当前位置:文档之家› 时间序列分析实验报告(3)汇总

时间序列分析实验报告(3)汇总

时间序列分析实验报告(3)汇总
时间序列分析实验报告(3)汇总

《时间序列分析》课程实验报告

一、上机练习(P124)

1.拟合线性趋势

12.79 14.02 12.92 18.27 21.22 18.81 25.73 26.27 26.75 28.73 31.71 33.95

程序:

data xiti1;

input x@@;

t=_n_;

cards;

12.79 14.02 12.92 18.27 21.22 18.81 25.73 26.27 26.75 28.73 31.71 33.95 ;

proc gplot data=xiti1;

plot x*t;

symbol c=red v=star i=join;

run;

proc autoreg data=xiti1;

model x=t;

output predicted=xhat out=out;

run;

proc gplot data=out;

plot x*t=1 xhat*t=2/overlay;

symbol2c=green v=star i=join;

run;

运行结果:

拟合:x t=a+bt+I t,t=1,2,3,…,12

分析:上图为拟合模型的参数估计值,其中a=9.7086,b=1.9829,它们的检验P值均小于

0.0001,即小于显著性水平0.05,拒绝原假设,故其参数均显著。从而所拟合模型为:

x t=9.7086+1.9829t.

分析:上图中绿色的线段为线性趋势拟合线,可以看出其与原数据基本吻合。

2.拟合非线性趋势

1.85 7.48 14.29 23.02 37.42 74.27 140.72

265.81 528.23 1040.27 2064.25 4113.73 8212.21 16405.95 程序:

data xiti2;

input x@@;

t=_n_;

cards;

1.85 7.48 14.29 23.02 37.42 74.27 140.72

265.81 528.23 1040.27 2064.25 4113.73 8212.21 16405.95 ;

proc gplot data=xiti2;

plot x*t;

symbol c=red v=star i=none;

run;

proc nlin method=gauss;

model x=a*b**t;

parameters a=0.1 b=1.1;

der.a=b**t;

der.b=a*t*b**(t-1);

output predicted=xh out=out;

run;

proc gplot data=out;

plot x*t=1 xh*t=2/overlay;

symbol2c=green v=none i=join;

run;

运行结果:

分析:上图为该时间序列的时序图,可以很明显的看出其基本是呈指数函数趋势慢慢递增的,故我们可以选择指数型模型进行非线性拟合:x t=ab t+I t,t=1,2,3,…,12

分析:由上图可得该拟合模型为:x t=1.0309*1.9958t+I t

分析:图中的红色星号为原序列值,绿色的曲线为拟合后的拟合曲线,可以看出原序列值与拟合值基本上是重合的,故该拟合效果是很好的。

3.X—11过程

40777 41778 43160 45897

41947 44061 44378 47237

43315 43396 44843 46835

42833 43548 44637 47107

42552 43526 45039 47940

43740 45007 46667 49325

44878 46234 47055 50318

46354 47260 48883 52605

48527 50237 51592 55152

50451 52294 54633 58802

53990 55477 57850 61978

程序:

data xiti3;

input x@@;

t=intnx('quarter','1jan1978'd,_n_-1);

format t yyq4.;

cards;

40777 41778 43160 45897

41947 44061 44378 47237

43315 43396 44843 46835

42833 43548 44637 47107

42552 43526 45039 47940

43740 45007 46667 49325

44878 46234 47055 50318

46354 47260 48883 52605

48527 50237 51592 55152

50451 52294 54633 58802

53990 55477 57850 61978

;

proc gplot data=xiti3;

plot x*t;

symbol c=red v=star i=join;

run;

proc x11 data=xiti3;

quarterly date=t;

var x;

output out=out b1=x d10=season d11=adjusted d12=trend d13=irr; data out;

set out;

estimate=trend*season/100;

proc gplot data=out;

plot x*t=1 estimate*t=2/overlay;

plot adjusted*t=1 trend*t=1 irr*t=1;

symbol1c=red i= join v=star;

symbol2c=black i= none v=star;

run;

运行结果:

分析:上图为该序列的时序图,可以很明显的看出其具有长期增长趋势,且具有季节波动,故我们用X-11过程进行拟合。

分析:上图为季节调整后的序列值时序图。

分析:上图为趋势拟合值序列时序图。

分析:上图中的红色线段为原序列值,黑色星星为拟合值,可以由图中看出该拟合值与原序列值基本上是重合的,故该拟合效果很好。

4.Forecost过程

程序:

data xiti4;

input x@@;

t=1949+_n_-1;

cards;

40777 41778 43160 45897

41947 44061 44378 47237

43315 43396 44843 46835

42833 43548 44637 47107

42552 43526 45039 47940

43740 45007 46667 49325

44878 46234 47055 50318

46354 47260 48883 52605

48527 50237 51592 55152

50451 52294 54633 58802

53990 55477 57850 61978

;

proc gplot data=xiti4;

plot x*t;

symbol c=red v=star i=join;

run;

proc forecast data=xiti4 method=stepar trend=2 lead=5 out=out outfull outest=est;

id t;

var x;

run;

proc gplot data=out;

plot x*t=_type_/href=2008;

symbol1i=join v=star c=black;

symbol2i=join v=none c=green;

symbol3i=join v=none c=red;

symbol4i=join v=none c=red;

run;

势,即trend=2.

的95%置信区间。

分析:此表为预测过程中相关参数及拟合效果,可以看到RSQUARE=0.9574111,拟合效果很好。

分析:上图为预测效果图,其中绿色的线段表示预测值,红色的代表预测的5期值的95%

置信区间,黑色的为原序列,可以看出其预测效果很好。

二、课后习题

7.某地区1962-1970年平均每头奶牛的月度产奶量数据(单位:磅)具体数据详见书P123 589 561 640 656 727 697 640 599 568 577 553 582

600 566 653 673 742 716 660 617 583 587 565 598

628 618 688 705 770 736 678 639 604 611 594 634

658 622 709 722 782 756 702 653 615 521 602 635

677 635 736 755 811 798 735 697 661 667 645 688

713 667 762 784 837 817 767 722 681 687 660 698

717 696 775 796 858 826 783 740 701 706 677 711

734 690 785 805 871 845 801 764 725 723 690 734

750 707 807 824 886 859 819 783 740 747 711 751

(1)绘制该序列的时序图,直观考察该序列的特点。

程序:

data lianxi1;

input x@@;

t=intnx('month','1jan1962'd,_n_-1);

format t date.;

cards;

589 561 640 656 727 697 640 599 568 577 553 582

600 566 653 673 742 716 660 617 583 587 565 598

628 618 688 705 770 736 678 639 604 611 594 634

658 622 709 722 782 756 702 653 615 521 602 635

677 635 736 755 811 798 735 697 661 667 645 688

713 667 762 784 837 817 767 722 681 687 660 698

717 696 775 796 858 826 783 740 701 706 677 711

734 690 785 805 871 845 801 764 725 723 690 734

750 707 807 824 886 859 819 783 740 747 711 751

;

proc gplot data=lianxi1;

plot x*t;

symbol c=red v=star i=join;

run;

分析:由上图的时序图可以很明显的看出该序列具有长期的增长趋势,且具有明显的季节效应。

(2)使用因素分解方法,拟合该序列的发展,并预测下一年该地区奶牛的月度产奶量。

程序:

proc forecast data=lianxi1 method=stepar trend=2lead=12out=out outfull outest=est;

id t;

var x;

run;

data out;

set out;

t=intnx('month','1jan1962'd,_n_-1);

proc gplot data=out;

plot x*t=_type_;

symbol1i=join v=star c=black;

symbol2i=join v=none c=green;

symbol3i=join v=none c=red;

symbol4i=join v=none c=red;

run;

分析:上图绿色的为拟合趋势图,后面的12个月就为所预测的1年的奶牛产奶量,上下两条红色的线为95%执行区间,黑色的为原序列时序图,故可以看出该拟合趋势和原序列基本重合,故后面的预测结果也比较可信。

(3)使用X-11方法,确定该序列的趋势。

程序:

proc x11 data=lianxi1;

monthly date=t;

var x;

output out=out b1=x d10=season d11=adjusted d12=trend d13=irr;

data out;

set out;

estimate=trend*season/100;

proc gplot data=out;

plot x*t=1 estimate*t=2/overlay;

plot adjusted*t=1 trend*t=1 irr*t=1;

symbol1c=red i= join v=star;

symbol2c=black i=join v=star;

run;

分析:上图中,红色的代表原序列,黑色的代表拟合的序列,可以看出除了在66年1月份左右有一点区别外,其余的基本上都与原序列重合,故该拟合效果很好。

8.某城市1980年1月至1995年8月每月屠宰生猪数量(单位:头)(数据详见书P123)

选择适当地模型拟合该序列的发展,并预测1995年9月至1997年9月该城市生猪屠宰数量。data lianxi2;

input x@@;

t=intnx('month','1jan1980'd,_n_-1);

format t date.;

cards;

76378 71947 33873 96428 105084 95741 110647 100331 94133 103055

90595 101457 76889 81291 91643 96228 102736 100264 103491 97027

95240 91680 101259 109564 76892 85773 95210 93771 98202 97922

100306 94089 102680 77919 93561 117032 81225 88357 106175 91922 104114 109959 97880 105386 96479 97580 109490 110191 90974 98981 107188 94177 115097 113696 114532 120110 93607 110925 103312 120184 103069 103351 111331 106161 111590 99447 101987 85333 86970 100561 89546 89265 82719 79498 74846 73819 77029 78446 86978 75878

69571 75722 64182 77357 63292 59380 78332 72381 55971 69750

85472 70133 79125 85805 81778 86852 69069 79556 88174 66698

72258 73445 76131 86082 75443 73969 78139 78646 66269 73776

80034 70694 81823 75640 75540 82229 75345 77034 78589 79769

75982 78074 77588 84100 97966 89051 93503 84747 74531 91900

81635 89797 81022 78265 77271 85043 95418 79568 103283 95770

91297 101244 114525 101139 93866 95171 100183 103926 102643 108387

97077 90901 90336 88732 83759 99267 73292 78943 94399 92937

90130 91055 106062 103560 104075 101783 93791 102313 82413 83534 109011 96499 102430 103002 91815 99067 110067 101599 97646 104930 88905 89936 106723 84307 114896 106749 87892 100506

;

proc gplot data=lianxi2;

plot x*t;

symbol c=red v=star i=join;

run;

proc forecast data=lianxi2 method=stepar trend=1lead=24out=out outfull outest=est;

id t;

var x;

run;

data out;

set out;

t=intnx('month','1jan1980'd,_n_-1);

proc gplot data=out;

plot x*t=_type_;

symbol1i=join v=star c=black;

symbol2i=join v=none c=green;

symbol3i=join v=none c=red;

symbol4i=join v=none c=red;

run;

分析:上图为该时间序列的时序图,可以很明显的看出该序列无长期趋势,但在每一年当中

由季节性变化。

分析:上图为预测的2年趋势图,红色的为95%置信区间,其中由绿色线与黑色线的情况可知该拟合效果还是比较可信的,基本的趋势大致是一样。

三、实验体会

针对不同的问题,首先要根据原序列的时序图分析后得到大致的拟合方案,然后才进行拟合。只有自己动手做了之后,才会发现不同的方法拟合出来的效果是不一样的,有时也需要我们对不同的方法进行拟合,最后选择自己认为最好的方法。同时在做的过程中也会出现一些问题,这就需要我们找出问题在哪里,然后给与解决。总之,通过此次试验,我还是学到了很多。

多元时间序列建模分析

应用时间序列分析实验报告

单位根检验输出结果如下:序列x的单位根检验结果:

1967 58.8 53.4 1968 57.6 50.9 1969 59.8 47.2 1970 56.8 56.1 1971 68.5 52.4 1972 82.9 64.0 1973 116.9 103.6 1974 139.4 152.8 1975 143.0 147.4 1976 134.8 129.3 1977 139.7 132.8 1978 167.6 187.4 1979 211.7 242.9 1980 271.2 298.8 1981 367.6 367.7 1982 413.8 357.5 1983 438.3 421.8 1984 580.5 620.5 1985 808.9 1257.8 1986 1082.1 1498.3 1987 1470.0 1614.2 1988 1766.7 2055.1 1989 1956.0 2199.9 1990 2985.8 2574.3 1991 3827.1 3398.7 1992 4676.3 4443.3 1993 5284.8 5986.2 1994 10421.8 9960.1 1995 12451.8 11048.1 1996 12576.4 11557.4 1997 15160.7 11806.5 1998 15223.6 11626.1 1999 16159.8 13736.5 2000 20634.4 18638.8 2001 22024.4 20159.2 2002 26947.9 24430.3 2003 36287.9 34195.6 2004 49103.3 46435.8 2005 62648.1 54273.7 2006 77594.6 63376.9 2007 93455.6 73284.6 2008 100394.9 79526.5 run; proc gplot; plot x*t=1 y*t=2/overlay; symbol1c=black i=join v=none; symbol2c=red i=join v=none w=2l=2; run; proc arima data=example6_4; identify var=x stationarity=(adf=1); identify var=y stationarity=(adf=1); run; proc arima; identify var=y crrosscorr=x; estimate methed=ml input=x plot; forecast lead=0id=t out=out; proc aima data=out; identify varresidual stationarity=(adf=2); run;

应用时间序列分析习题答案解析整理

第二章习题答案 2.1 (1)非平稳 (2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376 (3)典型的具有单调趋势的时间序列样本自相关图 2.2 (1)非平稳,时序图如下 (2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图

2.3 (1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118 (2)平稳序列 (3)白噪声序列 2.4 ,序列 LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。显著性水平=0.05 不能视为纯随机序列。 2.5 (1)时序图与样本自相关图如下

(2) 非平稳 (3)非纯随机 2.6 (1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机 第三章习题答案 3.1 解:1()0.7()()t t t E x E x E ε-=?+ 0)()7.01(=-t x E 0)(=t x E t t x ε=-)B 7.01( t t t B B B x εε)7.07.01()7.01(221Λ+++=-=- 229608.149 .011 )(εεσσ=-= t x Var 49.00212==ρφρ 022=φ 3.2 解:对于AR (2)模型: ?? ?=+=+==+=+=-3.05 .02110211212112011φρφρφρφρρφφρφρφρ 解得:???==15/115 /72 1φφ 3.3 解:根据该AR(2)模型的形式,易得:0)(=t x E 原模型可变为:t t t t x x x ε+-=--2115.08.0 2212122 ) 1)(1)(1(1)(σφφφφφφ-+--+-= t x Var 2) 15.08.01)(15.08.01)(15.01() 15.01(σ+++--+= =1.98232σ ?????=+==+==-=2209.04066.06957.0)1/(1221302112211ρφρφρρφρφρφφρ ?? ? ??=-====015.06957.033222111φφφρφ

时间序列分析实验报告(3)

《时间序列分析》课程实验报告

一、上机练习(P124) 1.拟合线性趋势 12.79 14.02 12.92 18.27 21.22 18.81 25.73 26.27 26.75 28.73 31.71 33.95 程序: data xiti1; input x@@; t=_n_; cards; 12.79 14.02 12.92 18.27 21.22 18.81 25.73 26.27 26.75 28.73 31.71 33.95 ; proc gplot data=xiti1; plot x*t; symbol c=red v=star i=join; run; proc autoreg data=xiti1; model x=t; output predicted=xhat out=out; run; proc gplot data=out; plot x*t=1 xhat*t=2/overlay; symbol2c=green v=star i=join; run; 运行结果:

分析:上图为该序列的时序图,可以看出其具有明显的线性递增趋势,故使用线性模型进行拟合:x t=a+bt+I t,t=1,2,3,…,12 分析:上图为拟合模型的参数估计值,其中a=9.7086,b=1.9829,它们的检验P值均小于0.0001,即小于显著性水平0.05,拒绝原假设,故其参数均显著。从而所拟合模型为:x t=9.7086+1.9829t.

分析:上图中绿色的线段为线性趋势拟合线,可以看出其与原数据基本吻合。 2.拟合非线性趋势 1.85 7.48 14.29 23.02 37.42 74.27 140.72 265.81 528.23 1040.27 2064.25 4113.73 8212.21 16405.95 程序: data xiti2; input x@@; t=_n_; cards; 1.85 7.48 14.29 23.02 37.42 74.27 140.72 265.81 528.23 1040.27 2064.25 4113.73 8212.21 16405.95 ; proc gplot data=xiti2; plot x*t; symbol c=red v=star i=none; run; proc nlin method=gauss; model x=a*b**t; parameters a=0.1 b=1.1; der.a=b**t; der.b=a*t*b**(t-1); output predicted=xh out=out; run; proc gplot data=out; plot x*t=1 xh*t=2/overlay;

应用时间序列分析试卷一

应用时间序列分析试卷 一 Document number【980KGB-6898YT-769T8CB-246UT-18GG08】

应用时间序列分析(试卷一) 一、 填空题 1、拿到一个观察值序列之后,首先要对它的平稳性和纯随机性进行检验,这两个重要的检验称为序列的预处理。 2、白噪声序列具有性质纯随机性和方差齐性。 3、平稳AR (p )模型的自相关系数有两个显着的性质:一是拖尾性;二是呈负指数衰减。 4、MA(q)模型的可逆条件是:MA(q)模型的特征根都在单位圆内,等价条件是移动平滑系数多项式的根都在单位圆外。 5、AR (1)模型的平稳域是{}11<<-φφ。AR (2)模型的平稳域是 {}11,12221<±<φφφφφ且, 二、单项选择题 1、频域分析方法与时域分析方法相比(D ) A 前者要求较强的数学基础,分析结果比较抽象,不易于进行直观解释。 B 后者要求较强的数学基础,分析结果比较抽象,不易于进行直观解释。 C 前者理论基础扎实,操作步骤规范,分析结果易于解释。 D 后者理论基础扎实,操作步骤规范,分析结果易于解释。 2、下列对于严平稳与宽平稳描述正确的是(D ) A 宽平稳一定不是严平稳。 B 严平稳一定是宽平稳。 C 严平稳与宽平稳可能等价。 D 对于正态随机序列,严平稳一定是宽平稳。 3、纯随机序列的说法,错误的是(B )

A时间序列经过预处理被识别为纯随机序列。 B纯随机序列的均值为零,方差为定值。 C在统计量的Q检验中,只要Q 时,认为该序列为纯随机序列,其 中m为延迟期数。 D不同的时间序列平稳性检验,其延迟期数要求也不同。 4、关于自相关系数的性质,下列不正确的是(D) A. 规范性; B. 对称性; C. 非负定性; D. 唯一性。 5、对矩估计的评价,不正确的是(A) A. 估计精度好; B. 估计思想简单直观; C. 不需要假设总体分布; D. 计算量小(低阶模型场合)。 6、关于ARMA模型,错误的是(C) A ARMA模型的自相关系数偏相关系数都具有截尾性。 B ARMA模型是一个可逆的模型 C 一个自相关系数对应一个唯一可逆的MA模型。 D AR模型和MA模型都需要进行平稳性检验。 7、MA(q)模型序列的预测方差为下列哪项(B) A、 []2 2 , Va() , l t l q r e l l q ξ ξ θθσ θθσ ?< ? =? > ?? 22 1-1 22 1q (1++...+) (1++...+) B、 []2 2 , Va() , l t l q r e l l q ξ ξ θθσ θθσ ?≤ ? =? > ?? 22 1-1 22 1q (1++?+) (1++?+) C、 []2 q 2 , Va() , t l l q r e l l q ξ ξ θθσ θθσ ?≤ ? =? > ?? 22 1-1 22 1 (1++?+) (1++?+) D、 []2 2 , Va() , l t l q r e l l q ξ ξ θθσ θθσ ?≤ ? =? > ?? 22 1-1 22 1q-1 (1++?+) (1++?+)

时间序列分析实验报告

时间序列分析实验报告 P185#1、某股票连续若干天的收盘价如表5-4 (行数据)所示。 表5-4 304 303 307 299 296 293301 293 301 295 284286 286 287 284 282278 281 278 277279 278 270 268 272 273 279 279280 275 271 277 278279 283 284 282 283279 280 280 279278 283 278 270 275 273 273 272275 273 273 272 273272 273 271 272 271273 277 274 274272 280 282 292 295 295 294 290 291 288 288 290 293 288 289 291 293 293 290 288 287 289 292 288 288 285 282 286 286 287 284 283 286 282 287 286 287 292 292 294 291 288 289 选择适当模型拟合该序列的发展,并估计下一天的收盘价。 解: (1)通过SA漱件画出上述序列的时序图如下: 程序: data example5_1; in put x@@; time=_ n_; cards ; 304 303 307 299296 293 301 293 301 295 284286286 287 284 282 278 281 278277 279 278 270 268 272 273279279 280 275 271 277 278 279283 284 282 283 279 280 280279278 283 278 270 275 273 273272 275 273 273 272 273 272273271 272 271 273 277 274 274272 280 282 292 295 295 294290291 288 288 290 293 288 289291 293 293 290 288 287 289292288 288 285 282 286 286 287284 283 286 282 287 286 287292292 294 291 288 289 proc gplot data =example5_1; plot x*time= 1; symbol1 c=black v=star i =join; run ; 上述程序所得时序图如下: 上述时序图显示,该序列具有长期趋势又含有一定的周期性,为典型的非平稳序列。又因为该序列呈现曲线形式,所以选择2阶差分。

(时间管理)应用时间序列分析实验手册

应用时间序列分析 实验手册

目录 目录 (2) 第二章时间序列的预处理 (3) 一、平稳性检验 (3) 二、纯随机性检验 (9) 第三章平稳时间序列建模实验教程 (10) 一、模型识别 (10) 二、模型参数估计(如何判断拟合的模型以及结果写法) (14) 三、模型的显著性检验 (17) 四、模型优化 (18) 第四章非平稳时间序列的确定性分析 (19) 一、趋势分析 (19) 二、季节效应分析 (34) 三、综合分析 (38) 第五章非平稳序列的随机分析 (44) 一、差分法提取确定性信息 (44) 二、ARIMA模型 (57) 三、季节模型 (62)

第二章时间序列的预处理 一、平稳性检验 时序图检验和自相关图检验 (一)时序图检验 根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界、无明显趋势及周期特征 例2.1 检验1964年——1999年中国纱年产量序列的平稳性 1.在Eviews软件中打开案例数据 图1:打开外来数据 图2:打开数据文件夹中案例数据文件夹中数据

文件中序列的名称可以在打开的时候输入,或者在打开的数据中输入 图3:打开过程中给序列命名 图4:打开数据

2.绘制时序图 可以如下图所示选择序列然后点Quick选择Scatter或者XYline;绘制好后可以双击图片对其进行修饰,如颜色、线条、点等 图1:绘制散点图 图2:年份和产出的散点图

100 200300400 5006001960 1970198019902000 YEAR O U T P U T 图3:年份和产出的散点图 (二)自相关图检验 例2.3 导入数据,方式同上; 在Quick 菜单下选择自相关图,对Qiwen 原列进行分析; 可以看出自相关系数始终在零周围波动,判定该序列为平稳时间序列。 图1:序列的相关分析

时间序列分析实验报告(3)

时间序列分析课程实验报告 《时间序列分析》课程实验报告

一、上机练习(P124) 1.拟合线性趋势 12.79 14.02 12.92 18.27 21.22 18.81 25.73 26.27 26.75 28.73 31.71 33.95 程序: data xiti1; input x@@; t=_n_; cards; 12.79 14.02 12.92 18.27 21.22 18.81 25.73 26.27 26.75 28.73 31.71 33.95 ; proc gplot data=xiti1; plot x*t; symbol c=red v=star i=join; run; proc autoreg data=xiti1; model x=t; output predicted=xhat out=out; run; proc gplot data=out; plot x*t=1 xhat*t=2/overlay; symbol2c=green v=star i=join; run; 运行结果:

分析:上图为该序列的时序图,可以看出其具有明显的线性递增趋势,故使用线性模型进行拟合:x t=a+bt+I t,t=1,2,3,…,12 分析:上图为拟合模型的参数估计值,其中a=9.7086,b=1.9829,它们的检验P值均小于 0.0001,即小于显著性水平0.05,拒绝原假设,故其参数均显著。从而所拟合模型为: x t=9.7086+1.9829t.

分析:上图中绿色的线段为线性趋势拟合线,可以看出其与原数据基本吻合。 2.拟合非线性趋势 1.85 7.48 14.29 23.02 37.42 74.27 140.72 265.81 528.23 1040.27 2064.25 4113.73 8212.21 16405.95 程序: data xiti2; input x@@; t=_n_; cards; 1.85 7.48 14.29 23.02 37.42 74.27 140.72 265.81 528.23 1040.27 2064.25 4113.73 8212.21 16405.95 ; proc gplot data=xiti2; plot x*t; symbol c=red v=star i=none; run; proc nlin method=gauss; model x=a*b**t; parameters a=0.1 b=1.1; der.a=b**t; der.b=a*t*b**(t-1); output predicted=xh out=out; run; proc gplot data=out; plot x*t=1 xh*t=2/overlay;

金融时间序列实验报告

· 《金融时间序列分析》 综合实验二 金融系金融工程专业2014 级姓名山洪国 学号20141206031048 实验地点:实训楼B305 实验日期:2017.04,21 实验题目:ARIMA模型应用 实验类型:基本操作训练 实验目的: 利用美元对欧元汇率1993年1月到2007年12月的月均价数据,进行ARIMA模型的识别、估计、检验及预测。 实验容: 1、创建Eviews文件,录入数据,对序列进行初步分析。绘制美元对欧元汇率月均价数据折线图,分析序列的基本趋势,初步判断序列的平稳性。 2、识别ARIMA(p,d,q)模型中的阶数p,d,q。运用单位根检验(ADF检验)确定单整阶数d;利用相关分析图确定自回归阶数p和移动平均阶数q。初步选择几个合适的备选模型。 3、ARIMA(p,d,q)模型的估计和检验。对备选模型进行估计和检验,并进行比较,

从中选择最优模型。 4、利用最优模型对2008年1月美元对欧元汇率的月均价进行外推预测。 评分标准:操作步骤正确,结果正确,分析符合实际,实验体会真切。 实验步骤: 1、根据所给的Excel 表格的数据,将表格的美元对欧元的汇率情况录入到EViews9中,并对所录入数据进行图形化的处理,所得到的图形结果如下图所示。(时间段:1993.01至2007.12) 0.6 0.7 0.8 0.9 1.0 1.1 1.2 EUR/USD 分析图形数据可得,欧元对美元的汇率波动情况较为明显,其中在1999年至2003年期间欧元和美元的比值一度在1.0以上。但近些年以来,欧元的汇率一度持续下滑,到了2007年底的时候和和美元的比值在0.7左右。

spss时间序列模型

《统计软件实验报告》SPSS软件的上机实践应用 时间序列分析

数学与统计学学院 一、实验内容: 时间序列是指一个依时间顺序做成的观察资料的集合。时间序列分析过程中最常用的方法是:指数平滑、自回归、综合移动平均及季节分解。 本次实验研究就业理论中的就业人口总量问题。但人口经济的理论和实践表明,就业总量往往受到许多因素的制约,这些因素之间有着错综复杂的联系,因此,运用结构性的因果模型分析和预测就业总量往往是比较困难的。时间序列分析中的自回归求积分移动平均法(ARIMA)则是一个较好的选择。对于时间序列的短期预测来说,随机时序ARIMA是一种精度较高的模型。 我们已辽宁省历年(1969-2005)从业人员人数为数据基础建立一个就业总量的预测时间序列模型,通过spss建立模型并用此模型来预测就业总量的未来发展趋势。 二、实验目的: 1.准确理解时间序列分析的方法原理 2.学会实用SPSS建立时间序列变量 3.学会使用SPSS绘制时间序列图以反应时间序列的直观特征。

4.掌握时间序列模型的平稳化方法。 5.掌握时间序列模型的定阶方法。 6.学会使用SPSS建立时间序列模型与短期预测。 7.培养运用时间序列分析方法解决身边实际问题的能力。 三、实验分析: 总体分析: 先对数据进行必要的预处理和观察,直到它变成稳态后再用SPSS对数据进行分析。 数据的预处理阶段,将它分为三个步骤:首先,对有缺失值的数据进行修补,其次将数据资料定义为相应的时间序列,最后对时间序列数据的平稳性进行计算观察。 数据分析和建模阶段:根据时间序列的特征和分析的要求,选择恰当的模型进行数据建模和分析。 四、实验步骤: SPSS的数据准备包括数据文件的建立、时间定义和数据期间的指定。 SPSS的时间定义功能用来将数据编辑窗口中的一个或多个变量指定为时间序列变量,并给它们赋予相应的时间标志,具体操作步骤是: 1.选择菜单:Date→Define Dates,出现窗口:

Eviews应用时间序列分析实验手册

应用时间序列分析实 验手册

目录

第二章时间序列的预处理 一、平稳性检验 时序图检验和自相关图检验 (一)时序图检验 根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界、无明显趋势及周期特征 例 检验1964年——1999年中国纱年产量序列的平稳性 1.在Eviews软件中打开案例数据 图1:打开外来数据 图2:打开数据文件夹中案例数据文件夹中数据 文件中序列的名称可以在打开的时候输入,或者在打开的数据中输入 图3:打开过程中给序列命名 图4:打开数据 2.绘制时序图 可以如下图所示选择序列然后点Quick选择Scatter或者XYline; 绘制好后可以双击图片对其进行修饰,如颜色、线条、点等 图1:绘制散点图 图2:年份和产出的散点图 图3:年份和产出的散点图

(二)自相关图检验 例 导入数据,方式同上; 在Quick菜单下选择自相关图,对Qiwen原列进行分析; 可以看出自相关系数始终在零周围波动,判定该序列为平稳时间序列。 图1:序列的相关分析 图2:输入序列名称 图2:选择相关分析的对象 图3:序列的相关分析结果:1.可以看出自相关系数始终在零周围波动,判定该序列为平稳时间序列2.看Q统计量的P值:该统计量的原假设为X的1期,2期……k 期的自相关系数均等于0,备择假设为自相关系数中至少有一个不等于0,因此如图知,该P值都>5%的显着性水平,所以接受原假设,即序列是纯随机序列,即白噪声序列(因为序列值之间彼此之间没有任何关联,所以说过去的行为对将来的发展没有丝毫影响,因此为纯随机序列,即白噪声序列.)有的题目平稳性描述可以模仿书本33页最后一段. (三)平稳性检验还可以用: 单位根检验:ADF,PP检验等; 非参数检验:游程检验 图1:序列的单位根检验

应用时间序列实验报告

河南工程学院课程设计 《时间序列分析课程设计》学生姓名学号: 学院:理学院 专业班级: 专业课程:时间序列分析课程设计指导教师: 2017年 6 月 2 日

目录 1. 实验一澳大利亚常住人口变动分析..... 错误!未定义书签。 实验目的............................................... 错误!未定义书签。 实验原理............................................... 错误!未定义书签。 实验内容............................................... 错误!未定义书签。 实验过程............................................... 错误!未定义书签。 2. 实验二我国铁路货运量分析........... 错误!未定义书签。 实验目的............................................... 错误!未定义书签。 实验原理............................................... 错误!未定义书签。 实验内容............................................... 错误!未定义书签。 实验过程............................................... 错误!未定义书签。 3. 实验三美国月度事故死亡数据分析...... 错误!未定义书签。 实验目的............................................... 错误!未定义书签。 实验原理............................................... 错误!未定义书签。 实验内容............................................... 错误!未定义书签。 实验过程............................................... 错误!未定义书签。课程设计体会 ............................ 错误!未定义书签。

时间序列实验报告

第三章平稳时间序列分析 选择合适的模型拟合1950-2008年我国邮路及农村投递线路每年新增里程数序列,见表1: 表1 1950-2008年我国邮路及农村投递线路每年新增里程数序列 一、时间序列预处理 (一)时间序列平稳性检验 1.时序图检验 (1)工作文件的创建。打开EViews6.0软件,在主菜单中选择File/New/Workfile, 在弹出的对话框中,在Workfile structure type中选择Dated-regular frequency(时间序列数据),在Date specification下的Frequency中选择Annual(年度数),在Start date中输入“1950”(表示起始年

份为1950年),在End date中输入“2008”(表示样本数据的结束年份为2008年),然后单击“OK”,完成工作文件的创建。 (2)样本数据的录入。选择菜单中的Quick/Empty group(Edit Series)命令,在弹出的Group对话框中,直接将数据录入,并分别命名为year(表示年份),X(表示新增里程数)。 (3)时序图。选择菜单中的Quick/graph…,在弹出的Series List中输入“year x”,然后单击“确定”,在Graph Options中的Specifi中选择“XYLine”,然后按“确定”,出现时序图,如图1所示: 图1 我国邮路及农村投递线路每年新增里程数序列时序图从图1中可以看出,该序列始终在一个常数值附近随机波动,而且波动的围有界,因而可以初步认定序列是平稳的。为了进一步确认序列的平稳性,还需要分析其自相关图。 2.自相关图检验 选择菜单中的Quick/Series Statistics/Correlogram...,在Series Name 中输入x(表示作x序列的自相关图),点击OK,在Correlogram Specification 中的Correlogram of 中选择Level,在Lags to include中输入24,点击OK,得到图2:

时间序列分析实验报告

时间序列分析SAS软件实验报告: 以我国2002第一季度到2012年第一季度国内生产总值数据(季节效应模型)分析 班级:统计系统计0姓名: 学号: 指导老师: 20 年月日

时间序列分析报告 一、前言 【摘要】2012年3月5日温家宝代表国务院向大会作政府工作报告。温家宝在报告中提出,2012年国内生产总值增长7.5%。这是我国国内生产总值(GDP)预期增长目标八年来首次低于8%。 温家宝说,今年经济社会发展的主要预期目标是:国内生产总值增长7.5%;城镇新增就业900万人以上,城镇登记失业率控制在4.6%以内;居民消费价格涨幅控制在4%左右;进出口总额增长10%左右,国际收支状况继续改善。同时,要在产业结构调整、自主创新、节能减排等方面取得新进展,城乡居民收入实际增长和经济增长保持同步。 他指出,这里要着重说明,国内生产总值增长目标略微调低,主要是要与“十二五”规划目标逐步衔接,引导各方面把工作着力点放到加快转变经济发展方式、切实提高经济发展质量和效益上来,以利于实现更长时期、更高水平、更好质量发展。提出居民消费价格涨幅控制在4%左右,综合考虑了输入性通胀因素、要素成本上升影响以及居民承受能力,也为价格改革预留一定空间。 对于这一预期目标的调整,温家宝解释说,主要是要与“十二五”规划目标逐步衔接,引导各方面把工作着力点放到加快转变经济发展方式、切实提高经济发展质量和效益上来,以利于实现更长时期、更高水平、更好质量发展。 央行货币政策委员会委员李稻葵表示,未来若干年中国经济增长速度会有所放缓,这个放缓是必要的,是经济发展方式转变的一个必然要求。 【关键词】“十二五”规划目标国内生产总值增长率增速放缓提高发展质量附表:国内生产总值(2012年1季度) 绝对额(亿元)比去年同期增长(%) 国内生产总值107995.0 8.1 第一产业6922.0 3.8 第二产业51450.5 9.1 第三产业49622.5 7.5 注1:绝对额按现价计算,增长速度按不变价计算。注2:该表为初步核算数据。 GDP环比增长速度 环比增长速度(%) 2011年1季度 2.2 2季度 2.3 3季度 2.4 4季度 1.9 2012年1季度 1.8 注:环比增长速度为经季节调整与上一季度对比的增长速度。 此表是我国2012年第一季度国内生产总值及与2011年同期比较来源:前瞻网

时间序列实验报告-R

实验报告 课程名称时间序列分析 实验项目名称ARCH建模 班级与班级代码1125040 实验室名称(或课室)北4-602 专业统计学 任课教师陈根 学号:11250401213 姓名:柯跃 实验日期:2014年6月08日 广东财经大学教务处制

姓名实验报告成绩 评语: 指导教师(签名) 年月日说明:指导教师评分后,实验报告交院(系)办公室保存。

一.实验目的: 将Merck股票从1946年6月到2008年12月的月简单收益变换成对数收益率,并解决下列问题: (a)对数收益率中有没有明显的相关性?用自相关系数和5%的显著性水平来 回答该问题。如果有,则移除序列相关性。 (b)此对数收益率存在ARCH效应么?如果(a)部分中有序列相关性,则该部分 用其残差序列。用Ljung-Box统计量,对收益率平方(或残差的平方)的6个间隔和12个间隔的自相关系数,在5%的显著性水平下回答该问题。(c)对数据识别一个ARCH模型,然后给数据拟合被识别的模型,写出所拟合 的模型。 二.实验设备: 计算机、R-3.0.3 三.实验过程及得出的结论: 1.加载安装包并引入实验数据 2.按实验目的输入实验代码,从运行结果得出结论 (a)①对数收益率中有显著的序列相关性。 通过自相关系数和5%的显著性水平解答:

02040 6080100 0.00.20.40 .60.8 1.0Lag A C F Series lmrk 图1 Merck 股票对数收益率的自相关系数 样本ACF 的值并没有在两个标准差之内,说明5%水平下它们与0有显著差别,对于对数收益率,Ljung-Box 统计量为Q(12)= 27.2364,对应的p 值为0.007144,p

应用时间序列实验报告

河南工程学院课程设计《时间序列分析课程设计》学生姓名学号: 学院:理学院 专业班级: 专业课程:时间序列分析课程设计 指导教师: 2017年6月2日

目录 1. 实验一澳大利亚常住人口变动分析 (1) 1.1 实验目的 (1) 1.2 实验原理 (1) 1.3 实验内容 (2) 1.4 实验过程 (3) 2. 实验二我国铁路货运量分析 (8) 2.1 实验目的 (8) 2.2 实验原理 (8) 2.3 实验内容 (9) 2.4 实验过程 (10) 3. 实验三美国月度事故死亡数据分析 (14) 3.1 实验目的 (14) 3.2 实验原理 (15) 3.3 实验内容 (15) 3.4 实验过程 (16) 课程设计体会 (19)

1.实验一澳大利亚常住人口变动分析 1971年9月—1993年6月澳大利亚常住人口变动(单位:千人)情况如表1-1所示(行数据)。 表1-1 (1)判断该序列的平稳性与纯随机性。 (2)选择适当模型拟合该序列的发展。 (3)绘制该序列拟合及未来5年预测序列图。 1.1 实验目的 掌握用SAS软件对数据进行相关性分析,判断序列的平稳性与纯随机性,选择模型拟合序列发展。 1.2 实验原理 (1)平稳性检验与纯随机性检验 对序列的平稳性检验有两种方法,一种是根据时序图和自相关图显示的特征做出判断的图检验法;另一种是单位根检验法。

(2)模型识别 先对模型进行定阶,选出相对最优的模型,下一步就是要估计模型中未知参数的值,以确定模型的口径,并对拟合好的模型进行显著性诊断。 (3)模型预测 模型拟合好之后,利用该模型对序列进行短期预测。 1.3 实验内容 (1)判断该序列的平稳性与纯随机性 时序图检验,根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常识值附近波动,而且波动的范围有界。如果序列的时序图显示该序列有明显的趋势性或周期性,那么它通常不是平稳序列。 对自相关图进行检验时,可以用SAS 系统ARIMA 过程中的IDENTIFY 语句来做自相关图。 而单位根检验我们用到的是DF 检验。以1阶自回归序列为例: 11t t t x x φε-=+ 该序列的特征方程为: 0λφ-= 特征根为: λφ= 当特征根在单位圆内时: 11φ< 该序列平稳。 当特征根在单位圆上或单位圆外时: 11φ≥ 该序列非平稳。 对于纯随机性检验,既白噪声检验,可以用SAS 系统中的IDENTIFY 语句来输出白噪声检验的结果。 (2)选择适当模型拟合该序列的发展

实验·6时间序列分析报告地spss应用

实验6 时间序列分析的spss应用 6.1 实验目的 学会运用SPSS统计软件创建时间数列,熟练掌握长期趋势线性模型拟合和季节变动测定的SPSS方法与技能。 6.2 相关知识(略) 6.3 实验内容 6.3.1 用SPSS统计软件创建时间序列的创建 6.3.2用SPSS统计软件处理长期趋势线性模型的拟合(最小二乘法、指数平滑法)及预测。 6.3.3掌握测定季节变动规律的SPSS测定方法。 6.4实验要求 6.4.1准备实验数据 6.4.2用SPSS统计软件创建彩电出口数量的时间序列 6.4.3用最小二乘法测定长期趋势,拟合线性趋势方程,并进行趋势预测。 6.4.4测定彩电出口数量的季节变动规律。 6.4.5用指数平滑法预测2014和2015年的彩电出口数量。 6.5 实验步骤 6.5.1 实验数据 为了研究某国彩电出口的情况,某研究机构收集了从2003-2013年某国彩电出口的月度数据,如表6-1所示。 表6-1 我国2003-2013年的我国彩电出口的月度数据(单位:万台)1月2月3月4月5月6月7月8月9月10月11月12月2003年12.53 13.73 24.45 28.75 32.45 31.11 25.94 32.98 43.49 42.94 63.29 77.28 2004年30.01 39.63 29.77 42.74 32.25 31.94 32.27 32.59 32.92 30.98 47.44 52.82 2005年24.08 16.42 31.24 29.33 31.88 30.09 28.08 32.99 44.99 47.57 50.36 75.19 2006年39.02 25.81 43.38 37.34 39.22 39.87 51.10 50.99 55.16 62.78 57.75 72.20 2007年28.76 39.38 46.10 39.41 38.74 40.18 45.59 43.31 46.68 54.17 53.65 61.12 2008年28.87 21.23 35.82 26.97 32.33 24.53 29.39 31.96 38.22 39.24 52.95 68.41

应用时间序列分析EVIEWS实验手册

河南财经政法大学应用时间序列分析实验手册 应用时间序列分析 实验手册

目录 目录 (2) 第一章Eviews的基本操作 (3) 第二章时间序列的预处理 (7) 一、平稳性检验 (7) 二、纯随机性检验 (15) 第三章平稳时间序列建模实验教程 (16) 一、模型识别 (16) 二、模型参数估计 (20) 三、模型的显著性检验 (23) 四、模型优化 (25) 第四章非平稳时间序列的确定性分析 (26) 一、趋势分析 (26) 二、季节效应分析 (41) 三、综合分析 (46) 第五章非平稳序列的随机分析 (52) 一、差分法提取确定性信息 (52) 二、ARIMA模型 (67) 三、季节模型 (73)

第一章Eviews的基本操作 The Workfile(工作簿) Workfile 就像你的一个桌面,上面放有许多Objects,在使用Eviews 时首先应该打开该桌面,如果想永久保留Workfile及其中的容,关机时必须将该Workfile存到硬盘或软盘上,否则会丢失。 (一)、创建一个新的Workfile 打开Eviews后,点击file/new/workfile,弹出一个workfile range对话框(图1)。 图1 该对话框是定义workfile的频率,该频率规定了workfile中包含的所有objects频率。也就是说,如果workfile的频率是年度数据,则其中的objects 也是年度数据,而且objects数据围小于等于workfile的围。 例如我们选择年度数据(Annual),在起始日(Start date)、终止日(End date)分别键入1970、1998,然后点击OK,一个新的workfile就建立了(图2)。

南邮时间序列实验报告

南京邮电大学 实验报告 实验名称:AR(p)模型的建立 ARMA模型 课程名称:应用时间序列 班级学号:B11080404 姓名:陈海霞 开课时间:2013 /2014 学年第二学期

实验 一 AR(p)模型的建立 一、 实验题目 设{}t ε是均值为0,方差为4的白噪声序列,(4)AR 模型的自回归系数为: 12340.9, 1.4,0.7,0.6a a a a =-=-=-=-, (1) 在计算机上模拟产生一个符合此模型的长为505的序列片断 (2) 用以上的前500个数据对时间序列进行建模 (3) 用递推预测法预测后5个数据,与真实数据作比较,检验预测效果。 二、 实验原理及结果分析 (1)AR (4)模型为:12340.9 1.40.70.6t t t t t t X X X X X ε----=----+,{}t ε是WN (0,4)。 首先产生706个白噪声序列{}t ε,在设定序列t {X }前4个值为0的情况下,产生后面706个t X 。取201X 到706X 之间505个数据,作为符合此模型的片段序列。 长为505的序列片断为 Columns 1 through 7 -1.6486 -1.2827 0.4863 3.6305 -2.1616 2.3075 -3.2600 Columns 8 through 14 -4.0617 6.6829 1.2724 -3.2541 -2.2762 6.0537 -0.8093 Columns 15 through 21 -2.7988 -0.4980 4.0827 -2.8195 0.1556 2.6400 -2.0984 Columns 22 through 28 3.0469 -3.0930 5.0175 -1.8583 -2.6975 3.9419 -2.4583 Columns 29 through 35 -0.9778 4.6628 -4.1501 3.4180 0.7833 -6.6836 4.8753 Columns 36 through 42 3.1626 -5.6393 2.7466 -0.0131 -0.5746 5.0387 -5.4597 Columns 43 through 49 -1.1448 9.3258 -7.2781 -1.8489 9.0824 -8.0117 -2.1088 Columns 50 through 56 4.9452 -3.2509 2.1783 -3.7674 -3.9564 6.2281 0.7752 Columns 57 through 63 -2.0820 -1.2922 -1.2861 3.7972 4.8990 -7.6666 -1.5087 Columns 64 through 70 6.9074 -4.6859 -4.4424 2.6415 5.3233 -3.3085 -4.9210 Columns 71 through 77 3.2859 3.3753 -0.4918 -6.0565 2.0189 6.5229 -6.2671 Columns 78 through 84

相关主题
文本预览
相关文档 最新文档