当前位置:文档之家› 有零点二阶系统的动态性能分析

有零点二阶系统的动态性能分析

有零点二阶系统的动态性能分析
有零点二阶系统的动态性能分析

二阶系统性能改善与稳定性

例1 系统结构图如图所示。求开环增益K分别为10,0.5,0.09时系统的动态性能指标。 计算过程及结果列表 K 计算 10 0.5 0.09 开环 传递 函数 )1 ( 10 ) ( 1+ = s s s G )1 ( 5.0 ) ( 2+ = s s s G )1 ( 09 .0 ) ( 3+ = s s s G 闭环 传递 函数10 10 ) ( 2 1+ + = Φ s s s 5.0 5.0 ) ( 2 2+ + = Φ s s s 09 .0 09 .0 ) ( 2 3+ + = Φ s s s 特征 参数 ? ? ? ?? ? ? ? = = = ? = = = 81 arccos 158 .0 16 .3 2 1 16 .3 10 ξ β ξ ω n ? ? ? ?? ? ? ? = = = ? = = = 45 arccos 707 .0 707 .0 2 1 707 .0 5.0 ξ β ξ ω n ?? ? ? ? = ? = = = 67 .1 3.0 2 1 3.0 09 .0 ξ ω n 特征 根 12 .3 5.0 2,1 j ± - = λ5.0 5.0 2,1 j ± - = λ ? ? ? - = - = 9.0 1.0 2 1 λ λ ? ? ? = = 11 .1 10 2 1 T T 动态 性能 指标 2 2 1 00 00 1.01 1 60.4 3.5 3.5 7 0.5 p n s n t e t ξπξ π ξω σ ξω -- ? == ? - ? ? == ? ? ?=== ? ? ? ? ? ? ? ? ? ? ? = = = = = - = - - 7 5.3 5 238 .6 1 1 2 2 n s n p t e t ξω σ ω ξ π ξ ξπ() 1221 11 9 31 ,0 s s p T T t t T T t λλ σ ?== ? =?= ? ?=∞= ?

系统动态特性分析

系统动态特性分析。 (1)时域响应解析算法――部分分式展开法。 用拉氏变换法求系统的单位阶跃响应,可直接得出输出c(t)随时间t 变化的规律,对于高阶系统,输出的拉氏变换象函数为: s den num s s G s C 11)()(?=? = (21) 对函数c(s)进行部分分式展开,我们可以用num,[den,0]来表示c(s)的分子和分母。 例 15 给定系统的传递函数: 24 50351024 247)(23423+++++++=s s s s s s s s G 用以下命令对 s s G ) (进行部分分式展开。 >> num=[1,7,24,24] den=[1,10,35,50,24] [r,p,k]=residue(num,[den,0]) 输出结果为 r= p= k= -1.0000 -4.0000 [ ] 2.0000 -3.0000 -1.0000 -2.0000 -1.0000 -1.0000 1.0000 0 输出函数c(s)为: 01 11213241)(+++-+-+++-= s s s s s s C 拉氏变换得: 12)(234+--+-=----t t t t e e e e t c (2)单位阶跃响应的求法: 控制系统工具箱中给出了一个函数step()来直接求取线性系统的阶跃响应,如果已知传递函数为: den num s G = )( 则该函数可有以下几种调用格式: step(num,den) (22) step(num,den,t) (23) 或 step(G) (24) step(G,t) (25) 该函数将绘制出系统在单位阶跃输入条件下的动态响应图,同时给出稳态值。对于式23和25,t 为图像显示的时间长度,是用户指定的时间向量。式22和24的显示时间由系统根据输出曲线的形状自行设定。

自动控制原理实验——二阶系统的动态过程分析

实验二二阶系统的动态过程分析 一、 实验目的 1. 掌握二阶控制系统的电路模拟方法及其动态性能指标的测试技术。 2. 定量分析二阶系统的阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。 3. 加深理解“线性系统的稳定性只与其结构和参数有关,而与外作用无关”的 性质。 4. 了解和学习二阶控制系统及其阶跃响应的Matlab 仿真和Simulink 实现方 法。 二、 实验内容 1. 分析典型二阶系统()G s 的ξ和n ω变化时,对系统的阶跃响应的影响。 2. 用实验的方法求解以下问题: 设控制系统结构图如图所示,若要求系统具有性能: %20%,1,p p t s σσ=== 试确定系统参数K 和τ,并计算单位阶跃响应的特征量d t ,r t 和s t 。 图 控制系统的结构图 3. 用实验的方法求解以下问题: 设控制系统结构图如图所示。图中,输入信号()r t t θ=,放大器增益A K 分别取,200和1500。试分别写出系统的误差响应表达式,并估算其性能指标。

图 控制系统的结构图 三、 实验原理 任何一个给定的线性控制系统,都可以分解为若干个典型环节的组合。将每个典型环节的模拟电路按系统的方块图连接起来,就得到控制系统的模拟电路图。 通常,二阶控制系统2 22 ()2n n n G s s ωξωω=++可以分解为一个比例环节、一个惯性环节和一个积分环节,其结构原理如图所示,对应的模拟电路图如图所示。 图 二阶系统的结构原理图 图 二阶系统的模拟电路原理图 图中:()(),()()r c u t r t u t c t ==-。 比例常数(增益系数)2 1 R K R = ,惯性时间常数131T R C =,积分时间常数242T R C =。其闭环传递函数为: 12 221112 ()1()(1)c r K U s TT K K U s T s T s K s s T TT == ++++ (0.1)

测试系统的特性

第4章测试系统的特性 一般测试系统由传感器、中间变换装置和显示记录装置三部分组成。测试过程中传感器将反映被测对象特性的物理量(如压力、加速度、温度等)检出并转换为电信号,然后传输给中间变换装置;中间变换装置对电信号用硬件电路进行处理或经A/D变成数字量,再将结果以电信号或数字信号的方式传输给显示记录装置;最后由显示记录装置将测量结果显示出来,提供给观察者或其它自动控制装置。测试系统见图4-1所示。 根据测试任务复杂程度的不同,测试系统中每个环节又可由多个模块组成。例如,图4-2所示的机床轴承故障监测系统中的中间变换装置就由带通滤波器、A/D变换器和快速傅里叶变换(Fast Fourier Transform,简称FFT)分析软件三部分组成。测试系统中传感器为振动加速度计,它将机床轴承振动信号转换为电信号;带通滤波器用于滤除传感器测量信号中的高、低频干扰信号和对信号进行放大,A/D变换器用于对放大后的测量信号进行采样,将其转换为数字量;FFT分析软件则对转换后的数字信号进行快速傅里叶变换,计算出信号的频谱;最后由计算机显示器对频谱进行显示。 要实现测试,一个测试系统必须可靠、不失真。因此,本章将讨论测试系统及其输入、输出的关系,以及测试系统不失真的条件。 图4-1 测试系统简图 图4-2 轴承振动信号的测试系统

4.1 线性系统及其基本性质 机械测试的实质是研究被测机械的信号)(t x (激励)、测试系统的特性)(t h 和测试结果)(t y (响应)三者之间的关系,可用图4-3表示。 )(t x )(t y )(t h 图4-3 测试系统与输入和输出的关系 它有三个方面的含义: (1)如果输入)(t x 和输出)(t y 可测,则可以推断测试系统的特性)(t h ; (2)如果测试系统特性)(t h 已知,输出)(t y 可测,则可以推导出相应的输入)(t x ; (3)如果输入)(t x 和系统特性)(t h 已知,则可以推断或估计系统的输出)(t y 。 这里所说的测试系统,广义上是指从设备的某一激励输入(输入环节)到检测输出量的那个环节(输出环节)之间的整个系统,一般包括被测设备和测量装置两部分。所以只有首先确知测量装置的特性,才能从测量结果中正确评价被测设备的特性或运行状态。 理想的测试装置应具有单值的、确定的输入/输出关系,并且最好为线性关系。由于在静态测量中校正和补偿技术易于实现,这种线性关系不是必须的(但是希望的);而在动态测量中,测试装置则应力求是线性系统,原因主要有两方面:一是目前对线性系统的数学处理和分析方法比较完善;二是动态测量中的非线性校正比较困难。但对许多实际的机械信号测试装置而言,不可能在很大的工作范围内全部保持线性,只能在一定的工作范围和误差允许范围内当作线性系统来处理。 线性系统输入)(t x 和输出)(t y 之间的关系可以用式(4-1)来描述 )()(...)()()()(...)()(0111101111t x b dt t dx b dt t x d b dt t x d b t y a dt t dy a dt t y d a dt t y d a m m m m m m n n n n n n ++++=++++------ (4-1) 当n a ,1-n a ,…,0a 和m b ,1-m b ,…,0b 均为常数时,式(4-1)描述的就是线性系统,也称为时不变线性系统,它有以下主要基本性质: (1)叠加性 若 )()(11t y t x →,)()(22t y t x →,则有

简支梁振动系统动态特性综合测试方法分析

目录 一、设计题目 (1) 二、设计任务 (1) 三、所需器材 (1) 四、动态特性测量 (1) 1.振动系统固有频率的测量 (1) 2.测量并验证位移、速度、加速度之间的关系 (3) 3.系统强迫振动固有频率和阻尼的测量 (6) 4.系统自由衰减振动及固有频率和阻尼比的测量 (6) 5.主动隔振的测量 (9) 6.被动隔振的测量 (13) 7.复式动力吸振器吸振实验 (18) 五、心得体会 (21) 六、参考文献 (21)

一、设计题目 简支梁振动系统动态特性综合测试方法。 二、设计任务 1.振动系统固有频率的测量。 2.测量并验证位移、速度、加速度之间的关系。 3.系统强迫振动固有频率和阻尼的测量。 4.系统自由衰减振动及固有频率和阻尼比的测量。 5.主动隔振的测量。 6.被动隔振的测量。 7.复式动力吸振器吸振实验。 三、所需器材 振动实验台、激振器、加速度传感器、速度传感器、位移传感器、力传感器、扫描信号源、动态分析仪、力锤、质量块、可调速电机、空气阻尼器、复式吸振器。 四、动态特性测量 1.振动系统固有频率的测量 (1)实验装置框图:见(图1-1) (2)实验原理: 对于振动系统测定其固有频率,常用简谐力激振,引起系统共振,从而找到系统的各阶固有频率。在激振功率输出不变的情况下,由低到高调节激振器的激振频率,通过振动曲线,我们可以观察到在某一频率下,任一振动量(位移、速度、加速度)幅值迅速增加,这就是机械振动系统的某阶固有

频率。 (图1-1实验装置图) (3)实验方法: ①安装仪器 把接触式激振器安装在支架上,调节激振器高度,让接触头对简支梁产生一定的预压力,使激振杆上的红线与激振器端面平齐为宜,把激振器的信号输入端用连接线接到DH1301扫频信号源的输出接口上。把加速度传感器粘贴在简支梁上,输出信号接到数采分析仪的振动测试通道。 ②开机 打开仪器电源,进入DAS2003数采分析软件,设置采样率,连续采集,输入传感器灵敏度、设置量程范围,在打开的窗口内选择接入信号的测量通道。清零后开始采集数据。 ③测量 打开DH1301扫频信号源的电源开关,调节输出电压,注意不要过载,手动调节输出信号的频率,从0开始调节,当简支梁产生振动,且振动量最大时(共振),保持该频率一段时间,记录下此时信号源显示的频率,即为简支梁振动固有频率。继续增大频率可得到高阶振动频率。

控制实验报告二典型系统动态性能和稳定性分析

实验报告2 报告名称:典型系统动态性能和稳定性分析 一、实验目的 1、学习和掌握动态性能指标的测试方法。 2、研究典型系统参数对系统动态性能和稳定性的影响。 二、实验内容 1、观测二阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。 2、观测三阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。 三、实验过程及分析 1、典型二阶系统 结构图以及电路连接图如下所示: 对电路连接图分析可以得到相关参数的表达式: ;;; 根据所连接的电路图的元件参数可以得到其闭环传递函数为 ;其中; 的阻值,能够调节闭环传递函数中的阻尼系数,调节系统性能。 因此,调整R x 当时,为过阻尼系统,系统对阶跃响应不超调,响应速度慢,因此有如下的实验曲线。 当时,为临界阻尼系统,系统对阶跃响应恰好不超调,在不发生超调

的情况下有最快的响应速度,因此有如下的实验曲线。对比上下两张图片,可以发现系统最后的稳态误差都比较明显,应该与实验仪器的精密度有关。同时我们还观察了这个系统对斜坡输入的响应,其特点是输出曲线转折处之后有轻微的上凸的部分,最后输出十分接近输入。 当时,为欠阻尼系统,系统对阶跃超调,响应速度很快,因此有如下的实验曲线。 2、典型三阶系统 结构图以及电路连接图如下所示: 根据所连接的电路图可以知道其开环传递函数为: 其中,R 的单位为kΩ。系统特征方程为,根据 x 劳斯判据可以知道:系统稳定的条件为012,调节R 可以调节K,从而调节系统的性能。具体实 x 验图像如下: 四、软件仿真 1、典型2阶系统 取,程序为:G=tf(50,[1,50*sqrt(2),50]); step(G) 调节时间为5s左右。 取,程序为:G=tf(50,[1,10*sqrt(2),50]); step(G) 调节时间为左右。

简述系统动态特性及其测定方法

简述系统动态特性及其测定方法 系统的特性可分为静态特性和动态特性。其中动态特性是指检测系统在被测量随时间变化的条件下输入输出关系。一般地,在所考虑的测量范围内,测试系统都可以认为是线性系统,因此就可以用一定常线性系统微分方程来描述测试系统以及和输入x (t)、输出y (t)之间的关系。 1) 微分方程:根据相应的物理定律(如牛顿定律、能量守恒定律、基尔霍夫电 路定律等),用线性常系数微分方程表示系统的输入x 与输出y 关系的数字方程式。 a i 、 b i (i=0,1,…):系统结构特性参数,常数,系统的阶次由输出量最高微分阶次决定。 2) 通过拉普拉斯变换建立其相应的“传递函数”,该传递函数就能描述测试装 置的固有动态特性,通过傅里叶变换建立其相应的“频率响应函数”,以此来描述测试系统的特性。 定义系统传递函数H(S)为输出量与输入量的拉普拉斯变换之比,即 式中S 为复变量,即ωαj s += 传递函数是一种对系统特性的解析描述。它包含了瞬态、稳态时间响应和频率响应的全部信息。传递函数有一下几个特点: (1)H(s)描述系统本身的动态特性,而与输入量x (t)及系统的初始状态无关。 (2)H(S)是对物理系统特性的一种数学描述,而与系统的具体物理结构无关。H(S)是通过对实际的物理系统抽象成数学模型后,经过拉普拉斯变换后所得出的,所以同一传递函数可以表征具有相同传输特性的不同物理系统。 (3)H(S)中的分母取决于系统的结构,而分子则表示系统同外界之间的联系,如输入点的位置、输入方式、被测量以及测点布置情况等。分母中s 的幂次n 代表系统微分方程的阶数,如当n =1或n =2 时,分别称为一阶系统或二阶系统。 一般测试系统都是稳定系统,其分母中s 的幂次总是高于分子中s 的幂次(n>m)。

二阶系统的性能指标

二阶系统的性能指标 控制系统的性能指标是评价系统动态品质的定量指标,是定量分析的基础。 系统的时域性能指标通常通过系统的单位阶跃响应进行定义。常见的性能指标有:上升时间t r 、峰值时间t p 、调整时间t s 、最大超调量M p 、振荡次数N 。 1.评价系统快速性的性能指标 上升时间t r 响应曲线从零时刻出发首次到达 稳态值所需时间。对无超调系统, 上升时间一般定义为响应曲线从 稳态值的10%上升到90%所需 的时间。 峰值时间t p 响应曲线从零上升到第一个峰值 所需时间。 调整时间t s 响应曲线到达并保持在允许误差 范围(稳态值的±2%或±5%)内所 需的时间。 2.评价系统平稳性的性能指标 ? 最大超调量M p 响应曲线的最大峰值与稳态值之差。通常用百分数表示: %100)() ()(?∞∞-≡o o p o p x x t x M 若x o (t p ) < x o (∞),则响应无超调。 ? 振荡次数N 在调整时间t s 内系统响应曲线的振荡次数。实测时,可按响应曲线穿越稳态值次数的一半计数。 3.欠阻尼二阶系统的时域性能指标 ? 上升时间t r 欠阻尼二阶系统的阶跃响应为:0),sin(11)(2≥+--=-t t e t x d t o n ?ωξξω 根据上升时间的定义有:()1sin 11)(2=+--=-?ωξξωr d t r o t e t x r n 2221arccos 11ξωξ πξωξξπω?π--=---=-=n n d r arctg t 显然, ξ一定时,ωn 越大,t r 越小; ωn 一定时,ξ 越大,t r 越大。 ? 峰值时间t p 令0)(=dt t dx o ,并将t = t p 代入可得:21ξ ωπωπ-==n d p t

实验二-二阶系统的动态特性与稳定性分析

实验二-二阶系统的动态特性与稳定性分析

自动控制原理 实验报告 实验名称:二阶系统的动态特性与稳定性分析班级: 姓名: 学号:

实验二二阶系统的动态特性与稳定性分析 一、实验目的 1、掌握二阶系统的电路模拟方法及其动态性能指标的测试技术过阻尼、临界阻尼、欠阻尼状态 )对系统动态2、分析二阶系统特征参量(ξ ω, n 性能的影响; 3、分析系统参数变化对系统稳定性的影响,加深理解“线性系统稳定性至于其结构和参数有关,与外作用无关”的性质; 4、了解掌握典型三阶系统的稳定状态、临界稳定、不稳定状态; 5、学习二阶控制系统及其阶跃响应的Matlab 仿真和simulink实现方法。 二、实验内容 1、构成各二阶控制系统模拟电路,计算传递函数,明确各参数物理意义。 2、用Matlab和simulink仿真,分析其阶跃响应动态性能,得出性能指标。 3、搭建典型二阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量%σ、

峰值时间tp 以及调节时间ts ,研究其参数变化对典型二阶系统动态性能和稳定性的影响; 4、 搭建典型三阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量%σ、峰值时间tp 以及调节时间ts ,研究其参数变化对典型三阶系统动态性能和稳定性的影响; 5、 将软件仿真结果与模拟电路观测的结果做比较。 三、实验步骤 1、 二阶系统的模拟电路实现原理 将二阶系统: ωωξω2 2)(22 n n s G s s n ++= 可分解为一个比例环节,一个惯性环节和一个积分环节 ωωξω221)() ()()(2C C C C s C C 2 22 6215423 2 15423 2 2154215426316 320 n n s s s s s G s s s C R R R R R R R R R R R R C R R R R R R R R R U U n i ++= ++=++== 2、 研究特征参量ξ对二阶系统性能的影响 将二阶系统固有频率5 .12n =ω 保持不变,测试阻尼

实验二 二阶系统的动态特性与稳定性分析

自动控制原理 实验报告 实验名称:二阶系统的动态特性与稳定性分析班级: 姓名: 学号:

实验二 二阶系统的动态特性与稳定性分析 一、实验目的 1、 掌握二阶系统的电路模拟方法及其动态性能指标的测试技术过阻尼、临界阻尼、欠阻尼状态 2、 分析二阶系统特征参量(ξω,n )对系统动态性能的影响; 3、 分析系统参数变化对系统稳定性的影响,加深理解“线性系统稳定性至于其结构和参数有关,与外作用无关”的性质; 4、 了解掌握典型三阶系统的稳定状态、临界稳定、不稳定状态; 5、 学习二阶控制系统及其阶跃响应的Matlab 仿真和simulink 实现方法。 二、实验内容 1、 构成各二阶控制系统模拟电路,计算传递函数,明确各参数物理意义。 2、 用Matlab 和simulink 仿真,分析其阶跃响应动态性能,得出性能指标。 3、 搭建典型二阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量%σ、峰值时间tp 以及调节时间ts ,研究其参数变化对典型二阶系统动态性能和稳定性的影响; 4、 搭建典型三阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量%σ、峰值时间tp 以及调节时间ts ,研究其参数变化对典型三阶系统动态性能和稳定性的影响; 5、 将软件仿真结果与模拟电路观测的结果做比较。 三、实验步骤 1、 二阶系统的模拟电路实现原理 将二阶系统: ωωξω22)(22 n n s G s s n ++= 可分解为一个比例环节,一个惯性环节和一个积分

环节ωωξω221)() ()()(2C C C C s C C 2 22 6215423 2 15423 2 2154215426316 320 n n s s s s s G s s s C R R R R R R R R R R R R C R R R R R R R R R U U n i ++= ++=++== 2、 研究特征参量ξ对二阶系统性能的影响 将二阶系统固有频率5.12n =ω保持不变,测试阻尼系数ξ不同时系统的特性,搭建模拟电路,改变电阻R6可改变ξ的值 当R6=50K 时,二阶系统阻尼系数ξ=0.8 当R6=100K 时,二阶系统阻尼系数ξ=0.4 当R6=200K 时,二阶系统阻尼系数ξ=0.2 (1)用Matlab 软件仿真实现二阶系统的阶跃响应,计算超调量%σ、峰值时间tp 以及调节时间ts 。 当12.5n =ω,0.8=ξ时: clear g=tf(12.5^2,[1 25*0.8 12.5^2]), step(g) Transfer function: 156.3 ------------------- s^2 + 200 s + 156.3

一二阶系统频率特性测试与分析

广西大学实验报告纸 姓名: 指导老师:胡老师 成绩: 学院:电气工程学院 专业:自动化 班级:121 实验内容:零、极点对限性控制系统的影响 2014年 11月 16 日 【实验时间】2014年11月14日 【实验地点】宿舍 【实验目的】 1. 掌握测量典型一阶系统和二阶系统的频率特性曲线的方法; 2. 掌握软件仿真求取一、二阶系统的开环频率特性的方法; 3. 学会用Nyquist 判据判定系统的稳定性。 【实验设备与软件】 1. labACT 实验台与虚拟示波器 2. MATLAB 软件 【实验原理】 1.系统的频率特性测试方法 对于现行定常系统,当输入端加入一个正弦信号)sin()(t X t X m ωω=时,其稳态输出是一个与输入信号频率相同,但幅值和相位都不同的正弦信号 )sin()()sin()(ψωωψω+=+=t j G X t Y s Y m m 。 幅频特性:m m X Y j G /)(=ω,即输入与输出信号的幅度比值,通常转换成)(lg 20ωj G 形式。 相频特性:)(arg )(ωω?j G =,可以直接基于虚拟示波器读取,也可以用“李沙育图行”法得到。 可以将用Bode 图或Nyquist 图表示幅频特性和相频特。 在labACT 试验台采用的测试结构图如下:

被测定稳定系统对于实验就是有源放大电路模拟的一、二阶稳定系统。 2.系统的频率测试硬件原理 1)正弦信号源的产生方法 频率特性测试时,一系列不同频率输入正弦信号可以通过下图示的原理产生。按照某种频率不断变化的数字信号输入到DAC0832,转换成模拟信号,经一级运放将其转换为模拟电压信号,再经过一个运放就可以实现双极性电压输出。 根据数模转换原理,知 R V N V 8 012- = (1) 再根据反相加法器运算方法,得 R R R V N V N V R R V R R V 1281282282201210--=??? ??+-?-=??? ? ??+-= (2) 由表达式可以看出输出时双极性的:当N 大于128时,输出为正;反之则为负;当输入为128时,输出为0. 在labACT 实验箱上使用的参考电压时5V 的,内部程序可以产生频率范围是对一阶系统是0.5 H Z ~64H Z 、对二阶系统是0.5 H Z ~16 H Z 的信号,并由B2单元的OUT2输出。

实验一基于MATLAB的二阶系统动态性能分析

实验一基于MATLAB 的二阶系统动态性能分析 一、实验目的 1、观察学习二阶控制系统的单位阶跃响应、脉冲响应。 2、记录单位阶跃响应曲线、脉冲响应曲线。 3、掌握时间响应分析的一般方法。 4、掌握系统阶跃响应曲线与传递函数参数的对应关系。 二、实验设备 PC 机,MATLAB 仿真软件。 三、实验内容1、作以下二阶系统的单位阶跃响应曲线 10 10)(2++=s s s G 2、分别改变该系统的ζ和n ω,观察阶跃响应曲线的变化。 3、作该系统的脉冲响应曲线。 四、实验步骤1、二阶系统为 10)(++=s G (1)键人程序观察并纪录阶跃响应曲线 (2)健入 damp(den) 计算系统的闭环根、阻尼比、无阻尼振荡频率,并作记录。记录实际测取的峰值大小、C max (t p )、峰值时间t p 、过渡时间t s 并与理论值相比较。实际值 峰值C max (t p ) 峰值时间t p 过渡时间 t s %5±%2±2、修改参数,分别实现ζ=1,ζ=2的响应曲线,并作记录。程序为: n0=10;d0=[1110];step(n0,d0) %原系统ζ=0.316/2 hold on %保持原曲线 n1=n0,d1=[16.3210];step(n1,d1) %ζ=1 n2=n0;d2=[112.6410];step(n2,d2)

%ζ=2 修改参数,写出程序分别实现1n ω=01n ω和2n ω=20n ω的响应曲线,并作记录。%10 0=n ω3、试作以下系统的脉冲响应曲线,分析结果 10)(++=s G 10 2102)(21+++=s s s s G ,有系统零点情况,即s=-5。

标准二阶系统的阶跃响应及性能分析

11级自动控制原理实验二 姓名:陈泉 学号:1104130103 班级:楼宇自动化01班 2013年11月26日星期二

1、标准二阶系统的阶跃响应及性能分析 考虑图2.2所示的标准二阶系统,假设ωn=1(这等价于ωn t为自变量),利用程序lab.3_1.m观察ζ=0.1,0.2,0.4,0.7,1.0,2.0时的系统单位阶跃响应,估计各自对应的性能水平,并将其与理论值进行比较。 解:Lab.3_1.m程序如下 t=[0:0.1:12]; num=[1]; zeta1=0.1; den1=[1 2*zeta1 1]; sys1=tf(num,den1); zeta2=0.2; den2=[1 2*zeta2 1]; sys2=tf(num,den2); zeta3=0.4; den3=[1 2*zeta3 1]; sys3=tf(num,den3); zeta4=0.7; den4=[1 2*zeta4 1]; sys4=tf(num,den4); zeta5=1.0; den5=[1 2*zeta5 1]; sys5=tf(num,den5); zeta6=2.0; den6=[1 2*zeta6 1]; sys6=tf(num,den6); [y1,T1]=step(sys1,t); [y2,T2]=step(sys2,t); [y3,T3]=step(sys3,t); [y4,T4]=step(sys4,t); [y5,T5]=step(sys5,t); [y6,T6]=step(sys6,t); plot(T1,y1,T2,y2,T3,y3,T4,y4,T5,y5,T6,y6)

基于matlab的二阶动态系统特性分析

测控技术基础课程设计 设计题目:基于matlab的二阶动态系统特性分析 姓名: 学号: 专业:机械电子 班级: 指导教师: 2014年 6月 26日---年 6月 26日

目 录 第一章 二阶系统的性能指标 1.1 一般系统的描述 1.2 二阶系统的性能指标 第二章 二阶系统基于matlab 的时域分析 2.1 用matlab 求二阶系统的动态性能指标 2.2 二阶系统的动态响应分析 2.2.1 二阶系统的单位阶跃响应与参数ξ的关系 2.2.2 二阶系统的单位阶跃响应与参数n ω的关系. 第三章 设计体会 参考文献

1. 二阶系统的性能指标 1.1. 一般系统的描述 凡是能够用二阶微分方程描述的系统称为二阶系统。从物理上讲,二阶系统包含两个独立的储能元件,能量在两个元件之间交换,是系统具有往复震荡的趋势。当阻尼比不够充分大时,系统呈现出震荡的特性,所以,二阶系统也称为二阶震荡环节。很多实际工程系统都是二阶系统,而且许多高阶系统在一定条件下也可以简化成为二阶系统近似求解。因此,分析二阶系统的时间相应具有重要的实际意义。 传递函数可以反映系统的结构参数,二阶系统的典型传递函数是: 2 2021 )()()(n n i s s s X s X s G ωξω++= = 其中,n ω 为二阶系统的无阻尼固有频率,ξ称为二阶系统的阻尼比。 1.2. 二阶系统的性能指标 系统的基本要求一般有稳定性、准确性和快速性这三个指标。系统分析及时对这三个指标进行分析。建立系统的数学模型后,就可以用不同的方法来分析和研究系统,以便于找出工程中需要的系统。在时域,这三个方面的性能都可以通过求解描述系统的微分方程来获得,而微分方程的解则由系统的结构参数、初始条件以及输入信号所决定。 上升时间r t :当系统的阶跃响应第一次达到稳态值的时间。上升时间是系统 响应速度的一种度量。上升时间越短,响应速度越快。 峰值时间p t :系统阶跃响应达到最大值的时间。最大值一般都发生在阶跃响应的第一个峰值时间,所以又称为峰值时间。 调节时间s t :当系统的阶跃响应衰减到给定的误差带,并且以后不再超出给定的误差带的时间。 最大超调量p M :相应曲线的最大峰值与稳态值的差称为最大超调量p M ,即 ) (max ∞-=c c M p

二阶系统的性能指标分析(DOC)

邢台学院物理系 《自动控制理论》 课程设计报告书 设计题目:二阶系统的性能指标分析 专业:自动化 班级: 学生姓名: 学号: 指导教师: 2013年3 月24 日

邢台学院物理系课程设计任务书 专业:自动化班级: 2013年3 月24 日

摘要 二阶系统是指由二阶微分方程描述的自动控制系统。例如,他励直流电动机﹑RLC电路等都是二阶系统的实例。二阶系统的性能指标分析在自动控制原理中具有普遍的意义。 控制系统的性能指标分为动态性能指标和稳态性能指标,动态性能指标又可分为随动性能指标和抗扰性能指标。 稳态过程性能 稳态误差是系统稳定后实际输出与期望输出之间的差值 本次课程设计以二阶系统为例,研究控制系统的性能指标。 关键词:二阶系统性能指标稳态性能指标动态性能指标稳态误差调节时间

目录 1.二阶系统性能指标概述 (1) 2. 应用模拟电路来模拟典型二阶系统。 (1) 3.二阶系统的时间响应及动态性能 (4) 3.3.1 二阶系统传递函数标准形式及分类 (4) 3.3.2 过阻尼二阶系统动态性能指标计算 (5) 3.3.3 欠阻尼二阶系统动态性能指标计算 (7) 3.3.4 改善二阶系统动态性能的措施 (14) 4. 二阶系统性能的MATLAB 仿真 (18) 5 总结及体会 (19) 参考文献 (19)

1.二阶系统性能指标概述 二阶系统是指由二阶微分方程描述的自动控制系统。例如,他励直流电动机﹑RLC 电路等都是二阶系统的实例。二阶系统的性能指标分析在自动控制原理中具有普遍的意义。 控制系统的性能指标分为动态性能指标和稳态性能指标,动态性能指标又可分为随动性能指标和抗扰性能指标。 稳态过程性能 稳态误差是系统稳定后实际输出与期望输出之间的差值 2. 应用模拟电路来模拟典型二阶系统。 1.2—l 是典型二阶系统原理方块图,其中T0=1秒;T1=0.1秒;K1 分别为10;5;2.5;1。 开环传递函数为: ) 1()1()(11 101+=+= S T S K S T S T K S G (2-1) 其中,== 1 T K K 开环增益。 闭环传递函数: 22 22 22 121 21 )(n n nS S S T S T K S S T K S W ωξωωξ++= ++= ++= (2-2) 其中,01111T T K T K T n = == ω (2-3) 110 2 1T K T = ξ (2-4) 图2-1 二阶系统

第3章测试系统的动态特性与数据处理

信号与测试技术
第3章 测试系统的动态特性与数据处理 北航 自动化科学与电气工程学院 检测技术与自动化工程系 闫 蓓
yanbei@https://www.doczj.com/doc/c814836220.html,

第3章 学习要求
1、测试系统动态特性的定义及描述方法 2、如何获取测试系统的动态特性 3、掌握主要动态性能指标 时域指标、频域指标 4、掌握动态模型的建立(动态标定) 由阶跃响应获取传递函数的回归分析法 由频率特性获取传递函数的回归分析法
2014/3/14
信号与测试技术
2

第3章 测试系统的动态特性与数据处理 3.1 3.2 3.3 3.4 3.5 测试系统的动态特性的一般描述 测试系统时域动态性能指标与回归分析方法 测试系统频域动态性能指标与回归分析方法 测试系统不失真测试条件 测试系统负载效应及抗干扰特性
第3章小结 第3章作业
2014/3/14
信号与测试技术
3

3.1 测试系统的动态特性的一般描述 1. 动态特性的定义 测试系统进行动态测量过程中的特性。 输入量和输出量随时间迅速变化时,输出与输入之 间的关系,可用微分方程表示。
y (t ) 误差 e(t ) = ? x (t ) A
瞬态误差 稳态误差 时域特性 频域特性
2014/3/14
温 度 测 量
阶跃 冲激 正弦 一阶系统 二阶系统
心电参数测量
信号与测试技术
G (ω ) ? (ω )
振动位移测量
4

3.1 测试系统的动态特性的一般描述 2. 测试系统的动态特性方程 n 微分方程 传递函数 频响函数 状态方程 一阶系统 二阶系统
2014/3/14
x(t ) ? y (t )
X ( s) ? Y ( s)
d i y (t ) m d j x(t ) = ∑ bj ai ∑ i j d t d t i =0 j =0
1 1 G( s) = G( s) = 2 2 s 2 s + + ζ ω ω n n n Ts + 1
X ( jω ) ? Y ( jω ) G ( jω ) = Y ( jω ) = 输出傅立叶变换
X ( jω )
输入傅立叶变换
X = AX + BU
时域特性 频域特性
y (t ) = L?1 [G ( s ) X ( s ) ]
G ( jω ) ? ( jω )
信号与测试技术 5

测试实验二测试系统动态特性校准

实验二测试系统动态特性校准 1.1 实验目的 (1)掌握振动加速度测试系统的组成 (2)掌握振动压电、压阻加速度传感器原理和测量方法 (3)掌握振动传感器比较法动态特性校准的实验方法 (4)掌握数据处理的一般方法 1.2 实验系统基本组成 本实验系统由振动控制系统和远程数据采集、处理系统两部分组成。振动控制系统中的振动台产生动态校准、动态测试所需的振动信号。振动控制系统由振动控制仪、功率放大器、振动台和反馈传感器构成,目的是使振动台按照预先设定的参考谱进行振动。标准传感器和被校传感器感受相同的振动,经过相应的变送器或放大器的输出电压信号送入数据采集系统,经服务器发送到学生实验客户端进行后续的动态校准与分析。如图1所示 主要实验设备及性能 压阻放大器

系统灵敏度S=KEs=K×0.328mv/g=2500×K1/500g=…mv/g SLM振动加速度变送器输入输出关系式0.25v/g 图1 图2 1.3 实验原理 实验以压阻式加速度传感器为校准对象,在振动台的家具台商采用背靠背的方式安装标准传感器与被校准传感器,这样保证了他们感受的是相同的振动信号,通过采集两个传感器的输出并将其送到学生实验客户端,通过比较不同的频率下的两个信号的幅值,用标准信号的灵敏度来计算出被校传感器的灵敏度,通过与理论制作比较来得到校准的结果。 1.4 实验操作 1.操作步骤 (1)固定好传感器,连接好相应的仪器与设备。 (2)打开振动台工控机与功率放大器的电源。功率放大器的启动方法如下:1.按下去电源A按钮,这时电源B上的OFF按钮上的灯亮。2.约等数秒后,按下电源B的ON开关,这时只有ON上的灯亮。3.预热约3-5分钟。 (3)打开电荷放大器和变动期的开关,点击工控机桌面的vibration test.exe 图标,选择正弦扫频振动实验。 (4)旋转增益旋钮约至60%,运行自检。 (5)待系统提示自检成功,点击运行开始运行实验,按照本实验要求进行采集数据。 (6)采集完毕后,先将功率放大器的增益旋钮旋至复位,关闭各个软件。功率放大器的关闭方式如下:1.将输出方式站换到低阻 2.按下电源B的OFF按钮,此时ON上指示灯灭,OFF指示灯亮。 3.约等十多秒后按下A按钮,此时只有风扇转动,可能会有短暂的声音,这是正常的。 (7)关断外部供电,实验完毕。 2 注意事项 (1)当由于电源干扰等原因引起的失控或计算机死机发生时,应按如下方式进行:

3控制系统的动态性能指标汇总

控制系统的动态性能指标 自动控制系统的动态性能指标包括: ⒈跟随性能指标 ⒉抗扰性能指标 下面分别介绍这两项性能指标。 O ±5%(或±2%) ) (t C ∞C ∞ -C C max max C ∞ C 0 t t r t s 图1 典型阶跃响应曲线和跟随性能指标 1. 跟随性能指标: 在给定信号或参考输入信号的作用下,系统输出量的变化情况可用跟随性能指标来描述。常用的阶跃响应跟随性能指标有 — 上升时间tr 从系统图加阶跃给定信号开始到响应第一次达到稳态值所经过

的时间,它表征动态响应的快速性。 — 超调量 与峰值时间p t 在阶跃响应过程中,时间超过r t 以后,输出量有可能继续升高,到达最大值m ax C 以后回落。m ax C 和稳态值∞C 之间的差与稳态值的比称为超调量,常用百分数表示,即 %100max ?-= ∞ ∞ C C C σ 超调量反映系统的相对稳定性。超调量越小,相对稳定性越好。 系统阶跃响应从零开始,到达最大值m ax C 所经历的时间p t ,称为峰值时间p t 。 — 调节时间ts 调节时间又称为过渡过程时间,它衡量整个输出量调节过程的快慢。理论上线性系统的输出过渡过程要到∞=t 时才结束,但实际上由于存在各种非线性因素,过渡过程到一定时间就终止了。为了在线性系统阶跃响应曲线上表示调节时间,认为响应进入稳态值附近一个小的误差带内(可取%5±或%2±)并不再出来时,系统的过渡过程就结束了。将响应进入并不再超出该误差带所需要的时间定义为调节时间。调节时间既反映了系统响应的快速性,也能反映系统的稳定性。

max C ?1 ∞C 2 ∞C ±5%(或±2%)C N N O t t m t v C b 图2 突加扰动的动态过程和抗扰性能指标 2. 突加阶跃扰动时抗扰性能指标 控制系统稳定运行中,突然施加一个使输出量降低的阶跃扰动量以后,输出量由降低到恢复到新的稳态的过渡过程是系统典型的抗扰动过程,如图2所示。抗扰性能指标标志着控制系统抵抗扰动的能力。常用的抗扰性能指标有 ⑴动态降落 C max 系统稳定运行时,突加一个约定的标准阶跃扰动量,所引起的输出量的最大降落值max C ?称作动态降落。一般用max C ?和原稳态值1∞C 之比的百分数 %1001max ??∞C C 来表示(或用某基准值的百分数%100max ??b C C

二阶系统的动态响应

3. t s 过渡过程时间 y(t) 达到 y ∞±5%或±2%的时间 1. t r 上升时间 y(t) 第一次达到 y ∞的时间 2. t d 延迟时间 y(t) 达到 y ∞一半的时间 t y d t 2 )(∞y r t ) (∞y p t m ax y ) (02.0)(05.0∞∞y y 或s t 4. 峰值时间 y(t) 达到 y max 的时间 t p

一般情况下,相对主要的指标是:过渡过程时间和超调量 6. 振荡次数 7. 误差积分指标 e 2∞0(t)dt , te 2∞0 t dt, e(t)∞0 dt 5. 超调量 σ=y max ?y(∞)y(∞)×100% t y d t 2 )(∞y r t ) (∞y p t m ax y ) (02.0)(05.0∞∞y y 或 s t 在阶跃函数作用下,误差的某个函数的积分值,无论哪一种都希望越小越好。

典型二阶系统 另一种形式: T 2 d 2y dt 2+2ζT dy dt +y =v T 时间常数,ζ 阻尼系数 d 2y dt 2+2ζωn dy dt +ωn 2y =ωn 2v ωn = 1 T 无阻尼自振频率 在零初始条件下,解此方程有以下几种情况: 0≤ζ<1,s 1,2 =?ζT ±j 1?ζ 2T (=?ωn ζ±jωd ) (1) ( ω 是阻尼振荡频率 )

曲线如图 y(t) 的阶跃响应 y t =1?11 ?ζ2e ?ζT t sin(1?ζ2T t +arctg 1?ζ2ζ)

两个相等的负实根, ζ=1, (2) s 1,2=?1T ,y(t)=1?(1+t T )e ?t T 两个不相等的负实根, ζ>1, (3) s 1,2=? ?ζ±ζ2?1 T y t =1+a 1e s 1t +a 2e s 2t y t 单调趋近于1 分析: (1) 看 ζ 的作用: 0≤ζ<1,欠阻尼; ζ=0,无阻尼,带振荡性 ζ=1, 临界阻尼; ζ>1,过阻尼

控制实验报告二典型系统动态性能和稳定性分析

实验报告2 报告名称:典型系统动态性能与稳定性分析 一、实验目的 1、学习与掌握动态性能指标的测试方法。 2、研究典型系统参数对系统动态性能与稳定性的影响。 二、实验内容 1、观测二阶系统的阶跃响应,测出其超调量与调节时间,并研究其参数变化对动态性能与稳定性的影响。 2、观测三阶系统的阶跃响应,测出其超调量与调节时间,并研究其参数变化对动态性能与稳定性的影响。 三、实验过程及分析 1、典型二阶系统 结构图以及电路连接图如下所示: 对电路连接图分析可以得到相关参数的表达式: ;;; 根据所连接的电路图的元件参数可以得到其闭环传递函数为

;其中; 因此,调整R x的阻值,能够调节闭环传递函数中的阻尼系数,调节系统性能。 当时,为过阻尼系统,系统对阶跃响应不超调,响应速度慢,因此有如下的实验曲线。 当时,为临界阻尼系统,系统对阶跃响应恰好不超调,在不发生超调的情况下有最快的响应速度,因此有如下的实验曲线。对比上下两张图片,可以发现系统最后的稳态误差都比较明显,应该与实验仪器的精密度有关。同时我们还观察了这个系统对斜坡输入的响应,其特点就是输出曲线转折处之后有轻微的上凸的部分,最后输出十分接近输入。 当时,为欠阻尼系统,系统对阶跃超调,响应速度很快,因此有如下的实验曲线。

2、典型三阶系统 结构图以及电路连接图如下所示: 根据所连接的电路图可以知道其开环传递函数 为: 其中,R x的单位为kΩ。系统特征方程为,根据劳斯判据可以知道:系统稳定的条件为012,调节R x可以调节K,从而调节系统的性能。具体实验图像如下: 四、软件仿真

相关主题
文本预览
相关文档 最新文档