当前位置:文档之家› 《自动化仪表》习题答案解析

《自动化仪表》习题答案解析

《自动化仪表》习题答案解析
《自动化仪表》习题答案解析

第1章(P15)

(1)简述过程控制的特点。

Q: 1)系统由被控过程与系列化生产的自动化仪表组成;2)被控过程复杂多样,通用控制系统难以设计;3)控制方案丰富多彩,控制要求越来越高;4)控制过程大多属于慢变过程与参量控制;5)定值控制是过程控制的主要形式。

(2)什么是过程控制系统?试用框图表示其一般组成。

Q: 1)过程控制是生产过程自动化的简称。它泛指石油、化工、电力、冶金、轻工、建材、核能等工业生产中连续的或按一定周期程序进行的生产过程自动控制,是自动化技术的重要组成部分。过程控制通常是对生产过程中的温度、压力、流量、液位、成分和物性等工艺参数进行控制,使其保持为定值或按一定规律变化,以确保产品质量和生产安全,并使生产过程按最优化目标自动进行。2)组成框图:

(3))单元组合式仪表的统一信号是如何规定的?

Q:各个单元模块之间用统一的标准信号进行联络。1)模拟仪表的信号:气动0.02~0?1MPa、电动皿型:4~20mADC或1~5V DC。2)数字式仪表的信号:无统—标准。

(4)试将图1-2加热炉控制系统流程图用框图表示。

Q:是串级控制系统。方块图:

(5)过程控制系统的单项性能指标有哪些?各自是如何定义的?

Q: 1)最大偏差、超调量、衰减比、余差、调节时间、峰值时间、振荡周期和频率。2)略

(8)通常过程控制系统可分为哪几种类型?试举例说明。

Q: 1)按结构不同,分为反馈控制系统、前馈控制系统、前馈-反馈复合控制系统;按设定值不同,分为定值控制系统、随动控制系统、顺序控制系统。2)略

(10)只要是防爆仪表就可以用于有爆炸危险的场所吗?为什么?

Q:1)不是这样。2)比如对安全火花型防爆仪表,还有安全等级方面的考虑等。

(11)构成安全火花型防爆系统的仪表都是安全火花型的吗?为什么?

Q:1)是。2)这是构成安全火花型防爆系统的一个条件。

2、综合练习题

(1)简述图1-11所示系统的工作原理,画出控制系统的框图并写明每一框图的输入/输出变量名称和所用仪表的名称。

LC

Q:1)图为液位控制系统,由储水箱(被控过程)、液位检测器(测量变送器)、

液位控制器、调节阀组成的反馈控制系统,为了达到对水箱液位进行控制的目的,

对液位进行检测,经过液位控制器来控制调节阀,从而调节q i (流量)来实现液位控制的作用。2)框图:

3)控制器输入输出分别为:设定值与反馈值之差e(t )、控制量u(t );执行器输入

输出分别为:控制量u(t )、操作变量q i (t );被控对象的输入输出为:操作变量

qi (t )、扰动量q2 (t ),被控量h ;所用仪表为:控制器(例如PID控制器)、调节阀、液位测量变送器。

(2)什么是仪表的信号制?通常,现场与控制室仪表之间采用直流电流信号、控制室内部仪表之间采用直流电压信号,这是为什么?

Q:1)自动化仪表的信号制是指在成套系列仪表中,各个仪表的输入/输出信号均

采用某种统一的标准形式,使各个仪表间的任意连接成为可能。2)略

(3)某化学反应过程规定操作温度为800C,最大超调量小于或等于5%,要求设

计的定值控制系统,在设定值作阶跃干扰时的过渡过程曲线如下图所示。要求:

图Z2设定值干扰时的过渡过稈曲线示意图

1)计算该系统的稳态误差、衰减比、最大超调量和过渡过程时间。

2)说明该系统是否满足工艺要求。

Q:1)由上图可得y(乂)= 810C,设定值r=800 °C , B=85d 810=40,B=820~ 810=10稳态误差e(乂) = r - y(乂) =800 C -810 C = - 10C

衰减比:n =旦4? = 4 :1 ,

巳10

最大超调量:二空』尘J 100% 二850 810 100% =4.938%

y(°°)810

过渡过程时间t s :大概在17min左右

2)虽然该系统最大超调满足要求,然而在规定操作温度为800 C,而最后趋于稳

定的值却为810C,因此不满足工艺要求。

(4)图1-13所示为一类简单锅炉汽包水位控制流程图,试画出该控制系统框图,

并说明其被控过程、被控参数、控制参数和干扰参数各是什么?

Q: 1)控制系统框图:

被控过程:加热器+汽包 被控参数:汽包水位 控制参数:上水流量 干扰参数:蒸汽流量变化

第2章(P70)

1、基本练习题

(3)某台测温仪表测量的上下限为 500~10O 0C ,它的最大绝对误差为士 2C,试 确定该仪表的精度等级。

Q :仪表的引用误差=-最大量对误岂100% = -二 100% =心%,其精度等级

为0.4级

(4)某台测温仪表测量的上下限为 100~1000C,工艺要求该仪表指示值的误差 不超过士 2C,应选精度等级为多少的仪表才能满足工艺要求? Q :工艺允许的仪表引用误差为

应选0?2级的仪表才能满足。

(5)有一台DDZ-皿型两线制差压变送器,已知其量程为 20~100kPa ,

当输入信

,允许的最大绝对误差

100% =-

2 1000 100

100% -0.22%

蒸汽流量

号为40kPa和80kPa时,变送器的输出分别是多少?

Q: 1) 8mA; 2) 16mA?

(6)设有某DDZ-皿型毫伏输入变送器,其零点迁移值u m in=6mV DC ,量程为

12mV DC。现已知变送器的输出电流为12mA DC。试问:被测信号为多少毫伏?Q: 12mV DC

(12) 某被测温度信号在40~8O C范围内变化,工艺要求测量误差不超过士1%现有两台测温仪表,精度等级均为0?5级,其中一台仪表的测量范围为0~1O0C, 另一台仪表的测量范围为0~20O C,试问这两台仪表能否满足上述测量要求?Q:工艺允许的最大绝对误差=_40 1%=_0?4 C。

1)使用0~10O C的仪表,贝卩允二_竺100% =_0?4, 0.5级精度不可以满足;

100

0 4

2)使用0~20O C的仪表,则

允二丄一100% h 02 , 0.5级精度不可以满足;

200

(13) 热电偶测温时为什么要进行冷端温度补偿?其补偿方法常采用哪几种?

Q: 1)采用补偿导线可把热电偶的冷端从温度较高和不稳定的地方,延伸到温度较低和比较稳定的操作室内,但冷端温度还不是0C,而工业上常用热电偶的

E t-t关系曲线是在冷端温度t0=0 C情况下得到的,与它配套使用的仪表也是根据这一关系曲线进行刻度的。而操作室的温度往往不是0T ,这样测量结果就会有

误差,因此需要进行冷端温度的校正。(解决冷端温度不为零的问题) 2)常用的有查表法、电桥补偿法。

(14) 热电阻测温电桥中的三线制接法为什么能减小环境温度变化对测温精度的

影响?

Q :因为用热电阻测温时,热电阻要安装在被测温度的现场,而电桥中的其它电 阻连同仪表一起则安装在控制室。现场与控制室之间有一定的距离,因此连接 _________ 电阻的导线的电阻往往不可忽略,若采用普通的二线制接法,则连接热电阻的两 根导线都分布在电桥的一个桥臂上,因此,连接导线的电阻随着环境温度的变化 而变化,将同热电阻阻值的变化一起加在平衡电桥的一个桥臂上,这会使测量产 生较大的误差。采用三线制接法可以减少甚至抵消连接导线电阻对测量结果造成 的误差。

2、综合练习题

(1)某一标定为100~600C 的温度计出厂前经校验,各点的测量结果值如下:

被校表读数

/C 100

150

200

250

300

400

500

600

标准表读数

/ G

102

149

204

256

296

403

495

606

1) 试求该仪表的最大绝对误差。 2) 确定该仪表的精度等级。

3)

经过一段时间后,仪表的最大绝对误差为士 7 C,问此时仪表的精度等级为 多少?

Q : 1 )取厶=|X-X a |中的最大值,计算可知最大绝对误差等于士 6C

(2) 用分度号Pt100的热电阻测温,却错查了 Cu50的分度表,得到的温度是 150C 。问实际温度是多少?

2)仪表引用误差!

最大绝对误差

100% 二- 6

600 -100 100% = -1.2% ,符合1.5级精度。

3)仪表引用误差2

最大绝对误差

100%

600 100

100% =「1.4% ,符合1.5级精度。

Q: 1)查Cu50的分度表,找出与150C对应的电阻值Rt=82.13?;查PtIOO的分

度表,找出与82.13?对应的温度值,约为—45C。

(3)若被测压力的变化范围为0.5~1?4MPa,要求测量误差不大于压力示值的士5%。可供选用的压力表规格:量程为0~1?6 MPa, 0~2.5 MPa, 0~4MPa,精度等级为1.0、1.5、2.5。试选择合适量程和精度的压力表。

Q:最大工作压力不超过仪表量程的2/3,则可选择0~2?5MPa范围。允许的最大

绝对误差:士0.5*5%= 士0.025MPa , 允许的最大引用误差:

允竺100^-1%,可选择1.0级精度等级。

2.5

(5)用差压变送器与标准孔板配套测量管道介质流量。若差压变送器量程为

104Pa,对应输出信号为4~20mADC,相应流量为0~320m3/h。求差压变送器输出

信号为8mADC时,对应的差压值及流量值各是多少?

Q:因为未加开方器。流量与差压的平方根成正比。8mADC对应的差压值为2500Pa,流量则为160 m3/h。

3、设计题

(1)用分度号为K的镍铬-镍硅热电偶测量温度,在无冷端温度补偿的情况下,显示仪表指示值为600C,此时冷端温度为50C。试问:实际温度是多少?如果热端温度不变,使冷端温度为20 C时,此时显示仪表指示值应为多少?

Q: 1)查K分度表,知600C对应的热电势为24.902mV,由题意可知这热电势是

由热端温度为t c,冷端温度为50C的K热电偶产生的,即E(t,50) = 24.902mV ,

又查K表知E(50,0) = 2.022mV,二E(t,0)二E(t,50) E(50,0) =24.902 2.022 = 26.924mV ,再查K表得t约为648 C o

2) E(t,20)二E(t,0) —E(20,0) = 26.126mV,再查K表,与26.126mV热电势对应的温度为628.8 C.

(2)某容器的正常工作压力范围为 1.0~1?5MPa,工艺要求就地指示压力,并要求测量误差小于被测压力的士5%,试选择一个合适的压力表(类型、量程、精度等级),并说明理由。

Q: 1 )类型:可使用弹簧管压力计。

2) 最大工作压力不超过仪表量程的2/3,则可选择0~2?5MPa范围;又由于最小工作压力1.0大于仪表量程的1/3,所选范围是合适的。

3) 允许的最大绝对误差:士1.0*5%= 士0.05MPa,允许的最大引用误差:

允二005 100% = 2%,可选择1?5级精度等级。

2.5

(4)某控制系统中有一个量程为20~100kPa、精度等级为0.5级的差压变送器,在校验时发现,该仪表在整个量程范围内的绝对误差变化范围为一0.5~+0.4 kPa,试问:该变送器能否直接被原控制系统继续使用?为什么?

Q:不能。因为其最大绝对误差为—0.5,其引用误差05100% = -0.625% ,

100-20

超出了原先设计的精度要求0.5级的范围。

第3章(P108)

1、基本练习题

(1)在过程控制中,哪些仪表是属于过程控制仪表?在过程控制系统中,大多数调节器是电动的,而执行器多数是气动的,这是为什么?气动单元组合仪表与电动单元组合仪表各单元之间的标准统一信号又是如何规定的?

Q:1)在过程控制中,过程控制仪表:调节器、电/气转换器、执行器、安全栅等。2)调节器选电动的因为电源的问题容易解决,作用距离长,一般情况下不受限制;调节精度高,还可以实现微机化。执行器多数是气动的,因为执行器直接与控制介质接触,常常在高温、高压、深冷、高粘度、易结晶、闪蒸、汽蚀、易爆等恶劣条件下工作,选气动的执行器就没有电压电流信号,不会产生火花,这样可以保证安全生产和避免严重事故的发生。3)气动仪表的输入输出模拟信号统一使用0.02~0?1MPa的模拟气压信号。电动仪表的输入输出模拟信号有直流电流、直流电压、交流电流和交流电压四种。各国都以直流电流和直流电压作为统一标准信号。过程控制系统的模拟直流电流信号为4~20mA DC,负载250 Q ;模拟直流电压信号为1~5V DC。

(2)某比例积分调节器的输入、输出范围均为4~20mA DC,若设8=100%、

T i=2min,稳态时其输出为6mA;若在某一时刻输入阶跃增加1mA,试求经过4min 后调节器的输出。

Q:由式一丄100%,可得%=1。在比例积分作用下,输出A u可由下式计算:K C

1 1 4 丫r .

= K C.|e(t) + — Je(t)dt =1 十一J0dt = 3mA,即调节器的输出u= A u+u(0)=3+6=9mA。

2

T I

(6)调节器的正、反作用是如何规定的?

Q:当调节器的输出随偏差的增大而增大时,称为正作用调节器,反之为反作用

调节器

(7)数字式控制器有哪些主要特点?简述其硬件的基本构成。

Q: 1)数字式控制器的主要特点:1、采用了模拟仪表与计算机一体的设计方法,使数字式控制器的外形结构、面板布置、操作方式等保留了模拟调节器的特征。2、与模拟调节器相比具有更丰富的运算控制功能。3、具有数据通信功能,便于系统

扩展。4、可靠性高具有自诊断功能,维护方便。2)数字式控制器的硬件电路由

主机电路,过程输入通道、过程输出通道、人/机联系部件、通信部件等。

(18)过程控制系统的所有仪表与装置是否都应考虑安全防爆?为什么?

Q:不是。现场的所有仪表应考虑安全防爆。非危险场所的仪表则不一定要防爆,现场仪表与非危险场所(包括控制室)之间必须经过安全栅。

(19)安全栅在安全防爆系统中的主要作用是什么?简单齐纳式安全栅有何缺

点?它是如何改进的?Q: 1)参教材P104 ;2)参教材P105; 3)参教材P105

2、综合练习题

(2)已知某比例微分调节器的传递函数为仏二旦丄輕,试求单位阶跃输入作

V01 K D

K D

用下的输出响应表达式,画出响应曲线。

Q:单位阶跃输入的拉氏变换V o1二1,在阶跃输入作用下的输出拉氏变换为:

s

1 2丄輕a——,对其取拉氏反变换,可得

S 5 H心和斗

K D K D

K o t

a —^t

v°2(t) [1 (K D—1)e T D ]。

K D

第 4 章(P139)

1、基本练习题

(1)什么是被控过程的特性?什么是被控过程的数学模型?为什么要研究过程的

数学模型?目前研究过程数学模型的主要方法有哪几种?

Q: 1)被控过程的特性:被控过程输入量与输出量之间的关系。2)被控过程的

数学模型:被控过程的特性的数学描述,即过程输入量与输出量之间定量关系的数学描述。3)研究过程的数学模型的意义:是控制系统设计的基础;是控制器参数确定的重要依据;是仿真或研究、开发新型控制策略的必要条件;是设计与操作生产工艺及设备时的指导;是工业过程故障检测与诊断系统的设计指导。4)主

要方法:机理演绎法、试验辨识法、混合法。

(2)响应曲线法辨识过程数学模型时,一般应注意哪些问题?

Q:试验测试前,被控过程应处于相对稳定的工作状态;相同条件下应重复多做几次试验;分别作正、反方向的阶跃输入信号进行试验;每完成一次试验后,应将被控过程恢复到原来的工况并稳定一段时间再做第二次试验;输入的阶跃幅度不能过大也不能过小。

(4)图4-30所示液位过程的输入量为q i,流出量为q2、q3,液位h为被控参数,

C 为容量系数,并设R i 、R 2、R 3均为线性液阻。要求:1)列写该过程的微分方 程组。2)画出该过程框图。3)求该过程的传递函数 G o (s)=H(s)/Q i (s)。

dt

R 2

Ah 也 q 3 =

二~

R 3

2)过程框图:

3)传递函数:G °(s)二 H(s)/Q i (s)二 ------- —

1 1

Cs

R 2 R

3

(5)某水槽水位阶跃响应的试验记录为:

t/s 0 10 20 40 60 80 100 150 200 300 ???

h/mm

9.5

18

33

45

55

63

78

86

95

???

98

其中阶跃扰动量 u 为稳态值的10%。

1) 画出水位的阶跃响应标幺值曲线。2)若该水位对象用一阶惯性环节近似,试 确定其增益K 和时间常数T 。

Q : 1 )阶跃响应标幺值必⑴二迥二也,图略。

y(°°)

98

K

_

2) 一阶惯性环节传递函数: G(s) 亠,又u =10%*h( s )=9

?8,放大系数

T °s+1

h q 2

Q : 1)微分方程组:

1

K= 98 10 ,时间常数T=100s,是达到新的稳态值的63%所用的时间。

也u 9.8

2、综合练习题

(1)如图4-32所示,q i 为过程的流入量,q 2为流出量,h 为液位高度,C 为容 量系数。若以q i 为过程的输入量,h 为输出量(被控量),设R i 、R 2为线性液阻, 求过程的传递函数G o (s)=H(s)/Q i (s)。

dM

-qi - ■ ':

q 2 = C - dt 八 A d 心h 2

-q^ - q^ = C

^h - d^h i

f 虫廿⑹ 辿一玉乂血⑺

R 2

R 3

dt

二,得:“2二R“丛-gi+空),代入(7)消去中 dt dt R 2

传递函数: G o s i-H s / Q i s

i

C 2R 3S 2 +C(2R A +1)S + 丄

R 2 R 2

dt

间变量h 2,得:C 2R 3

d d-2h (譽

(1)

dt

Q :列写微分方程组:

⑶,消去.q 和「q ,得:

进而得:沈十

昇7 + CR 3晋,

(2)已知两个水箱串联工作,其输入量为 q i ,流出量为q 2、q 3, h ?分别为两 个水箱的水位,h ?为被控参数,C i 、C 2为其容量系数,假设R , R ,R 2 ,R 3为线性 液阻。要求:

1) 列出该液位过程的微分方程组。 2) 画出该过程的框图

3)求该液位过程的传递函数G o (s)=H 2(s)/Q i (s)

(X ------

R1

2)框图:

Q : 1)液位过程的微分方程组:

dt

也y h 2

R

12

d h 1

dt

(1)

⑵ ⑶ ⑷ ⑸

% 一 q

3)求过程传递函数:微分方程组中消去中间变量q2^ q3^ q12得:

h1也r h2 d h1

Ci _ R2R12dt 此-h2h2 d h2

C2 _

R12 R3 dt ⑹

得::m = R12C2土匹(电1) h2,dt

R3

⑺ 3

再消去h i 有:

1C2R12 dt^ (C1 对上式进行拉氏变换得: .C i 尺 2 . c . C2 R2)d = h2 . R2 R I2 R3 R32R2) dt R2R

R2dt

R2R3 h2

G o s N s

Qi S C1C2R12s2 (C1

初一上学期动点问题(含答案)

初一上学期动点问题练习 1.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒. (1)写出数轴上点B表示的数,点P表示的数用含t的代数式表示); (2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q? (3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长; 解:(1)由题意得点B表示的数为-6;点P表示的数为8-5t; (2)设点P运动x秒时,在点C处追上点Q(如图) 则AC=5,BC=3, ∵AC-BC=AB ∴5-3="14" 解得:=7, ∴点P运动7秒时,在点C处追上点Q; (3)没有变化.分两种情况: ①当点P在点A、B两点之间运动时: MN=MP+NP=AP+BP=(AP+BP)=AB="7" ②当点P运动到点B的左侧时: MN=MP-NP= AP-BP=(AP-BP)=AB="7" ∴综上所述,线段MN的长度不发生变化,其值为7; 2.已知数轴上有A、B、C三点,分别表示有理数-26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒. (1)用含t的代数式表示P到点A和点C的距离:PA=______,PC=______. (2)当点P运动到B点时,点Q从A出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,当点Q开始运动后,请用t的代数式表示P、Q两点间的距离. 解:(1)PA=t,PC=36-t; (2)当16≤t≤24时PQ=t-3(t-16)=-2t+48, 当24<t≤28时PQ=3(t-16)-t=2t-48, 当28<t≤30时PQ=72-3(t-16)-t=120-4t, 当30<t≤36时PQ=t-[72-3(t-16)]=4t-120. 3.已知数轴上点A与点B的距离为16个单位长度,点A在原点的左侧,到原点的距离为26个单位长度,点B在点A 的右侧,点C表示的数与点B表示的数互为相反数,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)点A表示的数为______,点B表示的数为______,点C表示的数为______;(2)用含t的代数式

求动点的轨迹方程方法例题习题答案

求动点的轨迹方程(例题,习题与答案) 在中学数学教学和高考数学考试中,求动点轨迹的方程和曲线的方程是一个难 点和重点内容(求轨迹方程和求曲线方程的区别主要在于:求轨迹方程时,题目中 没有直接告知轨迹的形状类型;而求曲线的方程时,题目中明确告知动点轨迹的形 状类型)。求动点轨迹方程的常用方法有:直接法、定义法、相关点法、参数法与 交轨法等;求曲线的方程常用“待定系数法”。 求动点轨迹的常用方法 动点P 的轨迹方程是指点P 的坐标(x, y )满足的关系式。 1. 直接法 (1)依题意,列出动点满足的几何等量关系; (2)将几何等量关系转化为点的坐标满足的代数方程。 例题 已知直角坐标平面上点Q (2,0)和圆C :122=+y x ,动点M 到圆C 的切线长等与MQ ,求动点M 的轨迹方程,说明它表示什么曲线. 解:设动点M(x,y),直线MN 切圆C 于N 。 依题意:MN MQ =,即22MN MQ = 而222NO MO MN -=,所以 (x-2)2+y 2=x 2+y 2-1 化简得:x=45 。动点M 的轨迹是一条直线。 2. 定义法 分析图形的几何性质得出动点所满足的几何条件,由动点满足的几何条件可以判断出动点 的轨迹满足圆(或椭圆、双曲线、抛物线)的定义。依题意求出曲线的相关参数,进一步写出 轨迹方程。 例题:动圆M 过定点P (-4,0),且与圆C :082 2=-+x y x 相切,求动圆圆心M 的轨迹 方程。 解:设M(x,y),动圆M的半径为r 。 若圆M 与圆C 相外切,则有 ∣M C ∣=r +4 若圆M 与圆C 相内切,则有 ∣M C ∣=r-4 而∣M P ∣=r, 所以 ∣M C ∣-∣M P ∣=±4 动点M 到两定点P(-4,0),C(4,0)的距离差的绝对值为4,所以动点M 的轨迹为双曲线。其中a=2, c=4。 动点的轨迹方程为: 3. 相关点法 若动点P(x ,y)随已知曲线上的点Q(x 0,y 0)的变动而变动,且x 0、y 0可用x 、y 表示,则 将Q 点坐标表达式代入已知曲线方程,即得点P 的轨迹方程。这种方法称为相关点法。

初中数学最值问题典型例题

初中数学《最值问题》典型例题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 轴 对 称 最 值 图形 l P B A N M l B A A P B l 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直 线,P为直线l上的一 个动点,求AP+BP的 最小值 A,B为定点,l为定直线, MN为直线l上的一条动线 段,求AM+BN的最小值 A,B为定点,l为定直线, P为直线l上的一个动 点,求|AP-BP|的最大值转化 作其中一个定点关于定 直线l的对称点 先平移AM或BN使M,N 重合,然后作其中一个定 点关于定直线l的对称点 作其中一个定点关于定 直线l的对称点 折 叠 最 值 图形 B' N M C A B 原理两点之间线段最短 特征 在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折, B点的对应点为B',连接AB',求AB'的最小值. 转化转化成求AB'+B'N+NC的最小值 1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD ∴∠COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=90°,OC=OD.

初中数学最值问题典型例题(含解答分析)

中考数学最值问题总结 考查知识点:1、“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。 (2、代数计算最值问题3、二次函数中最值问题) 问题原型:饮马问题造桥选址问题(完全平方公式配方求多项式取值二次函数顶点)出题背景变式:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直” 几何基本模型: 条件:如下左图,A、B是直线l同旁的两个定点. 问题:在直线l上确定一点P,使PA PB +的值最小. 方法:作点A关于直线l的对称点A',连结A B'交l于 点P,则PA PB A B' +=的值最小 例1、如图,四边形ABCD是正方形,△ABE是等边三 角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM. (1)求证:△AMB≌△ENB; (2)①当M点在何处时,AM+CM的值最小; ②当M点在何处时,AM+BM+CM的值最小,并说明理由; (3)当AM+BM+CM的最小值为 时,求正方形的边长。 A B A' ′ P l

例2、如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0) (1)求抛物线的解析式 (2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由. (3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线M N∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.

动点例题解析及答案

初中数学动点问题及练习题附参考答案 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想函数思想方程思想数形结合思想转化思想 注重对几何图形运动变化能力的考查。 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点. 专题一:建立动点问题的函数解析式 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式。 二、应用比例式建立函数解析式。 三、应用求图形面积的方法建立函数关系式。 专题二:动态几何型压轴题 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、以动态几何为主线的压轴题。 (一)点动问题。(二)线动问题。(三)面动问题。 二、解决动态几何问题的常见方法有: 1、特殊探路,一般推证。 2、动手实践,操作确认。 3、建立联系,计算说明。

初中数学专题典型例题训练

第一讲:实数与代数专题典型例题讲解 一实数 1. 例:在14-和15 -之间,请写出两个有理数: . 2. 有理数2 2 3 1 2, (2), 2, 2 ---- 按从小到大的顺序排列是( ) A .322122< (2) 2-<--<-, B . 223 12< (2) 22 -<--<- C . 22312< (2) 22-<--<-, D . 232 12< 2(2)2 -<--<- 3. 将一刻度尺如图所示放在数轴上 (数轴的单位长度是1CM ),刻度尺上的“0cm ”和 “15cm ”分别对应数轴上的-3.6和x ,则( ) A .9<x <10; B .10<x <11; C .11<x <12; D .12<x <13; 4. 下列说法正确的是( ) A .互为相反数的两个数一定不相等; B .互为倒数的两个数一定不相等; C .互为相反数的两个数的绝对值相等; D .互为倒数的两个数的绝对值相等; 5. 若3x -和7x -是某个实数的平方根,则x = . 6. 若函数()f x 、()g x 满足()()0f x g x +=,当2()f x x x =-+,则函数()g x 的最小值为: 7. 有理数A 、B 、C 在数轴上的位置如图所示,则式子|A |+|B |+|A +B |+|B -C |化简结果为.[ ]. .A .2A +3B -C...B .3B -C..C .B +C....D .C -- 8. 若|A -2|=2-A ,求A 的取值范围。 9. 已知:|x -2|+x -2=0,.求:(1)x +2的最大值; 10. 单项式3x y π - 的系数是_______,次数是_____。 11. 如果21 13 m n a b +--与5 4a b 的同类项,则M =_____,N =_________。 12. 如图.在正方形ABCD 的边长为3,以A 为圆心,2为半径作圆弧.以D 为圆心, 3为半径作圆弧.若图中阴影部分的面积分为S 1、S 2.则S 1-S 2= . 13. 以Rt △ACB 两条直角边为直径向外作半圆,如图,其面积分别为1S 和2S ,若△ABC 的面积为S ,则12,S S 与S 的关系为 . 14. 若2 2(3)16x m x +-+是完全平方式,则m 的值为: . 15. 若m 2+m -1=0,求m 3+2m 2+2015的值. 16. 若0,0,x xy <<则15y x x y -+---=

初二数学经典动点问题

动点问题 1、如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从A开始沿AD边向D以1cm/s的速度运动;动点Q从点C开始沿CB边向B以3cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts. (1)当t为何值时,四边形PQCD为平行四边形? (2)当t为何值时,四边形PQCD为等腰梯形? (3)当t为何值时,四边形PQCD为直角梯形? 2、如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)试说明EO=FO; (2)当点O运动到何处时,四边形AECF是矩形并证明你的结论; (3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论. 3、如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=15cm,BC=21cm,点M从点A开始,沿边AD向点D运动,速度为1cm/s;点N从点C开始,沿边CB向点B运动,速度为2cm/s、点M、N分别从点A、C出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒.(1)当t为何值时,四边形MNCD是平行四边形? (2)当t为何值时,四边形MNCD是等腰梯形?

4、如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D 出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm. (1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形; (2)当x为何值时,以P,Q,M,N为顶点的四边形是平行四边形; (3)以P,Q,M,N为顶点的四边形能否为等腰梯形?如果能,求x的值; 如果不能,请说明理由. 5、直线y=- 34x+6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O?B?A运动. (1)直接写出A、B两点的坐标; (2)设点Q的运动时间为t(秒),△OPQ的面积为S,求出S与t之间的函数关系式; (3)当S= 485时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标.

动点问题中的最值、最短路径问题(解析版)

专题01 动点问题中的最值、最短路径问题 动点问题是初中数学阶段的难点,它贯穿于整个初中数学,自数轴起始,至几何图形的存在性、几何 图形的长度及面积的最值,函数的综合类题目,无不包含其中. 其中尤以几何图形的长度及面积的最值、最短路径问题的求解最为繁琐且灵活多变,而其中又有一些 技巧性很强的数学思想(转化思想),本专题以几个基本的知识点为经,以历年来中考真题为纬,由浅入深探讨此类题目的求解技巧及方法. 一、基础知识点综述 1. 两点之间,线段最短; 2. 垂线段最短; 3. 若A 、B 是平面直角坐标系内两定点,P 是某直线上一动点,当P 、A 、B 在一条直线上时,PA PB 最大,最大值为线段AB 的长(如下图所示); (1)单动点模型 作图方法:作已知点关于动点所在直线的对称点,连接成线段与动点所在直线的交点即为所求点的位 置. 如下图所示,P 是x 轴上一动点,求PA +PB 的最小值的作图.

(2)双动点模型 P 是∠AOB 内一点,M 、N 分别是边OA 、OB 上动点,求作△PMN 周长最小值. 作图方法:作已知点P 关于动点所在直线OA 、OB 的对称点P ’、P ’’,连接P ’P ’’与动点所在直线的交点 M 、N 即为所求. O B P P' P''M N 5. 二次函数的最大(小)值 ()2 y a x h k =-+,当a >0时,y 有最小值k ;当a <0时,y 有最大值k . 二、主要思想方法 利用勾股定理、三角函数、相似性质等转化为以上基本图形解答. (详见精品例题解析) 三、精品例题解析 例1. (2019·凉山州)如图,正方形ABCD 中,AB =12,AE =3,点P 在BC 上运动(不与B 、C 重合),过点P 作PQ ⊥EP ,交CD 于点Q ,则CQ 的最大值为 例2. (2019·凉山州)如图,已知A 、B 两点的坐标分别为(8,0),(0,8). 点C 、F 分别是直线x =-5 和x 轴上的动点,CF =10,点D 是线段CF 的中点,连接AD 交y 轴于点E ,当△ABE 面积取最小值时,tan ∠BAD =( )

(完整版)初一年级数学经典例题

数学天地: 初一年级数学核心题目赏析 有理数及其运算篇 【核心提示】 有理数部分概念较多,其中核心知识点是数轴、相反数、绝对值、乘方. 通过数轴要尝试使用“数形结合思想”解决问题,把抽象问题简单化.相反数看似简单,但互为相反数的两个数相加等于0这个性质有时总忘记用..绝对值是中学数学中的难点,它贯穿于初中三年,每年都有不同的难点,我们要从七年级把绝对值学好,理解它的几何意义.乘方的法则我们不仅要会正向用,也要会逆向用,难点往往出现在逆用法则方面. 【核心例题】 例1计算:2007 20061 ......431321211?+ +?+?+? 分析 此题共有2006项,通分是太麻烦.有这么多项,我们要有一种“抵消”思想,如能把一些项抵消了,不就变得简单了吗?由此想到拆项,如第一项可拆 成 2 1 11211-=?,可利用通项 ()11111+-=+?n n n n ,把每一项都做如此变形,问题会迎刃而解. 解 原式=)20071 20061(......413131212111-++-+-+-)()()( =20071 20061......41313121211- ++-+-+- =20071 1- =2007 2006 例2 已知有理数a 、b 、c 在数轴上的对应点 分别为A 、B 、C(如右图).化简b c b a a -+-+. 分析 从数轴上可直接得到a 、b 、c 的正负性,但本题关键是去绝对值,所以应判断绝对值符号内表达式的正负性.我们知道“在数轴上,右边的数总比左边的数大”,大数减小数是正数,小数减大数是负数,可得到a-b<0、c-b>0. 解 由数轴知,a<0,a-b<0,c-b>0 所以,b c b a a -+-+= -a-(a-b)+(c-b)= -a-a+b+c-b= -2a+c 例3 计算:?? ? ??-??? ??-????? ??-??? ??-??? ??-211311 (9811991110011)

初三动点问题经典练习

动点问题练习 1.如图,已知在矩形ABCD 中,AD =8,CD =4,点E 从点D 出发,沿线段DA 以每秒1个单 位长的速度向点A 方向移动,同时点F 从点C 出发,沿射线CD 方向以每秒2个单位长的速度移动,当B ,E ,F 三点共线时,两点同时停止运动.设点E 移动的时间为t (秒). (1)求当t 为何值时,两点同时停止运动; (2)设四边形BCFE 的面积为S ,求S 与t 之间的函数关系式,并写出t 的取值范围; (3)求当t 为何值时,以E ,F ,C 三点为顶点的三角形是等腰三角形; (4)求当t 为何值时,∠BEC =∠BFC . 1. 解:(1)当B ,E ,F 三点共线时,两点同时停止运动,如图2所示.………(1分) 由题意可知:ED =t ,BC =8,FD = 2t -4,FC = 2t . ∵ED ∥BC ,∴△FED ∽△FBC .∴ FD ED FC BC = . ∴ 2428 t t t -=.解得t =4. ∴当t =4时,两点同时停止运动;……(3分) (2)∵ED=t ,CF=2t , ∴S =S △BCE + S △BCF = 12×8×4+1 2 ×2t ×t =16+ t 2. 即S =16+ t 2.(0 ≤t ≤4);………………………………………………………(6分) (3)①若EF=EC 时,则点F 只能在CD 的延长线上, ∵EF 2=2 2 2 (24)51616t t t t -+=-+, EC 2=222416t t +=+,∴251616t t -+=2 16t +.∴t =4或t=0(舍去); ②若EC=FC 时,∵EC 2=222416t t +=+,FC 2=4t 2,∴2 16t +=4t 2.∴4 33 t =; ③若EF=FC 时,∵EF 2=2 2 2 (24)51616t t t t -+=-+,FC 2=4t 2, ∴2 51616t t -+=4t 2.∴t 1=163+,t 2=1683-. ∴当t 的值为44 33 1683-E ,F ,C 三点为顶点的三角形是等腰三角形;………………………………………………………………………………(9分) (4)在Rt △BCF 和Rt △CED 中,∵∠BCD =∠CDE =90°,2BC CF CD ED ==, A B C D E F O 图2 A B C D E F

圆的动点问题--经典习题及答案

圆的动点问题 25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分) 已知:在Rt ABC △中,∠ACB =90°,BC =6,AC =8,过点A 作直线MN ⊥AC ,点E 是直线 MN 上的一个动点, (1)如图1,如果点E 是射线AM 上的一个动点(不与点A 重合),联结CE 交AB 于点P .若 AE 为x ,AP 为y ,求y 关于x 的函数解析式,并写出它的定义域; (2) 在射线AM 上是否存在一点E ,使以点E 、A 、P 组成的三角形与△ABC 相似,若存在求 AE 的长,若不存在,请说明理由; (3)如图2,过点B 作BD ⊥MN ,垂足为D ,以点C 为圆心,若以AC 为半径的⊙C 与以ED 为半径的⊙E 相切,求⊙E 的半径. A B C P E M 第25题图1 D A B C M 第25题图2 N

25.(本题满分14分,第(1)小题6分,第(2)小题2分,第(3)小题6分) 在半径为4的⊙O 中,点C 是以AB 为直径的半圆的中点,OD ⊥AC ,垂足为D ,点E 是射线AB 上的任意一点,DF //AB ,DF 与CE 相交于点F ,设EF =x ,DF =y . (1) 如图1,当点E 在射线OB 上时,求y 关于x 的函数解析式,并写出函数定义域; (2) 如图2,当点F 在⊙O 上时,求线段DF 的长; (3) 如果以点E 为圆心、EF 为半径的圆与⊙O 相切,求线段DF 的长. A B E F C D O A B E F C D O

25.如图,在半径为5的⊙O中,点A、B在⊙O上,∠AOB=90°,点C是弧AB上的一个动点,AC与OB的延长线相交于点D,设AC=x,BD=y. (1)求y关于x的函数解析式,并写出它的定义域; (2)如果⊙O1与⊙O相交于点A、C,且⊙O1与⊙O的圆心距为2,当BD=OB时,求⊙O1 的半径; (3)是否存在点C,使得△DCB∽△DOC?如果存在,请证明;如果不存在,请简要说明理由.

(完整)七年级上期末动点问题专题(附答案)

七年级上学期期末动点问题专题 1.已知点A在数轴上对应的数为a,点B对应的数为b,且|2b﹣6|+(a+1)2=0,A、B之间的距离记作AB,定义:AB=|a﹣b|. (1)求线段AB的长. (2)设点P在数轴上对应的数x,当PA﹣PB=2时,求x的值. (3)M、N分别是PA、PB的中点,当P移动时,指出当下列结论分别成立时,x的取值范围,并说明理由:①PM÷PN 的值不变,②|PM﹣PN|的值不变. 2.如图1,已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上的一动点,其对应的数为x. (1)PA=_________;PB=_________(用含x的式子表示) (2)在数轴上是否存在点P,使PA+PB=5?若存在,请求出x的值;若不存在,请说明理由. (3)如图2,点P以1个单位/s的速度从点D向右运动,同时点A以5个单位/s的速度向左运动,点B以20个单位/s的速度向右运动,在运动过程中,M、N分别是AP、OB的中点,问:的值是否发生变化?请说明理由. 3.如图1,直线AB上有一点P,点M、N分别为线段PA、PB的中点, AB=14. (1)若点P在线段AB上,且AP=8,求线段MN的长度; (2)若点P在直线AB上运动,试说明线段MN的长度与点P在直线AB上的位置无关; (3)如图2,若点C为线段AB的中点,点P在线段AB的延长线上,下列结论:①的值不变;② 的值不变,请选择一个正确的结论并求其值.

4.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C 在线段AP上,D在线段BP上) (1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置: (2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值. (3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值. 5.如图1,已知数轴上有三点A、B、C,AB=AC,点C对应的数是200. (1)若BC=300,求点A对应的数; (2)如图2,在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A点出发向右运动,点P、Q、R的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR的中点,点N为线段RQ的中点,多少秒时恰好满足MR=4RN(不考虑点R与点Q相遇之后的情形); (3)如图3,在(1)的条件下,若点E、D对应的数分别为﹣800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ的中点,点Q在从是点D运动 到点A的过程中,QC﹣AM的值是否发生变化?若不变,求其值;若不变,请说明理由.

中考动点问题专题 教师讲义带答案

中考动点型问题专题 一、中考专题诠释 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. “动点型问题”题型繁多、题意创新,考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等,是近几年中考题的热点和难点。 二、解题策略和解法精讲 解决动点问题的关键是“动中求静”. 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。在动点的运动过程中观察图形的变化情况,理解图形在不同位置的情况,做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 三、中考考点精讲 考点一:建立动点问题的函数解析式(或函数图像) 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.例1 (2015?兰州)如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半

径的圆的面积S与点P的运动时间t的函数图象大致为() A.B.C.D. 思路分析:分析动点P的运动过程,采用定量分析手段,求出S与t的函数关系式,根据关系式可以得出结论. 解:不妨设线段AB长度为1个单位,点P的运动速度为1个单位,则: (1)当点P在A→B段运动时,PB=1-t,S=π(1-t)2(0≤t<1); (2)当点P在B→A段运动时,PB=t-1,S=π(t-1)2(1≤t≤2). 综上,整个运动过程中,S与t的函数关系式为:S=π(t-1)2(0≤t≤2), 这是一个二次函数,其图象为开口向上的一段抛物线.结合题中各选项,只有B 符合要求. 故选B. 点评:本题结合动点问题考查了二次函数的图象.解题过程中求出了函数关系式,这是定量的分析方法,适用于本题,如果仅仅用定性分析方法则难以作出正确选择. 对应训练 1.(2015?白银)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是() A.B.C.D.

中考数学最新经典动点问题-十大题型

1、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点. (1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与 CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?

2、直线与坐标轴分别交于两点,动点同时从点出发, 同时到达点,运动停止.点沿线段 运动,速度为每秒1个单位长度,点沿路线→→运动. (1)直接写出两点的坐标; (2)设点的运动时间为秒,的面积为,求出 与之间的函数关系式; (3)当时,求出点的坐标,并直接写出以点为顶点的平行四边形的第四个顶点的坐标. 3 64 y x =-+A B 、P Q 、O A Q OA P O B A A B 、Q t OPQ △S S t 48 5 S = P O P Q 、、 M

3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B 两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P. (1)连结P A,若P A=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是 正三角形? 4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A

动点例题解析及标准答案

动点例题解析及答案

————————————————————————————————作者:————————————————————————————————日期:

初中数学动点问题及练习题附参考答案 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想函数思想方程思想数形结合思想转化思想 注重对几何图形运动变化能力的考查。 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点. 专题一:建立动点问题的函数解析式 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式。 二、应用比例式建立函数解析式。 三、应用求图形面积的方法建立函数关系式。 专题二:动态几何型压轴题 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、以动态几何为主线的压轴题。 (一)点动问题。(二)线动问题。(三)面动问题。 二、解决动态几何问题的常见方法有: 1、特殊探路,一般推证。 2、动手实践,操作确认。 3、建立联系,计算说明。

初中数学典型例题100道

初中数学典型例题100道(二) 选择填空题150道 一.选择题: 7,如图,直线,点A1坐标为(1,0),过点A1作x的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2x的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此做法进行下去,点A5的坐标为(,). 8,在Rt△ABC中,∠C=90°,∠A=30°,BC=2.若将此直角三角形的一条直角边BC或AC与x轴 重合,使点A或点B刚好在反比例函数(x>0)的图象上时,设△ABC在第一象限部分的面 积分别记做S1、S2(如图1、图2所示)D是斜边与y轴的交点,通过计算比较S1、S2的大小. 9,若不论k为何值,直线y=k(x﹣1)﹣与抛物线y=ax2+bx+c有且只有一个公共点,求a、b、c的值。 10,如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1. ①b2>4ac; ②4a﹣2b+c<0; ③不等式ax2+bx+c>0的解集是x≥3.5; ④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2. 上述4个判断中,正确的是()

A.①②B.①④C.①③④ D.②③④ 二,解答题 4,如图,在平面直角坐标系中,将直线y=kx沿y轴向下平移3个单位长度后恰好经过B(﹣3,0)及y轴上的C点.若抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的右侧),且经过点C,其对称轴与直线BC交于点E,与x轴交于点F. (1)求直线BC及抛物线的解析式; (2)设抛物线的顶点为D,点P在抛物线的对称轴上,若∠APD=∠ACB,求点P的坐标; (3)在抛物线上是否存在点M,使得直线CM把四边形EFOC分成面积相等的两部分?若存在,请求出直线CM的解析式;若不存在,请说明理由. 5,如图,在平面直角坐标系中,抛物线y=ax2﹣3ax﹣4a的图象经过点C(0,2),交x轴于点A、B(A点在B点左侧),顶点为D. (1)求抛物线的解析式及点A、B的坐标; (2)将△ABC沿直线BC对折,点A的对称点为A′,试求A′的坐标; (3)抛物线的对称轴上是否存在点P,使∠BPC=∠BAC?若存在,求出点P的坐标;若不存在,请说明理由.

初中数学动点题型汇总

初中数学动点集 一、线段和、差中的动点 (一)利用垂线段最短的性质解决最大(小)值的问题 1.如下图所示,△ABC 是以AB 为斜边的直角三角形,AC=4,BC=3,P 为AB 上的一动点,且PE⊥AC 于E,PF ⊥BC 于F,则线段EF 长度的最小值是。 2.如图所示,在菱形ABCD 中,过A 作AE⊥BC 于E,P 为AB 上一动点,已知 13 5 AB BE ,EC=8,则线段PE 的长度最小值为。 3.如图所示,等边△ABC 的边长为1,D、E 两点分别在边AB、AC 上,CE=DE,则线段CE 的最小值为。 4.如右图所示,点A 的坐标为(0,22-),点B 在直线y=x 上运动,当线段AB 最短时, 点B 的坐标为。

5.在平面直角坐标系xoy中,直线y=2x+m与y轴交于点A,与直线y=-x+4交于点B(3,n),p为直线y=-x+4上一动点。 (1)求m,n的值 (2)当线段AP最短时,求点p的坐标。 2。 6.已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB=30 试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB的值最短,则此时AM+NB=。 (二)利用三点共线的特征解决最大(小)值的问题 1.如图所示,四边形ABCD是正方形,边长是4,E是BC上一点,且BE=1,P是对角线AC上任意一点,则 PE+PB的最小值是。 2.如图所示,点P是边长为1的菱形ABCD对角线AC上的一个动点,M、N分别是AB,BC边上的中点,PM+PN 的最小值是。

3.如图所示,在△ABC中,∠C=90°,AC=4,BC=2,点A、C分别在x轴、y轴上,当点A在x轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点的最大距离是。 4.如图1所示,F,E分别是正方形ABCD的边CD、DA上两个动点(不与C、D、A重合),满足DF=AE。直线BE、AF相交于点G,则有BE=AF,BE⊥AF;如图2所示,F,E分别是正方形ABCD的边CD、DA延长线上的两个动点(不与D、A重合),依然有BE=AF,BE⊥AF; 若在上述的图1与图2中,正方形ABCD的边长为4,随着动点F、E的移动,线段DG的长也随之变化。在变化过程中,线段DG的长是否存在最大值或最小值?若存在,求出这个最大值或最小值,若不存在,请说明理由。(要求:分别就图1、图2直接写出结论,再选择其中一个图形说明理由)

初中数学经典几何题及答案

4e d c 经典难题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . A P C D B A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 N F E C D

P C G F B Q A D E 经典难题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形 CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半.(初二) 经典难题(三) 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二) · A D H E M C B O · G A O D B E C Q P N M · O Q P B D E C N M · A A F D E

相关主题
文本预览
相关文档 最新文档