当前位置:文档之家› 四大光谱介绍

四大光谱介绍

四大光谱介绍
四大光谱介绍

四大光谱分析

Ⅰ目的要求

在研究有机化合物的过程中,往往要对未知物的结构加以测定,或要对所合成的目的物进行验证结构。其经典的方法有降解法和综合法。降解法是在确定未知物的分子式以后,将待测物降解为分子较小的有机物,这些较小的有机物的结构式都是已知的。根据较小有机物的结构及其他有关知识可以判断被测物的结构式。综合法是将已知结构的小分子有机物,通过合成途径预计某待测的有机物,将合成的有机物和被研究的有机物进行比较,可以确定其结构。经典的化学方法是研究有机物结构的基础,今天在有机物研究中,仍占重要地位。但是经典的研究方法花费时间长,消耗样品多,操作手续繁。特别是一些复杂的天然有机物结构的研究,要花费几十年甚至几代人的精力。近代发展起来的测定有机物结构的物理方法,可以在比较短的时间内,用很少量的样品,经过简单的操作就可以获得满意的结果。近代物理方法有多种,有机化学中应用最广泛的波谱方法是质谱、紫外和可见光谱,红外光谱,以及核磁共振谱,一般简称“四谱”。

编者乐于再次提醒读者,结构、反应、合成是有机化学的三大内容。其中“结构”包括结构理论和结构分析,而剖析结构的方法除化学方法外,就是本章介绍的四谱方法,而且后者比前者更重要。因为剖

析结构是有机化学的重要内容之一,所以必然是有机化学考核的重点内容之一,也是深造和科研必备的知识和技能,希望读者用心钻研之。

本教材将波谱设专章,置于羧酸及其衍生物之后,含氮化合物之前,其中介绍紫外光谱、红外光谱、核磁共振谱和质谱的基本知识,并在后续章加以应用。读者可以在学习四谱基本知识的基础上,系统总结多类有机化合物的四谱特征,并做一些综合运用四谱知识剖析结构的习题。

本章的重点是了解四谱的基本原理,并能够认识简单的谱图,综合四谱进行结构剖析和确证。

本章学习的具体要求:

1、了解紫外光谱的基本原理和解析方法。

2、运用紫外光谱进行定性和定量分析。

3、了解红外光谱的基本原理和表示方法。

4、了解各类基本有机化合物的特征频率,并借此识别有机物的简单红外光谱图。

5、了解核磁共振的基本原理。

6、弄清屏蔽效应、等性质子和不等性质子,化学位移、自旋偶合和裂分等基本概念。

7、能够认识基本有机化合物的核磁共振谱图。

8、了解质谱基本原理和表示方法。

9、熟悉离子碎裂的机理和多类有机物裂解的规律。

10、熟悉质谱应用。

11、能够综合运用四谱知识和化学知识,剖析有机分子结构。

Ⅱ 学习提要

读者在学习本章之前,可以先复习一下物理学中的相关概念——光的基本性质方面的几个概念。

⑴光具有波粒二象性 E=hν=hc/λ,λ=c/ν,λν1~=

。熟悉波长λ、频率ν、波数~ν、能量E 的概念、单位及相互关系。

⑵熟悉电磁波谱图,包括紫外光区、红外光区的划分。

⑶了解分子总的能量E 的组成,它包括E 平动能,电子运动能E 电、分子振动能量E 振和分子转动能量E 转。电磁波(光波)照射物质时,分

子要吸收一部分辐射,但是,吸收是量子化的,即只吸收某些特定频率的辐射,吸收的能量可以激发电子到较高的能级或增加分子振动能级和转动能级,从而产生特征的分子吸收光谱。其中电子能级差最大、振动能级差次之,转动能级差最小。只有恰好等于某个能级差时,分子才能吸收。

⑷了解吸收光谱与分子结构的关系。分子中不同的基团表现出不同的吸收特征,因此,确定分子的吸收光谱可以推测分子可能存在的官能团。

⑸了解分子能级裂化与光谱的关系。读者要了解吸收光谱的分类,以及电磁波谱区域与相应波谱方法的对应关系。

①紫外光谱法:波长在200—400nm 的近紫外光,激发n 及π电

子跃迁

②红外光谱法:波长在2.5—15μm激发振动与转动

③核磁共振波谱法:波长在无线电波1—1000m激发原子核自旋能级。

质谱不同于以上三谱,不属于吸收光谱。它不是描述一个分子吸收不同波长电磁波的能力,而是记录化合物蒸汽在高真空系统中,受到能量很小的电子束轰击后生成碎片正离子的情况。

⑹光吸收定律

透射率T=透射光/入射光=I/I0,吸光度A=-logT=εbc(L-B定律)

⑺物质吸收谱带的特征

主要特征:位置(波长)及强度(几率)

(一)紫外光谱(Ultraviolet Spectra,UV)(电子光谱)

一、基本原理

1、分子轨道形成与σ,π及n轨道。

读者应习惯于用分子轨道表示分子结构。处在分子轨道中的价电子主要涉及σ,π,n,价电子的跃迁产生uv:σ→σ*π→π*n→n*其能量次序大致为σ<π<n<π*<σ*据此,可以比较不同类型能级跃迁所需能量的大小,以及与吸收峰波长的关系。

2、电子能级和跃迁类型

σ→δ*200nm以下,远红外区,饱和碳氢化合物,例如,CH4λmax =125nm。

n→π*200-400nm,近红外区,适用于含杂原子的双键或杂原子上的孤电子对与碳上π电子形成p-π共轭,R带λmax=310nm。

π→π*乙烯型E带,E1λmax=184nm ,E2λmax=204nm;丁二烯型K带,λmax=217nm苯型B带λmax=256nm。

n→σ*200nm左右,含杂原子O,S,N,Br,I等类型的饱和化合物。例如,CH3OHλmax=183nm。

3、发色团(略)

4、助色团及其对光谱的影响

助色团—OH,—OR,—NHR,—SH,—SR,—Cl,—Br,—I 以及烷基等。烷基斥电基,蓝移;p-π共轭,红移。

5、溶剂极性影响。

二、不饱和有机物的紫外吸收带及计算方法

目前还不能完全从理论上估计各种发色团和共轭系统的紫外吸收峰值,但可以从大量实验数据中,归纳出一些经验公式,从而估计最大吸收峰值(λmax)。

1、共轭烯烃

⑴共轭二烯、三烯、四烯的紫外吸收带

在环烯烃中,共轭双键的位置对uv有很大影响。如果共轭双烯键的两个双键中间的单键为环的一部分,则称此为环二烯。环二烯可

分为同环二烯、异环二烯、半环二烯()

CH2

对于共轭二、三、四烯,可以利用伍德瓦尔—费塞尔经验规则计算λmax值。如果结构合理,一般计算值与实验值比较接近。

但该规则不适合交叉共轭体系(例,半环二烯),也不适合于芳香系统。

在计算中,如遇既可取同环二烯又可取异环二烯为母体,则应取跃迁时所需能量最低的二烯作母体。

由于分子中各基团之间的相互作用,或空间阻碍,常使该规则产生误差。在这方面已有对此规则作了修正[见J.Ory.Chem.24,436(1959);29,3527(1964)]。通常,反式异构体及λmax 其ε都大于相应的顺式异构体。

溶剂对这类化合物λmax的影响忽略不计。

光谱中出现符合某一发色团的特征吸收谱带时,只能作为该发色团可能存在的证明,而不能确定其存在;但若推断的吸收峰不存在,则可作为该发色团不存在的相当可靠的证据。

2、共轭多烯的紫外吸收带

费塞尔—肯恩(Kubn)公式

λmax (已知溶液)=114+5m+n(48.0-1.7n)-16.5R(环内)-10R(环外)

m取代烷基数

n共轭双键数(n>4)

R(环内)——含环内双键的环数

R(环外)——含环外双键的环数

例: 全反式β—胡萝卜素

λmax 基本值 114nm

m=10 +50nm

n=11 +322.3nm

R(环内)=2 - 33nm

R(环外)=0 0nm

λmax 计算值 453.0 nm

实测值 452 nm

3、α,β-不饱和羰基化合物

可按经验规则计算λmax ,它不但受发色团碳原子上取代基的影响而且还明显受溶剂极性影响。

4、芳香族化合物

苯分子紫外光谱在E 1λmax =184nm 、E 2λmax =204nm 和(B 带)256nm 附近出现三个吸收带。其中E1带检测不到;比较重要的是B 带,苯型带受溶剂影响很大。 ⑴一元取代物uv

⑵二元取代物uv

⑶多环芳烃uv

Me Me

Me Me Me Me Me Me Me

Me Me (略)

⑷杂环化合物uv

三、紫外光谱仪(略)

1、结构原理

2、双光束、自动记录式紫外—可见分光光度计(双分散系统)

(二)红外光谱

一、基本原理

1、红外光谱

红外光谱是由于分子吸收了红外光的能量之后发生振动能级和转动能级的跃迁而产生的一种吸收光谱。

红外光谱是指 λ=2.5—1μm 相当于 =4000~625cm -1,这种光只能对应分子振动能级和转动能级的跃迁。

2、红外光谱的表示方法及特征。 用不同λ、ν或 的红外光照射样品,依次测定百分透射率(T%),有时也用百分吸收率(A%),然后以T%作纵坐标,以λ或 作横坐标,作图,即得一张IR 谱图。

由于吸收强度通常是用T%来表示,所以吸收愈强,曲线愈向下,IR 谱图上的那些“谷”,实际上是“吸收峰”,又称吸收带。纵坐标表示分子对某波长的红外光吸收的强度,横坐标指出了吸收峰出现的位置。在IR 谱图中,吸收峰一般不按其绝对吸光强度表示,而是粗略的分为:强(S)、弱(W)、中强(m);并按形状分为:尖(sh)、宽(b)等。ν ~

ν ~ ν

~

上述属性均是分子振动能级跃迁而引起的,而且均与分子的构造有严格的因果关系。

二、多原子分子的简正振动与吸收带的位置、形状、相对强度的关系。

1、简正振动

分子处在不断的振动之中,其振动方式可以分为两大类:

⑴伸缩振动。(键长改变而键角不变)

这种振动与机械振动很相似。几种伸缩振动还可以偶合而成新的振动。新的伸缩振动分为对称伸缩振动和不对称伸缩振动。

⑵弯曲(变角)振动。(键角变化,而键长不变);也可有偶合。

面内剪式

变角振动摇摆式

面外扭曲式

摇摆式

对于双原子分子,如H—Cl,只有一种伸缩振动;有机分子都是多原子分子,所以振动方式就很多。可以证明,对于非线性分子,有3n-6种振动;线性分子则有3n-5种振动(n为分子中的原子数)(复习物理学)例如CH4就是3×5-6=9种振动。

2、红外光谱吸收与强度

⑴分子吸收红外光的条件。

分子吸收红外光必须满足下面两个条件:

①分子振动过程中,只有偶极距发生变化的那种振动方式才能吸

收红外光,从而在红外光谱中出现吸收带。这种振动方式称为红外活性。反之,振动过程中偶极距不发生变化的振动方式是红外非活性的,虽然红外辐射引起分子振动,但不能吸收红外光。

②振动光谱的跃迁规律是△ν=±1,±2……

⑵红外吸收带强度 决定于跃迁几率。几率=t E h

202022)4(μπ E 0——红外波的电场矢量;μ0——跃迁偶极距。

μ0不同分子的永久偶极表明振动时偶极距变化的大小。上式表明,谱带强度取决于振动时偶极距变化的大小。分子振动时偶极距变化大吸收强度愈大。一般极性较强的分子或基团吸收强度比较强,极性比较弱的分子或基团吸收强度比较弱。如果振动偶合为0,即并不引起偶极距变化,则不能产生红外吸收。但是,即使极性很强的基团,其红外吸收谱带强度比电子跃迁产生的紫外—可见吸收带的强度小2—3个数量基。

3、基本频率 分子的每一种振动,与机械振动的振动一样,都有一个固有的振动频率,叫做基本频率,示以0ν,可以证明:

B

A B

A m m m m f +=21

0ν式中f 为联结两个原子的化学键的强度,称为键力常数。B A m m :为联结两个原子的质量,

B A B A m m m m +为折合质量。 由于通常伸缩振动所需的能量大于变角振动的能量,所以f 伸缩>

f 变角,而且键能大的f 大。例如f 伸缩C≡C >f 伸缩C =C >f 变角C -C ,利用上述关系式可以计算各类化学键的ν。(略)

太阳光谱中的暗线

原子吸收光谱法之 任务 5 原子吸收光谱法基本原理 教学任务 p解释原子吸收光谱法的基本原理和原子吸收分光光度计的结构设计; p解释共振线、分析线、谱线轮廓、积分吸收、峰值吸收等基本概念; p说明谱线轮廓变宽的主要原因和吸光度与待测元素浓度的关系:原子吸收现象发现;原子吸 收法特点;分析流程;原子吸收产生;分析线轮廓;定量关系 教学方法 p教师讲解 教学学时 p以 40 人为学习组,需 4 学时 教学设计 p问题引入,教师讲解,学生讨论,教师总结 问题:如何测定天体的组成? 天文学研究中经常需要测定各种恒星、行星的组成、结构,然而,这些星球距离我们非常遥远 并且恒星表面具有极高的温度使我们无法接近,不可能直接取样进行测定,天文学家是如何知道天 体组成的呢? 原子吸收光谱的发现与发展 早在 1802 年,伍朗斯顿(W.H.Wollaston)在研究太阳连续光谱时,就发现了太阳连续光谱中 出现的暗线,图 4-1。 1859 年,克希荷夫(G.Kirchhoff)与本生(R.Bunson)在研究碱金属和碱土金属的火焰光谱 时,发现钠蒸气发出的光通过温度较低的钠蒸气时,会引起钠光的吸收,并且根据钠发射线与暗线

在光谱中位置相同这一事实,断定太阳连续光谱中的暗线,正是太阳外围大气圈中的钠原子对太阳 光谱中的钠辐射吸收的结果。 1955 年澳大利亚的瓦尔西(A.Walsh)发表了他的著名论文”原子吸收光谱在化学分析中的应 用”奠定了原子吸收光谱法的基础。 50 年代末和 60 年代初,Hilger, Varian Techtron 及 Perkin-Elmer 公司先后推出了原子吸收 光谱商品仪器,发展了瓦尔西的设计思想。到了60 年代中期,原子吸收光谱开始进入迅速发展的时 期。 1959 年,苏联里沃夫提出了电热原子化技术。电热原子吸收光谱法的绝对灵敏度可达到 10 -12 -10 -14 g,使原子吸收光谱法向前发展了一步。 近年来,塞曼效应和自吸效应扣除背景技术的发展,使在很高的的背景下亦可顺利地实现原子吸 收测定。 近年来,计算机、微电子、自动化、人工智能技术和化学计量等的发展,各种新材料与元器件 的出现,大大改善了仪器性能,使原子吸收分光光度计的精度和准确度及自动化程度有了极大提高, 使原子吸收光谱法成为痕量元素分析的灵敏且有效方法之一,广泛地应用于各个领域。使用连续光 源和中阶梯光栅,结合使用光导摄象管、二极管阵列多元素分析检测器,设计出了微机控制的原子 吸收分光光度计,为解决多元素同时测定开辟了新的前景。微机控制的原子吸收光谱系统简化了仪 器结构,提高了仪器的自动化程度,改善了测定准确度,使原子吸收光谱法的面貌发生了重大的变 化。联用技术(色谱-原子吸收联用、流动注射-原子吸收联用)日益受到人们的重视。色谱-原子吸收 联用,不仅在解决元素的化学形态分析方面,而且在测定有机化合物的复杂混合物方面,都有着重 要的用途,是一个很有前途的发展方向。 通过上面的介绍,请讨论原子吸收现象如何应用到分析化学领域。 (教师可以以原子吸收测定水中镁、铜为例引导学生原子吸收与浓度的关系) 原子吸收法概述 依据原子蒸气对特征谱线的吸收进行定量分析测定对象:金属元素及少数非金属元素 (利用仪器操作软件上的元素选择功能显示原子吸收测量的所有元素) 原子吸收光谱法的特点和应用范围 原子吸收光谱法是基于测量蒸气中基态原子对特征光波的吸收,测定化学元素含量的方法。 根据基态原子对特征波长光的吸收,测定试样中待测元素含量的分析方法。是上世纪 50 年代中 期出现并在以后逐渐发展起来的一种新型的仪器分析方法,它在地质、冶金、机械、化工、农业、

半导体的带间光吸收谱曲线

半导体的带间光吸收谱曲线 Xie Meng-xian. (电子科大,成都市) (1)光吸收系数: 半导体吸收光的机理主要有带间跃迁吸收(本征吸收)、载流子吸收、晶格振动吸收等。吸收光的强弱常常采用描述光在半导体中衰减快慢的参量——吸收系数α来表示;若入射光强为I,光进入半导体中的距离为x,则定义: 吸收系数的单位是cm-1。 (2)带间光吸收谱曲线的特点: 对于Si和GaAs的带间跃迁的光吸收,测得其吸收系数a与光子能量hν的关系如图1所示。这种带间光吸收谱曲线的特点是:①吸收系数随光子能量而上升;②各种半导体都存在一个吸收光子能量的下限(或者光吸收长波限——截止波长),并且该能量下限随着温度的升高而减小(即截止波长增长);③GaAs的光吸收谱曲线比Si的陡峭。 为什么半导体的带间光吸收谱曲线具有以上一些特点呢?——与半导体的能带结构有关。 (3)对带间光吸收谱曲线的简单说明: ①因为半导体的带间光吸收是由于价带电子跃迁到导带所引起的,则光吸收系数与价带和导带的能态密度有关。而在价带和导带中的能态密度分布较复杂(在自由电子、球形等能面近似下,能态密度与能量是亚抛物线关系),不过在价带顶和导带底附近的能态密度一般都很小,因此,发生在价带顶和导带底附近之间跃迁的吸收系数也就都很小;随着能量的升高,能态密度增大,故吸收系数就相应地增大,从而使得吸收谱曲线随光子能量而上升。 但是由于实际半导体能带中能态密度分布函数的复杂性,而且电子吸收光的跃迁还必须符合能量守恒、动量守恒和量子力学的跃迁规则——选择定则,所以就导致半导体光吸收谱曲线变得很复杂,可能会出现如图1所示的台阶和多个峰值或谷值。 ②因为价电子要能够从价带跃迁到导带,至少应该吸收禁带宽度Eg大小的能量,这样才能符合能量守恒规律,所以就存在一个最小的光吸收能量——光子能量的下限,该能量下限也就对应于光吸收的长波限——截止波长λg :

分形理论在光谱识别中的应用

第26卷,第4期 光谱学与光谱分析Vol 126,No 14,pp7722774 2006年4月 Spectroscopy and Spectral Analysis April ,2006  分形理论在光谱识别中的应用 熊宇虹,温志渝,张流强,温中泉,梁玉前 重庆大学光电工程学院,重庆 400044 摘 要 分形理论是研究一类不规则、混乱复杂,但其局部和整体具有相似性体系的科学。分形维数是分形 理论中用于描述对象的不规则度和自相似性的基本度量。文章以符合朗伯2比尔定律的光谱信号为研究对象,在概述分形几何基本原理的基础上,提出了以分形维数作为光谱识别特征的方法,运用相空间重构得出了光谱信号的分形维数,通过对光谱信号的分形维数进行比较,达到识别不同光谱的目的,最后举例对该方法进行了说明。 主题词 分形;分形维数;光谱分析;光谱识别中图分类号:TP39 文献标识码:A 文章编号:100020593(2006)0420772203  收稿日期:2005201228,修订日期:2005206228  基金项目:国家自然科学基金重点项目(69476023)和国家“863”项目(2004AA4040,2004AA404023),国家自然科学基金(60308007)和重庆 市“十五”攻关项目(7341;8149)资助  作者简介:熊宇虹,1971年生,重庆大学光电工程学院博士研究生 引 言 分形理论是数学家曼德布罗特创立的,主要研究一类不 规则、混乱复杂,但其局部和整体具有相似性体系的科学[1]。由于其在描述复杂现象方面的独特作用,从而在自然科学和社会科学的众多领域得到了广泛应用,为人们研究复杂问题提供了新方法,开辟了新视野[2]。 光谱识别技术是光谱定性分析的基础。随着光谱学和计算机技术的发展,光谱识别已成为光谱分析技术的重要组成部分。本文以符合朗伯2比尔定律的光谱信号为研究对象,探讨了分形理论在光谱识别中的应用。在概述分形几何基本原理的基础上,提出了以分形维数作为光谱识别特征的方法,运用相空间重构得出了光谱信号的分形维数,通过对光谱信号的分形维数进行比较,达到识别不同光谱的目的,最后以常见的中药材党参及其伪品夜关门为例对该方法进行了说明。 1 分形和分形维数[325] 分形理论经过了许多年的发展,在不同的时期人们对分形下过不同的定义,但迄今为止还没有一个确切、简明、令人满意的定义,一般而言,把分形看作具有如下典型性质的集合F , (1)F 具有精细结构,即有任意小比例的细节;(2)F 是如此不规则,以致它的局部和整体都不能用传 统的几何语言来描述; (3)F 通常有某种自相似的形式,可以是近似的或是统计的; (4)一般地,F 的“分形维数”大于它的“拓扑维数”; (5)在大多数情况下,F 可以用非常简单的方法定义,可以由迭代产生。 一般而言,如果所研究的对象满足上述性质中的全部或大部,即使有某个性质例外,也并不影响把其称为分形。 分形维数是分形理论中用于描述对象的不规则度和自相似性的基本度量,在一定区间内具有标度不变性。数学家以Hausdorrf 维数为基础,定义了多种维数,如盒维数、信息维数、关联维数、广义维数和自相似维数等。这些维数从不同的方面刻画了分形集的分形特征。其中关联维数计算简单,可以由一维时间序列利用相空间重构的方法直接计算得出,因而应用较普遍,其基本计算过程如下, 假设{x k }为观测得到的时间序列,其中k =1,2,…,h 。对该时间序列采用时间差法进行相空间重构,重构结果记为y n (m ,p )=(x n ,x n+p ,…,x n+(m-1)p ),其中n =1,2,…,h -m +1,p =a Δt 为时间延迟,Δt 为数据采样的时间间隔,a 为任意整数,m 为嵌入维数。 在y n 中,凡是距离小于给定正数r 的矢量称为关联矢量,计算一下有多少对关联矢量,它在一切可能的配对中所占的比例称为关联积分,

对太阳光谱中神秘图谱的解释

光学 波动说 托马斯·杨出生在英国索默塞特郡(Somersetshire)的米尔弗顿(Milverton),我们要感谢他,因为他复兴了被忽略了一个世纪之久的光的波动说。这位伟大的科学家有一个非凡的幼年时代。在他两岁时他就能很流畅地读书,当他4岁时,他已通读了两遍圣经;当他6岁时,他能整篇地背诵“哥德斯密思的荒村”( Goldsndth′s Deserted Village)。他一目数行,贪婪地阅读各种书籍,无论是古典的、文学的或是科学上的著作;说出奇怪,在他的发育成长中,他的体力和智力并没有减退。在他约16岁时,由于他反对贩卖奴隶,他戒用食糖。在他19岁时,他开始先在伦敦、而后在爱丁堡、哥丁根、最后在剑桥学医。1800年他开始在伦敦行医。第二年他接受了皇家研究院自然哲学教授的职务,这个研究院是由伦福德伯爵在这之前一年建立的京城科学院。他担任这个职务有两年之久。从1802年的1月到5月,他作了一系列讲演。这些讲演和后来的一系列讲演以《关于自然哲学和机械工艺的讲演》(Lectures on Natural Philosophy and the Mechanical Arts)为题在 1807年出版,这本论丛今天还值得一读。1802年他被委任为皇家研究院的外事 秘书。他担任这个职务直到他生命的最后一刻为止。 杨的最早研究是关于眼睛的构造和光学特性。而后,1801—1804年是他光学发现的第一个时期。他的学说受到嘲笑,于是他着手其他的研究工作。连续有12个年头,他花费在医疗职业和语言学的研究上,特别是辨读象形文字的著作。然而,当法国菲涅耳开始光学实验并且特别突出杨的理论时,杨才重新恢复他早期的研究,进人了他的光学研究的第二个时期。 1801年,杨在皇家学会宣读了关于薄片颜色的论文,他在这里表示他自己强烈地倾向光的波动说。干涉原理的引人是这篇文章跨出的重大一步。“两个在方向上或者是完全一致或者是很接近的不同光源的波动,它们的联合效应是每一种光的运动的合成。”这个原理的不完全的暗示曾出现在胡克的《显微术》(Mcrogrophia)中,但杨直到他独自取得新见解之后才知道这些暗示。杨第一次彻底地用干涉原理解释了声和光。他以这个原理解释了薄片的色彩和刻条纹的表面或“条纹面”的衍射颜色。杨的观察是以极大的精密度作的,但是,他说明这些观测事实的方式,正如他的大部分论文一样,是简洁而有点模糊不清的。他的包含有重要的干涉原理的论文成为自牛顿的时代以来发行的最重要的物理光学出版物。但它们并未在科学界留有印象。布鲁厄姆在《爱丁堡评论》(Edinburgh Review)第Ⅱ期和第Ⅳ期上对这些论文发起了猛烈的攻

太阳光谱的连续偏振

太阳光谱的连续偏振(加主页资料扣扣免财富值) 摘要:我们提出一个由可见太阳光谱中的辐射散射引起的连续偏振的理论研究。比较了来自九个不同的太阳模型大气的结果。断定了中心—边缘变化(CLV)以及依赖于连续偏振的波长,并且确定了模型大气依赖的来源。关键的物理量是散射系数和偏振形成层的温度梯度。 这里发展了可见光每个波长的接近理论连续偏振CLV的一个简单解析函数。假设产生偏振的散射层光学性地稀薄,并位于连续强度的形成层,然后建立在第一近似值上。解析函数的应用范围从偏振规模有用的零电平测定到使用经验性的中心—边缘曲线来约束太阳模型大气的诊断工作。 1.简介 最近的观察显示了太阳结构丰富的偏振,被称为“第二个太阳光谱”,因为它与普通未极化的强度谱没有丝毫相似之处,因此包含至少部分互补信息。这个结构是由于来自连续介质和线条同样重要的混合影响。连续谱通过辐射散射获得线性极化,主要是来自中性氢的瑞利散射和自由电子的汤森散射在。谱线的极化是由于原子束缚跃迁的相干散射引起的,并且由普遍存在的磁场而发生改变。 为了充分理解涉及到的不同的物理过程,我们需要解决它们。在本文中我们从连续谱开始。除了更好地理解物理学,这样一个研究在限制太阳模型大气和决策观测的极化规模零水平上很有用处。 利用太阳模型大气,输入通过数值解决偏振辐射的传输方程来获得的连续介质极化。不同的模型大气给出了不同程度的极化。因此和实验数据的比较可以使我们在几个太阳大气模型中进行选择。这种从4500?到8000?对于连续介质窗口的具有10-5的偏振灵敏度的观测在计划中但尚未提供。 对于具有汉勒效应的湍流磁场的诊断,需要精确知道真正的极化规模的零水平。汉勒效应,一个发生在当前磁场中的相干散射的相干现象在,导致了谱线核心的去极化。由于谱线和连续介质的极化通常是同一个数量级的,因此不能使用连续水平作为线性极化的参考。真正的极化零水平必须作为参考。由于仪器影响,真正的极化规模的零水平不具备足够的精度。然而,从理论思考中了解连续介质的极化程度,观察中的零水平可以确定。 在第二节中我们将描述相关的物理理论,数值技术和太阳模型大气的使用。在第三节中给出了两个计算机代码的测试。在第四节中我们通过阐述吸收,散射系数和温度梯度的角色,加强了对有关数量物理性的深刻理解。这是特别重要的是要知道连续介质极化形成层,因为它通常被假定位于连续介质强度形成层的上面。我们将说明这两层实际上是重叠的。最后,在第五节中,用以描述整个可见光谱范围连续介质极化的中心—边缘变化(CLV)的一个简单解析表达式被推导出并与理论数据作了拟合,提供整套计算极化值的一个便捷的近似算法表示。 2.理论方法 2.1.相关物理过程 为了定量描述辐射传输,物理过程必须被理解。传统上的区别是由纯吸收和散射之间产生的。这里我们关注导致连续谱的流程。 辐射场能量的纯吸收部分转换成气体的动能,从而被热化。作为第一次被Wildt 提出的,氢阴离子H?主宰了太阳光球中的连续介质吸收,也就是可见的连续介质

差分吸收光谱技术DOAS

差分吸收光谱技术(DOAS:Differential Optical Absorption Spectroscopy)是一种光谱监测技术,其基本原理就是利用空气中的气体分子的窄带吸收特性来鉴别气体成分,并根据窄带吸收强度来推演出微量气体的浓度.凭借其低廉且简单的设备装置和出色的监测能力,DOAS技术在大气监测领域内在国外已经被广泛应用.鉴于国内的污染形势的日益严峻及对此新兴技术知识的匮乏,对于DOAS技术的工作原理、浓度反演方法及其在大气研究领域内的应用与发展前景做了较为详细的介绍,为今后在大气监测领域里研究和应用DOAS技术提供了必要的理论知识. DOAS技术主要是以大气中的痕量污染气体对紫外和可见光波段的特征吸收光谱为基础,通过特征吸收光谱鉴别大气污染气体的类型和浓度,因此适用于在该波段有特征吸收的气体分子。 D0As是基于痕量气体分子的窄带吸收特征的检测。吸收的光强度遵守Lambert-Beer吸收定律,同时要考虑散射对测量的影响,如考虑瑞利散射(Rayleigh)、米散射(Mie)的影响。 为了消除Rayleigh散射和Mie散射等的影响,在数学上通常采用滤波技术,将包含在大气吸收光谱中由分子吸收引起的光谱变化分离出来。这种数学上的处理是基于:由Rayleigh散射和Mie散射等引起的光学厚度的变化随波长缓慢变化,而由分子吸收特性引起的光学厚度的变化随波长快速变化。为此将散射引起的光谱变化称为“宽带”光谱(低频部分),将分子吸收引起的光谱变化称为“窄带”光谱(高频部分)。计算过程中使用高通滤波器将随波长快速变化的“窄带”光谱分离出来,被分离出来的分子吸收光谱用参考光谱进行拟合,来计算出存在于被测大气中的光吸收物质的浓度。这就是差分吸收光谱法的基本思想。 图所示δ0为随波长缓慢变化的“宽带”光谱部分,δ…随波长快速变化的“窄带”光谱部 分,即差分吸收截面 总的吸收截面δ减去数字平滑计算得到的δ…就是差分吸收截面

(完整word版)实验五 高锰酸钾吸收光谱曲线的绘制及含量测定

实践五高锰酸钾吸收光谱曲线的绘制及含量测定 一、实践目的 1、掌握紫外-可见分光光度计的操作方法。 2、熟悉紫外-可见分光光度计的基本构造及作用。 3、会依据吸收光谱曲线确定最大吸收波长。 4、会用标准曲线法测定高锰酸钾样品溶液的含量。 二、实践原理 高锰酸钾溶液呈紫红色,在可见光区有吸收,利用此可绘制吸收光谱曲线。通过吸收光谱曲线确定最大吸收波长,在最大吸收波长处进行含量测定。因此可以用紫外-可见分光光度法对高锰酸钾溶液进行定性和定量分析。 三、实践仪器、药品和试剂 1、仪器 紫外-可见分光光度计;分析天平;5mL移液管2支;1000mL容量瓶;25mL 容量瓶6个;100mL烧杯。 2、药品和试剂 高锰酸钾对照品(固体);高锰酸钾样品溶液。 四、实践内容 (一) 配制溶液 1、配制标准溶液(125mg/L) 精密称取高锰酸钾对照品0.1250g置100mL烧杯中,溶解后,定量转移 1000mL容量瓶中,用纯化水稀释至标线,摇匀,即为高锰酸钾标准溶液 (125mg/L)。 2、配制标准系列 分别精密量取1.00、2.00、3.00、4.00和5.00(mL)高锰酸钾标准溶液 (125mg/L),置于25mL容量瓶中,纯化水稀释至标线,摇匀。标准系列中各标准溶液的浓度依次为5.0、10.0、15.0、20.0和25.0(mg/L)。 3、配制样品溶液 精密量取高锰酸钾样品溶液5.00ml,置25mL容量瓶中,纯化水稀释至标线,摇匀。即为高锰酸钾供试品溶液。

(二) 绘制吸收光谱曲线 以纯化水为空白溶液调节仪器基线后,测定标准系列中溶液浓度为 15.0mg/L和高锰酸钾供试品溶液的吸收光谱曲线,并从吸收光谱曲线中确定最大吸收波长,比较二者的吸收光谱曲线和最大吸收波长。 (三) 测定溶液吸光度 1、标准曲线的绘制 在λmax处,以纯化水为空白溶液调节基线后,依次将标准系列各标准溶液放入光路中,测其吸光度A值。以浓度(c)为横坐标,吸光度值(A)为纵坐标,绘制标准曲线。 2.高锰酸钾供试品溶液的测定 在与绘制标准曲线相同的测定条件下,测定高锰酸钾供试品溶液吸光度值(A)。从标准曲线中查A值所对应的高锰酸钾供试品溶液的溶度c样。 (四) 岛津UV2450紫外-可见分光光度计的操作规程 (1)开机前检查仪器是否正常,如检查样品室内有无挡光物。 (2)分别开启紫外-可见分光光度计主机和计算机电源,从计算机桌面“UVProbe"进人操作程序。 (3)点击“连接”进人紫外-可见分光光度计自检系统,自检过程中,切勿开启样品室门,自检无误后进入主工作程序。 (4)编辑测定方法,输人所需数据。 (5)用纯化水分别清洗2个石英比色杯(手拿磨砂面)3次,再用空白溶液各洗3次,分别装入2/3的空白溶液,用镜头纸将比色杯外壁溶液吸干。 (6)打开样品室门,分别将比色杯放入样品池及参比池中,即置各自光路中。 关好样品室门。进行零点校正。 (7)将样品池中空白溶液更换为供试品溶液,置光路中,关好样品室门、测量吸光度值或吸收光谱曲线。 (8)关闭操作程序、紫外-可见分光光度计和计算机电源。清洗比色杯。 紫外可见分光光度计使用注意事项如下: (1)检测器预热时必须等待所有指示灯变为绿色,才可进行下一步操作。(2)放人比色杯时务必小心轻放,确保比色杯已完全进人光路中。 (3)必须扫描基线,空白溶液即未加样品的溶液,必须与样品溶液一致。(4)扫描过程中切忌打开或试图打开样品室门。

光谱学及其应用

光谱学及其应用 摘要:光谱学是光学的一个分支学科,它主要研究各种物质的光谱的产生及其同物质之间的相互作用。光谱是电磁辐射按照波长的有序排列,根据实验条件的不同,各个辐射波长都具有各自的特征强度。通过光谱的研究,人们可以得到原子、分子等的能级结构、能级寿命、电子的组态、分子的几何形状、化学键的性质、反应动力学等多方面物质结构的知识。但是,光谱学技术并不仅是一种科学工具,在化学分析中它也提供了重要的定性与定量的分析方法。 关键词:发展简史;内容;发射;吸收;分析;应用 光谱学的发展简史 光谱学的研究已有一百多年的历史了。1666年,牛顿把通过玻璃棱镜的太阳光分解成了从红光到紫光的各种颜色的光谱,他发现白光是由各种颜色的光组成的。这是可算是最早对光谱的研究。 其后一直到1802年,渥拉斯顿观察到了光谱线,其后在1814年夫琅和费也独立地发现它。牛顿之所以没有能观察到光谱线,是因为他使太阳光通过了圆孔而不是通过狭缝。在1814~1815年之间,夫琅和费公布了太阳光谱中的许多条暗线,并以字母来命名,其中有些命名沿用至今。此后便把这些线称为夫琅和费暗线。 实用光谱学是由基尔霍夫与本生在19世纪60年代发展起来的;他们证明光谱学可以用作定性化学分析的新方法,并利用这种方法发现了几种当时还未知的元素,并且证明了太阳里也存在着多种已知的元素。 从19世纪中叶起,氢原子光谱一直是光谱学研究的重要课题之一。在试图说明氢原子光谱的过程中,所得到的各项成就对量子力学法则的建立起了很大促进作用。这些法则不仅能够应用于氢原子,也能应用于其他原子、分子和凝聚态物质。 氢原子光谱中最强的一条谱线是1853年由瑞典物理学家埃斯特朗探测出来的。此后的20年,在星体的光谱中观测到了更多的氢原子谱线。1885年,从事天文测量的瑞士科学家巴耳末找到一个经验公式来说明已知的氢原子诺线的位置,此后便把这一组线称为巴耳末系。继巴耳末的成就之后,1889年,瑞典光谱学家里德伯发现了许多元素的线状光谱系,其中最为明显的为碱金属原子的光谱系,它们也都能满足一个简单的公式。 尽管氢原子光谱线的波长的表示式十分简单,不过当时对其起因却茫然不知。一直到1913年,玻尔才对它作出了明确的解释。但玻尔理论并不能解释所观测到的原子光谱的各种特征,即使对于氢原子光谱的进一步的解释也遇到了困难。 能够满意地解释光谱线的成因的是20世纪发展起来的量子力学。电子不仅具有轨道角动量,而且还具有自旋角动量。这两种角动量的结合便成功地解释了光谱线的分裂现象。 电子自旋的概念首先是在1925年由乌伦贝克和古兹密特作为假设而引入的,以便解释碱金属原子光谱的测量结果。在狄喇克的相对论性量子力学中,电子自旋(包括质子自旋与中子自旋)的概念有了牢固的理论基础,它成了基本方程的自然结果而不是作为一种特别的假设了。 1896年,塞曼把光源放在磁场中来观察磁场对光三重线,发现这些谱线都是偏振的。现在把这种现象称为塞曼效应。次年,洛伦兹对于这个效应作了满意的解释。 塞曼效应不仅在理论上具有重要意义,而且在应用中也是重要的。在复杂光谱的分类中,塞曼效应是一种很有用的方法,它有效地帮助了人们对于复杂光谱的理解。

太阳光谱介绍

太阳光谱介绍(描述分类AM0, AM1.5) 太阳表面温度接近6000K,因此其放射光谱几乎等同于该温度下的黑体辐射,并且光谱照射是并无方向性的,地球与太阳相距约一亿5千万公里远,而能到达地球表面的光子,几乎只有正向入射至地球表面的光谱所贡献,到达地球大气圈表面的光谱辐射能量定义为太阳常数(solar constant),其数值大约1.353 kW/m2,因此大气圈外的太阳光谱定义为AM0,其中大气质量(air mass)用来估量因为大气层吸收后,所导致影响太阳光谱表现与总体能量值,而这些能量值亦是地球表面应用的太阳电池组件所能运用的。图二说明大气质量的计算方法,大气质量数值常是使用Air Mass =1/cos θ来计算的,其中θ=0所代表的是太阳光线从头顶上方直射下来,而由上述的计算市中可知,地球表面用以衡量太阳光谱的大气质量值是大于等于1,目前被惯以使用的太阳光谱AM1.5,即是太阳光入射角偏离头顶46.8度,当太阳光照射到地球表面时,由于大气层与地表景物的散射与折射的因素,会多增加百分之二十的太阳光入射量,抵达地表上所使用的太阳电池表面,其中这些能量称之为扩散部份(diffusion component),因此针对地表上的太阳光谱能量有AM1.5G (global)与AM1.5D(direct)之分,其中 AM1.5G即是有包含扩散部分的太阳光能量,而AM1.5D则没有。图三所表示的即是大气圈外(AM0)与地表上(AM1.5)太阳光能量光谱。 图二、大气质量的计算方法示意图 图三、大气圈外(AM0)与地表上(AM1.5)太阳光能量光谱

太空用的太阳电池组件电性量测所使用的标准光谱是以AM0,而地面上应用的太阳电池组件电性量测所使用的标准光谱,依其应用性之不同,可采用AM1.5G 或是AM1.5D,其中AM1.5G光谱的总照度为963.75W/m2,而AM1.5D光谱的总照度为768.31W/m2,在量测计算应用上方便,常会将此二值做归一化(normalize)至1000 W/m2。 太阳光源仿真器 太阳电池组件的电性量测,是可分别于户外(outdoor)或是室内(indoor)来进行的,而太阳电池组件会有容易受到温度、照度影响与地利位置等因素的影响,所以在户外进行量测所得到的数据不易有再现性与可比较性,虽不利于太阳电池的研究开发之用,但对于已完成的太阳电池模块的实际发电效率监控却是有莫大的帮助,基于前述理由,目前主要的太阳电池组件量测工作,大多数都于室内来进行测试,组件电性量测过程所需的太阳光线,是利用太阳光仿真器(solar simulator)来提供近似太阳光谱的光源,同时因为太阳电池组件的电力输出,与太阳光频谱有着密不可分的关系。因此太阳光仿真器的优劣,即会大大影响组件的测试结果,因此有美国标准量测规范ASTM E927、IEC 60904-9 与JIS C8912 等标准来规范太阳光仿真器的等级区分,综合光源的照射强度均匀性(No uniformity of total irradiance)、照射不稳定性(Temporal instability of irradiance)、光谱合致度(spectral match),将太阳光仿真器等级分为A、B、C三个等级,如表一所示。目前常用的单一光源太阳光仿真器有卤素灯泡(tungsten–halogen lamp, ELH) 与Xe灯泡(Xenon lamp)为主,卤素灯泡搭配dichroic filter所组成的太阳光仿真器属于C级,主要是因为其在波长0.7~0.8μm范围能量过高,在0.4~0.5μm范围能量却不足,而使用Xe灯与合适AM1.5G filter所组成的太阳光仿真器,其光谱波长短于0.8μm范围可达A级,而在0.8~1.2μm波长范围有着强烈的原子放射波段(atomic line),虽无法达到完全近似太阳光谱,但对于传统的单一接面(single junction)太阳电池组件电性量测来说是足够的。 表一、太阳光仿真器分级标准 太阳电池光谱响应量测 太阳电池组件的光谱响应特性,直接影响着组件能量转换效率表现,而太阳电池光谱响应量测(spectrum response measurement)的物理意义是测试太阳电池所产生光电流对应吸收光谱波段范围,因此对于研究开发太阳电池而言,了解组件对太阳光谱的响应特性是相当重要的,不仅是可用于太阳电池组件的电性量测输出特性的修正,亦是做为多接面太阳电池(multi-junction solar cell)组件设计重要

光谱技术的简介、应用与发展

光谱技术的简介、应用与发展 光波是由原子内部中运动的电子产生的。由于每种物质的原子内部电子的运动情况都不同,所以它们发射的光波也不同。研究不同物质的发光以及吸收光的情况,有很重要的理论和实际意义,现在已成为一门专业的学科光谱学。 发射光谱物体发光直接产生的光谱叫做发射光谱。发射光谱有两种类型,连续光谱和明线光谱。 连续分布的包含有从红光到紫光各种色光的光谱叫做连续光谱。炽热的固体、液体和高压气体的发射光谱是连续光谱。例如电灯丝发出的光、炽热的钢水发出的光都形成连续光谱。只含有一些不连续的亮线的光谱叫做明线光谱。明线光谱中的亮线叫做谱线,各条谱线对应于不同波长的光。稀薄气体或金属的蒸气的发射光谱是明线光谱。明线光谱是由游离状态的原子发射的,所以也叫原子光谱。观察气体的原子光谱,可以使用光谱管,它是一支中间比较细的封闭的玻璃管,里面装有低压气体,管的两端有两个电极。把两个电极接到高压电源上,管里稀薄气体发生辉光放电,产生一定颜色的光。 观察固态或液态物质的原子光谱,可以把它们放到煤气灯的火焰或电弧中去烧,使它们气化后发光,就可以从分光镜中看到它们的明线光谱。 实验证明,原子不同,发射的明线光谱也不同,每种元素的原子都有一定的明线光谱。每种原子只能发出具有本身特征的某些波长的光,因此,明线光谱的谱线叫做原子的特征谱线。利用原子的特征谱线可以鉴别物质和研究原子的结构。 吸收光谱高温物体发出的白光(其中包含连续分布的一切波长的光)通过物质时,某些波长的光被物质吸收后产生的光谱,叫做吸收光谱。例如,让弧光灯发出的白光通过温度较低的钠气(在酒精灯的灯心上放一些食盐,食盐受热分解就会产生钠气),然后用分光镜来观察,就会看到在连续光谱的背景中有两条挨得很近的暗线,这就是钠原子的吸收光谱。值得注意的是,各种原子的吸收光谱中的每一条暗线都跟该种原子的发射光谱中的一条明线相对应.这表明,低温气体原子吸收的光,恰好就是这种原子在高温时发出的光。因此,吸收光谱中的谱线(暗线),也是原子的特征谱线,只是通常在吸收光谱中看到的特征谱

光谱学的发展

光谱学的发展 光谱学是光学的一个分支学科,它研究各种物质的光谱的产生及其同物质之间相互作用。光谱是电磁辐射按照波长的有序排列;根据实验条件的不同,各个辐射波长都具有各自的特征强度。通过光谱的研究,人们可以得到原子、分子等的能级结构、能级寿命、电子的组态、分子的几何形状、化学键的性质、反应动力学等多方面物质结构的知识。光谱学的历史应从牛顿的色散实验开始,由于牛顿的精湛技术,使人们对白光的认识和对颜色的认识大大深入了。1752年,英国的梅耳维尔(Thomas Melvill,1726~1753)报告了他对多种物质产生的火焰光谱进行的研究,发现了包括纳谱线在内的一些谱线。19世纪初,赫歇尔(William Herschel,1738~1822)和里特(Johann Wilhelm Ritter,1776~1810)先后发现了在人的视觉范围之外的射线,即红外线和紫外线。1814年夫琅和费(Franhofer Joseph von,1787~1826)观察到了光谱线;但是,光谱学技术并不仅是一种科学工具,在化学分析中它也提供了重要的定性与定量的分析方法。实用光谱学是由基尔霍夫(Kirchhof Gottlieb Sigimund Constantin,1764~1833)与本生(Bunsen Rebent Wilhelm Ebethard,1811~1899)在19世纪60年代发展起来的;他们证明光谱学可以用作定性化学分析的新方法,还利用这种方法发现了几种当时还为人所不知的元素,并且证明了在太阳里存在着多种已知的元素。 1、光谱线的最初观察 1752年,梅耳维尔第一个观察到发光气体的光谱线。自从牛顿对光谱的研究以来,他的研究标志着向前迈进了第一步。梅耳维尔观察了钾碱、明矾、硝石和食盐被连续地放进酒精灯时所产生的光谱,并且发现,当明矾或钾碱放进酒精火焰中时,发射出了数量不相同的各种光线,……并且从它到邻近的较弱的颜色的光的过渡不是逐渐的而是直接的;这明亮的黄光就是“钠线”。后来,伦敦有一位医生在烛光火焰底部观察到蓝光的明亮光谱带;1856年,圣安德鲁斯的威廉·斯旺(Swan William)又一次观察到它,现在称之为“斯旺光谱”(Swan spectrum)。1802年,英国物理学家沃拉斯顿(Wollaston William Hyde,1766~1828)首次观察到太阳光谱中的7条暗线,其中最重要的5条光谱线被他认为是光谱的纯粹单色的自然界标或分界线,他本来得到了开创重要的谱线研究的机会,但他未能准确地解释它。这项工作只能等待更年轻的德国物理学家夫琅和费去完成。 夫琅和费(Fresnel Augustin Jean,1788~1827)1787年3月6日生于斯特劳宾(Straubing),父亲是玻璃工匠,幼年当学徒,后来自学了数学和光学。1806年他在巴伐利亚的贝内迪克特博伊伦的光学工场当了工匠,1818年任经理,1823年担任慕尼黑科学院物理陈列馆馆长和慕尼黑大学教授,后来德国埃朗根大学和英国、丹麦都赠予他荣誉称号。夫琅和费集工艺家与理论家的才干于一身,把丰富的实践经验与理论结合起来,对光学和光谱学做出了重要贡献。他用几何光学理论设计和制造了消色差透镜以取代过去盲目试验的方法,还首创用牛顿环方法检查光学表面加工精度及透镜形状。他所制造的大型折射望远镜等光学仪器,负有盛名。这些成就,使当时光学技术的权威由英国转移到德国,推动了精密光学工业的发展。 夫琅和费开始并不知道沃拉斯顿的发现,在他的光学著 作中,他把理论知识和实际技巧结合得非常好。特别是由于他 的准确计算各种透镜的方法的发明,他把实用光学引向了一条 全新的道路,并且他把消色差望远镜提到了当时意想不到的完 善程度。1814年,夫琅和费为了测定玻璃折射率和色散,以 作为制造消色差透镜的基础,对太阳光谱进行了仔细的观测。 在努力于测定玻璃对特殊颜色的折射率以便设计更为精密的 消色差透镜时,夫琅和费偶然地发现了一种灯光光谱的橙黄色 图7-14夫琅和费的分光仪 的双线,现在称之为钠线。在所有的火光中,他都看到这条精 细的、明亮的双线“精确地在同一地方出现,因此对于测定折 射率十分有用。他把一束来自狭缝的光线照射在有相当距离的放在经纬望远镜前面的最小偏差位置上 130

典型光谱矿物识别

【ENVI入门系列】16.基本光谱分析 (2014-09-30 17:38:25) 转载▼ 分类:ENVI 标签: 杂谈 版权声明:本教程涉及到的数据仅供练习使用,禁止用于商业用途。 目录 基本光谱分析 1.概述 2.详细操作步骤 2.1标准波谱库与浏览 2.2波谱库创建 2.3高光谱地物识别 2.3.1从标准波谱库选择端元进行地物识别 2.3.2自定义端元进行地物识别 1. 概述 光学遥感技术的发展经历了:全色(黑白)—>彩色摄影—>多光谱扫描成像—>高光谱遥感四个历程。 高光谱分辨率遥感(HyperspectralRemote Sensing)用很窄(小于10nm)而连续的光谱通道对地物持续遥感成像的技术。在可见光到短波红外波段其光谱分辨率高达纳米

(nm)数量级,通常具有波段多的特点,光谱通道数多达数十甚至数百个以上,而且各光谱通道间往往是连续的,因此高光谱遥感又通常被称为成像光谱(Imaging Spectrometry)遥感。相比多光谱传感器,如Landsat8 OLI包括9个波段,光谱分辨率为106nm。 如下图为从多光谱和高光谱数据上获取的波谱曲线,更高波谱分辨率的图像可以用于识别物质,而相比多光谱图像,如TM只能用于区分物质。 图:从多光谱和高光谱数据上获取的波谱曲线对比 本课程学习ENVI的高光谱基本分析功能,包括波谱库的浏览与创建、基本的高光谱物质识别流程。 2. 详细操作步骤 2.1 标准波谱库与浏览

ENVI自带多种标准波谱库,包括建立在JPL波谱库基础上的,从0.4~2.5μm三种不同粒径160种"纯"矿物的波谱。美国USGS从0.4~2.5μm包括近500种典型的矿物和一些植被波谱。来自Johns Hopkins University(JHU)的波谱包含0.4~14μm。IGCP246波谱库有5部分组成,通过对26个优质样品用5个不同的波谱仪测量获得。植被波谱库由Chris Elvidge 提供,范围是0.4~2.5μm。ENVI 5.1波谱库中新增了2443种Aster的波谱文件,同时对应的波谱工具也有了很大的该进,用户可直观地看到每一种波谱库中的文件个数,以及更为方便的查看每一种波谱文件的波谱曲线。 ENVI的波谱库文件存放在HOME\ Program Files\Exelis\ENVI51\classic\spec_lib。 启动ENVI 5.1,主菜单> Display > Spectral Library View,在对话框中显示的就是ENVI自带的波谱库文件; 图:ENVI自带波谱库文件 (1)选择打开Veg_lib(99)中的几个植被波谱文件; 在vegetation波谱库中选择6种不同植被的波谱曲线,在下图可以看到起对应的波谱曲线,以及波谱文件的属性信息,包括常规信息和曲线信息。

差分吸收光谱技术中吸收截面的测量

差分吸收光谱技术中吸收截面的测量Ξ 吴 桢 虞启琏 张 帆 姚建铨 (天津大学精密仪器与光电子工程学院 天津 300072) 摘要 描述了影响差分吸收光谱技术(DOA S)精度的主要因素——吸收截面的测量原理以及自己设计的测量装置,并用此装置测量了SO2、NO2和O3的吸收截面。根据测量结果分析了应用DOA S技术测量这三种气体时各自适用的波长区间。关键词 差分吸收光谱 吸收截面 测量 M ea surem en t of Absorption Cross Section i n D ifferen ti a l Optica l Absorption Spectrom etry W u Zhen Yu Q ilian Zhang Fan Yao J ianquan (Colleg e of P recision Instrum en t and Op to2electron ics E ng ineering,T ianj ing U n iversity,T ianj ing300072,Ch ina) Abstract A s the m ain facto r affected the p recisi on of the differential op tical abso rp ti on spectrom etry(DOA S), the abso rp ti on cro ss secti on and its m easurem ent theo ry w as analysed.A new m easurem ent setup w as brough t fo rw ard,and th rogh w h ich the abso rp ti on cro ss secti ons of SO2,NO2and O3w ere m easured.A t last acco rding to the m easurem ent result,the respective app rop riate w avelength ranges of th ree gases m easured by DOA S w ere analysed. Key words D ifferential op tical abso rp ti on spectro scopy A bso rp ti on cro ss secti on M easurem ent 1 引 言 长光程差分吸收光谱技术,由于其具有高灵敏度、高分辨率、多组分、实时、快速监测的特点,正在成为大气污染监测的理想工具。目前,我们正在开发紫外2可见长光程差分吸收光谱系统,该技术主要是以大气中的痕量污染气体对紫外和可见波段的特征吸收为基础,通过特征光谱鉴别大气中污染气体的类型和浓度。差分吸收光谱技术的精度取决于被测物质差分吸收截面的准确测量;为确保测量的最大灵敏度,选择最佳波长区间也是重要的。实际上也就是选择具有最大差分吸收截面、最小大气衰减以及其他物质对被测物质干扰最小的波长区间。气体的差分吸收截面由吸收截面经过高频滤波得到;因此,应首先知道被研究气体的准确吸收截面,进而计算差分吸收截面。虽然与我们测量相关的某些气体的吸收截面与差分吸收截面在有些文献[1~3]上已经给出,但是由于以下原因:(1)文献给出的波长区间与我们使用的波长区间可能不符;(2)相当一部分被研究的气体的吸收截面与差分吸收截面无法通过文献获得;(3)为了确保计算精度,应该使用与实际大气吸收光谱测量具有相同光学性质的光谱仪进行吸收截面的测量[4];我们仍然在实验室对在紫外2可见区间有吸收的主要大气污染气体的吸收截面进行了测量。 2 测量原理 吸收一个辐射光子相当于分子两个能级间的内状态发生了变化。能量的变化取决于两个分离的能级。吸收截面与两个能级间的吸收(或辐射)强度成正比。通常,光的吸收由Beer2L am bert吸收定律描述,如下式所示: I(Κ)=I0(Κ)exp(-Ρ(Κ)cL)(1) 第25卷第4期 仪 器 仪 表 学 报 2004年8月Ξ本文于2002年10月收到。

吸收光谱测量基本原理

吸收光谱简介 纯白光为一连续的从红色到紫色的光谱,但当白光穿过一个有色宝石,一定颜色或波长可被宝石所吸收,这导致该白光光谱中有一处或几处间断,这些间断以暗线或暗带形式出现。许多宝石显示出在可见光谱中吸收带或线的特征样式,其完整的样式被称为"吸收光谱"。吸收光谱 处于基态和低激发态的原子或分子吸收具有连续分布的某些波长的光而跃迁到各激发态,形成了按波长排列的暗线或暗带组成的光谱。 吸收光谱是温度很高的光源发出来的白光,通过温度较低的蒸汽或气体后产生的,如让高温光源发出的白光,通过温度较低的钠的蒸汽就能生成钠的吸收光谱。这个光谱背景是明亮的连续光谱。而在钠的标识谱线的位置上出现了暗线。通过大量实验观察总结出一条规律,即每一种元素的吸收光谱里暗线的位置跟他们明线光谱的位置是互相重合的。也就是每种元素所发射的光的频率跟它所吸收的光频率是相同的。 太阳光谱是一种吸收光谱,是因为太阳发出的光穿过温度比太阳本身低得多的太阳大气层,而在这大气层里存在着从太阳里蒸发出来的许多元素的气体,太阳光穿过它们的时候跟这些元素的标识谱线相同的光都被这些气体吸收掉了。因此我们看到的太阳光谱是在连续光谱的背景上分布着许多条暗线。这些暗线是德国物理学家夫琅和费首先发现的称为夫琅和费线。 吸收光谱高温物体发出的白光(其中包含连续分布的一切波长的光)通过物质时,某些波长的光被物质吸收后产生的光谱,叫做吸收光谱。例如,让弧光灯发出的白光通过温度较低的钠气(在酒精灯的灯心上放一些食盐,食盐受热分解就会产生钠气),然后用分光镜来观察,就会看到在连续光谱的背景中有两条挨得很近的暗线(见彩图8.分光镜的分辨本领不够高时,只能看见一条暗线).这就是钠原子的吸收光谱.值得注意的是,各种原子的吸收光谱中的每一条暗线都跟该种原子的发射光谱中的一条明线相对应.这表明,低温气体原子吸收的光,恰好就是这种原子在高温时发出的光.因此,吸收光谱中的谱线(暗线),也是原子的特征谱线,只是通常在吸收光谱中看到的特征谱线比明线光谱中的少 光谱分析 光谱分析由于每种原子都有自己的特征谱线,因此可以根据光谱来鉴别物质和确定它的化学组成.这种方法叫做光谱分析.做光谱分析时,可以利用发射光谱,也可以利用吸收光谱.这种方法的优点是非常灵敏而且迅速.某种元素在物质中的含量达10-10克,就可以从光谱中发现它的特征谱线,因而能够把它检查出来.光谱分析在科学技术中有广泛的应用.例如,在检查半导体材料硅和锗是不是达到了高纯度的要求时,就要用到光谱分析.在历史上,光谱分析还帮助人们发现了许多新元素.例如,铷和铯就是从光谱中看到了以前所不知道的特征谱线而被发现的.光谱分

相关主题
文本预览
相关文档 最新文档