当前位置:文档之家› 电网侧储能电站关键部件并网技术要求及案例分析

电网侧储能电站关键部件并网技术要求及案例分析

电网侧储能电站关键部件并网技术要求及

案例分析

汇报目录

标准解析2

3检测实例项目背景1

政策背景中心介绍

4

一、政策背景

我国储能项目以抽水储能为主(占比99%),截止2017年底累计装机规模28.9GW,电化学储能占比约1.3%,同比增长45%,新增规划和在建装机705.3MW。

备注:数据来源《储能产业研究白皮书2018 》

一、政策背景

2017年中国新增投运电化学储能项目应用分布储能产业在多个领域应用前景光明,是极具发展前景的能源产业!?用户侧储能微电网 电费管理(电量电费、容量电费)、峰 谷价差套利,减少供电容量需求和减缓配电网投资?集中式可再生能源并网 平抑新能源发电功率波动,发电优化?电力辅助服务 电网调峰、网荷互动、火电厂辅助调频

各个行业和部门从能源规划、装备制造、电力改革等层面以及能源互联、新能源开发、电动汽车等多个领域制定了系列政策,驱动储能产业快速发展。

一、政策背景

2017年10月11日,国家发改委、财政部、科技部、工信部、能源局联合发布我国储能产业首个指导性政策:发改能源〔2017〕1701号《关于促进我国储能技术与产业发展的指导意见》,瞄准现阶段我国储能技术与产业发展过程中存在的政策支持不足、研发示范不足、技术标准不足、统筹规划不足等问题,明确储能在各领域中的重要价值,提出我国储能产业和技术在未来10年的发展目标和重点任务!

2017年11月22日,国家能源局在《完善电力辅助服务补偿(市场)机制工作方案》的通知中指出:按需扩大电力辅助服务提供主体,鼓励储能设备、需求侧资源参与提供电力辅助服务,允许第三方参与提供电力辅助服务。

储能电站总体技术方案

储能电站总体技术方案 2011-12-20

目录 1.概述 (3) 2.设计标准 (4) 3.储能电站(配合光伏并网发电)方案 (6) 3.1系统架构 (6) 3.2光伏发电子系统 (8) 3.3储能子系统 (8) 3.3.1储能电池组 (8) 3.3.2 电池管理系统(BMS) (10) 3.4并网控制子系统 (14) 3.5储能电站联合控制调度子系统 (16) 4.储能电站(系统)整体发展前景 (19)

1.概述 大容量电池储能系统在电力系统中的应用已有20多年的历史,早期主要用于孤立电网的调频、热备用、调压和备份等。电池储能系统在新能源并网中的应用,国外也已开展了一定的研究。上世纪90年代末德国在Herne 1MW的光伏电站和Bocholt 2MW的风电场分别配置了容量为1.2MWh的电池储能系统,提供削峰、不中断供电和改善电能质量功能。从2003年开始,日本在Hokkaido 30.6MW风电场安装了6MW /6MWh 的全钒液流电池(VRB)储能系统,用于平抑输出功率波动。2009年英国EDF电网将600kW/200kWh锂离子电池储能系统配置在东部一个11KV配电网STATCOM中,用于潮流和电压控制,有功和无功控制。 总体来说,储能电站(系统)在电网中的应用目的主要考虑“负荷调节、配合新能源接入、弥补线损、功率补偿、提高电能质量、孤网运行、削峰填谷”等几大功能应用。比如:削峰填谷,改善电网运行曲线,通俗一点解释,储能电站就像一个储电银行,可以把用电低谷期富余的电储存起来,在用电高峰的时候再拿出来用,这样就减少了电能的浪费;此外储能电站还能减少线损,增加线路和设备使用寿命;优化系统电源布局,改善电能质量。而储能电站的绿色优势则主要体现在:科学安全,建设周期短;绿色环保,促进环境友好;集约用地,减少资源消耗等方面。

储能技术的三类价值体现

储能技术的三类价值体现 在过去相当长一段时间,储能在电网的应用技术主要是抽水蓄能,应用领域主要是移峰填谷、调频及辅助服务等。近年来,随着新能源发电技术的发展,风电、太阳能光伏发电等波动性电源接入电网的规模不断扩大,以及分布式电源在配网应用规模的扩大,储能及其在电网的应用领域和应用技术都发生了很大变化。储能技术类型不断增多,应用范围也在扩大,本文就从储能技术的类型与应用范围谈起。 储能技术即能量存储和再利用的技术,按其基本原理分类,可分为物理储能、化学储能以及一些前沿储能技术,其中物理储能包括抽水蓄能、压缩空气储能、飞轮储能、超导储能等,化学储能有铅炭电池、锂离子电池、液流电池、钠硫电池、超级电容器等,液态金属电池、铝空气电池、锌空气电池等属于比较前沿的技术。不同的储能技术其特征和应用范围也有所区别。单从储能技术评价指标来看,就包括功率规模、持续时间、能量密度、功率密度、循环效率、寿命、自放电率、能量成本、功率成本、技术成熟度、环境影响等。可以说,没有一种单一储能技术可以适应所有的储能需求,应按需选择合适的储能技术或技术组合。 1、储能技术简介 1.1抽水蓄能电站 抽水蓄能使用两个不同水位的水库。谷负荷时,将下位水库中的水抽入上位水库;峰负荷时,利用反向水流发电。抽水储能电站的最大特点是储存能量大,可按任意容量建造,储存能量的释放时间可以从几小时到几天,其效率在70%——85%。 1.2压缩空气储能 压缩空气储能系统主要由两部分组成:一是充气压缩循环,二是排气膨胀循环。在夜间负荷低谷时段,电动机—发电机组作为电动机工作,驱动压缩机将空气压入空气储存库;白天负荷高峰时段,电动机—发电机组作为发电机工作,储存的压缩空气先经过回热器预热,再与燃料在燃烧室里混合燃烧后,进入膨胀系统中(如驱动燃气轮机)发电。 1.3飞轮储能系统 飞轮储能利用电动机带动飞轮高速旋转,将电能转化成机械能储存起来,在需要时飞轮带动发电机发电。近年来,一些新技术和新材料的应用,使飞轮储能技术取得了突破性进展,例如:磁悬浮技术、真空技术、高性能永磁技术和高温超导技术

储能电站技术方案

储能电站总体技术方案 页脚内容1

2011-12-20 目录 1.概述 (3) 2.设计标准 (4) 3.储能电站(配合光伏并网发电)方案 (6) 3.1系统架构 (6) 3.2光伏发电子系统 (8) 3.3储能子系统 (8) 3.3.1储能电池组 (8) 3.3.2 电池管理系统(BMS) (11) 3.4并网控制子系统 (15) 3.5储能电站联合控制调度子系统 (17) 4.储能电站(系统)整体发展前景 (19) 页脚内容2

1.概述 大容量电池储能系统在电力系统中的应用已有20多年的历史,早期主要用于孤立电网的调频、热备用、调压和备份等。电池储能系统在新能源并网中的应用,国外也已开展了一定的研究。上世纪90年代末德国在Herne 1MW的光伏电站和Bocholt 2MW的风电场分别配置了容量为1.2MWh的电池储能系统,提供削峰、不中断供电和改善电能质量功能。从2003年开始,日本在Hokkaido 30.6MW风电场安装了6MW /6MWh 的全钒液流电池(VRB)储能系统,用于平抑输出功率波动。2009年英国EDF电网将600kW/200kWh锂离子电池储能系统配置在东部一个11KV配电网STATCOM中,用于潮流和电压控制,有功和无功控制。 总体来说,储能电站(系统)在电网中的应用目的主要考虑“负荷调节、配合新能源接入、弥补线损、功率补偿、提高电能质量、孤网运行、削峰填谷”等几大功能应用。比如:削峰填谷,改善电网运行曲线,通俗一点解释,储能电站就像一个储电银行,可以把用电低谷期富余的电储存起来,在用电高峰的时候再拿出来用,这样就减少了电能的浪费;此外储能电站还能减少线损,增加线路和设备使用寿命;优化系统电源布局,改善电能质量。而储能电站的绿色优势则主要体现在:科学安全,建设周期短;绿色环保,促进环境友好;集约用地,减少资源消耗等方面。 页脚内容3

储能技术及其在现代电力系统中的应用

储能技术及其在现代电力系统中的应用 内容摘要 从电力系统安全高效运行的角度论述了电能存储技术的重要性,介绍了目前常用的几种储能技术的发展现状,指出了该领域当前的热点研究问题。 现代电力系统中的新问题 安全、优质、经济是对电力系统的基本要求。近年来,随着全球经济发展对电力需求的增长和电力企业市场化改革的推行,电力系统的运行和需求正在发生巨大的变化,一些新的矛盾日显突出,主要的问题有:①系统装机容量难以满足峰值负荷的需求。②现有电网在输电能力方面落后于用户的需求。③复杂大电网受到扰动后的安全稳定性问题日益突出。④用户对电能质量和供电可靠性的要求越来越高。⑤电力企业市场化促使用户则需要能量管理技术的支持。⑥必须考虑环境保护和政府政策因素对电力系统发展的影响。 2000年到2001年初,美国加州供电系统由于用电需求的增长超过电网的供电能力,出现了电力价格大范围波动以及多次停电事故;我国自2002年以来,已连续四年出现多个省市拉闸限电的状况;在世界上的其他国家和地区,也不同程度地出现了电力供应短缺的现象。系统供电能力,尤其是在输电能力和调峰发电方面的发展已经落后于用电需求的增长,估计这种状况还会在一段时间内长期存在,对电力系统的安全运行将带来潜在的威胁。 加强电网建设(新建输电线路和常规发电厂),努力提高电网输送功率的能力,可以保证在满足系统安全稳定运行的前提下向用户可靠地输送电能。但是,由于经济、环境、技术以及政策等方面因素的制约,电网发展难以快速跟上用户负荷需求增长的步伐,同时电网在其规模化发展过程中不可避免地会在一段时间甚至长期存在结构上的不合理问题;另一方面,随着电力企业的重组,为了获取最大利益,企业通常首先选择的是尽可能提高设备利用率,而不是投资建设新的输电线路和发电厂。因此,单靠上述常规手段难以在短时间内有效地扭转电力供需不平衡的状况。 长期以来,世界各国电力系统一直遵循着一种大电网、大机组的发展方向,按照集中输配电模式运行。在这种运行模式下,输电网相当于一个电能集中容器,系统中所有发电厂向该容器注入电能,用户通过配电网络从该容器中取用电能。对于这种集中式输配电模式,由于互联大系统中的电力负荷与区域交换功率的连续增长,远距离大容量输送电能不可避免,这在很大程度上增加了电力系统运行的复杂程度,降低了系统运行的安全性。 目前,电力系统还缺乏高效的有功功率调节方法和设备,当前采用的主要方法是发电机容量备用(包括旋转备用和冷备用),这使得有功功率调控点很难完全按系统稳定和经济运行的要求布置。某些情况下,即使系统有充足的备用容量,如果电网发生故障导致输电能力下降,而备用机组又远离负荷中心,备用容量的电力就难以及时输送到负荷中心,无法保证系统的稳定性。因此,在传统电力系统中,当系统中出现故障或者大扰动时,同步发电机并不总是能够足够快地响应该扰动以保持系统功率平衡和稳定,这时只能依靠切负荷或者切除发电机来维持系统的稳定。但是,在大电网互联的模式下,局部的扰动可能会造成对整个电网稳定运行的极大冲击,严重时会发生系统连锁性故障甚至系统崩溃。美国和加拿大2003年8月14日发生的大停电事故就是一个惨痛的教训。如果具有有效的有功和无功控制手段,快速地平衡掉系统中由于事故产生的不平衡功率,就有可能减小甚至消除系统受到扰动时对电网的冲击。 在现代电力系统中,用户对于电能质量和供电可靠性的要求越来越高。冲击过电压、电压凹陷、电压闪变与波动以及谐波电压畸变都不同程度地威胁着用户设备特别是敏感性负荷的正常运行。电力市场化的推行也促使电力供应商和用户一起共同寻求新的能量管理技术支

300KW储能系统初步设计方案和配置

中山铨镁能源科技有限公司 储能系统项目 初 步 设 计 方 案 2017年06月

目录 1项目概述 (3) 2项目方案 (3) 2.1智能光伏储能并网电站 (3) 3.2储能系统 (5) 3.2.1磷酸铁锂电池 (5) 3.2.2电池管理系统(BMS (5) 3.2.3储能变流器(PCS (6) 3.2.4 隔离变压器 (9) 3.3能量管理监控系统 (9) 3.3.1微电网能量管理 (9) 3.3.2 系统硬件结构 (10) 3.3.3系统软件结构 (11) 3.3.4系统应用功能 (12)

一、项目概述 分布式能源具有间歇性、波动性、孤岛保护等特点,分布式能源电能质量差,分布式能源设备利用率没有被充分发掘。微电网是为整合分布式发电的优势、削弱分布式发电对电网的冲击和负面影响而提出的一种新的分布式能源组织方式和结构,能有效改善分布式能源电能质量差、分布式能源设备利用率不能被充分发掘等分布式能源的不足。 微电网通过整合分布式发电单元与配电网之间关系,在一个局部区域内直接将分布式发电单元、电力网络和终端用户联系在一起,可以方便地进行结构和配置以及电力调度的优化,优化和提高能源利用效率,减轻能源动力系统对环境的影响,推动分布式电源上网,降低大电网的负担,改善可靠安全性,并促进社会向绿色、环保、节能方向发展。微电网是当前国际国内能源和电力专家普遍认可的解决方案。 本项目拟建设一套锂电池储能系统,通过低压配电柜给部分办公楼宇负荷供电,可实现对各个设备接口采集相关信息,并通过智能配电柜对各个环节进行投切,在并网及孤岛情况下实现发电、储能及负荷的控制,保持微电网系统的平衡运行。 二、项目方案 2.1智能光伏储能并网电站 本电站系统目的在于拟建设中山铨镁能源科技有限公司储能并离网系统示范工程,通过接入办公楼宇的日常照明等真实负载,可演示离网状态下正常供电系统示范;分布式光伏多余电量进行储能示范;以及后台监控及能量调度等示范。 本项目拟建设的储能系统,系统由锂电池储能系统、控制系统、监控系统以及能量管理系统构成。其中控制系统可实现对分布式电源、负载装置和储能装置的远程控制,监控系统对分布式电源实时运行信息、报警信息进行全面的监视并进行多方面的

储能电站总体技术方案设计

储能电站总体技术方案 2011-12-20

目录 1.概述 (3) 2.设计标准 (4) 3.储能电站(配合光伏并网发电)方案 (6) 3.1系统架构 (6) 3.2光伏发电子系统 (7) 3.3储能子系统 (7) 3.3.1储能电池组 (8) 3.3.2 电池管理系统(BMS) (9) 3.4并网控制子系统 (12) 3.5储能电站联合控制调度子系统 (14) 4.储能电站(系统)整体发展前景 (16)

1.概述 大容量电池储能系统在电力系统中的应用已有20多年的历史,早期主要用于孤立电网的调频、热备用、调压和备份等。电池储能系统在新能源并网中的应用,国外也已开展了一定的研究。上世纪90年代末德国在Herne 1MW的光伏电站和Bocholt 2MW的风电场分别配置了容量为1.2MWh的电池储能系统,提供削峰、不中断供电和改善电能质量功能。从2003年开始,日本在Hokkaido 30.6MW 风电场安装了6MW /6MWh 的全钒液流电池(VRB)储能系统,用于平抑输出功率波动。2009年英国EDF电网将600kW/200kWh锂离子电池储能系统配置在东部一个11KV配电网STATCOM中,用于潮流和电压控制,有功和无功控制。 总体来说,储能电站(系统)在电网中的应用目的主要考虑“负荷调节、配合新能源接入、弥补线损、功率补偿、提高电能质量、孤网运行、削峰填谷”等几大功能应用。比如:削峰填谷,改善电网运行曲线,通俗一点解释,储能电站就像一个储电银行,可以把用电低谷期富余的电储存起来,在用电高峰的时候再拿出来用,这样就减少了电能的浪费;此外储能电站还能减少线损,增加线路和设备使用寿命;优化系统电源布局,改善电能质量。而储能电站的绿色优势则主要体现在:科学安全,建设周期短;绿色环保,促进环境友好;集约用地,减少资源消耗等方面。

我国电力系统对大规模储能的需求分析

我国电力系统对大规模储能的需求分析 摘要:电化学储能作为一种调节速度快、布置灵活、建设周期短的调节资源日 益受到人们的关注和重视。推动 GW 级电化学储能建设应用,构建更加灵活高效的电力系统,是保障“十四五”以及未来新能源健康发展和电力系统稳定运行的 必然要求。本文所研究的大规模储能指的是技术上的电化学储能,所提及 的储能电站指的工程上的电化学储能电站。 关键词:电力系统;大规模储能;需求分析 常见储能技术 (1)物理储能包括抽水蓄能、压缩空气储能、飞轮储能等,其中最成熟的也是最普及 的是抽水储能,其主要的应用场景是在电力系统中参与削峰填谷、调频调相等。抽水储能的 时间长短各异,从几个小时一直到几天,其能量转换效率为 70%~85% 之间。但抽水储能电 站也有其不利因素,其建设受到地形的限制因素较多,建设周期也因地形地貌而异,一般周 期都较长。当用电的区域与抽水蓄能电站相距较远时,其效率也得不到保证,过程中的消耗 较大。压缩空气储能早在 1978 年就实现了应用,但由于受地形、地质条件制约,没有大规 模推广。飞轮储能是将电能转化成机械能,以能量转换的方式将能量储存起来,在需要时飞 轮运转使发电机发电产生电能。飞轮储能的有点是寿命较长且无污染,但是其可发出的能量 密度较低,可以考虑作为蓄电池方式的补充方案进行建设。(2)化学储能的方式是现有的 几种储能方式中最多的。在化学储能范围内其技术水平和应用的条件也各有不同。首先,蓄电池储能是最成熟,最被广泛大众所应用的技术,根据其化学组成部分的不同可分为铅酸电池、镍镉电池、镍氢电池、锂离子电池、钠硫电池等。铅酸电池的技术在现阶段已经成熟, 可以作为大容量大规模储能系统,其单位成本和储能成本都很低,安全性可靠性也十分优秀,已经与小型的风力、光伏发电系统和中小型的分布式发电系统中得到了应用,但是铅酸电池 有一个致命弱点就是铅是重金属,会对环境造成污染,不符合当下绿色能源、清洁能源的发 展趋势,所以其不具备未来的发展空间,仅能在现阶段小范围使用。锂离子、钠硫、镍氢电池等这些蓄电池存在着其制造成本过高的问题,作为大规模的储能电站还不成熟,产品的性 能目前尚无法满足储能的要求,其经济性也无法实现商业化运营。最后超级电容是 1970 年 来开始产生的储能器件,其原理是使用特殊的电极材料和电解质,这种超级电容是普通的 20-1000 倍,其优点是容量巨大,而且还保留了传统的电容器的释放能量快的特点,目前已 经不断应用于高山气象站、边防哨所等电源供应场合。 我国电力系统对大规模储能的需求分析 特高压电网过渡期面临的问题 随着大容量直流、高比例新能源的发展,我国电源、电网格局都发生了重大变化。以低 惯量、弱支撑为特征的新能源机组在电网中的比例不断增加,跨区输送的大容量直流替代了 受端电网的部分常规电源,导致电网中传统的同步发电机组占比逐渐降低,同步电网的惯量支撑和一次调频能力不断下降,频率的支撑和调节能力难以应对大容量直流闭锁造成的功率 不平衡量冲击,造成频率跌落深度增大,频率恢复困难,系统安全稳定受到威胁。在跨大区 交直流混联电网中,跨区直流的闭锁还可能引发大区间交流联络线上的大规模潮流转移,造成跨区同步互联电网之间的失稳和解列事故。2015 年 9 月 19 日锦 苏特高压直流发生双极闭锁,引起华东电网瞬时损失功率 490 万千瓦 ( 设计容量 720 万 千瓦 ),当日负荷水平 1.5 亿千瓦,网内开机容量

储能电站技术方案设计

储能电站总体技术方案

2011-12-20 目录 1.概述 (2) 2.设计标准 (3) 3.储能电站(配合光伏并网发电)方案 (6) 3.1系统架构 (6) 3.2光伏发电子系统 (7) 3.3储能子系统 (7) 3.3.1储能电池组 (7) 3.3.2 电池管理系统(BMS) (8) 3.4并网控制子系统 (11) 3.5储能电站联合控制调度子系统 (13) 4.储能电站(系统)整体发展前景 (15)

1.概述 大容量电池储能系统在电力系统中的应用已有20多年的历史,早期主要用于孤立电网的调频、热备用、调压和备份等。电池储能系统在新能源并网中的应用,国外也已开展了一定的研究。上世纪90年代末德国在Herne 1MW的光伏电站和Bocholt 2MW的风电场分别配置了容量为1.2MWh的电池储能系统,提供削峰、不中断供电和改善电能质量功能。从2003年开始,日本在Hokkaido 30.6MW风电场安装了6MW /6MWh 的全钒液流电池(VRB)储能系统,用于平抑输出功率波动。2009年英国EDF电网将600kW/200kWh锂离子电池储能系统配置在东部一个11KV配电网STATCOM中,用于潮流和电压控制,有功和无功控制。 总体来说,储能电站(系统)在电网中的应用目的主要考虑“负荷调节、配合新能源接入、弥补线损、功率补偿、提高电能质量、孤网运行、削峰填谷”等几大功能应用。比如:削峰填谷,改善电网运行曲线,通俗一点解释,储能电站就像一个储电银行,可以把用电低谷期富余的电储存起来,在用电高峰的时候再拿出来用,这样就减少了电能的浪费;此外储能电站还能减少线损,增加线路和设备使用寿命;优化系统电源布局,改善电能质量。而储能电站的绿色优势则主要体现在:科学安全,建设周期短;绿色环保,促进环境友好;集约用地,减少资源消耗等方面。

光伏电站技术方案(整理后)

光伏电站技术方案 1.系统概况 1.1项目背景及意义 系统由室外太阳电池组件阵列系统、室外太阳能电池组件汇流系统、室内控制储能系统、逆变配电装置与布线系统、室内光伏发电综合测试系统组成。用于研究不同材料电池组件的光伏阵列,采取跟踪模式和固定模式时发电的情况,以及5种相同功率不同方式的太阳能电发电的对比。本系统建成后可以作为学校光伏科研方向的重点实验室,为学校学科建设、科技创新、人才培养发挥重要作用。 1.2光伏发电系统的要求 系统是一个教学实习兼科研项目,根据要求设计一个5kWp的小型光伏电站系统,包含3kWp的并网光伏系统,2kWp的离网光伏系统,共计平均每天发电约9.5kWh,可供一个1kW的负载工作9小时左右。 2.项目概况 2.1光伏系统方案的确定 根据现场资源和环境条件,系统设计采用独立型离网光伏系统和离散型并网光伏系统方案。 太阳能光伏并网发电系统主要组成如下: (1)太阳能电池组件及其专用固定支架; (2)光伏阵列汇流箱; (3)光伏并网逆变器; (4)系统的通讯监控装置;

(5)系统的防雷及接地装置; (6)土建、配电房等基础设施; (7)系统的连接电缆及防护材料; 太阳能光伏离网发电系统主要组成如下: (1)太阳能电池组件及其双轴跟踪逐日支架; (2)光伏阵列汇流箱; (3)光伏控制器; (4)光伏离网逆变器; (5)系统的通讯监控装置; (6)系统的防雷及接地装置; (7)土建、配电房等基础设施; (8)系统的连接电缆及防护材料; 3.设计方案 3.1方案介绍 将系统分成并网和离网两个部份。并网和离网系统中用到的太阳能电池组件有3种,一是175Wp单晶硅太阳能电池板,其工作电压为35.9V,开路电压为43.6V,经过计算,6块此类电池板串联,构成1个1KW的光伏阵列。二是175Wp多晶硅太阳能电池板,其工作电压为33.7V,开路电压为42.5V, 经过计算,6块此类电池板串

储能系统技术要求

储能系统技术要求 1、电储能系统涉及的标准及规范 IEC62619:2017《含碱性或其他非酸性电解质的锂蓄电池和锂蓄电池组工业用锂蓄电池和锂蓄电池组的安全性要求》 GB/T34131-2017《电化学储能电站用锂离子电池管理系统技术规范》 2、电池储能容量按250kW*4h设计,其主要功能如下: 1)削峰填谷 即根据系统负荷的峰谷特性,在负荷低谷期储存多余的光能,同时还可以从电网吸收功率和能量;在负荷高峰期释放储能电池中储存的能量,从而减少电网负荷的峰谷差,降低电网供电负担,一定程度上还能使光伏发电在负荷高峰期发电出力更稳定。 2)平滑波动 通过储能系统快速调节,可防止负载波动、电压下跌和其他外界干扰所引起的电网波动对系统造成大的影响,保证电力输出的品质和可靠性。储能系统不仅保证系统的稳定可靠,还是解决诸如电压脉冲、涌流、电压跌落和瞬时供电中断等动态电能质量问题的有效途径。 电池储能装置的布置和安装应方便施工、调试、维护和检修,若有特殊要求应特别注明。 储能电池日历寿命需大于11年(仍然可以保持一定容量的充放电能力,整个储能系统仍然可以正常运行)。 在电池仓内环境温度控制的环境下,运行容量不小于1MWh,锂电池按照0.5C 充放电及DOD 90%设计,投标人需保证循环次数不得低于4000次。 冷却方式若为风冷,应配有风管接口。 电池在充放电过程中外部遇明火、撞击、雷电、短路、过充过放等

各种意外因素,不应发生燃烧或爆炸。 在技术解决方案中,投标人应明确说明为保证电池各项指标的均衡性所采取的措施,避免因单体电池或电池模块电池特性差异较大而引起整组电池性能和寿命下降。 投标人需要提供的特性说明及特性曲线: ●可选的充放电方式; ●循环次数与充放电深度关系曲线(含单体电池及电池组曲线); ●循环次数与充放电功率的关系曲线(含单体电池及电池组曲线); ●不同运行功率下变流器的效率曲线; ●运行电压与温度关系曲线(含单体电池及电池组曲线); ●电池容量与温度关系曲线(含单体电池及电池组曲线); ●电池充放电倍率与容量关系曲线(含单体电池及电池组曲线); ●在一定条件下,年度电池容量衰减的保证值(单元系统的保证值); ●电池充电特性曲线(单体电池曲线); ●电池放电特性曲线(单体电池曲线); ●电池耐过充能力说明(单体电池曲线); ●电池长期正常运行后的端电压偏差范围(单体电池曲线); ●电池系统的电池巡检和保护功能; ●电池系统的电磁兼容性能测试报告; ●箱体保温、散热、防雨、防腐措施及方案及类似箱体成功运行案例。上述文件投标方需完整提供,并承诺与实际提供产品完全保持一致。 储能电池短名单厂家:宁德时代、杉杉储能、阳光电源、比亚迪、科陆电子或同等品牌。

电化学储能电站施工及验收规范大纲

电化学储能电站施工及验收规范 Code for construction and acceptance of electrochemical energy storage station 一、大纲编制的基本思路 1、编制内容的边界范围 一般情况下,工程建设活动有规划、勘察、设计、施工(包括安装)与监理、验收、运行、维护、拆除等组成。 本标准内容范围将集中在储能电站施工、设备安装、验收这三个环节,且应与正在编制国家标准《电化学储能电站设计规范》保持内容上的相互支撑、补充与衔接,与未来将会制定有关运维与拆除环节的标准相衔接。 2、标准的构成格式 本次大纲主要针对正文部分和补充部分。本标准要严格按照住建部出版的《工程建设标准编制指南》规定的格式。 ●前引部分(封面、扉页、公告、前言、目次)、正文部分(总则、术语、 技术内容)、补充部分(附录、标准用词说明、引用标准名录) 3、技术内容重点 ●土建工程施工的通用性技术要求; ●土建工程施工中针对储能装置等特殊需求的专业技术要求 ●储能电站中通用电气设备的安装与调试的通用技术要求; ●电化学储能装置安装与调试的专用技术要求; ●储能电站整体系统调试的技术要求; ●土建施工及设备安装调试过程中各自针对环境与水土保持的技术要求; ●土建施工及设备安装调试过程中各自针对的安全与职业健康技术管理 规定; ●设备及储能电站的整体验收技术要求。 4、需要开展研究的工作 目前,根据查询,国际上尚没有发布关于电化学储能电站施工与验收方面的技术标准。储能电站建设案例并不是很多,在运行的储能电站数量少、运行时间短,此外,储能电站建设中

引入了许多新技术、新设备等,还处于不断进步与完善过程中。因此,编制标准的征求意见阶段需要安排必要的调研工作、技术测试与试验工作以及专题论证工作。 大纲准备阶段,应对上述情况给予重视。 5、参编单位的结构 为确保高质量完成标准的编制,参编单位中尽可能包含具有以下属性的单位:1、具有储能电站建设业绩的业主单位;2、具有储能电站建设施工业绩与经验的工程施工单位,3、具有储能电站设计业绩与经验的设计单位,4、储能电站核心设备与新技术装置的研发与生产单位,5、具有参与储能电站系统调试与试运经验的科研(或技术业务)单位,6、参与国家标准《电化学储能电站设计规范》编制的单位等。 二、规范编制大纲 本规范根据住房和城乡建设部《关于印发<2013年工程建设标准规范制订修订计划的通知>(建标[2013]6号)的要求,由中国电力企业联合会和中国电力科 学研究院会同有关单位共同编制完成。 牵头单位:中国电力企业联合会中国电力科学研究院 参编单位:(建议)上海电力设计院、冀北电力公司、北京输变电工程公司、浙江电力公司、福建电力公司、上海电力公司、许继集团有限公司、深圳比亚迪股份有限公司、宁德时代新能源科技有限公司、大连融科储能技术发展有限公司、北京普能世纪科技有限公司 目的:为保证电化学储能电站的工程质量,促进工程施工及验收技术水平的提高,确保电化学储能电站建设的安全可靠,制定本规范。 适用范围:本规范适用于新建、改建和扩建的固定式电化学储能电站,不适用于移动式储能电站工程。

详解智能电网中的6种储能技术

详解智能电网中的6种储能技术 储能技术在包括电力系统在内的多个领域中具有广泛的用途,近年来世界范围内的电力工业重组给各种各样的储能技术带来了新的发展机遇,采用这些技术可以更好地实现电力系统的能量管理,尤其是在可再生能源和分布式发电领域,这种作用尤为明显,在传统的发电和输配电网络中,这些新技术同样可以得到应用。以下简要介绍各种储能技术的基本原理及其发展现状。 1 抽水储能 抽水蓄能电站在应用时必须配备上、下游两个水库。在负荷低谷时段,抽水储能设备工作在电动机状态,将下游水库的水抽到上游水库保存。在负荷高峰时,抽水储能设备工作于发电机的状态,利用储存在上游水库中的水发电。一些高坝水电站具有储水容量,可以将其用作抽水蓄能电站进行电力调度。利用矿井或者其他洞穴实现地下抽水储能在技术上也是可行的,海洋有时也可以当作下游水库用,1999年日本建成了第一座利用海水的抽水蓄能电站。 抽水储能最早于19世纪90年代在意大利和瑞士得到应用,1933年出现了可逆机组(包括泵水轮机和电动与发电机),现在出现了转速可调机组以提高能量的效率。抽水蓄能电站可以按照任意容量建造,储存能量的释放时间可以从几小时到几天,其效率在70%至85%之间。 抽水储能是在电力系统中得到最为广泛应用的一种储能技术,其主要应用领域包括能量管理、频率控制以及提供系统的备用容量。目前,全世界共有超过90GW的抽水储能机组投入运行,约占全球总装机容量的3%。限制抽水蓄能电站更广泛应用的一个重要制约因素是建设工期长,工程投资较大。 2 先进蓄电池储能 据估计,全球每年对蓄电池的市场需求大约为150亿美元,在工业用蓄电池方面,如:用于UPS、电能质量调节、备用电池等,其市场总量可达50亿美元。在美国、欧洲以及亚洲,

储能电站总体技术方案

储能电站总体技术方案 目录 1.概述 (2) 2.设计标准 (3) 3.储能电站(配合光伏并网发电)方案 (6) 3.1系统架构 (6) 3.2光伏发电子系统 (7) 3.3储能子系统 (7) 3.3.1储能电池组 (7) 3.3.2 电池管理系统(BMS) (8) 3.4并网控制子系统 (11) 3.5储能电站联合控制调度子系统 (13) 4.储能电站(系统)整体发展前景 (15) 1.概述 大容量电池储能系统在电力系统中的应用已有20多年的历史,早期主要用于孤立电网的调频、热备用、调压和备份等。电池储能系统在新能源并网中的

应用,国外也已开展了一定的研究。上世纪90年代末德国在Herne 1MW的光伏电站和Bocholt 2MW的风电场分别配置了容量为 1.2MWh的电池储能系统,提供削峰、不中断供电和改善电能质量功能。从2003年开始,日本在Hokkaido 30.6MW风电场安装了6MW /6MWh 的全钒液流电池(VRB)储能系统,用于平抑输出功率波动。2009年英国EDF电网将600kW/200kWh锂离子电池储能系统配置在东部一个11KV配电网STATCOM中,用于潮流和电压控制,有功和无功控制。 总体来说,储能电站(系统)在电网中的应用目的主要考虑“负荷调节、配合新能源接入、弥补线损、功率补偿、提高电能质量、孤网运行、削峰填谷”等几大功能应用。比如:削峰填谷,改善电网运行曲线,通俗一点解释,储能电站就像一个储电银行,可以把用电低谷期富余的电储存起来,在用电高峰的时候再拿出来用,这样就减少了电能的浪费;此外储能电站还能减少线损,增加线路和设备使用寿命;优化系统电源布局,改善电能质量。而储能电站的绿色优势则主要体现在:科学安全,建设周期短;绿色环保,促进环境友好;集约用地,减少资源消耗等方面。 2.设计标准 GB 21966-2008 锂原电池和蓄电池在运输中的安全要求

储能系统方案设计

商用300KW储能方案 1技术要求及参数 电倍率0.5C; 储能系统配置容量:300kWh。 2电池系统方案 2.1术语定义 电池采集均衡单元:管理一定数量串联电池模块单元,进行电压和温度的采集,对本单元电池模块进行均衡管理。在本方案中串共计60支的电池。电池簇管理单元:管理一个串联回路中的全部电池采集均衡单元,同时检测本组电池的电流,在必要时。在本方案中管理17台电池采集均衡单元。电池阵列管理单元:管理PCS下辖全部电池簇管理单元,同时与PCS和后台监控据电池组状态请求PCS调整充放电功率。在本方案中管理2个并联的电池簇。 电池模块:由10支5并2串的单体电池组成。 图1 电池成组示意图 2.2电池系统集成设计方案 2.2.1电池系统构成 按照系统配置300kWh储存能量的技术需求,本储能系统项目方案共使用1台150kW的PCS。储能单元由一台PCS和2个并配备一台电池阵列管理单元设备。每个电池簇由一台电池簇管理设备和17 个电池组组成。

2.2.2 电池系统计算书项目单体电池模块电池组电池簇电池阵列 单体电池数目 1 10 60 1020 2040 标称电压(V) 3.2 6.4 38.4 652.8 652.8 容量(Ah) 55 275 275 275 -- 额定能量(kWh) 0.176 1.76 10.56 179.52 359.04 最低工作电压(V) 2.5 5 30 510 510 最高充电电压(V) 3.6 7.2 43.2 734.4 734.4 系统配置裕量(359.04kWh -300 kWh)/300 kWh =19.68% 基于以上各项分析设计,300kWh 电池系统计算如下。 2.2.3电池柜设计方案 电池机柜内部主要安装电池箱和BMS主控管理系统、配套电线电缆、高低压电气保护部件等。机柜采用分组分层设计,机柜。机柜采用免维护技术、模数化组合的装配式结构,保证柜体结构具有良好的机械强度,整体结构能最大程度地满足整个系统全性。其中,三个电池架组成的示意图如图3所示,尺寸为3600mm×700mm×2300mm。

电池储能系统在电力系统中的应用

电池储能系统在电力系统中的应用 孔令怡1,廖丽莹1,张海武2,赵家万3 (1.广西大学电气工程学院,南宁530004;2.德清县供电局,德清313200;3.遵义 供电局,遵义市563000) 摘要:电池储能系统(BESS)是一种新兴的FACTS器件。具有控制有功功率流的能力,能够同时对接入点的有功功率和无功功率进行调节,为高压输电系统提供快速的响应容量,有效提高了电力系统的稳定性、可靠性和电能质量。介绍了电池储能系统的基本原理、特点和国外的应用情况,并对它在电力系统中的不同应用进行了综述。 1引言 迄今为止,由于电力系统缺乏有效地大量储存电能的手段,发电、输电、配电与用电必须同时完成,这就要求系统始终处于动态的平衡状态中,瞬间的不平衡就可能导致安全稳定问题。大功率逆变器的出现为储能电源和各种可再生能源与交流电网之间提供了一个理想的接口。从长远的角度看,由各种类型的电源和逆变器组成的储能系统可以直接连接在配电网中用户负荷附近,构成分布式电力系统,通过其快速响应特性,迅速吸收用户负荷的变化,从根本上解决电力系统的控制问题。 可用在电力系统中的储能电源种类繁多,比较常见的有超导储能(SMES)、电池储能(BESS)、飞轮储能、超级电容器储能、抽水储能、压缩空气储能等。在各种类型的储能电源当中,电池储能系统是一种比较适合电力系统使用的储能电源,具有技术相对成熟、容量大、安全可靠、无污染、噪声低、环境适应性强、便于安装等优点。 2电池储能系统的基本原理 电池储能系统主要有电池组和变流器两部分组成,其变流器主要是基于电压源型变流器,其基本结构如图1所示。

电池组部分一般采用技术比较成熟的钠硫电池或铅酸电池,其中钠硫电池在能量密度、使用寿命、运行效率上有较明显优势,所以钠硫电池的应用更广泛。钠硫电池与铅酸电池特性参数比较如表1所示。 变流器的实质是大容量的电压逆变器,它是连接储能电池和接入电网之间的接口电路,实现了电池直流能量和交流电网之间的双向能量传递。电池储能系统的电路原理图如图2所示。 图2中电池储能系统等效为一个理想的电压源,其电压的幅值为U1,电压相角为H;串联的R、L代表总的功率损耗、线路损耗等;电池储能系统注入电力系统的电流的幅值为I L,电流相角为U;电力系统的接入点的电压幅值为U S,电压相角为D。 在电池储能系统中,电压幅值U1和电压相角H都是可以控制的,当我们需要向系统注入有功功率时,便可以控制H>D,这时电池储能系统的电压相角超前于系统接入点的电压相角,所以有功功率由电池储能系统流入系统;反之亦然。当我们需要向系统注入无功功率时,便可以控制U1>U S,这时电池储能系统的电压幅值高于系统接入点的电压幅值,所以无功功率由电池储能系统流入系统;反之亦然。可见,适当的调整换流器来控制电池储能系统的电压幅值U1和相角H,便可以实现电池储能系统与接入的电力系统之间的有功功率和无功功率的交换。 3电池储能系统在电力系统中应用的目的 电池储能系统在电力系统中有着极为广泛的应用,因为它本身可以快速的对接入点的有功功率和无功功率进行调节,所以可以用来提高系统的运行稳定性、提高供电的质量,当其容量足够大时,甚至可以发挥电力调峰的作用。

电力储能技术

电力储能技术 摘要:一方面,随着我国经济的高速发展,用电量的需求逐年增长;另一方面,环境和资源的压力使得新能源的大量并网已成大势所趋,由此带来的电网安全稳定性问题和电能质量问题也越来越受到重视。电力储能技术为解决这些问题提供了一条解决之道,围绕电力储能技术的相关研究和应用不断涌现,目前已经出现了一系列比较成熟可实际应用的或者尚在研究阶段的储能方法。本文介绍了一些常见的电力储能方法。关键词:电力储能,特性,现状,应用; 0 引言 近年来,随着国民经济的迅猛发展,我国的电力需求也迅速增加,带动了电力行业的急剧扩张,电网装机容量实现了飞跃式增长。与此同时,一系列的问题也不断出现。 受自然环境和人类生产生活习惯的影响,我国的电力负荷需求存在着巨大的峰谷差。往往在一年中的某几个月或者一天中的某几个小时,电力负荷需求急剧增大,给电网和发电厂带来巨大的运行压力。而在其他时间,用电量较少,机组运行在低负荷状态,不能发挥出高效的性能,使电力设备利用率和运行经济性受到较大影响。如何进行大规模的电能削峰填谷,实现负荷平稳运行,成为我国电力行业需要面对的挑战之一。 目前全世界都面临环境问题和资源压力,我国也不例外。一方面严重的环境污染和巨大的碳排放量已经对社会发展造成了巨大的困扰,另一方面煤炭石油等能源缺口也限制了我国经济的发展。有鉴于此,开发清洁可再生能源迫在眉睫,表现在电力行业,就是风能、光伏发电在近年来得到了蓬勃发展。然而这些能源随自然条件的变化而变化,呈现间歇的特性,不能提供稳定的电力供应。因此存在大量的“弃风”、“弃光”现象,造成了资源的浪费。 电动汽车是新型负荷,也是新型家电,具有较好的调控性,可以纳入需求侧管理、电网调度,并与新能源发电配合,而且在保护环境和节约资源等方面具有传统汽车难以企及的优势。然而如何快速有效充电、如何保证电池的续航能力成为限制电动汽车发展的重要因素。 以上种种都表明电力行业目前存在巨大的机遇和挑战。而电力储能技术是解决上述问题的关键技术之一。目前电力储能技术的研究和发展越来越受到各国能源、交通、国防等部门的重视,电力储能的大规模应用将对现代化的电能生产、输送、分配和利用产生深刻的影响和重要的作用,已成为电力生产利用中的关键环节。 经过长时间的研究和探索,目前已经有一些储能方法投入了实际运行,例如抽水蓄能和压缩空气储能,还有一些储能方法具有较好的应用前景,但距离大规模实际应用尚有一段距离,例如飞轮储能、超导储能等。 1 储能技术分类 按照不同的分类方法,储能技术可以分为以下几类: 1)按照储能原理分类可以分为三类:物理储能,如抽水蓄能、压缩空气储能、飞轮储能等;化学储能,主要是电池储能,如铅蓄电池、钒流体电池、钠硫电池和锂电池等;电磁储能,如超级电容储能和超导储能等。 2)按照储能时间划分可以分为三类:短时储能,通常放电时间为秒级到分钟级;中期储能,通常放电时间为数分钟到数小时;长期储能,通常放电时间为数小时至数天。 3)按照功能划分,可以分为可分为能量型储能(Energy-usage energy storage,EES)和功率型储能(Power-usage energy storage,PES)两种。能量型储能特点是比能量高,主要用

光伏电站试点工程储能变流器技术规范

国家新能源示范城市吐鲁番示范区屋顶光伏电站暨微电网试点工程 储能双向变流器 招标文件 (技术规范书) 招标人:龙源吐鲁番新能源有限公司 设计单位:龙源(北京)太阳能技术有限公司 二零一二年七月

目录 1 总则 (1) 2 工程概况 (3) 3 储能系统储能双向变流器技术规范 (6) 3.1相关概念及定义 (6) 3.2设计和运行条件 (6) 3.3规范和标准 (7) 3.4技术要求 (9) 3.4.1 储能双向变流器技术要求 (9) 3.4.2 变流器通讯设置要求 (15) 3.4.3设备及元器件品质承诺 (16) 3.5包装、装卸、运输与储存 (16) 3.5.1 概述 (16) 3.5.2 包装 (16) 3.5.3 装运及标记 (17) 3.5.4 装卸 (19) 3.5.5 随箱文件 (19) 3.5.6 储存 (19) 3.5.7 质量记录 (19) 3.6性能表(投标人细化填写) (20) 4 安装、调试、试运行 (21) 4.1安装 (21) 4.2设备调试 (22) 4.3设备试运行 (22) 5 质量保证和试验 (22) 5.1质量保证 (22)

5.2试验 (23) 5.3型式试验 (23) 5.4工厂试验FAT (23) 5.5现场试验SAT (24) 5.5.1 现场调试 (24) 5.5.2 现场试验 (24) 5.6整体考核验收 (24) 附录1 技术差异表 (26) 附录2 供货范围 (27) 附录3 技术资料及交付进度 (29) 附录4 设备检验和性能验收试验 (35) 附录5 技术服务和设计联络 (38) 附录6 投标文件附图 (42) 附录7 运行维护手册 (43) 附录8 投标人需要说明的其他技术问题 (44)

储能技术在电力系统领域的应用与展望

储能技术在电力系统领域的应用与展望 发表时间:2018-06-25T15:27:36.337Z 来源:《电力设备》2018年第8期作者:李占龙 [导读] 摘要:近年来,我国在全国范围内进行电网改造和升级,对工业企业进行节电改造,对全国居民的生活节能节电给予补贴,标志着我国电力工业已经进入需求侧管理时代。 江苏林洋新能源科技有限公司江苏南京 210019 摘要:近年来,我国在全国范围内进行电网改造和升级,对工业企业进行节电改造,对全国居民的生活节能节电给予补贴,标志着我国电力工业已经进入需求侧管理时代。电力储能技术的引入将有效削减负荷峰谷差,降低供电成本,有效实现需求侧管理。同时,规模储能技术的广泛应用将大大增强电网对大规模可再生能源的接纳能力,实现间歇式可再生能源发电的可预测、可控制、可调度,促进传统电网的升级与变革,实现发电和用电之间在时间和空间上的解耦,彻底改变现有电力系统的建设模式,促进电力系统从外延扩张型向内涵增效型的转变,提高供电可靠性和电能质量。 关键词:储能技术;电力系统;应用 储能技术在电力系统中的应用前,需要了解储能技术的常用类型,具体包括以下两种类型,一种为直接式储能技术,即通过电场合磁场将电能储存起来,如超级电容器、超导磁储能等,均归属于直接式储能技术的范畴;另一种是间接式储能技术,这是一种借助机械能和化学能的方式对电能进行存储的技术,如电池储能、飞轮储能、抽水储能、压缩空气储能等等。 一、储能技术在电力系统中的应用现状 (一)抽水蓄能系统 这种技术最早在日本和美国应用。上个世纪中期美国就已经建立了抽水储能系统,抽水技术在其中占据十分之一的比例,适用于水资源比较充足的地区,我国的抽水储能发电容易受到环境的影响,很多地区并不能使用这种方法,从技术上来说是落后于美日的,发电的规模已经达到17.530GM。 (二)压缩空气储能电站 这种储能技术最早应用与德国,在投入使用后,发电效率得到了提升,剩余的能源经过处理后还可以投入使用,在这种情况下,发电工程可以减少一些资金上的投入,形成了资源再利用的效果。储能是对热量的部分进行处理,若是不使用压缩空气的技术,很多剩余的能量得不到利用,这就会导致能源被浪费,而且对环境也会造成影响。德国应用的空气压缩储能最早的应用已经一直沿用到今天,使用了几千次,可以说在技术上是非常完善的,其他国家多数都是借鉴德国的实践经验。我国在这方面的应用几率也非常大,很多技术上的问题也做出了预防。 (三)飞轮储能系统 这项技术主要是控制轴承的质量,当质量减轻到一定的程度后,飞轮运转的效率也会得到极大的提升。欧洲的一些企业对轴承的材质进行了更新,将传统的材料换成了高强度纤维,质量强度不变的情况下,飞轮的重量会减轻,储能效果就会更好。 (四)储能技术在电力系统中的发展前景 如今各国都比较重视太阳能以及风能等可再生清洁能源的利用,将这些燃料替代以往发电使用的化石燃料已经成为一种趋势,根据不同国家的特点,储能技术的应用也是各有区别,但新能源的开发已经是必经之路。因此未来储能技术的发展应该接入更多的可再生能源,减少电力系统建设的相关成本,同时也是为电力系统的稳定发展提供了保障。 二、新能源电力系统中储能技术具有的作用 (一)储能系统在不同供电场所的应用 1.电力调频调压系统。针对于钢厂等大量短周期大负荷接入,导致局部电网频率和电压大幅波动,造成电网不稳定,影响其他用电设备稳定性。故此种情况考虑再电网侧加入储能系统,可以满足对电网一次调频和调压的快速响应要求。此种类型储能系统只需满足短时大功率调节要求,可采用超级电容或其他功率型电池进行短时储能; 2.新能源发电侧储能系统。由于新能源发电具有间歇性、波动性和难预测性的特点,大规模的接入势必导致电网调节困难,因此会造成大量的弃光弃风问题,在新能源发电侧增加储能系统可以很好的解决这些问题,把消耗不掉的电量储存起来,在发电不足或用电高峰时放出,可以使发电趋于平滑、稳定; 3.商用储能系统。对于企业、工厂、商业写字楼、充电站等用电量大,负载波动大,或具有峰谷电价差等场所,可以通过储能系统来削峰填谷,稳定电网供电或赚取电价差。且在电网停电情况下可快速切换到离网供电模式,实现系统应急供电,保证重要负载的持续供电。 (二)灵活储能技术 近年来,我国大力发展可再生能源和分布式发电,鼓励新能源电源并网、利用。未来家庭光伏发电电池储能、社区储能、分布式发电及微电网、电动汽车等,因其灵活性将得到广泛应用。将来,供应侧以新能源为主,用能侧则是清洁、灵活的使用方式。电动汽车作为一种非常重要的灵活负荷和一种储能设施,可以向一些小微电网、微电网、商业区域输电,参与局部的电网平衡;可以为新能源大规模地进入能源系统,并网消纳,提供负荷。电动汽车储能电池接入全球能源互联网,通过合理安排充电时间,辅助电网调峰,实现低谷充电、高峰放电。 (三)电网频率调节 调频是维护电网安全运行的关键技术,为保证电力系统安全稳定运行,要求调频机组能快速、精确地响应调度指令。大型火电调频机组持续运行导致发电机组负荷率下降和环境污染等问题。储能技术参与调频服务的最大优势是其具有快速和精确的响应能力,单位功率的调节效率较高。储能技术非常适合解决短时电力供应和需求之间的不平衡问题,为电网提供调频服务,其调频响应速度远快于常规火电机组。根据美国电力市场的调频电源比较分析,储能调频效果是水电机组的1.7倍,是燃气机组的2.5倍,是燃煤机组的20倍以上。具有快速调节能力的储能技术能够更有效地提供调频服务。 (四)ES系列储能变流器在光伏发电系统中的应用 ES系列产品是专门用于电池储能系统的大功率并网双向变流器,具有削峰填谷和平抑新能源发电出力波动等功能,有利于电力设备降

相关主题
文本预览
相关文档 最新文档