绝热性能要求高,目前只限于在航天技术领域应用。利用储氢材料与氢气反应生成固溶体和氢化物的固体储氢方式,能有效克服气液两种储存方式的不足,而且储氢体积密度大、安全度高、运输便利。根据技术发展趋势,今后储氢研究的重点是在新型高性能大规模储氢材料上,目前研究比较广泛和深入的主要是多孔

相关主题
文本预览
相关文档 最新文档