当前位置:文档之家› 空气动力学翼型压强分布测量与气动特性分析实验报告

空气动力学翼型压强分布测量与气动特性分析实验报告

空气动力学翼型压强分布测量与气动特性分析实验报告
空气动力学翼型压强分布测量与气动特性分析实验报告

《空气动力学》课程实验

翼型测压与气动特性分析实验报告

指导老师:

实验时间:

实验地点:

小组成员:

专业:

一、实验目的

1 熟悉测定物体表面压强分布的方法,用多管压力计测出水柱高度,利用伯努利方程计算出翼型表面压强分布。

2 测定给定迎角下,翼型上的压强分布,并用坐标法绘出翼型的压强系数分布图。

3 采用积分法计算翼型升力系数,并绘制不同攻角下的升力曲线。

4 掌握实验段风速与电流频率的校核方法。

二、实验仪器和设备

(1) 风洞:低速吸气式二元风洞。实验段为矩形截面,高0.3米,宽0.3米。

实验风速20,30,40V ∞=/m s 。实验段右侧壁面的静压孔可测量实验段气流静压p ∞,实验段气流的总压0p 为实验室的大气压a p 。

表2.1 来流速度与电流频率的对应(参考)

表2.2 翼型测压点分布表

上表面

下表面

(2) 实验模型:NACA0012翼型,弦长0.12米,展长0.09米,安装于风洞两

侧壁间。模型表面开测压孔,前缘孔编号为0,上下翼面的其它孔的编号从前到后,依次为1、2、3 ……。(如表-2所示)

(3) 多管压力计:压力计斜度90θ=,压力计标定系数 1.0K =。压力计左端

第一测压管通大气,为总压管,其液柱长度为I L ;左端第二测压管接风洞收缩段前的风洞入口侧壁静压孔,其液柱长度为IN L ;左端第三、四、五测压管接实验段右侧壁面的三个测压孔,取其液柱长度平均值为II L 。其余测压管分成两组,分别与上下翼面测压孔一一对应连接,并有编号,其液柱长度为i L 。这两组测压管间留一空管通大气,起分隔提示作用。

三、实验原理

测定物体表面压强分布的意义如下:首先,根据表面压强分布,可以知道物体表面上各部分的载荷分布,这是强度设计的基本数据;其次,根据表面压强分布,可以了解气流绕过物体时的物理特性,如何判断激波,分离点位置等。在某些风洞中(例如在二维风洞中,模型紧夹在两壁间,不便于装置天平),全靠压强分布来间接推算出作用在机翼上的升力或力矩。

测定压强分布的模型构造如下:在物体表面上各测点垂直钻一小孔,小孔底与埋置在模型内部的细金属管相通,小管的一端伸出物体外(见图1),然后再通过细橡皮管与多管压力计上各支管相接,各测压孔与多管压力计上各支管都编有号码,于是根据各支管内的液面升降高度,立刻就可判断出各测点的压强分布。多管压力计的原理与普通压力计相同,都是基于连通器原理,只是把多个管子装在同一架子上而已,这样就可同时观察多点的压强分布情况,为了提高量度的准确性,排管架的倾斜度可任意改变。

图3.1 接多管压力计上各相应支管 图3.2 实验安装示意图

实验段风速固定、迎角不变时,根据连通器原理可知,翼面上第i 点的当地静压i p 与实验段的静压p ∞关系为:

sin sin i i II p K gL p K gL ρθρθ∞+=+液液

()sin ,(0,1,2,3,......)i i II i p p p K g L L i ρθ∞?=-=-=液 (1) 实验段的气流静压p ∞与大气压a p (即总压0p )关系为:

0sin sin II I p K gL p K gL ρθρθ∞+=+液液

根据伯努利方程,则实验段的气流动压为:

201

()sin 2

a II I q p p V K g L L ρρθ∞∞∞≡-=

=-液 (2) 同理,风洞入口段收缩管前的气流动压为:

2IN 0IN IN 1()sin 2

a IN I q p p V K g L L ρρθ≡-=

=-液 (3) a ρ、ρ液分别为空气密度和压力计工作液(水)密度。 于是,翼面上第i 点的压强系数为

i II i

i II I

p L L Cp q L L ∞?-≡

=- (4) 翼型在给定迎角下的升力由上下表面的压力差产生,升力系数的值即从翼型前缘到后缘对压力系数进行积分得到的:

(p p )[(p )(p )]c

c

l u l u L dx p p dx ∞∞=-=---??

1

00

1*()()*c l pl pu pl pu L x

C C C dx C C d q c c c ∞==-=-??

其中,pl C 为翼型下表面的压力系数,pu C 为翼型上表面的压力系数,c 为翼型的平均气动弦长。

四、实验步骤

(1) 记录实验室的大气参数、压力计工作液(水))密度:

1气温:C o 17t =; ○

2海拔:m h 400=; ○

3工作液(水)密度:3995.65/kg m ρ=液; ○

4重力加速度g :29.79/g m s =; ○

5大气压强:95920a p Pa =; ○

6翼型弦长:mm c 120=; (2) 将压力计座底调为水平,再调节液面高度使测压管液面与刻度“0”平齐,

斜角90θ=。

(3) 将风洞壁面测压孔、翼面测压孔与多管压力计的测压管对接好,检查接头

有无漏气。

(4) 将模型迎角调节到位并固定,风洞开车,由变频器进行风速调节,迎角控

制机构进行迎角调节。实验中迎角为C C 006~2--,增量为2°。 (5) 记录数据:在风速稳定和迎角不变时,读取并记录大气压管液柱高度I L 、

风洞入口处液柱高度IN L 、风洞实验段液柱高度II L 、翼型表面各测点的液柱高度i L 。

(6) 关闭风洞,整理实验场地,将记录交老师检查。

(7) 整理1、实验数据,写好实验报告。

五、实验数据与结果

1.实验室实验参数: C T p P a 0517100

2.1=?=

2.实验段风速校核

电流频率为40HZ 时,理论对应速度为20.484m/s,但实际计算后为23.469 m/s ,可能在于液压管液柱高度的读取误差,和数值积分的截断误差积累,相对误差为%54.9。

3、翼型表面压力测量原始数据与压力分布曲线 3.1原始数据:

处理后:

3.2 压力分布曲线(不同攻角下的表面压力系数分布)

-20上表面压力系数分布:

00上下表面压力系数

40上下表面压力系数分布:

4、升力系数与曲线4.1 升力系数(积分法)

4.2 升力系数曲线(升力系数随攻角变化曲线)

六. 误差分析与讨论

1. 实验认为大气压强是总压,是近似处理,使得入口和试验段速度计算有偏差;

2. 收缩喷管器壁可能不是完全绝热,不满足严格等熵流动;

3. 除读数误差外,气体的密度可能随温度有所变化,产生较大的相对误差;

4. 由图像可知,升力系数随攻角的增大而增大,而且在一段范围内,升力系数和攻角是线性关系。

七、思考题

1. 如何根据压强分布,判断驻点的位置?

答:在流场中驻点速度为0,根据沿半无限体外表面的压强分布,用伯努利方程求得:

2

2)(12

1∞

∞-=-=

V V V P P C P ρ 由上式可知流场某点的压强大小与流体在该点的速度负相关。故在机翼表面,

点处的压强最大且等于∞P ,而实验中的水柱是根据连通器原理工作的(即管内外的压强差导致水平面的上升,上升幅度越大,说明此管内所对应点处的压强越小),所以在驻点处水柱的高度最低且与用作基准的测∞P 的管中水柱高度一样,由此可以判断驻点位置。

2. 如何根据压强分布,判断分离现象的发生?

答:在分离与没有分离的两点之间压强会有剧烈的变化,而分离之后的紊流区压强变化不大,而由于迎角大于0,分离主要在上表面,故若在上表面对应的水柱中出现某点水柱位置突然变化,而之后的点对应的水柱高度基本保持不变,即发生了分离现象。

3. 如何粗略地判断出零升角(升力为零的角度)?

答:升力为零时,压强差为零,通过从负攻角加大迎角的过程中,发现上下表面各对应压力计液面高度相近时,可粗略认为此时升力为零,此时对应的迎角即为零迎角。

4. 如何获得风洞入口处,即收缩段前的气流速度?

答:在测得总压管中的水柱高度L I 和入口段的水柱高度L IN 后,即可以求得总压和入口段的静压,根据定常不可压流的伯努利方程:

2022

1

2V P P C t v dp

ρρ+=?=?Φ?++?

可以求得入口段的气流速度V IN 。 5. 如何估算风洞收缩段的面积收缩比?

答:根据连续方程:∞∞=A V A V IN IN ρρ,其中IN V 与∞V 可知即可估算风洞收缩段的面积收缩比 。

6. 为何模型上,上表面前半部的测压孔较密?

答:因为前半部分翼型弯度较大,气压变化比较剧烈,为了得到准确的数据必须密集设置测量孔,而后半部分气压变化平稳,没必要密集设置测量孔。

八、人员分工

成员1:攻角调节操作电脑控制,以及思考题三;

成员2:读下翼面液柱管,计算压强系数和升力系数,列表统计实验数据;

成员3:记录下翼面液柱读数,回答思考题中二和六,并最后统稿编写实验报告;成员4:读上翼面液柱,并计算一半的压强系数,绘制压强系数和升力系数图;成员5:记录上翼面液柱管读数,回答思考题中一和四;

成员6:上翼面数据读取监督,回答思考题五;

成员7:下翼面数据读取监督,和液柱稳定监督;

计量经济学实验报告范文

计量经济学实验报告X文 一:各地区农村居民家庭人均纯收入与家庭人均消费支出的数据(单位:元) 地区 Y X 9439.63 6399.27 XX 7010.06 3538.31 4293.43 2786.77 3665.66 2682.57 3953.1 3256.15 4773.43 3368.16 4191.34 3065.44 4132.29 3117.44 10144.62 8844.88 6561.01 4786.15 8265.15 6801.6 3556.27 2754.04 5467.08 4053.47 4044.7 2994.49 4985.34 3621.57 3851.6 2676.41 3997.48 3090 3904.2 3377.38 5624.04 4202.32 XX 3224.05 2747.47 3791.37 2556.56 3509.29 2526.7 3546.69 2747.27 2373.99 1913.71 2634.09 2637.18 2788.2 2217.62 2644.69 2559.59 2328.92 2017.21

2683.78 2446.5 3180.84 2528.76 XX 3182.97 2350.58 二.参数估计: Dependent Variable: X Method: Least Squares Date: 11/11/11 Time: 08:22 Sample: 1 31 Included observations: 31 Variable Coefficien t Std. Error t-Statistic Prob. C 179.1916 221.5775 0.808709 0.4253 Y 0.719500 0.045700 15.74411 0.0000 R-squared 0.895260 Mean dependent var 3376.309 Adjusted R-squared 0.891649 S.D. dependent var 1499.612 S.E. of regression 493.6240 Akaike info criterion 15.30377 Sum squared resid 7066274. Schwarz criterion 15.39628 Log likelihood -235.2084 F-statistic 247.8769 Durbin-Watson stat 1.461684 Prob(F-statistic) 0.000000 根据回归结果,则模型估计的结果为: X?i=179.1916 + 0.719500 Y i (0.808709 ) (15.74411) R2=0.895260 F=247.8769 三.检验模型的异方差: (一)图形法 1)绘制e t2对Yt的散点图即E2对Yt的散点图:

一阶单容上水箱对象特性的测试实验报告

《控制工程实验》实验报告 实验题目:一阶单容上水箱对象特性的测试 课程名称:《控制工程实验》 姓名: 学号: 专业: 年级: 院、所: 日期: 2019.04.05

实验一一阶单容上水箱对象特性的测试 一、实验目的 1. 掌握单容水箱的阶跃响应测试方法,并记录相应液位的响应曲线; 2. 根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K、T和传递函数; 3. 掌握同一控制系统采用不同控制方案的实现过程。 二、实验设备 1. 实验装置对象及控制柜 1套 2. 装有Step7、WinCC等软件的计算机 1台 3. CP5621专用网卡及MPI通讯线各1个 三、实验原理 所谓单容指只有一个贮蓄容器。自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。图1 所示为单容自衡水箱特性测试结构图及方框图。阀门F 1-1和F 1-6 全开,设上水箱 流入量为Q 1,改变电动调节阀V1的开度可以改变Q 1 的大小,上水箱的流出量为 Q 2,改变出水阀F 1-11 的开度可以改变Q 2 。液位h的变化反映了Q 1 与Q 2 不等而引起 水箱中蓄水或泄水的过程。若将Q 1 作为被控过程的输入变量,h为其输出变量, 则该被控过程的数学模型就是h与Q 1 之间的数学表达式。 根据动态物料平衡关系有: (1) 变换为增量形式有: (2) 其中:,,分别为偏离某一平衡状态的增量; A为水箱截面积

图1 单容自衡水箱特性测试结构图(a)及方框图(b) 在平衡时,Q 1=Q 2 ,=0;当Q 1 发生变化时,液位h随之变化,水箱出口处的 静压也随之变化,Q 2 也发生变化。由流体力学可知,流体在紊流情况下,液位h 与流量之间为非线性关系。但为了简化起见,经线性化处理后,可近似认为Q 2 与h成正比关系,与阀F 1-11 的阻力R成反比,即 或 (3) 式中: R为阀F 1-11 的阻力,称为液阻。 将式(2)、式(3)经拉氏变换并消去中间变量 Q2,即可得到单容水箱的数学模型为 (4) 式中 T 为水箱的时间常数,T=RC;K 为放大系数,K=R;C 为水箱的容量系数。若令 Q1(s)作阶跃扰动,即,=常数,则式(4)可改写为: (5) 对上式取拉氏反变换得 (6) 当 t—>∞时,,因而有

霍尔效应法测量螺线管磁场分布

霍尔效应法测量螺线管磁场分布 1879年美国霍普金斯大学研究生霍尔在研究载流导体在磁场中受力性质时发现了一种电磁现象,此现象称为霍尔效应,半个多世纪以后,人们发现半导体也有霍尔效应,而且半导体霍尔效应比金属强得多。近30多年来,由高电子迁移率的半导体制成的霍尔传感器已广泛用于磁场测量和半导体材料的研究。用于制作霍尔传感器的材料有多种:单晶半导体材料有锗,硅;化合物半导体有锑化铟,砷化铟和砷化镓等。在科学技术发展中,磁的应用越来越被人们重视。目前霍尔传感器典型的应用有:磁感应强度测量仪(又称特斯拉计),霍尔位置检测器,无接点开关,霍尔转速测定仪,100A-2000A 大电流测量仪,电功率测量仪等。在电流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。近年来,霍尔效应实验不断有新发现。1980年德国冯·克利青教授在低温和强磁场下发现了量子霍尔效应,这是近年来凝聚态物理领域最重要发现之一。目前对量子霍尔效应正在进行更深入研究,并取得了重要应用。例如用于确定电阻的自然基准,可以极为精确地测定光谱精细结构常数等。 通过本实验学会消除霍尔元件副效应的实验测量方法,用霍尔传感器测量通电螺线管内激励电流与霍尔输出电压之间关系,证明霍尔电势差与螺线管内磁感应强度成正比;了解和熟悉霍尔效应重要物理规律,证明霍尔电势差与霍尔电流成正比;用通电长直通电螺线管轴线上磁感应强度的理论计算值作为标准值来校准或测定霍尔传感器的灵敏度,熟悉霍尔传感器的特性和应用;用该霍尔传感器测量通电螺线管内的磁感应强度与螺线管轴线位置刻度之间的关系,作磁感应强度与位置刻线的关系图,学会用霍尔元件测量磁感应强度的方法. 实验原理 1.霍尔效应 霍尔元件的作用如图1所示.若电流I 流过厚度为d 的半导体薄片,且磁场B 垂直作用于该半导体,则电子流方向由于洛伦茨力作用而发生改变,该现象称为霍尔效应,在薄片两个横向面a 、b 之间与电流I ,磁场B 垂直方向产生的电势差称为霍尔电势差. 霍尔电势差是这样产生的:当电流I H 通过霍尔元件(假设为P 型)时,空穴有一定的漂移速度v ,垂直磁场对运动电荷产生一个洛仑兹力 )(B v q F B ?= (1) 式中q 为电子电荷,洛仑兹力使电荷产生横向的偏转,由于样品有边界,所以偏转的载流 子将在边界积累起来,产生一个横向电场E ,直到电场对载流子的作用力F E =qE 与磁场作用的洛仑兹力相抵消为止,即 qE B v q =?)( (2) 这时电荷在样品中流动时不再偏转,霍尔电势差就是由这个电场建立起来的。 如果是N 型样品,则横向电场与前者相反,所以N 型样品和P 型样品的霍尔电势差有不同的符号,据此可以判断霍尔元件的导电类型。 设P 型样品的载流子浓度为Р,宽度为ω,厚度为d ,通过样品电流I H =Рqv ωd ,则空穴的速度v= I H /Рq ωd 代入(2)式有 d pq B I B v E H ω= ?= (3) 上式两边各乘以ω,便得到 d B I R pqd B I E U H H H H == =ω (4)

计量经济学实验报告完整版

计量经济学实验报告集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

3.3 3.3 经调查研究发现,家庭书刊消费受家庭收入及户主受教育年数的影响,表 3.6为对某地区部分家庭抽样调查得到的样本数据。 (1T )的多 元线性回归:123i i i i u Y X T βββ=+++ 利用样本数据估计模型的参数,对模型加以检验,分析所估计模型的经济意义和 作用。 步骤: 1.打开EViews6,点“File ”“New ”“Workfile ”。选择 “Unstructured/Unda=ted ”在Observations 后输入18,点击ok 。 2. 在命令行输入:DATA Y X T ,回车。将数据复制粘贴到Group 中的表格中。 3. 建立数据关系图为初步观察数据的关系,在命令行输入命令:sort Y ,从而实现数据Y 的递增排序。 4. 在数据表“group ”中点“view/graph/line ”,最后点击确定,出现序列Y 、X 、T 的线性图。 5. OLS 估计参数,点击主界面菜单Quick\Estimate Equation ,弹出对话框,如下图。在其中输入Y c X T ,点确定即可得到回归结果。

经济意义:家庭月平均收入每增加1元,家庭书刊消费将增加0.08645元。户主受教育年数每增加1年,家庭书刊消费平均将增加52.3703元。 作用:显示出各解释变量在其他解释变量不变的情况下,对被解释变量的影响情况。 (2)作家庭书刊消费(Y )对户主受教育年数(T )的一元回归,获得残差E1;再作家庭月平均收入(X )对户主受教育年数(T )的一元回归,并获得残差E2。 Y 对T 的一元回归: 步骤: 1. 打开EViews6,点“File ”“New ”“Workfile ”。选择 “Unstructured/undated”,在Observations 后输入样本容量个数:18。 2. 在命令行输入:DATA Y T ,回车,将数据复制粘贴到Group 中的表格中。 3. 作散点图在命令行输入命令:SCAT T Y 。 4. 在主菜单中点“Quick ”“Estimate Equation ”,在 Specification 中输入 Y C T ,点“确定”。 E1=resid X 对T 的一元回归: 步骤: 1. 打开EViews6,点“File ”“New ”“Workfile ”。选择 “Unstructured/undated”,在Observations 后输入样本容量个数:18。 2. 在命令行输入:DATA X T ,回车,将数据复制粘贴到Group 中的表格中。 3. 作散点图在命令行输入命令:SCAT T X 。 4. 在主菜单中点“Quick ”“Estimate Equation ”,在 Specification 中输入 X C T ,点“确定”。 E2=resid (3)作残差E1对残差E2的无截距项的回归:212i E E v α=+ ,估计其参数。 步骤1.打开EViews6,点“File ”“New ”“Workfile ”。选择 “Unstructured/Unda=ted ”在Observations 后输入18,点击ok 。 2. 在命令行输入:DATA E1 E2,回车。将数据复制粘贴到Group 中的表格 中。 3. 采用OLS 估计参数在主界面命令框栏中输入 ls E1 E2,然后回车,即可得到参数的估计结果。 由结果可知1=-6.3351+0.08645*2E E

最新第一组:一阶单容上水箱对象特性测试实验

实验一、一阶单容上水箱对象特性测试实验 一.实验目的 (1)建立单容水箱阶跃响应曲线。 (2)根据由实际测得的单容水箱液位的阶跃响应曲线,用作图的方法分别确定它们的参数(时间常数T 、放大系数K )。 二.实验设备 CS2000型过程控制实验装置, PC 机,DCS 控制系统与监控软件。 三、系统结构框图 单容水箱如图1-1所示: 丹麦泵 电动调节阀 V1 DCS控制系统手动输出 h V2 Q1 Q2 图1-1、 单容水箱系统结构图 四、实验原理 阶跃响应测试法是系统在开环运行条件下,待系统稳定后,通过DCS 控制系统监控画面——调整画面,(调节器或其他操作器),手动改变(调节阀的开度)对象的输入信号(阶跃信号),同时记录对象的输出数据或阶跃响应曲线。然后根据已给定对象模型的结构形式,对实验数据进行处理,确定模型中各参数。 五.实验内容步骤 1)对象的连接和检查:

(1)将CS2000 实验对象的储水箱灌满水(至最高高度)。 (2)打开以水泵、电动调节阀、孔板流量计组成的动力支路(1#)至上水箱的出水阀门.关闭动力支路上通往其他对象的切换阀门。 (3)打开上水箱的出水阀至适当开度。 2)实验步骤 (1)打开控制柜中水泵、电动调节阀、24V电源的电源开关。 (2)打开DCS控制柜的电源,打开电脑,启动DCS上位机监控软件,进入主画面,然后进入实验一画面“实验一、一阶单容上水箱对象特性测试实验”。 注满水箱打开出水阀打开阀门,连通电动调节阀 关闭支路阀打开上水箱打开上水箱打开电源 进水阀出水阀 打开泵的开关打开调节阀开关打开24V电源打开DCS控制柜电源

磁场的测定(霍尔效应法)汇总

霍尔效应及其应用实验(FB510A 型霍尔效应组合实验仪) (亥姆霍兹线圈、螺线管线圈) 实 验 讲 义 长春禹衡时代光电科技有限公司

实验一 霍尔效应及其应用 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。如今霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量的电测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广泛的应用前景。掌握这一富有实用性的实验,对日后的工作将有益处。 【实验目的】 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量试样的S H I ~V 和M H I ~V 曲线。 3.确定试样的导电类型。 【实验原理】 1.霍尔效应: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场H E 。如图1所示的半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,则在Y 方向即试样A A '- 电极两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图1(a )所示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。即有 ) (P 0)Y (E )(N 0)Y (E H H 型型?>?< 显然,霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场力H E e ?与洛仑兹力B v e ??相等,样品两侧电荷的积累就达到动态平衡,故有

实验1 二阶双容中水箱对象特性测试实验

实验1 二阶双容中水箱对象特性测试实验 一、实验目的 1、熟悉双容水箱的数学模型及其阶跃响应曲线; 2、根据由实际测得的双容液位阶跃响应曲线,分析双容系统的飞升特性。 二、实验设备 AE2000B 型过程控制实验装置、实验连接线 图1 双容水箱系统结构图 三、原理说明 如图1所示:这是由两个一阶非周期惯性环节串联起来,被调量是第二水槽的水位h 2。当输入量有一个阶跃增加?Q 1时,被调量变化的反应曲线如图2所示的?h 2曲线。它不再是简单的指数曲线,而是呈S 形的一条曲线。由于多了一个容器,就使调节对象的飞升特性在时间上更加落后一步。在图中S 形曲线的拐点P 上作切线,它在时间轴上截出一段时间OA 。 这段时间可以近似地衡量由于多了一个容量而使飞升过程向后推迟的程度,因此称容量滞后,通常以τ C 代表之。 设流量Q 1为双容水箱的输入量,下水箱的液位高度h 2为输出量,根据物料动态平衡关系,并考虑到液体传输过程中的时延,其传递函数为: 2112()()* ()(*1)(*1) s H S K G S Q S T S T S e τ-==++

图2 变化曲线 式中K=R3,T1=R2C1,T2=R3C2,R2、R3分别为阀V2和V3的液阻,C1和C2分别为上水箱和下水箱的容量系数。由式中的K、T1和T2须从由实验求得的阶跃响应曲线上求出。具体的做法是在图3所示的阶跃响应曲线上取: 1)h2(t)稳态值的渐近线h2(∞); 2)h2(t)|t=t1=0.4 h2(∞)时曲线上的点A和对应 的时间t1; 3)h2(t)|t=t2=0.8 h2(∞)时曲线上的点B和对应 的时间t2。 然后,利用下面的近似公式计算式2-1中的参数 K、T1和T2。其中:2 () K O h R ∞ == 输入稳态值 阶跃输入量 图3 阶跃响应曲线 4)12 12 t t T T 2.16 + +≈ 对于式(2-1)所示的二阶过程,0.32〈t1/t2〈0.46。当t1/t2=0.32时,为一阶环节;当t1/t2=0.46 h 0.4 0.8 2 h h 1 h 2 2 2

信息计量学-布拉德福定律的验证

信息计量学 选择学科:心理学选择数据库:CNKI(知网) 范围:2010-2011 关键词或提要中含有心理学的相关论文数量共计876篇,期刊共计277种 目的:检验“布拉德福分布定律”。 布拉德福定律简介 布拉德福定律是由英国著名文献学家布拉德福于二十世纪30年代率先提出的描述文献分散规律的经验定律。 其文字表述为:如果将科技期刊按其刊载某学科专业论文的数量多少,以递减顺序排列,那么可以把期刊分为专门面对这个学科的核心区、相关区和非相关区。各个区的文章数量相等,此时核心区、相关区,非相关区期刊数量成1:n:n2(n的平方)的关系。 布拉德福定律是文献计量学的重要定律之一,它和罗(洛)特卡定律、Zipf定律一起被并称为文献计量学的三大定律。 洛特卡定律 洛特卡定律是由美国学者A.J.洛特卡在20世纪20年代率先提出的描述科学生产率的经验规律,又称“倒数平方定律”。它描述的是科学工作者人数与其所著论文之间的关系:写两篇论文的作者数量约为写一篇论文的作者数量的1/4;写三篇论文的作者数量约为写一篇论文作者数量的1/9;写N篇论文的作者数量约为写一篇论文作者数 量的1/ n2……,而写一篇论文作者的数量约占所有作者数量的60%。该定律被认为是第一次揭示了作者与数量之间的关系。 1926年,在美国一家人寿保险公司供职的统计学家洛特卡经过大量统计和研究,在美国著名的学术刊物《华盛顿科学院报》上发表了一篇题名为“科学生产率的频率分布”的论文,旨在通过对发表论著的统计来探明科技工作者的生产能力及对科技进步和社会发展所作的贡献。这篇论文发表后并未引起多大反响,直到1949年这一成果才引起学术界关注,并誉之为“洛特卡定律”。 齐普夫定律 齐普夫定律是美国学者G.K.齐普夫于本世纪40年代提出的词频分布定律。它可以表述为:如果把一篇较长文章中每个词出现的频次统计起来,按照高频词在前、低频词在后的递减顺序排列,并用自然数给这些词编上等级序号,即频次最高的词等级为1,频次次之的等级为2,……,频次最小的词等级为D。若用f表示频次,r表示等级序号,则有fr=C(C为常数)。人们称该式为齐普夫定律。

金融计量学实验报告材料

实验报告 哈尔滨工程大学教务处制

目录 第1章股票估值 (3) 1.1实验目的 (3) 1.2实验方法和手段 (3) 1.3实验内容 (3) 1.4实验数据来源 (4) 1.5实验步骤及结果分析 (4) 1.6.实验结论 (5) 第2章资产流动性 (6) 2.1实验目的 (6) 2.2实验方法和手段 (6) 2.3实验内容 (6) 2.4实验数据来源 (6) 2.5实验步骤及结果分析 (6) 2.6实验结论 (8) 第3章投资组合分析 (8) 3.1实验目的 (8) 3.2实验方法和手段 (8) 3.3实验内容 (8) 3.4实验数据来源 (9) 3.5实验步骤及结果分析 (9) 3.6实验结论 (11)

第1章股票估值 1.1实验目的 学习股票估值原理,经典的金融理论认为,金融市场上的资产价格由其未来产生的现金流量所决定,这种由未来产生的现金流量所决定的资产价格被称为资产的内在价值。如果我们能够精确地预测股票的未来现金流,并且能够找到一个合适的市场贴现率,那么股票的内在价值就是股票的未来现金流在一定市场贴现率下的贴现值。通过对同仁堂股票的分析进行实践应用,分析其股票内在价值,学会如何进行股票估值。 1.2实验方法和手段 利用固定红利模型理论方法,通过Excel数据分析进行股票估值。 1.3实验内容 对上证股票中同仁堂(600085.SH)股利发放情况进行分析,通过固定红利增长模型,计算其股票内在价值。

1.4实验数据来源 实验数据:同仁堂(600085.SH )从2016年4月29日到2017年4月28日日收盘价,及同期上证综合指数。及同仁堂从2005年到2016年每股税后盈余和每期股利。 来源:Wind 资讯 新浪财经 1.5实验步骤及结果分析 1.5.1利用CAPM 模型算出股票回报率k 将同仁堂(600085.SH )从2016年4月29日到2017年4月28日日收盘价,及同期上证综指数据导入Excel ,算出相应日收益率,对两者收益率利用slope 函数,算出β=1.084200339。利用上证基期和当期数据,利用公式(LN (末期)-LN (基期))/365 求得Rm=0.129855308,然后利用CAPM 模型:E(R)=Rf+β[E(RM)-Rf],,算出股票回报率k= 0.139105163 1.5.2利用算出固定股利增长率g 导入同仁堂(600085.SH )从2005年到2016年每股税后盈余和每期股利,算出股利发放率及每年股利增长率对每年的股利取对数,然后用slope 及exp 函数求出固定股利增长率g= 0.014383 1.5.3利用average 及geomean 函数算出算术平均增长率 g 1=0.047345025和几何平均增长率g 2=-0.001797573。 0(1)t t D D g =+

第一节 单容自衡水箱液位特性测试实验

第一节 单容自衡水箱液位特性测试实验 一、实验目的 1.掌握单容水箱的阶跃响应测试方法,并记录相应液位的响应曲线; 2.根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K 、T 和传递函数; 3.掌握同一控制系统采用不同控制方案的实现过程。 二、实验设备 1.实验对象及控制屏、SA-11挂件一个、SA-13挂件一个、SA-14挂件一个、计算机一台(DCS 需两台计算机)、万用表一个; 2.SA-12挂件一个、RS485/232转换器一个、通讯线一根; 3.SA-21挂件一个、SA-22挂件一个、SA-23挂件一个; 4.SA-31挂件一个、SA-32挂件一个、SA-33挂件一个、主控单元一个、数据交换器两个,网线四根; 5.SA-41挂件一个、CP5611专用网卡及网线; 6.SA-42挂件一个、PC/PPI 通讯电缆一根。 三、实验原理 所谓单容指只有一个贮蓄容器。自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。图2-1所示为单容自衡水箱特性测试结构图及方框图。阀门F1-1、F1-2和F1-8全开,设下水箱流入量为Q 1,改变电动调节阀V 1的开度可以改变Q 1的大小,下水箱的流出量为Q 2,改变出水阀F1-11的开度可以改变Q 2。液位h 的变化反映了Q 1与Q 2不等而引起水箱中蓄水或泄水的过程。若将Q 1作为被控过程的输入变量,h 为其输出变量,则该被控过程的数学模型就是h 与Q 1之间的数学表达式。 根据动态物料平衡关系有 Q 1-Q 2=A dt dh (2-1) 将式(2-1)表示为增量形式 ΔQ 1-ΔQ 2=A dt h d ? (2-2) 式中:ΔQ 1,ΔQ 2,Δh ——分别为偏 离某一平衡状态的增量; A ——水箱截面积。 在平衡时,Q 1=Q 2,dt dh =0;当Q 1 发生变化时,液位h 随之变化,水箱出 图2-1 单容自衡水箱特性测试系统 口处的静压也随之变化,Q 2也发生变化 (a )结构图 (b )方框图 。由流体力学可知,流体在紊流情况下,液位h 与流量之间为非线性关系。但为了简化起见,经线性化处理后,可近似认为Q 2与h 成正比关系,而与阀F1-11的阻力R 成反比,即 ΔQ 2=R h ? 或 R=2 Q ??h (2-3)

霍尔效应法测量磁场

霍尔效应测磁场 霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应。1879 年美国霍普金斯大学研究生霍尔在研究金属导电机理时发现了这种电磁现象, 故称霍尔效应。后来曾有人利用霍尔效应制成测量磁场的磁传感器,但因金属 的霍尔效应太弱而未能得到实际应用。随着半导体材料和制造工艺的发展,人 们又利用半导体材料制成霍尔元件,由于它的霍尔效应显著而得到实用和发 展,现在广泛用于非电量的测量、电动控制、电磁测量和计算装置方面。在电 流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。近年来,霍尔效应实验不断有新发现。1980年原西德物理学家冯·克利青研究二维电子气系统的输运特性,在低温和强磁场下发现了量子霍尔效应,这是凝聚态物理领域最重要的发现之一。目前对量子霍尔效应正在进行深入研究,并取得了重要应用,例如用于确定电阻的自然基准,可以极为精确地测量光谱精细结构常数等。 在磁场、磁路等磁现象的研究和应用中,霍尔效应及其元件是不可缺少的,利用它观测磁场直观、干扰小、灵敏度高、效果明显。 【实验目的】 1.霍尔效应原理及霍尔元件有关参数的含义和作用 2.测绘霍尔元件的V H—Is,了解霍尔电势差V H与霍尔元件工作电流Is、磁感应强度B之间的关系。 3.学习利用霍尔效应测量磁感应强度B及磁场分布。 4.学习用“对称交换测量法”消除负效应产生的系统误差。 【实验原理】 霍尔效应从本质上讲,是运动的带电粒子在 磁场中受洛仑兹力的作用而引起的偏转。当带电 粒子(电子或空穴)被约束在固体材料中,这种 偏转就导致在垂直电流和磁场的方向上产生正 负电荷在不同侧的聚积,从而形成附加的横向电 场。如图13-1所示,磁场B位于Z的正向,与 之垂直的半导体薄片上沿X正向通以电流Is(称 为工作电流),假设载流子为电子(N型半导体材 料),它沿着与电流Is相反的X负向运动。 由于洛仑兹力f L作用,电子即向图中虚线 箭头所指的位于y轴负方向的B侧偏转,并使B 侧形成电子积累,而相对的A侧形成正电荷积累。 与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力f E的作用。随着电荷积累的增加,f E增大,当两力大小相等(方向相反)时,f L=-f E,则电子积累便达到动态平衡。这时在A、B两端面之间建立的电场称为霍尔电场E H,相应的电势差称为霍尔电势V H。 设电子按均一速度v,向图示的X负方向运动,在磁场B作用下,所受洛仑兹力为:

图书馆-情报与档案管理一级学科专业硕士研究生培养方案

图书馆-情报与档案管理一级学科专业硕士研究生培养方案

图书馆、情报与档案管理一级学科专业硕士研究生培养方案 一、培养目标 培养德、智、体全面发展并具有坚实宽广的图书馆学、情报学基础理论知识,较系统深入的专业知识和较强的综合素质和应用能力的,适应国家和地方经济与社会发展需要的研究型、应用型高层次信息管理专门人才。 具体要求是: 1.树立爱国主义和集体主义思想,具有良好的道德品质和强烈的事业心,能立志为祖国的建设和发展服务。 2.掌握系统的图书馆学、情报学和档案学基础理论和专门知识;具有从事科学研究的创新意识和独立从事实际工作的专门技术水平;具有使用第一外国语进行国际交流的能力,能够熟练地阅读本学科的外文文献,全面了解所从事的领域的现状与发展趋势,

能独立进行科学研究,能胜任专业教学与研究工作,或在大中型文献情报机构的中高层管理工作,也可在各类企业、政府部门从事信息的组织和管理工作。 3.具有健康的体魄和较强的心理素质。 二、研究方向 图书馆学: 1.图书馆学理论与图书馆事业研究 2.信息资源管理 3.数字图书馆研究 4.现代目录学 5.知识管理研究 6. 信息服务研究 情报学: 1.情报学理论与方法研究 2.信息咨询与信息产业

3.信息技术应用研究 4.信息组织与检索 5.竞争情报策略研究 三、修业年限 基本修业年限为2年。其中生源为跨专业、同等学力的硕士生基本修业年限为2.5年,可提前半年毕业。非全日制硕士生基本修业年限为3年,可提前半年毕业。申请提前毕业的硕士生需在论文答辩前提交至少一篇省级以上刊物文章(第一或第二作者)。 四、毕业学分和授予的学位 图书馆学和情报学专业研究生实行学分制,总学分不少于32学分,其中学科基础课、专业主干课和发展方向课的学分不少于20学分。授予管理学硕士学位。 五、培养方式 1.硕士研究生培养以课程学习为主。课程学习环节注重研究生的自主学习能力、研究能力和实践能力

计量经济学实验报告

计量经济学实验报告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

计量经济学实验 基于EViews的 中国能源消费影响因素分析 学院: 班级: 学号: 姓名:

基于EViews的中国能源消费影响因素分析 一、背景资料 能用消费是引是指生产和生活所消耗的能源。能源消费按人平均的占有量是衡量一个国家经济发展和人民生活水平的重要标志。能源是支持经济增长的重要物质基础和生产要素。能源消费量的不断增长,是现代化建设的重要条件。我国能源工业的迅速发展和改革开放政策的实施,促使能源产品特别是石油作为一种国际性的特殊商品进入世界能源市场。随着国民经济的发展和人口的增长,我国能源的供需矛盾日益紧张。同时,煤炭、石油等常规能源的大量使用和核能的发展,又会造成环境的污染和生态平衡的破坏。可以看出,它不仅是一个重大的技术、经济问题,而且以成为一个严重的政治问题。 在20世纪的最后二十年里,中国国内生产总值(GDP)翻了两番,但是能源消费仅翻了一番,平均的能源消费弹性仅为左右。然而自2002年进入新一轮的高速增长周期后,中国能源强度却不断上升,经济发展开始频频受到能源瓶颈问题的困扰。鉴于此,研究能源问题不仅具有必要性和紧迫性,更具有很大的现实意义。由于我国目前面临的所谓“能源危机”,主要是由于需求过大引起的,而我国作为世界上最大的发展中国家,人口众多,所需能源不可能完全依赖进口,所以,研究能源的需求显得更加重要。 二、影响因素设定 根据西方经济学消费需求理论可知,影响消费需求的因素有:商品的价格、消费者收入水平、相关商品的价格、商品供给、消费者偏好以及消费者对商品价格的预期等。对于相关商品价格的替代效应,我们认为其只存在能源品种内部之间,而消费者偏好及消费者对商品价格的预期数据差别较大,不容易进行搜集整理在此暂不涉及。另外,发展经济学认为,来自知识、人力资本的积累水平所体现的技术进步不仅可以带动劳动产出的增长,

计量经济学实验报告 (3)

1.背景 经济增长是指一个国家生产商品和劳务能力的扩大。在实际核算中,常以一国生产的商品和劳务总量的增加来表示,即以国民生产总值(GDP)和国内生产总值的的增长来计算。 古典经济增长理论以社会财富的增长为中心,指出生产劳动是财富增长的源泉。现代经济增长理论认为知识、人力资本、技术进步是经济增长的主要因素。 从古典增长理论到新增长理论,都重视物质资本和劳动的贡献。物质资本是指经济系统运行中实际投入的资本数量.然而,由于资本服务流量难以测度,在这里我们用全社会固定资产投资总额(亿元)来衡量物质资本。中国拥有十三亿人口,为经济增长提供了丰富的劳动力资源。因此本文用总就业人数(万人)来衡量劳动力。居民消费需求也是经济增长的主要因素。 经济增长问题既受各国政府和居民的关注,也是经济学理论研究的一个重要方面。在1978—2008年的31年中,我国经济年均增长率高达9.6%,综合国力大大增强,居民收入水平与生活水平不断提高,居民的消费需求的数量和质量有了很大的提高。但是,我国目前仍然面临消费需求不足问题。 本文将以中国经济增长作为研究对象,选择时间序列数据的计量经济学模型方法,将中国国内生产总值与和其相关的经济变量联系起来,建立多元线性回归模型,研究我国中国经济增长变动趋势,以及重要的影响因素,并根据所得的结论提出相关的建议与意见。用计量经济学的方法进行数据的分析将得到更加具有说服力和更加具体的指标,可以更好的帮助我们进行预测与决策。因此,对我国经济增长的计量经济学研究是有意义同时也是很必要的。 2.模型的建立 2.1 假设模型

为了具体分析各要素对我国经济增长影响的大小,我们可以用国内生产总值(Y )这个经济指标作为研究对象;用总就业人员数(1X )衡量劳动力;用固定资产投资总额(2X )衡量资本投入:用价格指数(3X )去代表消费需求。运用这些数据进行回归分析。 这里的被解释变量是,Y :国内生产总值, 与Y-国内生产总值密切相关的经济因素作为模型可能的解释变量,共计3个,它们分别为: 1X 代表社会就业人数, 2X 代表固定资产投资, 3X 代表消费价格指数, μ代表随机干扰项。 模型的建立大致分为理论模型设置、参数估计、模型检验、模型修正几个步骤。如果模型符合实际经济理论并且通过各级检验,那么模型就可以作为最终模型,可以进行结构分析和经济预测。 国内生产总值 经济活动人口 全社会固定资产投资 居民消费价格指数 1992年 26,923.48 66,782.00 8,080.10 106.4 1993年 35,333.92 67,468.00 13,072.30 114.7 1994年 48,197.86 68,135.00 17,042.10 124.1 1995年 60,793.73 68,855.00 20,019.30 117.1 1996年 71,176.59 69,765.00 22,913.50 108.3 1997年 78,973.03 70,800.00 24,941.10 102.8 1998年 84,402.28 72,087.00 28,406.20 99.2 1999年 89,677.05 72,791.00 29,854.70 98.6 2000年 99,214.55 73,992.00 32,917.70 100.4 2001年 109,655.17 73,884.00 37,213.50 100.7 2002年 120,332.69 74,492.00 43,499.90 99.2 2003年 135,822.76 74,911.00 55,566.61 101.2 2004年 159,878.34 75,290.00 70,477.43 103.9 2005年 184,937.37 76,120.00 88,773.61 101.8 2006年 216,314.43 76,315.00 109,998.16 101.5

实验四 控制系统频率特性的测试 实验报告

实验四控制系统频率特性的测试 一.实验目的 认识线性定常系统的频率特性,掌握用频率特性法测试被控过程模型的原理和方法,根据开环系统的对数频率特性,确定系统组成环节的参数。二.实验装置 (1)微型计算机。 (2)自动控制实验教学系统软件。 三.实验原理及方法 (1)基本概念 一个稳定的线性定常系统,在正弦信号的作用下,输出稳态与输入信号关系如下: 幅频特性相频特性 (2)实验方法 设有两个正弦信号: 若以) (y tω为纵轴,而以tω作为参变量,则随tω的变xω为横轴,以) (t 化,) (y tω?所确定的点的轨迹,将在 x--y平面上描绘出一条封闭的xω和) (t 曲线(通常是一个椭圆)。这就是所谓“李沙育图形”。 由李沙育图形可求出Xm ,Ym,φ, 四.实验步骤 (1)根据前面的实验步骤点击实验七、控制系统频率特性测试菜单。(2)首先确定被测对象模型的传递函数, 预先设置好参数

T1、T2、ξ、K (3)设置好各项参数后,开始仿真分析,首先做幅频测试,按所得的频率范围由低到高,及ω由小到大慢慢改变,特别是在转折频率处更应该多取几个点 五.数据处理 (一)第一种处理方法: (1)得表格如下: (2)作图如下: (二)第二种方法: 由实验模型即,由实验设置模型根据理论计算结果绘制bode图,绘制Bode图。 (三)误差分析 两图形的大体趋势一直,从而验证了理论的正确性。在拐点处有一定的差距,在某些点处也存在较大的误差。 分析: (1)在读取数据上存在较大的误差,而使得理论结果和实验结果之间存在。 (2)在数值应选取上太合适,而使得所画出的bode图形之间存在较大的差距。 (3)在实验计算相角和幅值方面本来就存在着近似,从而使得误差存在,而使得两个图形之间有差异 六.思考讨论 (1)是否可以用“李沙育”图形同时测量幅频特性和想频特性

实验3.09磁场分布

实验3.9 磁场分布测量 磁场的测量有许多方法,常用的有电磁感应法,半导体(霍耳效应)探测法和核磁共振法。本实验使用的是电磁感应法测量磁场,它是以简单的线圈作为测量元件,利用电磁感应原理直接测量亥姆霍兹(Helmholtz )线圈产生的磁场。值得一提的是本实验所使用的亥姆霍兹线圈在物理研究中有许多用处,如产生磁共振,消除地磁的影响等,获1997年诺贝尔物理奖的实验中,就有若干对这种线圈,因此熟悉这种线圈产生的磁场是很有意义的。 3.9.1实验目的 1.学习电磁感应法测磁场的原理; 2.学习用探测线圈测量载流线圈的磁场的方法; 3.验证矢量叠加的原理; 4.了解亥姆霍兹线圈磁场的特点。 3.9.2实验原理 3.9.2.1电磁感应法测磁场 当导线中通有变化电流时,其周围空间必然产生变化磁场。处在变化磁场中的闭合回路,由于通过它的磁通量发生变化,回路中将有感应电动势产生。通过测量此感应电动势的大小就可以计算出磁场的量值。这就是感应法测磁场的实质。 因为磁场是一矢量场,所以测量磁场的任务,就是要测出场中各点的磁感应强度的大小和方向。 为叙述简单起见,先假定有一个均匀的交变磁场,其量值随时间t 按正弦规律变化 t B B m i ωsin = 式中B m 为磁感应强度的峰值,其有效值记作B ,ω为角频率。再假设置于此磁场中的探测线圈T (线圈面积为S ,共有N 匝)的法线n 与B m 之间的夹角为θ,如图3.9.1所示,则通过T 的总磁通φi 为 θωφcos sin t NSB N m i i =?=B S 由于磁场是交变的,因此在线圈中会出现感 应电动势,其值为 θωωφ cos cos t B NS dt d e m i -=-= (3.9.1) 如果把T 的两条引线与一个交流数字电压表连接,交流数字电压表的读数U 表示被测量值的有效值(rms ),当其内阻远大于探测线圈的电阻时有 θωcos rms B NS e U == (3.9.2) 从(3.9.2)式可知,当N ,S ,ω,B 一定时,角θ越小,交流数字电压表读数越大。当θ =0时,交流数字电压表的示值达最大值U max ,(3.9.2)式成为 ω NS U B max = (3.9.3) 测量时,把探测线圈放在待测点,用手不断转动它的方位,直到数字电压表的示值达到最大为止。把所得读数U max 代入(3.9.3)式就可算出该点的磁场值。 图3.9.1感应法测磁场原理图

计量经济学实验报告

《计量经济学》实验报告一,数据 二,理论模型的设计 解释变量:可支配收入X 被解释变量:消费性支出Y 软件操作: (1)X与Y散点图

从散点图可以粗略的看出,随着可支配收入的增加,消费性支出也在增加,大致呈线性关系。因此,建立一元线性回归模型: 01i i i Y X ββμ=++ (2)对模型做OLS 估计 OLS 估计结果为 272.36350.7551Y X ∧ =+ 011.705732.3869t t == 20.9831.. 1.30171048.912R DW F === 三,模型检验 从回归估计结果看,模型拟合较好,可决系数为0.98,表明家庭人均年可消费性支出变化的98.31%可由支配性收入的变化来解释。 t 检验:在5%的显著性水平下1β不显著为0,表明可支配收入增加1个单位,消费性支出平均增加0.7551单位。 1,预测 现已知2018年人均年可支配收入为20000元,预测消费支出预测值为 0272.36350.75512000015374.3635Y =+?= E(X)=6222.209,Var(X)=1994.033

则在95%的置信度下,E( Y)的预测区间为(874.28,16041.68) 2,异方差性检验 对于经济发达地区和经济落后地区,消费支出的决定因素不一定相同甚至差异很大。如经济越落后储蓄率越高,可能出现异方差性问题。 G-Q检验 对样本进行处理,X按从大到小排序,去掉中间4个,分为两组数据, 128 n n ==分别回归

1615472.0RSS = 2126528. 3R S S = 于是的F 统计量: ()() 12811 4.86811RSS F RSS --==-- 在5%的想著想水平下,0.050.05(6,6) 4.28,(6,6)F F F =>,即拒绝无异方差性假设,说明模型存在异方差性。

多元线性回归模型实验报告 计量经济学

实验报告 课程名称金融计量学 实验项目名称多元线性回归模型班级与班级代码 实验室名称(或课室) 专业 任课教师xxx 学号:xxx 姓名:xxx 实验日期:2012年5 月3日 广东商学院教务处制

姓名xxx 实验报告成绩 评语: 指导教师(签名) 年月日说明:指导教师评分后,实验报告交院(系)办公室保存

多元线性回归模型 一、实验目的 通过上机实验,使学生能够使用 Eviews 软件估计可化为线性回归模型的非线性模型,并对线性回归模型的参数线性约束条件进行检验。二、实验内容 (一)根据中国某年按行业分的全部制造业国有企业及规模以上制造业非国有企业的工业总产值Y,资产合计K及职工人数L进行回归分析。(二)掌握可化为线性多元非线性回归模型的估计和多元线性回归模型的线性约束条件的检验方法 (三)根据实验结果判断中国该年制造业总体的规模报酬状态如何?三、实验步骤 (一)收集数据 下表列示出来中国某年按行业分的全部制造业国有企业及规模以上制造业非国有企业的工业总产值Y,资产合计K及职工人数L。 序号工业总产值Y (亿元) 资产合计K (亿元) 职工人数L (万人)序号 工业总产 值Y(亿元) 资产合计K (亿元) 职工人数L (万人) 1 3722.7 3078.2 2 11 3 17 812.7 1118.81 43 2 1442.52 1684.4 3 67 18 1899.7 2052.16 61 3 1752.37 2742.77 8 4 19 3692.8 5 6113.11 240 4 1451.29 1973.82 27 20 4732.9 9228.2 5 222 5 5149.3 5917.01 327 21 2180.23 2866.65 80 6 2291.16 1758.7 7 120 22 2539.76 2545.63 96 7 1345.17 939.1 58 23 3046.95 4787.9 222 8 656.77 694.94 31 24 2192.63 3255.29 163 9 370.18 363.48 16 25 5364.83 8129.68 244 10 1590.36 2511.99 66 26 4834.68 5260.2 145 11 616.71 973.73 58 27 7549.58 7518.79 138 12 617.94 516.01 28 28 867.91 984.52 46 13 4429.19 3785.91 61 29 4611.39 18626.94 218 14 5749.02 8688.03 254 30 170.3 610.91 19 15 1781.37 2798.9 83 31 325.53 1523.19 45 16 1243.07 1808.44 33 表1

相关主题
文本预览
相关文档 最新文档