当前位置:文档之家› 常见三角恒等式

常见三角恒等式

常见三角恒等式
常见三角恒等式

高中常用三角函数公式大全

高中常用三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 半角公式 sin(2A )=2 cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 诱导公式 sin(-a) = -sina cos(-a) = cosa sin( 2 π-a) = cosa cos(2 π-a) = sina sin(2π+a) = cosa

cos( 2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2 (tan 1)2(tan 1a a +- tana=2 )2 (tan 12tan 2a a - 其它公式 a?sina+b?cosa=)b (a 22+×sin(a+c) [其中tanc= a b ] a?sin(a)-b?cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2 a )2 1-sin(a) = (sin 2a -cos 2 a )2 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos (π+α)= -cosα tan (π+α)= tanα cot (π+α)= cotα 公式三: 任意角α与 -α的三角函数值之间的关系:

常见的三角恒等式

常见的三角恒等式及其证明 设A,B,C是三角形的三个内角 (1) tanA+tanB+tanC=tanAtanBtanC 证明: tanA+tanB+tanC=tan(A+B)(1-tanAtanB)+tanC=tan(π-c)(1-tanAtanB)+tanC=-ta nC(1-tanAtanB)+tanC=tanAtanBtanC (2) cotAcotB+cotBcotC+cotCcotA=1 证明: tanA+tanB+tanC=tanAtanBtanC cotX*tanX=1 tanA*cotAcotBcotC+tanB*cotAcotBcotC+tanC*cotAcotBcotC=tanAtanBtanC* cotAcotBcotC cotAcotB+cotBcotC+cotCcotA=1 (3) (cosA)^2+(cosB)^2+(cosC)^2+2cosAcosBcosC=1 证明: (cosA)^2+(cosB)^2+x^2+2cosAcosBx=1 x^2+2cosAcosBx+(cosA)^2+(cosB)^2-1=0 x={-2cosAcosB+-√[(2cosAcosB)^2-4((cosA)^2+(cosB)^2-1)]}/2 x=-cosAcosB+-√[(cosAcosB)^2-((cosA)^2+(cosB)^2-1)] x=-cosAcosB+-√[1-(cosA)^2][1-(cosB)^2] x=-cosAcosB+-√[(sinA)^2(sinB)^2] x=-cosAcosB+-sinAsinB x=-cos(A+B)或x=-cos(A-B) x=cosC或x=-cos(A-B) 所以 cosC是方程的一个根 所以 (cosA)^2+(cosB)^2+(cosC)^2+2cosAcosBcosC=1 (4) cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sin(C/2) 证明: cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sin(C/2) cos(180-B-C)+cosB+cosC=1+2sin(A/2)[2sin(B/2)sin(C/2)] cos(180-B-C)+cosB+cosC=1+2cos(B/2+C/2)[2sin(B/2)sin(C/2)] -cos(B+C)+cosB+cosC=1+2cos(B/2+C/2)[2sin(B/2)sin(C/2)]

三角形中的常用辅助线方法总结(1)

典型例题 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。 全等三角形辅助线 找全等三角形的方法: (1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中; (2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等; (3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等; (4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。 三角形中常见辅助线的作法: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。 常见辅助线的作法有以下几种: (1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。 思路分析: 1)题意分析:本题考查等腰三角形的三线合一定理的应用 2)解题思路:要求证BD=2CE,可用加倍法,延长短边,又因为有BD平分∠ABC的条件,可以和等腰三角形的三线合一定理结合起来。 解答过程: 证明:延长BA,CE交于点F,在ΔBEF和ΔBEC中, ∵∠1=∠2,BE=BE,∠BEF=∠BEC=90°, ∴ΔBEF≌ΔBEC,∴EF=EC,从而CF=2CE。 又∠1+∠F=∠3+∠F=90°,故∠1=∠3。 在ΔABD和ΔACF中,∵∠1=∠3,AB=AC,∠BAD=∠CAF=90°, ∴ΔABD≌ΔACF,∴BD=CF,∴BD=2CE。 解题后的思考:等腰三角形“三线合一”性质的逆命题在添加辅助线中的应用不但可以提高解题的能力,而且还加强了相关知识点和不同知识领域的联系,为同学们开拓了一个广阔的探索空间;并且在添加辅助线的过程中也蕴含着化归的数学思想,它是解决问题的关键。 (2)若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。

常用的三角函数公式大全

三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A = A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A =2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2A )=2 cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+

tan( 2 A )=A A sin cos 1-=A A cos 1sin + 和差化积

sina+sinb=2sin 2b a +cos 2 b a - sina-sinb=2cos 2b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2 b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差 sinasinb = - 2 1[cos(a+b)-cos(a-b)] cosacosb = 2 1[cos(a+b)+cos(a-b)] sinacosb = 2 1[sin(a+b)+sin(a-b)] cosasinb = 21[sin(a+b)-sin(a-b)] 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2 (tan 1)2(tan 1a a +- tana=2 )2(tan 12tan 2a a - 其它公式 a?sina+b?cosa=)b (a 22+×sin(a+c) [其中tanc=a b ] a?sin(a)-b?cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2 a )2 1-sin(a) = (sin 2a -cos 2 a )2

最常用三角公式(精心简洁整理,可直接打印)

最常用三角公式 1. 诱导公式 sin(-a) = - sin(a) cos(-a) = cos(a) sin(π/2 - a) = cos(a) cos(π/2 - a) = sin(a) sin(π/2 + a) = cos(a) cos(π/2 + a) = - sin(a) sin(π - a) = sin(a) cos(π - a) = - cos(a) sin(π + a) = - sin(a) cos(π + a) = - cos(a) 2. 两角和与差的三角函数 sin(a + b) = sin(a)cos(b) + cos(α)sin(b) cos(a + b) = cos(a)cos(b) - sin(a)sin(b) sin(a - b) = sin(a)cos(b) - cos(a)sin(b) cos(a - b) = cos(a)cos(b) + sin(a)sin(b) tan(a + b) = [tan(a) + tan(b)] / [1 - tan(a)tan(b)] tan(a - b) = [tan(a) - tan(b)] / [1 + tan(a)tan(b)] 3.和差化积公式 sin(a) + sin(b) = 2sin[(a + b)/2]cos[(a - b)/2] sin(a) - sin(b) = 2cos[(a + b)/2]sin[(a - b)/2] cos(a) + cos(b) = 2cos[(a + b)/2]cos[(a - b)/2] cos(a) - cos(b) = - 2sin[(a + b)/2]sin[(a - b)/2]

三角形常见的辅助线

全等三角形问题中常见的辅助线的作法 常见辅助线的作法有以下几种: 1. 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折” 2. 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 3. 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线, 利用的思维模式是三角形全等变换中的“对折” ,所考知识点常常 是角平分线的性质定理或逆定理. 4. 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠” 5. 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用 三角形全等的有关性质加以说明?这种作法,适合于证明线段的和、差、倍、分等类的题目 特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答. 一、倍长中线(线段)造全等 应用:1、(09崇文二模)以ABC 的两边AB 、AC 为腰分别向外作等腰Rt^ABD 和等腰Rt^ACE , ? BAD = ? CAE = 90 (1)如图① 当 ABC 为直角三角形时,AM 与 DE 的位置关系是 线段AM 与DE 的数量关系是 (2)将图①中的等腰Rt'ABD 绕点A 沿逆时针方向旋转 二(0<二<90)后,如图②所示,(1 )问中得到的两个结论是否发生改 变?并说明理由. 连接DE ,M 、N 分别是 BC 、DE 的中点?探究: AM 与DE 的位置关系及数量关系. 例1、已知, 例2、如图, 例3、如图,

三角函数公式及记忆方法

三角函数公式 诱导公式的本质 所谓三角函数诱导公式,就是将角απ ±?)2 (n 的三角函数转化为角α的三角函数。 常用的诱导公式Z k ∈ 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: ααπs i n )2s i n (=+k ααπcos )2cos(=+k ααπt a n )2t a n (=+k ααπcot )2cot(=+k ααπs e c )2s e c (=+k ααπcsc )2csc(=+k 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: ααπs i n )s i n (-=+ ααπcos )cos(-=+ ααπt a n )t a n (=+ ααπcot )cot(=+ ααπs e c )s e c (-=+ ααπcsc )csc(-=+ 公式三: 任意角α与 -α的三角函数值之间的关系: ααs i n )s i n (-=- ααcos )cos(=- ααt a n )t a n (-=- ααcot )cot(-=- ααs e c )s e c (=- ααcsc )csc(-=- 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: ααπs i n )s i n (=- ααπcos )cos(-=- ααπt a n )t a n (-=- ααπcot )cot(-=- ααπs e c )s e c (-=- ααπcsc )csc( =- 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: ααπs i n )2 s i n (-=- ααπcos )2cos(=- ααπt a n )2 t a n (-=- ααπcot )2cot(-=- ααπs e c )2s e c (=- ααπcsc )2csc(-=-

最全面高中数学三角恒等式变形解题常用方法2021(完整版)

高中数学三角恒等式变形解题常用方法 一.知识分析 1. 三角函数恒等变形公式 (1)两角和与差公式 (2)二倍角公式 (3)三倍角公式 (4)半角公式 (5)万能公式 ,, (6)积化和差 , , ,

(7)和差化积 , , ,2.网络结构

3. 基础知识疑点辨析 (1)正弦、余弦的和差角公式能否统一成一个三角公式? 实际上,正弦、余弦的和角公式包括它们的差角公式,因为在和角公式中,是一个任意角,可正可负。另外,公式虽然形式不同,结构不同,但本质相同: 。

(2)怎样正确理解正切的和差角公式? 正确理解正切的和差角公式需要把握以下三点: ①推导正切和角公式的关键步骤是把公式,右边的“分子”、“分母”都除以,从而“化弦为切”,导出了。 ②公式都适用于为任意角,但运用公式时,必须限定,都不等于。 ③用代替,可把转化为,其限制条件同②。 (3)正弦、余弦、正切的和差角公式有哪些应用? ①不用计算器或查表,只通过笔算求得某些特殊角(例如15°,75°,105°角等)的三角函数值。 ②能由两个单角的三角函数值,求得它们和差角的三角函数值;能由两个单角的三角函数值与这两个角的范围,求得两角和的大小(注意这两个条件缺一不可)。 ③能运用这些和(差)角公式以及其它有关公式证明三角恒等式或条件等式,化简三角函 数式,要注意公式可以正用,逆用和变用。运用这些公式可求得简单三角函数式的最大值或最 小值。 (4)利用单角的三角函数表示半角的三角函数时应注意什么? 先用二倍角公式导出,再把两式的左边、右边分别相除,得到,由此得到的三个公式:,, 分别叫做正弦、余弦、正切的半角公式。公式中根号前的符号,由所在的象限来确定,如果没有给出限制符号的条件,根号前面应保持正、负两个符号。另外,容易 证明。 4. 三角函数变换的方法总结 三角学中,有关求值、化简、证明以及解三角方程与解几何问题等,都经常涉及到运用三 角变换的解题方法与技巧,而三角变换主要为三角恒等变换。三角恒等变换在整个初等数学中

三角函数恒等式

二倍角公式 sin2A=2sinA?cosA cos2A=cos^2A-sin^2A=1-2sin^2A=2cos^2A-1 tan2A=(2tanA)/(1-tan^2A) 三倍角公式 sin3α=4sinα2sin(π/3+α)sin(π/3-α) cos3α=4cosα2cos(π/3+α)cos(π/3-α) tan3a = tan a 2 tan(π/3+a)2 tan(π/3-a) 三倍角公式推导 sin3a =sin(2a+a) =sin2acosa+cos2asina =2sina(1-sin^2a)+(1-2sin^2a)sina =3sina-4sin^3a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos^2a-1)cosa-2(1-cos^a)cosa =4cos^3a-3cosa sin3a=3sina-4sin^3a =4sina(3/4-sin^2a) =4sina[(√3/2)^2-sin^2a] =4sina(sin^260°-sin^2a) =4sina(sin60°+sina)(sin60°-sina) =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a) /2] =4sinasin(60°+a)sin(60°-a) cos3a=4cos^3a-3cosa =4cosa(cos^2a-3/4) =4cosa[cos^2a-(√3/2)^2]

=4cosa(cos^2a-cos^230°) =4cosa(cosa+cos30°)(cosa-cos30°) =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-3 0°)/2]} =-4cosasin(a+30°)sin(a-30°) =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)] =-4cosacos(60°-a)[-cos(60°+a)] =4cosacos(60°-a)cos(60°+a) 上述两式相比可得 tan3a=tanatan(60°-a)tan(60°+a) 半角公式 tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. sin^2(a/2)=(1-cos(a))/2 cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a)) 和差化积 sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

考研必备三角函数公式

三角函数诱导公式 常用的诱导公式有以下几组: 公式一: 设α为人意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与-α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα

公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα

tan(π/2-α)=cotα cot(π/2-α)=tanα 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 对于k·π/2±α(k∈Z)的个三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变) 然后在前面加上把α看成锐角时原函数值的符号。 (符号看象限) 例如: sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。 当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。 所以sin(2π-α)=-sinα 上述的记忆口诀是: 奇变偶不变,符号看象限。 公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α 所在象限的原三角函数值的符号可记忆

3-2-2 三角恒等式的应用

能 力 提 升 一、选择题 1.函数y =sin x 1+cos x 的周期等于( ) A.π2 B .π C .2π D .3π [答案] C [解析] y =2sin x 2cos x 2 2cos 2x 2=tan x 2,T =π 1 2=2π. 2.函数y =1 2sin2x +sin 2x 的值域是( ) A.??????-12,32 B.???? ??-32,12 C.??????-22+12,22+12 D.? ????? -22-12,22-12 [答案] C [解析] ∵y =12sin2x +sin 2x =12sin2x +1-cos2x 2=12+22sin ? ? ? ??2x -π4, ∴值域为??????12 -22,12+22. 3.已知函数f (x )=sin x +a cos x 的图象的一条对称轴是x =5π 3,则

函数g (x )=a sin x +cos x 的最大值是( ) A.223 B.23 3 C.43 D.263 [答案] B [解析] 由于函数f (x )的图象关于x =5π 3对称, 则f (0)=f ? ?? ??10π3,∴a =-32-a 2, ∴a =-3 3, ∴g (x )=-3 3sin x +cos x =233sin ? ????x +2π3, ∴g (x )max =23 3. 4.函数y =cos 2ωx -sin 2ωx (ω>0)的最小正周期是π,则函数f (x )=2sin(ωx +π 4)的一个单调递增区间是( ) A .[-π2,π 2] B .[5π4,9π4] C .[-π4,3π4] D .[π4,5π4] [答案] B [解析] y =cos 2ωx -sin 2ωx =cos2ωx (ω>0), 因为函数的最小正周期为π,故 2π 2ω=π,所以ω=1.则

相似三角形常用辅助线

相似三角形之常用辅助线 在与相似有关的几何证明、计算的过程中,常常需要通过相似三角形,研究两条线段之间的比例关系,或者转移线段或角。而有些时候,这样的相似三角形在问题中,并不是十分明显。因此,我们需要通过添加辅助线,构造相似三角形,进而证明所需的结论。 专题一、添加平行线构造“A ”“X ”型 定理:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原三角形相似. 定理的基本图形: 例1、平行四边形ABCD 中,E 为AB 中点,AF :FD =1:2,求AG :GC 变式练习: 已知在△ABC 中,AD 是∠BAC 的平分线.求证:. (本题有多种解法,多想想) G F E D C B A G F E D C B A CD BD AC AB

例2、如图,直线交△ABC 的BC,AB 两边于D,E,与CA 延长线交于F,若 DC BD =FA FC =2,求BE:EA 的比值. 变式练习:如图,直线交△ABC 的BC,AB 两边于D,E,与CA 延长线交于F,若BD DC = FE ED =2,求BE:EA 的比 值. 例3、BE =AD ,求证:EF ·BC =AC ·DF 变式1、如图,△ABC 中,AB

例4、已知:如图,在△ABC 中,AD 为中线,E 在AB 上,AE=AC ,CE 交AD 于F ,EF ∶FC=3∶5,EB=8cm, 求AB 、AC 的长. 变式:如图,21==DE AE CD BD ,求BF AF 。(试用多种方法解) 说明:此题充分展示了添加辅助线,构造相似形的方法和技巧.在解题中方法要灵活,思路要开阔. 总结: (1)遇燕尾,作平行,构造 字一般行。 (2)引平行线应注意以下几点: 1)选点:一般选已知(或求证)中线段的比的前项或后项,在同一直线的线段的端点作为引平行线的点。 2)引平行线时尽量使较多已知线段、求证线段成比例。

常用三角函数公式和口诀

常用三角函数公式及口诀 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα (k∈Z) cos(2kπ+α)=cosα (k∈Z) tan(2kπ+α)=tanα (k∈Z) cot(2kπ+α)=cotα (k∈Z) 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z) 注意:在做题时,将a看成锐角来做会比较好做。 诱导公式记忆口诀 规律总结 上面这些诱导公式可以概括为: 对于π/2*k ±α(k∈Z)的三角函数值,

三角函数常用公式公式及用法

三角函数常用公式及用法 珠海市金海岸中学 唐云辉 1、终边相同的角及其本身在内的角的表示法: S={ | k 360°,k Z},或者 S { | 用法:用来将任意角转化到 0?2的范围以便于计算。 公式中k 的求法: 如是正角就直接除以3600或2,得到的整数 就是我们 要求的k ,剩余的角就是公式中 的;如果是 负角,就先取绝对值然后再去除以 3600或者2,得到 的整数加1后再取相反数就是上述公式中的 k,等于3600或者2减去剩余的角的值。 用法:前者是弧长公式,用以计算圆弧的长度;后者为扇形的面积公式,用以计算扇形的面积。 3.三角形面积公式: 1 , 1 1 1 abc 2 S 』= a h a = ab si nC =—bc si nA = —ac si nB = =2R sin A si n B si nC 2 2 2 4R 2 a sin BsinC 2 sin A 2 2 b sinAsinC c sinAsinB = = =pr= P (P a)(p b)(p c) 2si nB 2sinC 1 ( 其中p -(a 2 4 ?同角关系: b c) , r 为三角形内切圆半径) (1 )、商的关系:① tan =y = sin x cos 用法:一般用来计算三角函数的值。 (2 )、平方关系:sin 2 cos 2 1 行运算,遇到sin cos m 就先平方而后再运算, 遇到sin cos sin 2 cos 2 这类题目就联想 2 2 到分母为"1” =s in cos 进行运算即可。 --------- K (3)、辅助角公式: asin bcos Va 2 b 2 sin( ) (其中 a>0,b>0 ,且 tan —) a 用法:用以将两个异名三角函数转化成同名三角函数,以便于求取相关的三角函数。 5、函数y= Asin( x ) k 的图象及性质:( 0, A 0 ) 2、 L 弧长= n nR R =180 扇 =丄LR 」F 2 2 2 n R 2 360 2k ,k Z} 用法:凡是见了 sin cos m 或者sin cos ?2 sin 2 cos 的形式题目都可以用上述平方关系进

三角形中位线中的常见辅助线

三角形中位线中的常见辅助线 知识梳理 知识点一中点 一、与中点有关的概念 三角形中线的定义:三角形顶点和对边中点的连线 等腰三角形底边的中线三线合一(底边的中线、顶角的角平分线、底边的高重合)三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线. 三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半. 中位线判定定理:经过三角形一边中点且平行于另一边的直线必平分第三边.直角三角形斜边中线:直角三角形斜边中线等于斜边一半 斜边中线判定:若三角性一边上的中线等于该边的一半,则这个三角形是直角三角形 二、与中点有关的辅助线 方法一:倍长中线 解读:凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的可以旋转等长度的线段,从而达到将条件进行转化的目的。 方法二:构造中位线 解读:凡是出现中点,或多个中点,都可以考虑取另一边中点,或延长三角形一边,从而达到构造三角形中位线的目的。

方法三:构造三线合一 解读:只要出现等腰三角形,或共顶点等线段,就需要考虑构造三线合一,从而找到突破口 其他位置的也要能看出 方法四:构造斜边中线 解读:只要出现直角三角形,或直角,则考虑连接斜边中线段,第一可以出现三条等线段,第二可以出现两个等腰三角形,从而转化线段关系。 其他位置的也要能看出

C E D B A 常见考点 构造三角形中位线 考点说明:①凡是出现中点,或多个中点,都可以考虑取四边形对角线中点、等腰三 角形底边中点、直角三角形斜边中点或其他线段中点; ②延长三角形一边,从而达到构造三角形中位线的目的。 “题中有中点,莫忘中位线”.与此很相近的几何思想是“题中有中线,莫忘加倍延”,这两个是常用几何思想,但注意倍长中线的主要目的是通过构造三角形全等将分散的条件集中起来.平移也有类似作用. 典型例题 【例1】 已知:AD 是ABC △的中线,AE 是ABD △的中线,且AB BD =,求证:2AC AE =. 举一反三 1. 如右下图,在ABC ?中,若2B C ∠=∠,AD BC ⊥,E 为BC 边的中点.求证:2AB DE =.

第10讲 三角恒等式一(数学竞赛)

第10讲 三角恒等式与三角不等式(一) 【赛点突破】 1. 诱导公式:奇变偶不变,符号看象限。 2. 同角函数基本关系:平方关系,倒数关系,商关系。 3. 三角公式:和差倍半,和差化积,积化和差。 【范例解密】 例1若x 是锐角,证明:(1)sin tan x x x <<;(2) sin tan 2 x x x +>。 分析与解:(1)如图,在单位圆中, OAB OAB OBC S S S ??<<扇形,即sin tan x x x <<; (2)224tan tan 2tan sin tan 22 221tan 1tan 1tan 222 x x x x x x x x +=+= +-- 2tan 222 x x x >>?=。 注:(2)的变形值得回味。 例2 2tan x =-,求x 的取值范围。 解:原式左边= 1sin 1sin 2sin cos cos cos x x x x x x -+--=,故cos 0x >或者sin 0x =,则 22,22 k x k k Z π π ππ- <<+ ∈或者,x k k Z π=∈。 注:本题非常容易漏解,考查思维的严谨性。 例3 求15 ()()44f x x = ≤≤的最小值。 分析与解:sin()2 ()x f x π π-+=54x =取得最大值,分子当54x =取得最小值,故5 4 x = 原式取得最小值。 注:解决问题的思维值得借鉴。 例4求 1 tan10cos50 +的值。

分析与解: 1cos802cos 40cos80cos402cos60cos 20 sin40sin80sin80sin80 ++ += = 2cos30cos10 3 sin80 ==。 注;tan10cot80 =是一个很好的变形,另外2cos40 cos802cos(12080) + =- cos802sin120sin80 +=是一个更启发思路的方法。 例5()sin2)sin()23,[0,] 42 f x x x a x ππ =-+++∈,若 () cos() 4 f x x π > - 恒成立,求a的取值范围。 分析与解:设sin cos x x t +=∈,则2 sin21 x t=-,原不等式化为 2 4 (2)22 t a t a t -+++>,即 2 (2)()0 t t a t -+-<,故 2 a t t >+恒成立,则3 a>。注:其中的三角换元是常用的重要方法,高次方程的分解因式是稍高的技巧。例6ABC ?中,求cos cos cos A B C ++的最大值。 分析与解:原式2 2cos cos cos2sin12sin 2222 A B A B C C C +- =+≤+-= 2 13 2(sin) 222 C --+,故当 3 A B C π ===时原式的最大值是 3 2 。 注(1)如果求cos cos cos A B C ++的值域呢? (2)3 cos cos cos cos2cos2cos 322 C A B A B C π π+ + +++≤+≤ 3 3 4cos 42 A B C π +++ =是很好的方法,由此如何解决sin sin sin A B C ++的最值问题,并和其他的方法比较。 例7,a b是正实数,且 sin cos8 55tan 15 cos sin 55 a b a b ππ π ππ + = - ,求 b a 的值。 分析与解:设tan, b x x a =是锐角,则 tan tan8 5tan 15 1tan tan 5 x x π π π + = - ,即 8 tan()tan 515 x ππ +=, 故 8 , 5153 x x πππ +==, b a = 注:本解法比较灵巧,还有多种基本的方法,请自己探索。

三角函数常用公式

数学必修4三角函数常用公式及结论 一、三角函数与三角恒等变换 2、同角三角函数公式 sin 2α+ cos 2α= 1 ααcos tan = 3、二倍角的三角函数公式 sin2α= 2sin αcos α cos2α=2cos 2α-1 = 1-2 sin 2α= cos 2α- sin 2α αα α2tan 1tan 22tan -= 45 1- cos2α= 2 sin 2α 6、两角和差的三角函数公式 sin (α±β) = sin αcos β土cos αsin β cos (α±β) = cos αcos β干sin αsin β ()βαβ αβαtan tan 1tan tan tan ±=± 7、两角和差正切公式的变形: tan α±tan β= tan (α±β) (1干tan αtan β) ααtan 1tan 1-+=αα tan 45tan 1tan 45tan ?-+?= tan (4π+α) ααtan 1tan 1+-=αα tan 45tan 1tan 45tan ?+-?= tan (4π -α) 8

10、三角函数的诱导公式 “奇变偶不变,符号看象限。” sin (π-α) = sin α, cos (π-α) = -cos α, tan (π-α) = -tan α; sin (π+α) = -sin α cos (π+α) = -cos α tan (π+α) = tan α sin (2π-α) = -sin α cos (2π-α) = cos α tan (2π-α) = -tan α sin (-α) = -sin α cos (-α) = cos α tan (-α) = -tan α sin (2π-α) = cos α cos (2 π-α) = sin α sin (2π+α) = cos α cos (2 π+α) = -sin α 11.三角函数的周期公式 函数sin()y x ω?=+,x ∈R 及函数cos()y x ω?=+,x ∈R(A,ω,?为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ω?=+,,2x k k Z ππ≠+∈(A,ω,?为常数,且A ≠0,ω>0)的周期T π ω=. 解三角形知识小结和题型讲解 一、 解三角形公式。 1. 正弦定理 2. 余弦定理 在运用余弦定理的计算要准确,同时合理运用余弦定理的变形公式. 3.三角形中三内角的三角函数关系)(π=++C B A ○1).tan(tan ),cos(cos ),sin(sin C B A C B A C B A +-=+-=+=(注:二倍角的关系) ○2),2sin(2cos ),2cos(2sin C B A C B A +=+= 5.几个重要的结论 ○1B A B A B A cos cos ,sin sin <>?>; ○2三内角成等差数列00120,60=+=?C A B 2(ABC ) sin sin sin a b c R R A B C ===?是的外接圆半径2 222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+-222 2 22 222 cos 2 cos 2cos 2b c a A bc a c b B ac a b c C ab +-=+-=+-=

三角形常见的辅助线Word版

D C B A E D F C B A 全等三角形问题中常见的辅助线的作法 常见辅助线的作法有以下几种: 1.遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”. 2.遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”. 3.遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理. 4.过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠” 5.截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目. 特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.一、倍长中线(线段)造全等 例1、已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________. 例2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小. 例3、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE. A

应用:1、(09崇文二模)以 ABC ?的两边AB、AC为腰分别向外作等腰Rt ABD ?和等腰Rt ACE ?,90, BAD CAE ∠=∠=? 连接DE,M、N分别是BC、DE的中点.探究:AM与DE的位置关系及数量关系. (1)如图①当 ABC ?为直角三角形时,AM与DE的位置关系是 , 线段AM与DE的数量关系是; (2)将图①中的等腰Rt ABD ?绕点A沿逆时针方向旋转?θ(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由. 二、截长补短 1、如图,ABC ?中,AB=2AC,AD平分BAC ∠,且AD=BD,求证:CD⊥AC C D B A

相关主题
文本预览
相关文档 最新文档