当前位置:文档之家› 实验六共射极放大电路温度与频率响应分析实验报告

实验六共射极放大电路温度与频率响应分析实验报告

实验六共射极放大电路温度与频率响应分析实验报告
实验六共射极放大电路温度与频率响应分析实验报告

共射极放大电路的温度分析以及频

率响应分析

1.实验背景

静态工作点对波形失真的影响

温度上升时,BJT的反向电流I CBO、I CEO及电流放大系数β或α都会增大,而发射结正向压降V BE会减小。这些参数随温度的变化,都会使放大电路中的集电极静态电流I CQ随温度升高而增加(I CQ= βI BQ+ I CEO),从而使Q点随温度变化。

负反馈电路:要想使ICQ基本稳定不变,就要求在温度升高时,电路能自动地适当减小基极电流IBQ 。

2.实验目标

1.学习Pspice中的温度特性分析并掌握基极分压式射极偏置电路与固定偏置电路的

区别;

2.学习交流扫描分析方法并了解共射极放大电路中旁路电容变化时的频率响应;

3.熟练掌握万用电压源的使用。

3.实验方法

1> 按所给电路画好电路图

2> 按题所示选好选项。

3> 调整时间间隔,进行交流仿真。如图所示。

题1

题2

题3-1

题3-2

4. 实验设计

1. 共射极放大电路分别为下图a 与图b 所示。设两图中BJT 均为NPN 型硅管,型号

为Q2N3904,Bf=50(Bf 为共射极放大系数)。图中的C e 是R e 的旁路电容。试用Pspice 程序分析:

(1) 分别求两路电路的Q 点; (2) 作温度特性分析,观察当温度在-30度~ +70度范围变化时,比较两电路BJT

的集电极电流I c 的相对变化量;

(3) 是否可将图a 与图b 放在同一个窗口执行仿真并进行比较?

Q1

Q2N3904

Cb110u

Cb2

10u

Rb133k

Rc 3.3k

Rb210k

Re 1.3k

RL 5.1k

Ce 50u

VCC

12Vdc

VCC

VCC

V1

AC =

TRAN = sin(0,10mv ,1khz,0s,0,0))

DC =

图a 基极分压式偏置的共射极放大电路

Q2

Q2N3904

Cb420u

Cb520u

Rb3300k

Rc14k

RL14k

00Vi1

AC =

TRAN = sin(0,10mv ,1khz,0s,0,0)

DC =VCC

图b 固定偏置的共射极放大电路

2. 仿真电路如下图所示。Bf=80(Bf 为共射极放大系数),r bb ” (r b )=100欧姆。试分析

电压增益的幅频响应与相频响应。

(1) 使用交流扫描分析。在AC Sweep Type 栏中选择Logarithmic ,并设置Start

frequency=10Hz, End frequency=100MegHz,解析Points=20。

(2) 注意使用Add Trace 中的functions or Macro 栏中的dB ()函数与P ()函

数。幅频响应使用dB( ), 相频响应使用P( ))

(3) 思考:信号源如设置为图a 的信号形式,是否可以实现AC 扫描呢?如可

以实现,应该怎样设置?

Q1

Q2N3904

Cb110u

Cb2

10u

Rb133k

Rc 3.3k

Rb210k

Re 1.3k

RL 5.1k

Ce 50u

VCC

12Vdc

VCC

VCC

V1

AC = 1v TRAN =

DC =

图c

3. 仿真电路如图d 所示。Bf=50(Bf 为共射极放大系数),r bb ” (r b )=100欧姆。试分析

C e 在1uF 到100uF 之间变化时,下限频率f L 的变化范围。(输出当C e 取1uF 、5uF 、10uF 、20uF 、50uF 、80uF 和100uF 时电压增益的幅频响应)

(1) 注意图d 电路的设置不能实现这个实验。根据前面实验所学知识与经验,

自己补充完成这个实验的设置并完成仿真。

(2) 思考:随旁路电容C e 的增加,下限频率是怎样变化的?

Q1

Q2N3904

Cb110u

Cb2

10u

Rb133k

Rc 3.3k

Rb210k

Re 1.3k

RL 5.1k

Ce

VCC

12Vdc

VCC

VCC

V1

1Vac 0Vdc

图d

5. 实验结果

1-1连接图

1-2两个连接图

1-3图1-1结果

1-4图1-2结果

2-1结果1

2-2同时表示两条曲线

3-1

6.总结

共射极放大电路的温度分析以及频率响应分析:

1> 根据以前学习的拓展:

电路图中的参数用花括号括起,如下图中的{ceval}等

图中的PARAMETERS: place→part→add library后,添加special.olb

双击PARAMETERS:出现property editor,选择New column, name 中写入相应的参数名

2> 选择Plot→Add Plot(在屏幕上再添加一个图形的方法)

3> 措施:1)元件温度系数好;2)环境恒温;3)电路负反馈,补偿

共射极基本放大电路解读

实验一共射极基本放大电路 一、实验目的 1、掌握放大器静态工作点的调试及其对放大性能的影响。 2、学习测量放大器Q点,Av,r i,r0的方法,了解共射级电路特性。 二、实验环境 1、Electronics Workbench5.12软件 2、器件:有极性电容滑动变阻器三极管信号发生器直流电源示波器 三、实验内容 图1.1为一共射极基本放大电路,按图连接好电路 . . 图1.1 共射极基本放大电路 1、静态分析 选择分析菜单中的直流工作点分析选项(Analysis/DC operating Point),电路静态分析结果如图1.2所示,分析结果表明晶体管Q1工作在放大电路。 . 图1.2 共射极基本放大器的静态工作点 2、动态分析 用仪器库的函数发生器为电路提供正弦输入信号V i(幅值为5mV,频率为10KHz)用示波器可观察输入、输出信号如图1.3所示,图中V A表示输入电压(电路中的节点4)V B为输出电压(电路中的节点5),由图波形图可观察到电路的输入、输出电压信号反相位关系。

图1.3共射极放大电路的输入、输出波形 由上图可得: 放大器的放大倍数:Av=801.54mv/4.97mv=161.3 理论计算:rbe=300+(1+β)×26mv/I E=300+26mv/I BQ=300+26mv/0.0226mA=1450Ω Av=-βR L′/ r be= 250×1000Ω/1450Ω=172.4 (其中R L′为RL与Rc的并联值,β的值约为250) 实验结果与理论值基本相符 3、频率响应分析 选择分析菜单中的交流频率分析项(Analysis/AC Frequency Analysis),在交流频率分析参数设置对话框中设定:扫描起始频率为1Hz,终止频率为1GHz,扫描形式为十进制,纵向刻度为线性,节点5做输出节点。分析结果如图2.4所示。 图1.3 共射极基本放大电路的频率响应 由图1.3可得:电路的上限频率(x1)为10.78Hz,下限频率(x2)为23.1MHz,放大器的通频带约为23.1MHz,频率响应图理论结果基本相符。 1、测量放大器的输入、输出电压: (1)输入电阻的测量 在A点与B点之间串接一个2KΩ的电阻,如图1.1,测量 A点与B点的电位就可计算输入电阻Ri。 (2)、输出电阻的测量 用示波器监视,在输出不失真是,分别测量有负载是和无负载时的Vo,即可计算Ro 将上述测量及计算填入下表:

水温自动控制系统实验报告汇总

水温控制系统(B题) 摘要 在能源日益紧张的今天,电热水器,饮水机和电饭煲之类的家用电器在保温时,由于其简单的温控系统,利用温敏电阻来实现温控,因而会造成很大的能源浪费。但是利用AT89C51 单片机为核心,配合温度传感器,信号处理电路,显示电路,输出控制电路,故障报警电路等组成的控制系统却能解决这个问题。单片机可将温度传感器检测到的水温模拟量转换成数字量,并显示于1602显示器上。该系统具有灵活性强,易于操作,可靠性高等优点,将会有更广阔的开发前景。 水温控制系统概述 能源问题已经是当前最为热门的话题,离开能源的日子,世界将失去一切颜色,人们将寸步难行,我们知道虽然电能是可再生能源,但是在今天还是有很多的电能是依靠火力,核电等一系列不可再生的自然资源所产生,一旦这些自然资源耗尽,我们将面临电能资源的巨大的缺口,因而本设计从开源节流的角度出发,节省电能,保护环境。 一、设计任务 设计并制作一个水温自动控制系统,控制对象为 1 升净水,容器为搪瓷器皿。水温可以在一定范围内由人工设定,并能在环境温度降低时实现自动控制,以保持设定的温度基本不变。 二、要求 1、基本要求 (1)温度设定范围为:40~90℃,最小区分度为1℃,标定温度≤1℃。 (2)环境温度降低时温度控制的静态误差≤1℃。 (3)能显示水的实际温度。 第2页,共11页

2、发挥部分 (1)采用适当的控制方法,当设定温度突变(由40℃提高到60℃)时,减小系统的调节时间和超调量。 (2)温度控制的静态误差≤0.2℃。 (3)在设定温度发生突变时,自动打印水温随时间变化的曲线。 (4)其他。 一系统方案选择 1.1 温度传感器的选取 目前市场上温度传感器较多,主要有以下几种方案: 方案一:选用铂电阻温度传感器。此类温度传感器线性度、稳定性等方面性能都很好,但其成本较高。 方案二:采用热敏电阻。选用此类元器件有价格便宜的优点,但由于热敏电阻的非线性特性会影响系统的精度。 方案三:采用DS18B20温度传感器。DS18B20是DALLAS公司生产的一线式数字温度传感器,具有3引脚TO-92小体积封装形式;温度测量范围为-55℃~+125℃,可编程为9位~12位A/D转换精度,测温分辨率可达0.0625℃,被测温度用符号扩展的16位数字量方式串行输出远端引入。此器件具有体积小、质量轻、线形度好、性能稳定等优点其各方面特性都满足此系统的设计要求。 比较以上三种方案,方案三具有明显的优点,因此选用方案三。 1.2温度显示模块 方案一:采用8个LED八段数码管分别显示温度的十位、个位和小数位。数码管具有低能耗,低损耗、寿命长、耐老化、对外界环境要求低。但LED八度数码管引脚排列不规则,动态显示时要加驱动电路,硬件电路复杂。 方案二:采用带有字库的12864液晶显示屏。12864液晶显示屏具有低功耗,轻薄短小无辐射危险,平面显示及影像稳定、不闪烁、可视面积大、画面

共射放大电路实验报告

实验报告 课程名称:电子电路设计实验 指导老师:李锡华,叶险峰,施红军 成绩:________ 实验名称:晶体管共射放大电路分析 实验类型:设计实验 同组学生姓名: 一、实验目的 1、学习晶体管放大电路的设计方法, 2、掌握放大电路静态工作点的调整和测量方法,了解放大器的非线性失真。 3、掌握放大电路电压增益、输入电阻、输出电阻、通频带等主要性能指标的测量方法。 4、理解射极电阻和旁路电容在负反馈中所起的作用及对放大电路性能的影响。 5、学习晶体管放大电路元件参数选取方法,掌握单级放大器设计的一般原则。 二、实验任务与要求 1.设计一个阻容耦合单级放大电路 已知条件:=+10V cc V , 5.1L R k =Ω,10,600i S V mV R ==Ω 性能指标要求:30L f Hz <,对频率为1kHz 的正弦信号15/,7.5v i A V V R k >>Ω 2.设计要求 (1)写出详细设计过程并进行验算 (2)用软件进行仿真 3.电路安装、调整与测量 自己编写调试步骤,自己设计数据记录表格 4.写出设计性实验报告 三、实验方案设计与实验参数计算 共射放大电路

(一).电路电阻求解过程(β=100) (没有设置上课要求的160的原因是因为电路其他参数要求和讲义作业要求基本一样,为了显示区别,将β改为100进行设计): (1)考虑噪声系数,高频小型号晶体管工作电流一般设定在1mA 以下,取I c =1mA (2)为使Q 点稳定,取2 5 BB CC V V =,即4V, (3)0.7 3.3BB E E V R k I -≈=Ω,恰为电阻标称值 (4)2 12 124:3:2 CC BB R V V V R R R R ==+∴= 取R 2为R i 下限值的3倍可满足输入电阻的要求,即R 2=22.5k , R 1=33.75k ; 1121 10=0.1,60,40cc B B V V IR I mA R K R K IR -== =Ω=Ω由 综上:取标称值R1=51k ,R2=33k (5) 25T T e E C V V r I I =≈=Ω (6)从输入电阻角度考虑: , 取(获得4V 足够大的正负信号摆幅)得: 从电压增益的角度考虑: >15V/V,取得 : ; 为 (二).电路频率特性 (1) 电容与低频截止频率 取 ;

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大 电路实验报告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

实验二 晶体管共射极单管放大器 一、实验目的 1.学会放大器静态工作点的调式方法和测量方法。 2.掌握放大器电压放大倍数的测试方法及放大器参数对放大倍数的影 响。 3.熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2—1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。 三、实验设备 1、信号发生器 2、双踪示波器 3、交流毫伏表 4、模拟电路实验箱 5、万用表 四、实验内容 1.测量静态工作点 实验电路如图2—1所示,它的静态工作点估算方法为: U B ≈ 2 11B B CC B R R U R +?

图2—1 共射极单管放大器实验电路图 I E = E BE B R U U -≈Ic U CE = U C C -I C (R C +R E ) 实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。 1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V 电源位置)。 2)检查接线无误后,接通电源。 3)用万用表的直流10V 挡测量U E = 2V 左右,如果偏差太大可调节静态工作点(电位器RP )。然后测量U B 、U C ,记入表2—1中。 表2—1 测 量 值 计 算 值 U B (V ) U E (V ) U C (V ) R B2(K Ω) U BE (V ) U CE (V ) I C (mA ) 2 60 2 B2所有测量结果记入表2—1中。 5)根据实验结果可用:I C ≈I E = E E R U 或I C =C C CC R U U -

51系列单片机闭环温度控制 实验报告

成绩: 重庆邮电大学 自动化学院综合实验报告 题目:51系列单片机闭环温度控制 学生姓名:蒋运和 班级:0841004 学号:2010213316 同组人员:李海涛陈超 指导教师:郭鹏 完成时间:2013年12月

一、实验名称: 51系列单片机闭环温度控制实验 ——基于Protuse仿真实验平台实现 基本情况: 1. 学生姓名: 2. 学号: 3. 班级: 4. 同组其他成员: 二、实验内容(实验原理介绍) 1、系统基本原理 计算机控制技术实训,即温度闭环控制,根据实际要求,即加温速度、超调量、调节时间级误差参数,选择PID控制参数级算法,实现对温度的自动控制。 闭环温度控制系统原理如图: 2、PID算法的数字实现 本次试验通过8031通过OVEN 是模拟加热的装置,加一定的电压便开始不停的升温,直到电压要消失则开始降温。仿真时,U形加热器为红色时表示正在加热,发红时将直流电压放过来接,就会制冷,变绿。T端输出的是电压,温度越高,电压就越高。

8031对温度的控制是通过可控硅调控实现的。可控硅通过时间可以通过可控硅控制板上控制脉冲控制。该触发脉冲想8031用软件在P1.3引脚上产生,受过零同步脉冲后经光偶管和驱动器输送到可控硅的控制级上。偏差控制原理是要求对所需温度求出偏差值,然后对偏差值处理而获得控制信号去调节加热装置的温度。 PID控制方程式: 式中e是指测量值与给定值之间的偏差 TD 微分时间 T 积分时间 KP 调节器的放大系数 将上式离散化得到数字PID位置式算法,式中在位置算法的基础之上得到数字PID 增量式算法: 3、硬件电路设计 在温度控制中,经常采用是硬件电路主要有两大部分组成:模拟部分和数字部分,对这两部分调节仪表进行调节,但都存在着许多缺点,用单片机进行温度控制使构成的系统灵活,可靠性高,并可用软件对传感器信号进行抗干拢滤波和非线性补偿处理,可大大提高控制质量和自动化水平;总的来说本系统由四大模块组成,它们是输入模块、单片机系统模块、计算机显示与控制模块和输出控制模块。输入模块主要完成对温度信号的采集和转换工作,由温度传感器及其与单片机的接口部分组成。利用模拟加热的

反馈放大电路设计实验报告模版

深圳大学实验报告课程名称:模拟电路 实验名称:负反馈放大电路设计 学院:信息工程学院 专业:信息工程班级: 组号:指导教师:田明 报告人:学号: 实验地点 N102 实验时间: 实验报告提交时间: 教务处制

一.实验名称: 负反馈放大电路设计 二.实验目的: 加深对负反馈放大电路原理的理解. 学习集成运算反馈放大电路、晶体管反馈放大电路的设计方法. 掌握集成运算反馈放大电路、多级晶体管反馈放大电路的安装调试及测试方法. 三.实验仪器: 双踪示波器一台/组 信号发生器一台/组 直流稳压电源一台/组 万用表一台/组 四.实验容: 设计一个多级晶体管负反馈放大电路或集成运算负反馈放大电路,性能要求如下: 闭环电压放大倍:30---120 输入信号频率围:1KHZ-------10KHZ. 电压输出幅度≥1.5V 输出电阻≤3KΩ 五.实验步骤: 1.选择负反馈放大电路的类型,一般有晶体管负反馈放大电路、集 成运算负反馈放大电路.

为满足上述放大倍数的要求,晶体管负反馈放大电路最少需要二级放大,其连接形式有直接耦合和阻容耦合,阻容耦合可以消除放大器各级静态工作点之间的影响,本设计采用两者相结合的方式;对于各级放大器,其组态有多种多样,有共发射极,共基极和共集电极。本设计可以采用共发射极-共基极-共集电极放大电路。对于负反馈形式,有电压串联、电压并联、电流串联、电流并联。本设计采用电压并联负反馈形式。 2.设计电路,画出电路图. 下面是电源输入电路,通过并联两个电容的滤波电路形式,以效消除干扰,保证电路稳定工作,否则容易产生自激振荡。 整体原理图如下: 从上图可以看出来,整个电路由三级放大和一路负反馈回路构成,第一级电路是NPN管构成的共发射极电路,通过直接耦合的方式输出给

温度控制电路实验报告

温度控制电路实验报告 篇一:温度压力控制器实验报告 温度、压力控制器设计 实 验 报 告 设计题目:温度、压力控制器设计 一、设计目的 1 ?学习基本理论在实践中综合运用的初步经验,掌握微机控制系统设计的基本方法; 2.学会单片机模块的应用及程序设计的方法; 3?培养实践技能,提高分析和解决实际问题的能力。 二、设计任务及要求 1.利用赛思仿真系统,以MCS51单片机为CPU设计系统。 2?设计一数据采集系统,每5分钟采集一次温度信号、10分钟采集一次压力信号。并实时显示温度、压力值。 3.比较温度、压力的采集值和设定值,控制升温、降温及升压、降压时间,使温度、压力为一恒值。 4?设温度范围为:-10—+40°C、压力范围为0—100P&;升温、降温时间和温度上升、下降的比例为1°C/分钟,升压、降压时间和压力上升、下降的比例为10P"分钟。

5?画出原理图、编写相关程序及说明,并在G6E及赛思 仿真系统上仿真实现。 三、设计构思 本系统硬件结构以80C51单片机为CPU进行设计,外围扩展模数转换电路、声光报警电路、LED显示电路及向上位PC机的传输电路,软件使用汇编语言编写,采用分时操作的原理设计。 四、实验设备及元件 PC机1台、赛思仿真系统一套 五、硬件电路设计 单片微型计算机又称为微控制器,它是一种面向控制的大规模集成电路芯片。使用80C51来构成各种控制系统,可大大简化硬件结构,降低成本。 1.系统构架 2.单片机复位电路 简单复位电路中,干扰易串入复位端,在大多数情况下不会造成单片机的错误复位,但会引起内部某些寄存器的错误复位,故为了保证复位电路的可靠性,将RC电路接斯密特电路后再接入单片机和外围IC的RESET引脚。 3.单片机晶振电路 晶振采用12MHz,即单片机的机器周期为1卩so 4.报警电路

晶体管共射极单管放大电路实验报告

实验二晶体管共射极单管放大器 一、实验目得 1.学会放大器静态工作点得调式方法与测量方法。 2.掌握放大器电压放大倍数得测试方法及放大器参数对放大倍数得影响。 3.熟悉常用电子仪器及模拟电路实验设备得使用。 二、实验原理 图2—1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E,以稳定放大器得静 态工作点。当在放大器得输入端加入输入信号后,在放大器得输出端便可 得到一个与输入信号相位相反、幅值被放大了得输出信号,从而实现了电 压放大。 三、实验设备 1、信号发生器 2、双踪示波器 3、交流毫伏表 4、模拟电路实验箱 5、万用表 四、实验内容 1.测量静态工作点 实验电路如图2—1所示,它得静态工作点估算方法为: UB≈

图2—1共射极单管放大器实验电路图 I E=≈Ic U CE=UCC-I C(RC+RE) 实验中测量放大器得静态工作点,应在输入信号为零得情况下进行。 1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V电源位置)。 2)检查接线无误后,接通电源。 3)用万用表得直流10V挡测量UE =2V左右,如果偏差太大可调节静态工作点(电位器RP)。然后测量U B、U C,记入表2—1中。 表2—1 测量值计算值UB(V) UE(V) UC(V)R B2(KΩ)U BE(V) UCE(V) I C(mA) 2、6 2 7、2 60 0、6 5、2 2 B2 量结果记入表2—1中。 5)根据实验结果可用:I C≈I E=或I C= UBE=U B-U E U CE=U C-UE 计算出放大器得静态工作点。 2.测量电压放大倍数

温度控制电路设计---实验报告

温度控制电路设计一、设计任务 设计一温度控制电路并进行仿真。 二、设计要求 基本功能:利用AD590作为测温传感器,T L 为低温报警门限温度值,T H 为高 温报警门限温度值。当T小于T L 时,低温警报LED亮并启动加热器;当T大于 T H 时,高温警报LED亮并启动风扇;当T介于T L 、T H 之间时,LED全灭,加热器 与风扇都不工作(假设T L =20℃,T H =30℃)。 扩展功能:用LED数码管显示测量温度值(十进制或十六进制均可)。 三、设计方案 AD590是美国ANALOG DEVICES公司的单片集成两端感温电流源,其输出电流与绝对温度成比例。在4V至30V电源电压范围内,该器件可充当一个高阻抗、恒流调节器,调节系数为1μA/K。AD590适用于150℃以下、目前采用传统电气温度传感器的任何温度检测应用。低成本的单芯片集成电路及无需支持电路的特点,使它成为许多温度测量应用的一种很有吸引力的备选方案。应用AD590时,无需线性化电路、精密电压放大器、电阻测量电路和冷结补偿。 主要特性:流过器件的电流(μA) 等于器件所处环境的热力学温度(K) 度数;AD590的测温范围为- 55℃~+150℃;AD590的电源电压范围为4~30 V,可以承受44V正向电压和20V反向电压,因而器件即使反接也不会被损坏;输出电阻为710mΩ;精度高,AD590在-55℃~+-150℃范围内,非线性误差仅为±0.3℃。 基本使用方法如右图。 AD590的输出电流是以绝对温度零度(-273℃)为基准, 每增加1℃,它会增加1μA输出电流,因此在室温25℃时,其 输出电流I out =(273+25)=298μA。 V o 的值为I o 乘上10K,以室温25℃而言,输出值为 10K×298μA=2.98V 。 测量V o 时,不可分出任何电流,否则测量值会不准。 温度控制电路设计框图如下: 温度控制电路框图 由于Multisim中没有AD590温度传感器,根据它的工作特性,可以采用恒流源来替代该传感器,通过改变电流值模拟环境温度变化。通过温度校正电路得

三极管共射极放大电路实验报告

实验报告 课程名称: 电路与模拟电子技术实验 指导老师: 张冶沁 成绩:__________________ 实验名称: 三极管共射极放大电路 实验类型: 电路实验 同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.学习共射放大电路的设计方法与调试技术; 2.掌握放大器静态工作点的测量与调整方法,了解在不同偏置条件下静态工作点对放大器性能的影响; 3.学习放大电路的电压放大倍数、输入电阻、输出电阻及频率特性等性能指标的测试方法; 4.了解静态工作点与输出波形失真的关系,掌握最大不失真输出电压的测量方法; 5.进一步熟悉示波器、函数信号发生器的使用。 二、实验内容和原理 1.静态工作点的调整与测量 2.测量电压放大倍数 3.测量最大不失真输出电压 4.测量输入电阻 5.测量输出电阻 6.测量上限频率和下限频率 7.研究静态工作点对输出波形的影响 三、主要仪器设备 示波器、信号发生器、万用表 共射电路实验板 四、操作方法和实验步骤 1.静态工作点的测量和调试 实验步骤: (1)按所设计的放大器的元件连接电路,根据电路原理图仔细检查电路的完整性。 (2)开启直流稳压电源,用万用表检测15V 工作电压,确认后,关闭电源。 (3)将放大器电路板的工作电源端与15V 直流稳压电源接通。然后,开启电源。此时,放大器处于工作状态。 (4)调节偏置电位器,使放大电路的静态工作点满足设计要求I CQ =6mA 。为方便起见,测量I CQ 时,一般采用测量电阻R C 两端的压降V Rc ,然后根据I CQ =V Rc /Rc 计算出I CQ 。 (5)测量晶体管共射极放大电路的静态工作点,并将测量值、仿真值、理论估算值记录在下表中进行比较。 2.测量电压放大倍数(R L =∞、R L =1k Ω) 专业: 姓名: 学号: 日期: 地点: 学生序号6

实验四 两级放大电路实验报告

实验四 两级放大电路 一、实验目的 l 、掌握如何合理设置静态工作点。 2、学会放大器频率特性测试方法。 3、了解放大器的失真及消除方法。 二、实验原理 1、对于二极放大电路,习惯上规定第一级是从信号源到第二个晶体管BG2的基极,第二级是从第二个晶体管的基极到负载,这样两极放大器的电压总增益Av 为: 2V 1V 1 i 1 O 2i 2O 1i 2O ,i 2O S 2O V A A V V V V V V V V V V A ?=?==== 式中电压均为有效值,且2i 1O V V =,由此可见,两级放大器电压总增益是单级电压增益的乘积,由结论可推广到多级放大器。 当忽略信号源内阻R S 和偏流电阻R b 的影响,放大器的中频电压增益为: 1be 2 be 1C 1be 1L 11i 1O S 1O 1V r r //R 1 r R V V V V A β-='β-=== 2 be L 2C 2 2be 2L 21O 2O 1i 2O 2V r R //R r R V V V V A β-='β-=== 2 be L 2C 2 1be 2be 1C 12V 1V V r R //R r r //R A A A β?β=?= 必须要注意的是A V1、A V2都是考虑了下一级输入电阻(或负载)的影响,所以第一级的输出电压即为第二级的输入电压,而不是第一级的开路输出电压,当第一级增益已计入下级输入电阻的影响后,在计算第二级增益时,就不必再考虑前级的输出阻抗,否则计算就重复了。 2、在两极放大器中β和I E 的提高,必须全面考虑,是前后级相互影响的关系。 3、对两级电路参数相同的放大器其单级通频带相同,而总的通频带将变窄。 ) dB (A log 20G 式中G G G V u o 2u o 1u uo =+= 三、实验仪器 l 、双踪示波器。 2、数字万用表。 3、信号发生器。 4、毫伏表 5、分立元件放大电路模块 四、实验内容 1、实验电路见图4-1

温度测量控制系统的设计与制作实验报告(汇编)

北京电子科技学院 课程设计报告 ( 2010 – 2011年度第一学期) 名称:模拟电子技术课程设计 题目:温度测量控制系统的设计与制作 学号: 学生姓名: 指导教师: 成绩: 日期:2010年11月17日

目录 一、电子技术课程设计的目的与要求 (3) 二、课程设计名称及设计要求 (3) 三、总体设计思想 (3) 四、系统框图及简要说明 (4) 五、单元电路设计(原理、芯片、参数计算等) (4) 六、总体电路 (5) 七、仿真结果 (8) 八、实测结果分析 (9) 九、心得体会 (9) 附录I:元器件清单 (11) 附录II:multisim仿真图 (11) 附录III:参考文献 (11)

一、电子技术课程设计的目的与要求 (一)电子技术课程设计的目的 课程设计作为模拟电子技术课程的重要组成部分,目的是使学生进一步理解课程内容,基本掌握电子系统设计和调试的方法,增加集成电路应用知识,培养学生实际动手能力以及分析、解决问题的能力。 按照本专业培养方案要求,在学完专业基础课模拟电子技术课程后,应进行课程设计,其目的是使学生更好地巩固和加深对基础知识的理解,学会设计小型电子系统的方法,独立完成系统设计及调试,增强学生理论联系实际的能力,提高学生电路分析和设计能力。通过实践教学引导学生在理论指导下有所创新,为专业课的学习和日后工程实践奠定基础。 (二)电子技术课程设计的要求 1.教学基本要求 要求学生独立完成选题设计,掌握数字系统设计方法;完成系统的组装及调试工作;在课程设计中要注重培养工程质量意识,按要求写出课程设计报告。 教师应事先准备好课程设计任务书、指导学生查阅有关资料,安排适当的时间进行答疑,帮助学生解决课程设计过程中的问题。 2.能力培养要求 (1)通过查阅手册和有关文献资料培养学生独立分析和解决实际问题的能力。 (2)通过实际电路方案的分析比较、设计计算、元件选取、安装调试等环节,掌握简单实用电路的分析方法和工程设计方法。 (3)掌握常用仪器设备的使用方法,学会简单的实验调试,提高动手能力。 (4)综合应用课程中学到的理论知识去独立完成一个设计任务。 (5)培养严肃认真的工作作风和严谨的科学态度。 二、课程设计名称及设计要求 (一)课程设计名称 设计题目:温度测量控制系统的设计与制作 (二)课程设计要求 1、设计任务 要求设计制作一个可以测量温度的测量控制系统,测量温度范围:室温0~50℃,测量精度±1℃。 2、技术指标及要求: (1)当温度在室温0℃~50℃之间变化时,系统输出端1相应在0~5V之间变化。 (2)当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。 输出端1电压小于3V并大于2V时,输出端2保持不变。 三、总体设计思想 使用温度传感器完成系统设计中将实现温度信号转化为电压信号这一要求,该器件具有良好的线性和互换性,测量精度高,并具有消除电源波动的特性。因此,我们可以利用它的这些特性,实现从温度到电流的转化;但是,又考虑到温度传感器应用在电路中后,相当于电流源的作用,产生的是电流信号,所以,应用一个接地电阻使电流信号在传输过程中转化为电压信号。接下来应该是对产生电压信号的传输与调整,这里要用到电压跟随器、加减运算电路,这些电路的实现都离不开集成运放对信号进行运算以及电位器对电压调节,所以选用了集成运放LM324和电位器;最后为实现技术指标(当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。输出端1电压小于3V并大于2V时,输出端2保持不变。)中的要求,选用了555定时器LM555CM。 通过以上分析,电路的总体设计思想就明确了,即我们使用温度传感器AD590将温度转化成电压信号,然后通过一系列的集成运放电路,使表示温度的电压放大,从而线性地落在0~5V这个区间里。最后通过一个555设计的电路实现当输出电压在2与3V这两点上实现输出高低电平的变化。

负反馈放大电路实验报告

实验二 由分立元件构成的负反馈放大电路 一、实验目的 1.了解N 沟道结型场效应管的特性和工作原理; 2.熟悉两级放大电路的设计和调试方法; 3.理解负反馈对放大电路性能的影响。 二、实验任务 设计和实现一个由N 沟道结型场效应管和NPN 型晶体管组成的两级负反馈放大电路。结型场效应管的型号是2N5486,晶体管的型号是9011。 三、实验内容 1. 基本要求:利用两级放大电路构成电压并联负反馈放大电路。 (1)静态和动态参数要求 1)放大电路的静态电流I DQ 和I CQ 均约为2mA ;结型场效应管的管压降U GDQ < - 4V ,晶体管的管压降U CEQ = 2~3V ; 2)开环时,两级放大电路的输入电阻要大于90kΩ,以反馈电阻作为负载时的电压放大倍数的数值 ≥ 120; 3)闭环电压放大倍数为10s o sf -≈=U U A u 。 (2)参考电路 1)电压并联负反馈放大电路方框图如图1所示,R 模拟信号源的内阻;R f 为反馈电阻,取值为100 kΩ。 图1 电压并联负反馈放大电路方框图 2)两级放大电路的参考电路如图2所示。图中R g3选择910kΩ,R g1、R g2应大于100kΩ;C 1~C 3容量为10μF ,C e 容量为47μF 。考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R f ,见图2,理由详见“五 附录-2”。 图2 两级放大电路 实验时也可以采用其它电路形式构成两级放大电路。 3.3k ?

(3)实验方法与步骤 1)两级放大电路的调试 a. 电路图:(具体参数已标明) ? b. 静态工作点的调试 实验方法: 用数字万用表进行测量相应的静态工作点,基本的直流电路原理。 第一级电路:调整电阻参数, 4.2s R k ≈Ω,使得静态工作点满足:I DQ 约为2mA ,U GDQ < - 4V 。记录并计算电路参数及静态工作点的相关数据(I DQ ,U GSQ ,U A ,U S 、U GDQ )。 实验中,静态工作点调整,实际4s R k =Ω 第二级电路:通过调节R b2,240b R k ≈Ω,使得静态工作点满足:I CQ 约为2mA ,U CEQ = 2~3V 。记录电路参数及静态工作点的相关数据(I CQ ,U CEQ )。 实验中,静态工作点调整,实际241b R k =Ω c. 动态参数的调试 输入正弦信号U s ,幅度为10mV ,频率为10kHz ,测量并记录电路的电压放大倍数 s o11U U A u =、s o U U A u =、输入电阻R i 和输出电阻R o 。 o1U s U o U 1u A

计算机温度控制实验报告1

目录 一、实验目的---------------------------------2 二、预习与参考------------------------------- 2 三、实验(设计)的要求与数据------------------- 2 四、实验(设计)仪器设备和材料清单-------------- 2 五、实验过程---------------------------------2 (一)硬件的连接- --------- ----------------------- 2 (二)软件的设计与测试结果--------------------------3 六、实验过程遇到问题与解决--------------------11 七、实验心得--------------------------------12 八、参考资料-------------------------------12

一、实验目的 设计制作和调试一个由工业控制机控制的温度测控系统。通过这个过程学习温度的采样方法,A/D变换方法以及数字滤波的方法。通过时间过程掌握温度的几种控制方式,了解利用计算机进行自动控制的系统结构。 二、预习与参考 C语言、计算机控制技术、自动控制原理 三、实验(设计)的要求与数据 温度控制指标:60~80℃之间任选;偏差:1℃。 1.每组4~5同学,每个小组根据实验室提供的设备及设计要求,设计并制作出实际电路组成一个完整的计算机温度控制测控系统。 2.根据设备情况以及被控对象,选择1~2种合适的控制算法,编制程序框图和源程序,并进行实际操作和调试通过。 四、实验(设计)仪器设备和材料清单 工业控制机、烘箱、温度变送器、直流电源、万用表、温度计等 五、实验过程 (一).硬件的连接 图1 硬件接线图

单级共射放大电路实验报告(完整资料).doc

【最新整理,下载后即可编辑】 单级共射放大电路实验报告 1.熟悉常用电子仪器的使用方法。 2.掌握放大器静态工作点的调试方法及对放大 器电路性能的影响。 3.掌握放大器动态性能参数的测试方法。 4.进一步掌握单级放大电路的工作原理。 二、实验仪器 1.示波器 2.信号发生器 3.数字万用表 4.交流毫伏表 5.直流稳压源 三、预习要求 1.复习基本共发射极放大电路的工作原理,并进 一步熟悉示波器的正确使用方法。 2.根据实验电路图和元器件参数,估算电路的静 态工作点及电路的电压放大倍数。 3.估算电路的最大不失真输出电压幅值。 4.根据实验内容设计实验数据记录表格。 四、实验原理及测量方法 实验测试电路如下图所示:

1.电路参数变化对静态工作点的影响: 放大器的基本任务是不失真地放大信号,实现输入变化量对输出变化量的控制作用,要使放大器正常工作,除要保证放大电路正常工作的电压外,还要有合适的静态工作点。放大器的静态工作点是指放大器输入端短路时,流过电路直流电流IBQ、ICQ及管子C、E极之间的直流电压UCEQ和B、E 极的直流电压UBEQ。图5-2-1中的射极电阻BE1、RE2是用来稳定放大器的静态工作点。其工作原理如下。 ○1用RB和RB2的分压作用固定基极电压UB。 由图5-2-1可各,当RB、RB2选择适当,满足I2远大于IB时,则有

UB=RB2·VCC/(RB+RB2)式中,RB、RB2和VCC都是固定不随温度变化的,所以基极电位基本上是一定值。 ○2通过IE的负反馈作用,限制IC的改变,使工作点保持稳定。具体稳定过程如下: T↑→IC↑→IE↑→UE↑→UBE ↓→IB↓→IC↓ 2.静态工作点的理论计算: 图5-2-1电路的静态工作点可由以下几个关系式确定 UB=RB2·VCC/(RB+RB2) IC≈IE=(UB-UBE)/RE UCE=VCC-IC(RC+RE) 由以上式子可知,,当管子确定后,改变V CC、RB、RB2、RC、(或RE)中任一参数值,都会导致静态工作点的变化。当电路参数确定后,静态工作点主要通过RP调整。工作点偏高,输出信号易产生饱和失真;工作点偏低,输出波形易产生截止失真。但当输入信号过大时,管子将工作在非线性区,输出波形会产生双向失真。当输出波形不很大时,静态工作点的设置应偏低,以减小电路的表态损耗。3.静态工作点的测量与调整: 调整放大电路的静态工作点有两种方法(1)将放大电路的输入端电路(即Ui=0),让其工作在直流状态,用直流电压表测量三极管C、E间的电压,调整电位器RP使UCE稍小于电源电压的1/2(本实

单级共射放大电路实验报告精编版

单级共射放大电路实验报告 一、实验目的 1.熟悉常用电子仪器的使用方法。 2.掌握放大器静态工作点的调试方法及对放大器电路性能的影响。 3.掌握放大器动态性能参数的测试方法。 4.进一步掌握单级放大电路的工作原理。 二、实验仪器 1.示波器 2.信号发生器 3.数字万用表 4.交流毫伏表 5.直流稳压源 三、预习要求 1.复习基本共发射极放大电路的工作原理,并进一步熟悉示波器的 正确使用方法。 2.根据实验电路图和元器件参数,估算电路的静态工作点及电路的 电压放大倍数。 3.估算电路的最大不失真输出电压幅值。 4.根据实验内容设计实验数据记录表格。 四、实验原理及测量方法 实验测试电路如下图所示:

1.电路参数变化对静态工作点的影响: 放大器的基本任务是不失真地放大信号,实现输入变化量对输出变化量的控制作用,要使放大器正常工作,除要保证放大电路正常工作的电压外,还要有合适的静态工作点。放大器的静态工作点是指放大器输入端短路时,流过电路直流电流IBQ、ICQ及管子C、E极之间的直流电压UCEQ 和B、E极的直流电压UBEQ。图5-2-1中的射极电阻BE1、RE2是用来稳定放大器的静态工作点。其工作原理如下。 ○1用RB和RB2的分压作用固定基极电压UB。 由图5-2-1可各,当RB、RB2选择适当,满足I2远大于IB时,则有 UB=RB2·VCC/(RB+RB2) 式中,RB、RB2和VCC都是固定不随温度变化的,所以基极电位基本上是一定值。 ○2通过IE的负反馈作用,限制IC的改变,使工作点保持稳定。具体稳定过程如下: T↑→IC↑→IE↑→UE↑→UBE↓→IB↓→IC↓ 2.静态工作点的理论计算: 图5-2-1电路的静态工作点可由以下几个关系式确定

温度控制器实验报告

单片机课程设计实验报告 ——温度控制器 班级:学号: 电气0806 姓名: 08291174 老师: 李长城 合作者: 姜久春 李志鹏

一、实验要求和目的 本课程设计的课题是温度控制器。 ●用电压输入的变化来模拟温度的变化,对输入的模拟电压通过 ADC0832转换成数字量输出。输入的电压为0.00V——5.00V, 在三位数码显示管中显示范围为00.0——99.9。其中0V对应00.0,5V对应99.9 ●单片机的控制目标是风机和加热器。分别由两个继电器工作来 模拟。系统加了一个滞环。适合温度为60度。 ◆当显示为00.0-50.0时,继电器A闭合,灯A亮,模拟加热 器工作。 ◆当显示为为50.0-55.0时,保持继电器AB的动作。 ◆当显示为55.0-65.0时,继电器A断开,灯A熄灭,模拟加 热器停止工作。 ◆当显示为65.0-70.0时,保持继电器AB的动作 ◆当显示为70.0-99.9时,继电器B闭合,灯B亮,模拟风机的 工作。 二、实验电路涉及原件及电路图 由于硬件系统电路已经给定,只需要了解它的功能,使用proteus 画出原理图就可以了。 实验设计的电路硬件有: 1、AT89S52 本温度控制器采用AT89C52单片机作为CPU,12MHZ晶振

AT89C52的引脚结构图: AT89C52是一个低电压,高性能CMOS 8位单片机,片内含8k bytes 的可反复擦写的Flash只读程序存储器和256 bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash 存储单元,功能强大的AT89C52单片机可为您提供许多较复杂系统控制应用场合。 AT89C52有40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口,3个16位可编程定时计数器,2个全双工串行通信口,2个读写口线,AT89C52可以按照常规方法进行编程,也可以在线编程。其将通用的微处理器和Flash存储器结合在一起,特别是可反复擦写的Flash存储器可有效地降低开发成本。 此外,AT89S52设计和配置了振荡频率可为0Hz并可通过软件设置

仿真实验四 共射极放大电路分析

仿真实验四 共射极放大电路分析 一、实验目的: (1)认真理解和掌握含三极管的非线性电路的特点 (2)使用Multisim 验证三极管的等效小信号模型 二、实验原理及实例 小信号分析法是分析非线性电阻电路的主要方法之一。在非线性电路中,同时有直流电压0U 和随时间变化变化的输入信号源s u t () 的作用。如果在任何时刻都有0U >s u t () ,则可以采用小信号分析法。 具体步骤如下: (1)画放大电路的小信号等效电路。 (2)估算be r 。为此,还要求得静态电流eq I (3)求电压增益V A 。 (4)计算输入、输出电阻o ,R R i 三、仿真实验设计 如下图所示求该电路的电压增益。 (1)当电路中只有直流电流作用时,求出静态工作点

2120.0454m 250800.0036312 1.104BE B C B CE C V I A K I I A V R I V ββ-= =Ω ====-= (2)画出该电路的小信号等效电路

计算相关参数: 26200(180)7730.0454 3.63 be r =++=Ω+ ()155.24770.63b C E V b BE i b be o C i R R A i R R R r R R k β=-=-=≈Ω ≈=Ω 对其仿真得: 由仿真结果可得67.56m 154.03435.23u O V i V V A V V = == 验证输入与输出的波形关系 :

可得到输入波形与输出波形为反向,所以-154.03V A = 测量输入、输出电阻的阻值: i 435771.30.435263.552824.40.0225i i O o V V R I mA V V R Io mA = ==Ω===Ω

负反馈放大电路实验报告

实验二由分立元件构成的负反馈放大电路 一、实验目的 1?了解N沟道结型场效应管的特性和工作原理; 2?熟悉两级放大电路的设计和调试方法; 3?理解负反馈对放大电路性能的影响。 二、实验任务 设计和实现一个由N沟道结型场效应管和NPN型晶体管组成的两级负反馈放大电路。结型场效应管的型号是2N5486,晶体管的型号是9011。 三、实验内容 1.基本要求:利用两级放大电路构成电压并联负反馈放大电路。 (1)静态和动态参数要求 1)放大电路的静态电流I DQ和I CQ均约为2mA结型场效应管的管压降U G DQ< - 4V ,晶体管的管压降U C EQ= 2?3V; 2)开环时,两级放大电路的输入电阻要大于90k Q,以反馈电阻作为负载时的电压放大倍数的数值 >120 ; 3)闭环电压放大倍数为A usf二U°,.U s、-10。 (2)参考电路 1)电压并联负反馈放大电路方框图如图1所示,R模拟信号源的内阻;R为反馈电阻, 取值为100 k Q o Rt 图1电压并联负反馈放大电路方框图 2)两级放大电路的参考电路如图2所示。图中%选择910k Q, R1、R2应大于100k Q; G?G容量为10疔,C e容量为47犷。考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R,见图2,理由详见五附录一2”。 i㈡ R T 井肘成大电谿 图2两级放大电路 实验时也可以采用其它电路形式构成两级放大电路。

(3)实验方法与步骤 1)两级放大电路的调试 a. 电路图:(具体参数已标明) b. 静态工作点的调试 实验方法: 用数字万用表进行测量相应的静态工作点,基本的直流电路原理。 第一级电路:调整电阻参数, R^^4.2kQ ,使得静态工作点满足:I D 哟为2mA U G DQ < -4V 。记录并计算电路参数及静态工作点的相关数据( I DQ , U G SQ LA ,U S 、U G D Q 。 实验中,静态工作点调整,实际 -4k '1 第二级电路:通过调节 氐,&2 : 40^ 1 ,使得静态工作点满足:I CQ 约为2mA U C EQ = 2? 3V 。记录电路参数及静态工作点的相关数据( | CQ L C EQ )。 实验中,静态工作点调整,实际 R b ^41k 11 c. 动态参数的调试 输入正弦信号 U S ,幅度为 10mV 频率为10kHz ,测量并记录电路的电压放大倍数 A1 =U °1 -U s 、A =U o.. U s 、输入电阻R 和输出电阻R °o XSC1 Rf1 100k| ?

相关主题
文本预览
相关文档 最新文档