当前位置:文档之家› 质点的角动量定理及角动量守恒定律

质点的角动量定理及角动量守恒定律

质点的角动量定理及角动量守恒定律
质点的角动量定理及角动量守恒定律

第六章角动量

内容:

§6-1 力矩(4课时)

§6-2 质点的角动量定理及角动量守恒定律(4课时)

要求:

1.熟练掌握力对点的力矩。

2.理解对点的角动量定理及角动量守恒定律。

重点与难点:

角动量守恒定律。

作业:

P219 1,2,3,4,

P220 5,6,,

第六章 角动量

§6-1 力矩

一、力对点的力矩:

如图所示,定义力F

对O 点的力矩为: F r M ?=

大小为: θs i n

Fr M = 力矩的方向:力矩是矢量,其方向可用右手螺旋法则来判断:把右手拇指伸直,其余四指弯曲,弯曲的方向由矢径通过小于1800的角度转向力的方向时,拇指指向的方向就是力矩的方向。

二、力对转轴的力矩:

力对O 点的力矩在通过O 点的轴上的投影称为力对转轴的力矩。

1)力与轴平行,则0=M

2)刚体所受的外力F

在垂直于转轴的平面内,转轴和力的作用线之

间的距离d 称为力对转轴的力臂。力的大小与力臂的乘积,称为力F

转轴的力矩,用M

表示。力矩的大小为: Fd M =

或: θs i n

Fr M = 其中θ是F 与r

的夹角。

3)若力F

不在垂直与转轴的平面内,则可把该力分解为两个力,一

个与转轴平行的分力1F ,一个在垂直与转轴平面内的分力2F

,只有分力2F

才对刚体的转动状态有影响。

对于定轴转动,力矩M

的方向只有两个,沿转轴方向或沿转轴方向反方向,可以化为标量形式,用正负表示其方向。

三、合力矩对于每个分力的力矩之和。

合力 ∑=i F F

合外力矩 ∑∑

∑=?=

?=?i i i M F r F r F r M

即 ∑i M M

四、单位: m N ?

注意:力矩的单位和功的单位不是一回事,力矩的单位不能写成焦耳。

(1)与转动垂直但通过转轴的力对转动不产生力矩; (2)与转轴平行的力对转轴不产生力矩;

§6-2 质点的角动量定理及角动量守恒定律

在讨论质点运动时,我们用动量来描述机械运动的状态,并讨论了在机械运动过程中所遵循的动量守恒定律。同样,在讨论质点相对于空间某一定点的运动时,我们也可以用角动量来描述物体的运动状态。角动量是一个很重要的概念,在转动问题中,它所起的作用和(线)动量所起的作用相类似。

在研究力对质点作用时,考虑力对时间的累积作用引出动量定理,从而得到动量守恒定律;考虑力对空间的累积作用时,引出动能定理,从而得到机械能守恒定律和能量守恒定律。至于力矩对时间的累积作用,可得出角动量定理和角动量守恒定律;而力矩对空间的累积作用,则可得出刚体的转动动能定理,这是下一节的内容。本节主要讨论的是绕定轴转动的刚体的角动量定理和角动量守恒定律,在这之前先讨论质点对给定点的角动量定理和角动量守恒定律。

本节将从力矩对时间的累积作用,引入的角动量的概念,讨论质点和刚体的角动量和角动量守恒定律。

一、 质点的角动量定理和角动量守恒定律

1.质点的角动量(Angular Momentum )——描述转动特征的物理量 1)概念

一质量为m 的质点,以速度v

运动,相对于坐标原点O 的位置矢

量为r ,定义质点对坐标原点O 的角动量为该质点的位置矢量与动量的矢量积,即

v m r P r L

?=?= 角动量是矢量,大小为 L=rmv sin α

式中α为质点动量与质点位置矢量的夹角。

角动量的方向可以用右手螺旋法则来确定。 角动量的单位: kg.m 2.s -1 2)说明:

(1)大到天体,小到基本粒子,都具有转动的特征。但从18世纪定义角动量,直到20世纪人们才开始认识到角动量是自然界最基本最重要的概念之一,它不仅在经典力学中很重要,而且在近代物理中的运用更为广泛。

例如,电子绕核运动,具有轨道角动量,电子本身还有自旋运动,具有自旋角动量等等。原子、分子和原子核系统的基本性质之一,是它们的角动量仅具有一定的不连续的量值。这叫做角动量的量子化。因此,在这种系统的性质的描述中,角动量起着主要的作用。

(2)角动量不仅与质点的运动有关,还与参考点有关。对于不同的参考点,同一质点有不同的位置矢量,因而角动量也不相同。因此在说明一个质点的角动量时,必须指明是相对于哪一个参考点而言的。

(3)角动量的定义式v m r P r L ?=?=与力矩的定义式F r M

?=形式相同,故角动量有时也称为动量矩——动量对转轴的矩。

(4)若质点作圆周运动,r v

⊥,且在同一平面内,则角动量的大小为L=mrv=mr 2

ω,写成矢量形式为ω 2mr L =

(5)质点作匀速直线运动时,尽管位置矢量r

变化,但是质点的角动量L 保持不变。 L=rmv sin α=mvd

2.质点的角动量定理(Theorem of Angular Momentum ) (1)质点的转动定律

问题:讨论质点在力矩的作用下,其角动量如何变化。

设质点的质量为m ,在合力F

的作用下,运动方程为

()t

v m t v m a m F d d d d

=

== 用位置矢量r

叉乘上式,得

()

t

v m r F r d d

?=?

考虑到

()()v m t r v m t r v m r t

?+?=?d d d d d d

和 0d d =?=?v v v t

r

得 ()v m r t

F r

?=?d d

由力矩 F r M

?=

和角动量的定义式()v m r t

L

?=d d

得 t

L

M d d =

表述:作用于质点的合力对参考点O 的力矩,等于质点对该点O 的角动量随时间的变化率,有些书将其称为质点的转动定律(或角动量定理的微分形式)。

这与牛顿第二定律t P F /

=在形式上是相似的,其中M 对应着F ,L 对应着P 。 (2)冲量矩和质点的角动量定理

把上式改写为 L t M

= dt M

为力矩和作用时间的乘积,叫作冲量矩。对上式积分得

122

1L L t M t t

-=?

式中1L 和2

L 分别为质点在时刻t 1和t 2的角动量,?2

1

t t t M

为质点在时间间隔t 2- t 1内所受的冲量

矩。

质点的角动量定理:对同一参考点,质点所受的冲量矩等于质点角动量的增量。 成立条件:惯性系

3.质点的角动量守恒定律(Law of Conservation of Angular Momentum ) 若质点所受的合外力矩为零,即M=0,则

=恒矢量=v m r L

?

这就是角动量守恒定律:当质点所受的对参考点的合外力矩为零时,质点对该参考点的角动量为一恒矢量。 说明:

(1)质点的角动量守恒定律的条件是M =0,这可能有两种情况:

● 合力为零;

● 合力不为零,但合外力矩为零。

例如:质点作匀速圆周运动就是这种情况。质点作匀速圆周运动时,作用于质点的合力

是指向圆心的所谓有心力,故其力矩为零,所以质点作匀速圆周运动时,它对圆心的角动量是守恒的。不仅如此,只要作用于质点的力是有心力,有心力对力心的力矩总是零,所以,在有心力作用下质点对力心的角动量都是守恒的。太阳系中行星的轨道为椭圆,太阳位于两焦点之一,太阳作用于行星的引力是指向太阳的有心力,因此如以太阳为参考点O,则行星的角动量是守恒的。

特例:(1)在向心力的作用下,质点对力心的角动量都是守恒的;

(2)匀速直线运动。

(2)角动量守恒定律是物理学的另一基本规律。在研究天体运动和微观粒子运动时,角动量守恒定律都起着重要作用。

对质点系角动量定理的讨论

目录 摘要 (1) Abstract (1) 1 引言 (1) 2 惯性系中质点系角动量定理 (1) 2.1惯性系中角动量定理的推导 (1) 2.2在惯性系中角动量表达式的一点讨论 (2) 2.3惯性系中质点对轴的角动量定理 (3) 2.4刚体定轴转动时对转轴的角动量 (3) 3 非惯性系中的角动量定理 (4) 4 应用 (5) 4.1质点系质心系的角动量定理在刚体定轴转动中的应用 (5) 4.2刚体做定轴转动时对轴上任一点的角动量定理和应用 (5) 5 结论 (6) 参考文献 (7)

对质点系角动量定理的讨论 摘 要:通过对质点系角动量定理推导以及讨论其在具,体问题中的应用,并且结合其在惯性系、非惯性系以及质心系的情况下的公式和它们之间的联系,明确了解了角动量定理在解决力学相关问题的重要性,从而为解决相关力学问题提供帮助。 关键词:质点系;角动量;参考点;轴;质心 Discussion on the Theorem of Angular Momentum of Particle Abstract : Through to discuss of the particle system and angular moment theorem andits specific problems, and to combinate with the application in the inertial system, noninertial system under the conditions of the heart and the quality of the formula and the relationship between them, we understanded the angular momentum in solving problems which related to the mechanical theorems and its importance clearly , and proved a lot of help to solve the related mechanical problems. Key W ords : Particle; Angular momentum; Reference points; Axis; centroid. 1引言 角动量定理在质点系中的应用在力学相关问题中非常重要,本论文主要是通过上学期对质点系角动量在惯。性系,非惯性系,以及质心系内的研究与讨论,总结出的一些公式和规律,为掌握解决问题方法提供方便。 2惯性系中质点系角动量定理 2.1惯性系中角动量定理的推导 质点系内各质点对参考点O 的角动量的矢量和看作质点系对O 点的角动量,设由n 个质点组成的质点系,在惯性参考系中,各质点的速度分别用1v ,2v ……i v …n v 表示,相对于参考点O 的位置矢量分别为1r ,2r ……i r …n r ,质量分别为1m , 2m ……i m ……n m 将质点系的角动量记作L 。则

《大学物理》习题册题目及答案第3单元 角动量守恒定律

第3单元 角动量守恒定律 序号 学号 姓名 专业、班级 一 选择题 [ A ]1.已知地球的质量为m ,太阳的质量为M ,地心与日心的距离为R ,引力常数为G ,则地球绕太阳作圆周运动的角动量为 (A) GMR m (B) R GMm (C) R G Mm (D) R GMm 2 [ C ]2. 关于刚体对轴的转动惯量,下列说法中正确的是 (A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关。 (B) 取决于刚体的质量和质量的空间分布,与轴的位置无关。 (C) 取决于刚体的质量、质量的空间分布和轴的位置 (D) 只取决于转轴的位置、与刚体的质量和质量的空间分布无关。 [ E ]3. 如图所示,有一个小块物体,置于一个光滑的水平桌面上,有一绳其一端连结此物体,另一端穿过桌面中心的小孔,该物体原以角速度ω在距孔为R 的圆周上转动,今将 绳从小孔缓慢往下拉,则物体 动能不变,动量改变。 动量不变,动能改变。 角动量不变,动量不变。 角动量改变,动量改变。 角动量不变,动能、动量都改变。 [ A ]4.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正 确的? (A) 角速度从小到大,角加速度从大到小 ; (B) 角速度从小到大,角加速度从小到大 ; (C) 角速度从大到小,角加速度从大到小 ; (D) 角速度从大到小,角加速度从小到大 。 [ B ]5.两个均质圆盘A 和B 密度分别为A ρ和B ρ,若A ρ>B ρ,但两圆盘质量与厚度相

同,如两盘对通过盘心垂直于盘面轴的转动惯量各为A J 和B J ,则 (A) A J >B J (B) B J >A J (C) A J =B J (D) A J 、B J 哪个大,不能确定 [ A ]6.有两个力作用在一个有固定转轴的刚体上: (1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2) 这两个力都垂直于轴作用时,它们对轴的合力矩一定是零; (3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零。 在上述说法中: (A) 只有(1)是正确的。 (B) (1)、(2)正确,(3)、(4)错误。 (C) (1)、(2)、(3)都正确,(4)错误。 (D) (1)、(2)、(3)、(4)都正确。 [ C ]7.一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同、速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω (A) 增大 (B) 不变 (C) 减小 (D) 不能确定 二 填空题 1.质量为m 的质点以速度 v 沿一直线运动,则它对直线上任一点的角动量为 ___0_ 。 2.飞轮作匀减速转动,在5s 内角速度由40πrad·s 1 -减到10πrad·s 1 -,则飞轮在这5s 内总共转过了___62.5_____圈,飞轮再经_______1.67S_____ 的时间才能停止转动。 3. 一长为l 、质量可以忽略的直杆,两端分别固定有质量为2m 和m 的小球,杆可绕通过其中心O 且与杆垂直的水平光滑固定轴在铅直平面内转动。 开始杆与水平方向成某一角度θ,处于静止状态,如图所示。释放后,杆绕O 轴转动,则当杆转到水平位置时,该系统所受的合外力矩的大小M = mgl 21 ,此时该系统角加速度的大小β= l g 32 。 4.可绕水平轴转动的飞轮,直径为1.0m ,一条绳子绕在飞轮的外周边缘上,如果从静 止开始作匀角加速运动且在4s 内绳被展开10m ,则飞轮的角加速度为2 /5.2s rad 。 5.决定刚体转动惯量的因素是 ___刚体的质量____ __;__刚体的质量分布____

角动量守恒定律

第四节 角动量守恒定律 一、角动量 1. 质点对定点的角动量 (1)v m r p r L ?=?= (力矩:F r M ?=) (2)说明:r 指质点相对于固定点O 的位置矢量;指质点的动量;v 指质点的速度 (3)大小:=L αsin rmv , (4)方向:(右手法则)v r ?向 (5)单位:12-s kgm (6)量纲:12-T ML 2. 刚体对定轴的角动量 (将刚体分解为质点组)∑∑=???==????=???=ωI w r m L L w r m v r m L i i i oz i i i i i i 22 ω I L = 此式对质点也适用 3. 角动量定理: (1) 公式:dt dL dt I d dt d I I M ====)(ωωβ 或dL dt M =? (2)文字表述:刚体对某一给定转轴或点的角动量对时间的变化率等于刚体所受到的对同一转轴或点的和外力矩的大小。 (3)说明:dt M ?称冲量矩,表示力矩的时间积累效果,单位:牛·米·秒 若何外力矩M=0,则L=IW=恒量 4. 转动定律的普遍形式 dt dI dt d I dt L d M ωω +== 二、角动量守恒 1、角动量守恒的条件:质点所受相对于参考点的力矩的矢量和等于零;在有心 力作用下,质点相对于力心的角动量守恒。 2、应用:

例1:花样滑冰运动员的“旋”动作,当运动员旋转时伸臂时转动惯量较大,转速较慢;收臂时转动惯量减小,转速加快;再如:跳水运动员的“团身--展体”动作,当运动员跳水时团身,转动惯量较小,转速较快;在入水前展体,转动惯量增大,转速降低,垂直入水。 3、习题: 1.质点做直线运动时,其角动量( )(填一定或不一定)为零。 答案: 不一定 2.一质点做直线运动,在直线外任选一点O为参考点,若该质点做匀速直线运动,则它相对于点O的角动量( )常量;若该质点做匀加速直线运动,则它相对于点O的角动量( )常量,角动量的变化率( )常量。(三空均填是或不是)答案: 是; 不是; 是。 3.一质点做匀速圆周运动,在运动过程中,质点的动量( ),质点相对于圆心的角动量( )。(两空均填守恒或不守恒) 答案:不守恒;守恒。 4.一颗人造地球卫星的近地点高度为h 1 ,速率为υ 1 ,远地点高度为h 2, 已知地 球半径为R.求卫星在远地点时的速率υ 2.. 解:因为卫星所受地球引力的作用线通过地球中心,所以卫星对地球中心的角动量守恒。 根据角动量守恒定律得 r 1 mυ 1 = r 2 mυ 2 且r 1=R+ h 1 r 2 =R+ h 2 解得υ 2 =(R+ h 1 /R+ h 2 )υ 1

对质点系角动量定理的讨论

目录 摘要 (1) 关键词 (1) Abstract (1) Key Words (1) 引言 (1) 1惯性系中质点系角动量定理 (1) 1.1惯性系中角动量定理的推导 (1) 1.2在惯性系中角动量表达式的一点讨论 (2) 1.3惯性系中质点对轴的角动量定理 (3) 1.4刚体定轴转动时对转轴的角动量 (4) 2非惯性系中的角动量定理 (5) 3应用 (6) 3.1质点系质心系的角动量定理在刚体定轴转动中的应用 (6) 3.2刚体做定轴转动时对轴上任一点的角动量定理和应用 (7) 结束语: (8) 参考文献: (8)

对质点系角动量定理的讨论 姓名:杜晨阳 学号:20095040038 单位:物理电子工程学院 专业:物理学 指导老师:贾老师 职称:副教授 摘 要:通过对质点系角动量定理推导以及讨论其在具体问题中的应用,并且结合其在惯性系、非惯性系以及质心系的情况下的公式和它们之间的联系,明确了解了角动量定理在解决力学相关问题的重要性,从而为解决相关力学问题提供帮助。 关键词:质点系;角动量;参考点;轴;质心 To express theorem of angular momentu Abstract: Through to discusse of the particle system and angular momenttheorem andits specific problems, and to combinate with the application in the inertial system, noninertial system under the conditions of the heart and the quality of the formula and the relationship between them,we understanded the angular momentum in solving problems which related to the mechanical theorems and its importance clearly,and proved a lot of help to solve the related mechanical problems. Key Words : Particle, Angular momentum, Reference points, Axis, centroid. 引言 角动量定理在质点系中的应用在力学相关问题中非常重要,本论文主要是通过上学期对质点系角动量在惯性系,非惯性系,以及质心系内的研究与讨论,总结出的一些公式和规律,为掌握解决问题方法提供方便。 1惯性系中质点系角动量定理 1.1惯性系中角动量定理的推导 质点系内各质点对参考点O 的角动量的矢量和看作质点系对O 点的角动量,设 由n 个质点组成的质点系,在惯性参考系中,各质点的速度分别用1v ,2v ……i v …n v

第2节质点系的角动量定理及角动量守恒定律

第5.2节 质点系的角动量定理及角动量守恒定律 5.2.1离心调速器模型如图所示.由转轴上方向下看,质量为m 的小球在水平面内绕AB 逆时针作匀速圆周运动,当角速度为ω时,杆张开α角.杆长为l .杆与转轴在B 点相交.求(1)作用在小球上的各力对A 点、B 点及AB 轴的力矩.(2)小球在图示位置对A 点、B 点及AB 轴的角动量.杆质量不计 解:(本题中A 点的位置不明确,A 点应与两小球同 高度) 以A 点为坐标原点建立坐标系,x 轴向右,y 轴向上,z 轴垂直于纸面向外。 左侧小球: 受力:j mg W ?-= ,)?cos ?(sin j i T T αα+= 位失:相对于A 点:i l r A ?sin α-= 相对于B 点:T T l j i l r B -=+-=)?cos ?(sin αα 速度:小球绕y 轴作匀速圆周运动,速率为:αωωsin l r v == 在图中所示位置:k l k v v ?sin ?αω== 重力矩: ?)?(?)?(?sin )?()?cos ?(sin ?sin )?()?sin (=?=?==-?+-=?==-?-=?=j j j j k mgl j mg j i l W r k mgl j mg i l W r B A AB B B A A ττταααταατ 拉力T 的力矩: 0?)?(?)?(0 ?2sin ?cos sin )?cos ?(sin )?sin (2 1=?=?==?-=?=-=-=+?-=?=j j j j T T T l T r k lT k lT j i T i l T r B A AB B B A A τττταααααατ 角动量: j m l j j L j j L L m l m l L j i m l k m l j i l v m r L j m l k m l i l v m r L B A AB B B B A A ?sin ?)?(?)?(sin sin sin cos ||) ?sin ?sin cos (?sin )?cos ?(sin ?sin ?sin )?sin (222 42222222αωαωαααωαααωαωαααωαωα=?=?==+=+-=?+-=?==?-=?=

角动量守恒定律

《大学物理》作业 No.4 角动量守恒定律 一、选择题 1.已知地球的质量为m,太阳的质量为M,地心与日心的距离为R,引力常数为G,则地球绕太阳作圆周运动的角动量为 [ ](A) (B) (C) (D) 2.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,如图所示。今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? [ ](A) 角速度从小到大,角加速度从大到小 ; (B) 角速度从小到大,角加速度从小到大 ; (C) 角速度从大到小,角加速度从大到小 ; (D) 角速度从大到小,角加速度从小到大。 3. 两个均质圆盘A和B密度分别为和,若>,但两圆盘质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为和,则 [ ](A) > (B) > (C) = (D) 、哪个大,不能确定 4.有两个力作用在一个有固定转轴的刚体上: (1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零; (3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零。 在上述说法中: [ ](A) 只有(1)是正确的。 (B) (1)、(2)正确,(3)、(4)错误。 (C) (1)、(2)、(3)都正确,(4)错误。 (D) (1)、(2)、(3)、(4)都正确。 5.关于力矩有以下几种说法: (1) 对某个定轴而言,内力矩不会改变刚体的角动量。 (2) 作用力和反作用力对同一轴的力矩之和必为零。 (3) 质量相等、形状和大小不同的两个物体,在相同力矩的作用下,它 们的角加速度一定相等。 在上述说法中,

质点角动量定理附角动量守恒定律

第六章角动量 内容: §6-1 力矩(4课时) §6-2 质点的角动量定理及角动量守恒定律(4课时) 要求: 1.熟练掌握力对点的力矩。 2.理解对点的角动量定理及角动量守恒定律。 重点与难点: 角动量守恒定律。 作业: P219 1,2,3,4, P220 5,6,,

第六章 角动量 §6-1 力矩 一、力对点的力矩: 如图所示,定义力F 对O 点的力矩为: F r M ?= 大小为: θs i n Fr M = 力矩的方向:力矩是矢量,其方向可用右手螺旋 法则来判断:把右手拇指伸直,其余四指弯曲,弯曲 的方向由矢径通过小于1800的角度转向力的方向 时,拇指指向的方向就是力矩的方向。 二、力对转轴的力矩: 力对O 点的力矩在通过O 点的轴上的投影称为力对转轴的力矩。 1)力与轴平行,则0=M ; 2)刚体所受的外力F 在垂直于转轴的平面内,转轴和力的作用线之间的距离d 称为力对转轴的力臂。力的大小与力臂的乘积,称为力F 对转轴的力矩,用M 表示。力矩的大小为: Fd M = 或: θs i n Fr M = 其中θ是F 与r 的夹角。 3)若力F 不在垂直与转轴的平面内,则可把该力分解为两个力,一个与转轴平行的分力1F ,一个在垂直与转轴平面内的分力2F ,只有分力2F 才对刚体的转动状态有影响。 对于定轴转动,力矩M 的方向只有两个,沿转轴方向或沿转轴方 向反方向,可以化为标量形式,用正负表示其方向。 三、合力矩对于每个分力的力矩之和。 合力 ∑=i F F 合外力矩 ∑∑∑=?=?=?i i i M F r F r F r M = 即 ∑i M M = 四、单位: m N ? 注意:力矩的单位和功的单位不是一回事,力矩的单位不能写成焦耳。 (1)与转动垂直但通过转轴的力对转动不产生力矩; (2)与转轴平行的力对转轴不产生力矩;

角动量定理及角动量守恒定律

角动量定理及角动量守恒定律 一、力对点的力矩: 如图所示,定义力F 对O 点的力矩为: F r M ?= 大小为: θsin Fr M = 力矩的方向:力矩是矢量,其方向可用右手螺旋法则来判断:把右手拇指伸直,其余四指弯曲,弯曲的方向由矢径通过小于1800的角度转向力的方向时,拇指指向的方向就是力矩的方向。 二、力对转轴的力矩: 力对O 点的力矩在通过O 点的轴上的投影称为力对转轴的力矩。 1)力与轴平行,则0=M ; 2)刚体所受的外力F 在垂直于转轴的平面内,转轴和力的作用线之 间的距离d 称为力对转轴的力臂。力的大小与力臂的乘积,称为力F 对 转轴的力矩,用M 表示。力矩的大小为: Fd M = 或: θsin Fr M = 其中θ是F 与r 的夹角。 3)若力F 不在垂直与转轴的平面内,则可把该力分解为两个力,一 个与转轴平行的分力1F ,一个在垂直与转轴平面内的分力2F ,只有分力2F 才对刚体的转动状态有影响。 对于定轴转动,力矩M 的方向只有两个,沿转轴方向或沿转轴方向反方向,可以化为标量形式,用正负表示其方向。 三、合力矩对于每个分力的力矩之和。 合力 ∑=i F F 合外力矩 ∑∑∑=?=?=?i i i M F r F r F r M = 即 ∑i M M = 四、质点的角动量定理及角动量守恒定律 在讨论质点运动时,我们用动量来描述机械运动的状态,并讨论了在机械运动过程中所遵循的动量守恒定律。同样,在讨论质点相对于空间某一定点的运动时,我们也可以用角动量来描述物体的运动状态。角动量是一个很重要的概念,在转动问题中,它所起的作用和(线)动量所起的作用相类似。 在研究力对质点作用时,考虑力对时间的累积作用引出动量定理,从而得到动量守恒定律;考虑力对空间的累积作用时,引出动能定理,从而得到机械能守恒定律和能量守恒定律。至于力矩对时间的累积作用,可得出角动量定理和角动量守恒定律;而力矩对空间的累积作用,则可得出刚体的转动动能定理,这是下一节的内容。本节主要讨论的是绕定轴转动的刚体的角动量定理和角动量守恒定律,在这之前先讨论质点对给定点的角动量定理和角动量守恒定律。 下面将从力矩对时间的累积作用,引入的角动量的概念,讨论质点和刚体的角动量和角动量守恒定律。 1.质点的角动量(Angular Momentum )——描述转动特征的物理量 1)概念 一质量为m 的质点,以速度v 运动,相对于坐标原点O 的位置矢量

角动量定理

角动量守恒 现在我们来讨论物体的转动。有关转动的运动学我们在第一章已经了解得很 清楚了,有趣的是,你发现在转动和线性运动之间几乎每一个量都是相互对应的。 譬如,就象我们讨论位置和速度那样,在转动中可以讨论角位置和角速度。速度 说明物体运动得多快,而角速度则反映了物体转动的快慢,角速度越大,物体转动得越快,角度变化也越快。再继续下去,我们可以把角速度对时间微分,并称2 d dt d dt αω==ΦK K K 2为角加速度,它与通常的加速度相对应。 当然,转动只是一种形式稍微特殊一点的运动,其动力学方程也就无外乎 Newton 定律了。当然,由于这种运动只涉及转动,因此,我们也许可以找到一 些更加适合描述转动的物理量以及相应的作为Newton 第二定律推论的动力学 方。为了将该转动动力学和构成物体的质点动力学规律联系起来,我们首先就应 当求出,当角速度为某一值时,某一特定质点是如何运动的。这一点我们也是已 经知道了的:假如粒子是以一个给定的角速度ωK 转动,我们发现它的速度为 v r ω=×K K K (1) 接下来,为了继续研究转动动力学,就必须引进一个类似于力的新的概念。 我们要考察一下是否能够找到某个量,它对转动的关系就象力对线性运动的关系 那样,我们称它为转矩(转矩的英文名称torque 这个字起源于拉丁文torquere ,即 扭转的意思)。力是线性运动变化所必须的,而要使某一物体的转动发生变化就 需要有一个“旋转力”或“扭转力”,即转矩。定性地说,转矩就是“扭转’;但 定量地说,转矩又应该是什么呢?因为定义力的一个最好的办法是看在力作用下 通过某一给定的位移时,它做了多少功,所以通过研究转动一个物体时做了多少 功就能定量地得出转矩的理论。为了保持线性运动和转动的各个量之间的对应关 系,我们让在力作用下物体转过一个微小距离时所做的功等于转矩与物体转过的 角度的乘积。换句话说,我们是这样来定义转矩,使得功的定理对两者完全相同: 力乘位移是功,转矩乘角位移也是功。这就告诉了我们转矩是什么。如果粒子的 位矢转过一个很小的角度,它做了多少功呢?这很容易。所做的功是

第五节-角动量角动量守恒定理讲解学习

第五节-角动量角动量 守恒定理

第五章角动量角动量守恒定理 本章结构框图 学习指导 本章概念和内容是中学没有接触过的,是大学物理教学的重点和难点。许多同学容易将平动问题与转动问题中的概念和规律混淆,例如两种冲击摆问题。建议采用类比方法,对质量与转动惯量、动量与角动量、力与力矩、冲量与角冲量、平动动能和转动动能、运动学的线量和角量、动量定理和角动量定理、动量守恒和角动量守恒……一一加以比较。本章的重点是刚体定轴转动问题,注意定轴条件下,各种规律都应该用标量式表示。还请注意动量守恒在天体问题、粒子问题中的应用。 基本要求 1.理解质点、质点系、定轴刚体的角动量概念。 2.理解定轴刚体的转动惯量概念,会进行简单计算。 3.理解力矩的物理意义, 会进行简单计算。

4.掌握刚体定轴转动定律,熟练进行有关计算。 5.理解角冲量(冲量矩)概念,掌握质点、质点系、定轴刚体的角动量定 理,熟练进行有关计算。 6.掌握角动量守恒的条件,熟练应用角动量守恒定律求解有关问题。 内容提要 1.基本概念 刚体对定轴的转动惯量:是描述刚体绕定轴转动时,其转动惯性大小的物理量。定义为刚体上每个质元(质点、线元、面元、体积元)的质量与该质元到转轴距离平方之积的总和。即: I的大小与刚体总质量、质量分布及转轴位置有关。 质点、质点系、定轴刚体的角动量:角动量也称动量矩,它量度物体的转动运动量,描述物体绕参考点(轴)旋转倾向的强弱。表5.1对质点、质点系、定轴刚体的角动量进行了比较。 表5.1质点、质点系和定轴刚体的角动量

力矩:力的作用点对参考点的位矢与力的矢积叫做力对该参考点的力矩(图5.1): 即: 大小:(力×力臂)方向:垂直于决定的平面,其指向由右手定则确定。

角动量守恒定理及其应用

角动量守恒定理及其应用

角动量守恒定理及其应用 摘要:角动量这一概念是经典物理学里面的重要组成部分,角动量的研究主要是对于物体的转动方面,并且可以延伸到量子力学以、原子物理及天体物理等方面。角动量这一概念范畴系统的介绍的力矩、角速度、角加速度的概念,并且统筹的联系到质点系、质心系、对称性等概念。 关键词:角动量;力矩;角动量守恒;矢量;转动;应用 Angular momentum conservation theorems and their application Abstract:Angular momentum to the concept of classical physics there is an important component of angular momentum of research mainly for the rotation, and may extend to the quantum mechanics and physical and in the astrophysical. angular momentum in the categorical system of the present moment, the angular velocity, the concepts of angular acceleration and co-ordination of the particle, the quality of heart, symmetry, and concepts. Key words:Angular momentum;Torque; Conservation of angular momentum; Vector; Turn; application. 引言 在研究物体运动时,人们经常可以遇到质点或质点系绕某一定点或轴线运动的 情况。例如太阳系中行星绕太阳的公转、月球绕地球的运转、物体绕某一定轴的转动等,在这类运动中,运动物体速度的大小和方向都在不断变化,因而其动量也在不 断变化。在行星绕日运动中,行星受指向太阳的向心力作用,其运动满足角动量守恒。我们很难用动量和动量守恒定律揭示这类运动的规律,但是引入角动量和角动量守 恒定律后,则可较为简单地描述这类运动。 角动量可从另一侧面反映物体运动的规律。事实上,角动量不但能描述宏观物体的运动,而且在近代物理理论中,角动量对于表征状态也必不可少。角动量守恒定律在经典物理学、运动生物学、航空航天技术等领域中的应用非常广泛。角动量在20

刚体角动量守恒定律

转动动能定理、角动量守恒原理 一,转动动能定理: 1, 力矩的功 设刚体在外力F 作用下发生角位移d φ 由功的定义:相应的元功为: ? θ?θMd Frd ds F ds F dA o ==-?=?=sin )90cos( 所以力矩的功为: ??==2 1 ???Md dA A 2, 转动动能定理 设M 为作用刚体上的合外力矩。将转动定律应用于功的定义中: 2 22 121)(0ωωωω?ω?β?ωωJ J d J d dt d J d J Md A -=====???? 所以转动动能定理为: 2 22 121ωω?J J Md -=? 说明,(1)??Md 为合外力矩的功,是过程量 22 1 ωJ E K = 为刚体在t 时刻的转动动能。是时刻量。 (2)其中M 、J 、ω必须相对同一惯性系,同一转轴。 【例】:质量为m 长度为l 的匀质细棒,可绕端轴o 在铅垂铅垂面内自由摆动,求细棒自水平位置自由下摆到铅垂位置时的角速度。 解:取细棒为研究对象,视之为刚体。细棒下摆到 任意θ位置时受外力有:重力mg ,端轴支持力N (对o 不成矩) 。由功的定义:

2 c o s 2)90sin(2900l mg d l mg d l mg Md o o ===-=???θθθθθ 由转动动能定理: l g ml J l mg 331210212222= ∴ ?? ? ??=-=ωωω 二,角动量守恒定律 设M 为作用于刚体的合外力矩,由定轴转动定律: dt dL dt J d dt d J J M = ===)(ωωβ 所以,刚体定轴角动量定理为 00 L L dL Mdt L L t t -==?? 特别当整个过程中合外力矩为零时,刚体的角动量守恒。 即刚体定轴转动角动量守恒定律为: 常矢==L M 0 说明:(1)刚体定轴角动量守恒条件是整个过程中合外力矩为零。 (2)守恒式各量(M 、J 、ω)均需是对同一惯性系中的同一转轴。 (3)? ??==都变,但乘积不变、都不变、ωωωJ J const I L (4)角动量守恒定律也是自然界基本定律之一。不仅适用宏观领域, 也适用微观领域。 【例】质量为m 的人站在质量为M ,半径为R 的水平匀质圆盘边沿,随圆盘以角速度0Ω旋转,当他运动到半径r 处时,系统的角速度变为多少? 解:系统转动过程中所受外力:重力Mg 、mg 、以及转轴的支持力N 均对转轴不成矩,故系统角动量守恒。 2 22 22022220222)2() 2 1()21()2 1 ()21(Ω++=+Ω+=ΩΩ+=Ω+ MR mr R M m MR mr MR mR MR mr MR mR

第五节 角动量角动量守恒定理

第五章角动量角动量守恒定理 本章结构框图 学习指导 本章概念和内容是中学没有接触过的,是大学物理教学的重点和难点。许多同学容易将平动问题与转动问题中的概念和规律混淆,例如两种冲击摆问题。建议采用类比方法,对质量与转动惯量、动量与角动量、力与力矩、冲量与角冲量、平动动能和转动动能、运动学的线量和角量、动量定理和角动量定理、动量守恒和角动量守恒……一一加以比较。本章的重点是刚体定轴转动问题,注意定轴条件下,各种规律都应该用标量式表示。还请注意动量守恒在天体问题、粒子问题中的应用。 基本要求 1.理解质点、质点系、定轴刚体的角动量概念。 2.理解定轴刚体的转动惯量概念,会进行简单计算。 3.理解力矩的物理意义, 会进行简单计算。 4.掌握刚体定轴转动定律,熟练进行有关计算。 5.理解角冲量(冲量矩)概念,掌握质点、质点系、定轴刚体的角动量定理, 熟练进行有关计算。

6.掌握角动量守恒的条件,熟练应用角动量守恒定律求解有关问题。 内容提要 1.基本概念 刚体对定轴的转动惯量:是描述刚体绕定轴转动时,其转动惯性大小的物理量。定义为刚体上每个质元(质点、线元、面元、体积元)的质量与该质元到转轴距离平方之积的总和。即: I的大小与刚体总质量、质量分布及转轴位置有关。 质点、质点系、定轴刚体的角动量:角动量也称动量矩,它量度物体的转动运动量,描述物体绕参考点(轴)旋转倾向的强弱。表5.1对质点、质点系、定轴刚体的角动量进行了比较。 表5.1质点、质点系和定轴刚体的角动量

力矩:力的作用点对参考点的位矢与力的矢积叫做力对该参考点的力矩(图5.1): 即: 大小:(力×力臂)方向:垂直于决定的平面,其指向由右手定则确定。 对于力矩的概念应该注意明确以下问题: ?区分力对参考点的力矩和力对定轴的力矩:力对某轴的力矩是力对轴上任意一点的力矩在该轴上的投影。例如:某力对x、y、z轴的力矩就是该力对原点 的力矩在三个坐标轴上的投影: 由上可知:力对参考点的力矩是矢量,而力对定轴的力矩是代数量。 ?明确质点系内力矩的矢量和恒为零:由于内力总是成对出现,作用力和反 作用力等大、反向、在同一直线上,所以对任何参考点内力矩的矢量和恒为零。当然,对任意轴,内力矩的代数和也恒为零。 ?明确质点系的合外力矩不等于其外力矢量和的力矩:合外力矩为各外力对同一参考点的力矩的矢量和,即:。由于一般情况下,各外力的作 用点的位矢各不相同,所以不能先求合力,再求合力的力矩。但是存在特例:在求重力矩时,可以把系内各质点所受重力平移到质心C,先求出其合 力,再由得到重力的合力矩。

角动量守恒定律

第四章 角动量守恒定律 4-1 质量为1.0 kg 的质点沿着由 ()34323r t i t t j =+- 决定的曲线运动,其中t 是时间,单位为s ,r 的单位为m 。求此质点在 t = 1.0 s 时所受的相对坐标原点O 的力矩。 解:()34323t i t t j γ=+- ()232649d r v t i t t j dt ∴= =+- ()()34323223649l mv t i t t j m t i t t j γ????=?=+-?+-???? ()()34234324963m t t t k t t t k ??=---?? ()666862m t t k t mk =-= 551212dl M t mk t k dt === ()0.1m kg = 1.012.0t s M N m ==当时: 方向沿z 轴方向 12.0kN m =或: M 4-2 质量为1.0 kg 的质点在力()()2332F t i t j =-+- 的作用下运动,其中t 是时间,单位为s ,F 的单位是N ,质点在t = 0 时位于坐标原点,且速度等于零。求此质点在 t = 2.0 s 时所受的相对坐标原点O 的力矩。 解:由牛顿第二定律: dv F m dt = ()()0 00112332v t t dv F dt t i t j dt m m ??∴=?=-+-????? 解得:()223322mv t t i t t j ??=-+- ??? 而:d r v dt =

()()32320111312332322t r t i t j dt t t i t t j m m ????????∴=-+-=-+- ? ??????????? ? 故得:()()323211312332322M r F t t i t t j t i t j m ????????=?=-+-?-+- ? ??????????? ()333331292540213.332333t t t t k t k k k N m m m ??=--++=-=-=-????? 4-3 如果忽略空气的影响,火箭从地面发射后在空间作抛物线运动。设火箭的质量为m ,以与水平面成α角的方向发射,发射速度为1v 。到达最高点的速度为2v ,最高点距离地面为h 。假设地球是半径为R 的球体,试求: (1)火箭在离开发射点的瞬间相对于地心的角动量; (2)火箭在到达最高点时相对于地心的角动量。 解:()1l r mv =? 设:火箭在o-xy 平面上运动 ()()11sin 90cos l Rmv k Rmv k αα∴=+=发 ()()22l h R mv k =+高 4-4 求题4-1中的质点在 t = 1.0 s 时相对于坐标原点O 的角动量。 解: ()621 1.0 1.02 2.0..t s t s l t mk k kg m s -===== 4-5 求题4-2中的质点在 t = 2.0 s 时相对于坐标原点O 的角动量。 解: dl M dt = 3400 55312t t l M dt t kdt t k m m ∴=?=-=-?? 故:()21 2.020| 6.67..3t l k k kg m s -==-=-

力矩和角动量定理

定义1 向量的向量积 设a 和b 为两个向量,a 与b 之间的夹角为θ(0 ≤ θ ≤ π),则存在向量c ,满足 (1)向量c 的模|c | = |a ||b |sin θ; (2)向量c 与向量a 和b 分别垂直,c 的方向与a 和b 的方向按照由a 转向b 的右手螺旋法则确定(图1.1)。 这样规定的向量c 定义为向量a 和b 的向量积(也称叉积或外积),记为 c = a × b 注意,对于两个向量a 和b ,与a 和b 的数量积a ? b 不同, a 和 b 的向量积a × b 也是一个向量,如果向量a 和b 不平行,则 a × b 与向量a 和b 构成的平面垂直,即a × b 与a 和b 都垂直。 向量a 和b 的向量积a × b 满足以下运算性质: (1)反交换律:a × b = ? b × a ; 图1.1 向量的向量积 (2)分配律:(a + b ) × c = a × c + b × c ; (3)数乘结合律:(λa ) × b = a ×(λb ) = λ(a × b )(λ为任意实数)。 根据向量积的定义和运算性质,容易得到(这里0表示零向量): (1)a × a = 0; (2)设a 和b 为两个非零向量,则有a × b = 0 ? a ∥b 。 设i ,j ,k 为空间直角坐标系中的基向量(单位向量),则有 (1)i ? i = j ? j = k ? k = 1,i ? j = j ? k = k ? i = 0; (2)i × i = j × j = k × k = 0; (3)i × j = k ,j × k = i ,k × i = j , 图1.2 基向量之间的关系 j × i = ? k ,k × j = ? i ,i × k = ? j 。 向量积可以根据运算性质计算,设向量a 和b 在空间直角坐标系中的形式分别为a = a x i + a y j + a z k = (a x ,a y ,a z ),b = b x i + b y j + b z k = (b x ,b y ,b z ),则(运算过程略) a × b = (a x i + a y j + a z k ) × (b x i + b y j + b z k ) = (a y b z ? a z b y )i + (a z b x ? a x b z )j + (a x b y ? a y b x )k = (a y b z ? a z b y ,a z b x ? a x b z ,a x b y ? a y b x ) 向量积也可以用三阶行列式展开成二阶行列式进行形式上的计算: a × b =???? ??i j k a x a y a z b x b y b z =????a y a z b y b z i ?????a x b z a x b z j +????a x a y b x b y k = (a y b z ? a z b y )i ? (a x b z ? a z b x )j + (a x b y ? a y b x )k

角动量定理及角动量守恒定律

精品文档,知识共享!!! 角动量定理及角动量守恒定律 一、力对点的力矩: 如图所示,定义力F 对O 点的力矩为: F r M ?= 大小为: θsin Fr M = 力矩的方向:力矩是矢量,其方向可用右手螺旋法则来判断:把右手拇指伸直,其余四指弯曲,弯曲的方向由矢径通过小于1800的角度转向力的方向时,拇指指向的方向就是力矩的方向。 二、力对转轴的力矩: 力对O 点的力矩在通过O 点的轴上的投影称为力对转轴的力矩。 1)力与轴平行,则0=M ; 2)刚体所受的外力F 在垂直于转轴的平面内,转轴和力的作用线之 间的距离d 称为力对转轴的力臂。力的大小与力臂的乘积,称为力F 对 转轴的力矩,用M 表示。力矩的大小为: Fd M = 或: θsin Fr M = 其中θ是F 与r 的夹角。 3)若力F 不在垂直与转轴的平面内,则可把该力分解为两个力,一 个与转轴平行的分力1F ,一个在垂直与转轴平面内的分力2F ,只有分力2F 才对刚体的转动状态有影响。 对于定轴转动,力矩M 的方向只有两个,沿转轴方向或沿转轴方向反方向,可以化为标量形式,用正负表示其方向。 三、合力矩对于每个分力的力矩之和。 合力 ∑=i F F 合外力矩 ∑∑∑=?=?=?i i i M F r F r F r M = 即 ∑i M M = 四、质点的角动量定理及角动量守恒定律 在讨论质点运动时,我们用动量来描述机械运动的状态,并讨论了在机械运动过程中所遵循的动量守恒定律。同样,在讨论质点相对于空间某一定点的运动时,我们也可以用角动量来描述物体的运动状态。角动量是一个很重要的概念,在转动问题中,它所起的作用和(线)动量所起的作用相类似。 在研究力对质点作用时,考虑力对时间的累积作用引出动量定理,从而得到动量守恒定律;考虑力对空间的累积作用时,引出动能定理,从而得到机械能守恒定律和能量守恒定律。至于力矩对时间的累积作用,可得出角动量定理和角动量守恒定律;而力矩对空间的累积作用,则可得出刚体的转动动能定理,这是下一节的内容。本节主要讨论的是绕定轴转动的刚体的角动量定理和角动量守恒定律,在这之前先讨论质点对给定点的角动量定理和角动量守恒定律。 下面将从力矩对时间的累积作用,引入的角动量的概念,讨论质点和刚体的角动量和角动量守恒定律。 1.质点的角动量(Angular Momentum )——描述转动特征的物理量 1)概念 一质量为m 的质点,以速度v 运动,相对于坐标原点O 的位置矢量

大学物理第5章-角动量守恒定律-刚体的转动

第5章 角动量守恒定律 刚体的转动 5-1 质点的动量守恒与角动量守恒的条件各是什么,质点动量与角动量能否同时守恒?試说明之。 答:质点的动量守恒的条件是: 当0F =u r 时,p mv ==u r r 恒矢量。 质点的角动量守恒的条件是: 当0M =u u r 时,即000,F r θπ?=??=??=?? u r r 时,L =u r 恒矢量。 可见,当0F =u r 时,质点动量与角动量能同时守恒。 5-2 质点在有心力场中的运动具有什么性质? 答:质点在有心力场中运动时,0,0F M ≠=u r u u r ,则角动量守恒,即: 当0M =u u r 时,L =u r 恒矢量。 又因为有心力是保守力,则机械能守恒,即: 当0ex in nc A A +=时,K P E E E =+=恒量。 5-3 人造地球卫星是沿着一个椭圆轨道运行的,地心O 是这一轨道的一个焦点。卫星经过近地点和远地点时的速率一样吗?卫星在近地点和远地点时的速率与地心到卫星的距离有什么关系? 答:卫星经过近地点和远地点时的速率不一样,由角动量守恒定律得: a a b b r mv r mv =Q a b b a v r v r ∴= 可见,速率与距离成反比。 5-4 作匀速圆周运动的质点,对于圆周上某一定点,它的角动量是否守恒?对于通过圆心而与圆面垂直的轴上的任意一点,它的角动量是否守恒?对于哪一个定点,它的角动量守恒? 答:作匀速圆周运动的质点,对于圆周上某一定点,它的角动量不守恒;对于通过圆心而与圆面垂直的轴上的任意一点,它的角动量不守恒;对于圆心定点,

它的角动量守恒。 5-5 以初速度0v 将质量为m 的小球斜上抛,抛射角为θ,小球运动过程中,相对于抛射点的角动量如何变化?小球运动到轨道最高点时,相对于抛射点的角动量为多少? 答:取抛射点为坐标原点,取平面直角坐标系Oxy ,y 轴正方向向上,则质点的运动方程和速度表达式为: 020cos 1sin 2x v t y v t gt θθ=???=-?? g g , 00cos sin x y v v v v gt θθ=??=-? 对于抛射点的角动量: ()() x y y x L r mv xi y j mv i mv j xmv k ymv k =?=+?+=-u r r r r r r r r r 将,,,x y x y v v 代入得: 201cos 2 L mgv t k θ=-u r r 当小球到达最高点时,时刻为:0sin v t g θ=,代入上式得: 小球相对于抛射点的角动量为:320sin cos 2mv L k g θθ=-u r r 。 5-6 为什么说刚体平动的讨论可归结为对质点运动的研究? 答:由于刚体平动时,各点的运动状态相同,则可取刚体上任意一点运动代表刚体的运动,所以刚体的平动可用质点运动来描述。 5-7如果刚体所受的合外力为零,其合外力矩是否也一定为零?如果刚体所受合外力矩为零,其合外力是否一定为零? 答:如果0i i F =∑u u r ,但力不共轴,则力矩不为零0i i M ≠∑u u u r 。 如果0i i M =∑u u u r ,但力方向相同,则力不为零0i i F ≠∑u u r 。 5-8 在某一瞬时,如果刚体受到的合外力矩不为零,其角加速度可以为零吗?其角速度可以为零吗? 答:由刚体的转动定理:M J β=u u r u r

相关主题
文本预览
相关文档 最新文档