当前位置:文档之家› 动能定理专题复习(考点+题型+专题练习)

动能定理专题复习(考点+题型+专题练习)

动能定理专题复习(考点+题型+专题练习)
动能定理专题复习(考点+题型+专题练习)

21

222

121mv mv W -=2

12

2212

1E mv mv W k -=?=

动能和动能定理

第1步:讲基础

一、动能:

1、定义:物体由于运动而具有的能量叫动能.

2、表达式:22

1mv E k =

3、物理意义:动能是描述物体运动状态的物理量,是标量。

4、 单位:焦耳( J ) 二、动能定理: >

1、内容:合力对物体所做的总功等于物体动能的变化。

2、表达式:

第2步:学技巧

一、对动能定理的进一步理解 力在一个过程中对物体所做的功,等于物体在这个过程中动能的变化,即 。 1、式中的W ,是力对物体所做的总功,可理解为各个外力所做功的代数和,也可以理解为合力所做的功。

2、式中的k E ?,是物体动能的变化,是指做功过程的末动能减去初动能。

3、动能定理的研究对象一般是单一物体,或者是可以看成单一物体的物体系。

4、动能定理表达式是一个标量式,不能在某个方向上应用动能定理。

&

二、常用应用动能定理的几种情况

1、动能定理适用于恒力、变力、直线、曲线运动。

2、动能定理是标量式,不涉及方向问题。在不涉及加速度和时间的问题时,可优先考虑动能定理。

3、对于求解多个过程的问题可全程考虑,从而避开考虑每个运动过程的具体细节。具有过程简明、方法巧妙、运算量小等优点。(注意动能损失:例3和例4比较)

4、变力做功问题。在某些问题中,由于力F 大小的变化或方向的改变,不能直接由αcos Fl W =来求变力F 所做的功,此时可由其做功的效果——动能的变化来求变力F 所做的功。 三、经典例题 例1、(课本例题)一架喷气式飞机,质量m=5×103 kg ,起飞过程中从静止开始滑跑的路程为s =×102m时,达到起飞速度v=60m/s ,在此过程中飞机受到的平均阻力是飞机重量的倍(k=,求飞机受到的牵引力. 分析: 研究对象:飞机

研究过程:从静止→起飞(V=60m/s )

适用公式:动能定理:

2022121mv mv W -=

表达式:=-S f F )(2

21mv

得到牵引力:N

kmg S mv F 42

108.12?=+=

例2、将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻

力,求泥对石头的平均阻力。(g 取10m/s2)

图5—45

提示 石头的整个下落过程分为两段,如图5—45所示,第一段是空中的自由下落运动,只受重力作用;第二段是在泥潭中的运动,受重力和泥的阻力。两阶段的联系是,前一段的末速度等于后一段的初速度。考虑用牛顿第二定律与运动学公式求解,或者由动能定理求解。 解析 这里提供三种解法。

解法一(应用牛顿第二定律与运动学公式求解): 石头在空中做自由落体运动,落地速度 ~

gH

v 2=

在泥潭中的运动阶段,设石头做减速运动的加速度的大小为a ,则有 v2=2ah ,

解得

g h H a =

由牛顿第二定律ma mg F =-, 所以泥对石头的平均阻力

10205.005.02)()(??+=?+=+

=+=mg h h H g h H g m a g m F N=820N 。

解法二(动能定理)自己动手

例题3、如图所示,倾角θ=37°的斜面底端B 平滑连接着半径r =0.40m 的竖直光滑圆轨道。质量m =0.50kg 的小物块,从距地面h =2.7m 处沿斜面由静止开始下滑,小物块与斜面间的动摩擦因数μ=,求:(sin37°=,cos37°=,g =10m/s 2)

(1)物块滑到斜面底端B 时的速度大小。

(2)物块运动到圆轨道的最高点A 时,对圆轨道的压力大小。

例题4、物体在离斜面底端5m 处由静止开始下滑,然后滑上水平面上,若物体与斜面及水平面的动摩擦因数均为,斜面倾角为37°,如图,求物体能在水平面上滑行多远。

37°

>

四、应用动能定理解题的基本步骤: 1、确定研究对象和研究过程。

2、分析研究对象的受力情况和各力的做功情况。

3、写出该过程中合外力做的功,或各力做功的代数和。

4、写出研究对象和初动能和末动能。

5、按照动能定理的表达式列方程求解。

注意:应用动能定理的关键是写出各力做功的代数和,不要漏掉某个力的功。如果研究过程中物体受力情况有变化,要分别写出该力在各个阶段做得功。同时还要注意各力做功的正负。

第3步:小试牛刀(常见动能定理题型)

题型一、动能概念的理解 1.下列关于一定质量的物体的速度和动能的说法中,正确的是 B A .物体的速度发生变化,其动能一定发生变化 B .物体的速度保持不变,其动能一定不变 C .动能不变的物体,一定处于平衡状态

D .物体的动能不发生变化,物体所受合外力一定为零

题型二、动能定理与曲线运动结合 2.质量为m 的物体被细绳经过光滑小孔而牵引,在光滑的水平面上做匀速圆周运动,拉力为某个值F 时转动半径为R ,当外力逐渐增大到6F 时,物体仍做匀速圆周运动,半径为R/2,则外力对物体所做的功为 B

A .0

B .FR

C .3FR

D .5/2FR 题型三、动能定理求恒力的功 3.一架喷气式飞机质量m=×103kg ,起飞过程中从静止开始滑跑。当位移达到l =×102m 时,速度达到起飞速度v =60m/s 。在此过程中飞机受到的平均阻力是飞机重量的倍。求飞机受到的牵引力(g=10m/s 2) ×104N

-

题型四、动能定理求变力的功 4.一个质量为m 的小球用长为L 的细线悬挂于O 点。小球在水平力F 的作用下,从平衡位置P 缓慢移到Q 点,细线偏离竖直方向的角度为θ,如图所示。则力F 做的功为 C A. FLsinθ B. FLcosθ C. mgL(1-cosθ) D. FLtanθ

5.如图,质量为m 的物体置于光滑水平面上,一根绳子跨过定滑轮一端固定在物体上,另一端在力F 的作用下,以恒定速率v 0竖直向下运动,物体由静止开始运动到绳与水平方向夹角α=45°的过程,求绳中张力对物体做的功。 1/4m v 2

6.有一均匀直杆长为L ,放在水平面上,其质量为m ,现有一人用力将直杆缓慢竖起到竖直位置,求此过程中人所做的功。 mgL/2

.

v 0

F

α

题型五、动能定理在单过程中的应用 7.如图,用拉力F 使一个质量为m 的木箱由静止开始在水平冰道上移动了s ,F 与水平方向成α角,木箱与冰道间的动摩擦因数为μ,求木箱获得的速度。

m

s

F mg F )]sin (cos [2αμα--

题型六、动能定理在多过程、全过程中的应用 8.物体在离斜面底端5m 处由静止开始下滑,然后滑上由小圆孤与斜面连接的水平面上,若物体与斜面及水平面的动摩擦因数均为,斜面倾角为37°,如图,求物体能在水平面上滑行多远。 3.5m

^

9.如图,物体从高出地面H 处由静止自由落下,不考虑空气阻力,落至地面,掉入沙坑h 深度处停

止,物体在沙坑中受到的平均阻力是其重力的多少倍 (H+h)/h

第4步:过模拟

一、基础自测 、

1.下列关于运动物体所受的合外力、合外力做功和动能变化的关系,正确的是( ) A.如果物体所受的合外力为零,那么合外力对物体做的功一定为零 B.如果合外力对物体做的功为零,则合外力一定为零

C.物体在合外力作用下做匀变速直线运动,则动能在一段过程中变化量一定不为零

D.物体的动能不发生变化,物体所受合外力一定是零

【解析】选A.根据功的定义可知,A 项对B 项错;竖直上抛运动是一种匀变速直线运动,其在上升和下降阶段经过同一位置时动能相等,故C 项错;动能不变化,只能说明速度大小不变,但速度方向不一定不变,因此合外力不一定为零,故D 项错.

2.关于动能的理解,下列说法正确的是( )

A.动能是普遍存在的机械能的一种基本形式,凡是运动的物体都具有动能

B.动能总是正值,但对于不同的参考系,同一物体的动能大小是不同的

C.一定质量的物体,动能变化时,速度一定变化,但速度变化时,动能不一定变化 *

D.动能不变的物体,一定处于平衡状态

【解析】选A 、B 、C.由于运动具有的能叫动能,A 对.对不同参考系速度不同,动能不同,B 对.动能变化时,速度(大小)一定变化,但只有速度方向变化时,动能不一定变化,C 对.动能不变,速度方向变化时,物体处于非平衡状态,D 错.

3.某物体在力F 的作用下从光滑斜面的底端运动到斜面的顶端,动能的增加量为ΔΕk ,重力势能的增加量为ΔΕp ,则下列说法正确的是( ) A.重力所做的功等于-ΔΕp

α

37°

B.力F所做的功等于ΔΕk+ΔΕp

C.合外力对物体做的功等于ΔΕk

D.合外力对物体所做的功等于ΔΕk+ΔΕp

【解析】选A、B、C.重力做功WG=-ΔΕp,A对.合力做功W合=ΔΕk,C对D错.又因W合=WF+WG=WF-ΔΕp,所以WF=ΔΕp+ΔΕk,B对.

4.(2010·晋江高一检测)质量为m的物体从地面上方H高处无初速度释放,落在水平地面后砸出一个深为h的坑,如图7-7-4所示,则在整个过程中()

A.重力对物体做功为mgH

B.物体的重力势能减少了mg(h+H)

C.外力对物体做的总功为零

D.地面对物体平均阻力大小为mg(h+H)/h

5. 如图所示,一轻弹簧直立于水平地面上,质量为m的小球从距离弹簧上端B点h高处的A点自由下落,在C点处小

球速度达到最大.x0表示B、C两点之间的距离;E k表示小球在C处的动能.若改变高度h,则下列表示x0随h变化的图象和E k随h变化的图象中正确的是(BC)

?

二、能力提升

1.(2010·武汉高一检测)一个质量为25 kg的小孩从高度为3.0 m的弧形滑梯顶端由静止开始滑下,滑到底端时的速度为

2.0 m/s.取g=10 m/s2,关于力对小孩做的功,以下结果正确的是()

A.支持力做功50 J

B.克服阻力做功500 J

C.重力做功750 J

D.合外力做功50 J

【解析】选C、D.重力做功WG=mgh=750 J,C对.合力做功W合=ΔEk=50 J,D对.支持力始终与速度垂直,不做功,A错.WG+Wf=W合知阻力做功Wf=-700 J,所以克服阻力做功为700 J,B错.

2、起重机钢索吊着m=×103 kg的物体以a=2 m/s2的加速度竖直向上提升了5 m,钢索对物体的拉力做的功为多少物体的动能增加了多少(g取10 m/s2)

【解析】由动能定理得,物体动能的增加量

ΔEk=mah=×103×2×5 J=×104 J

!

由动能定理还可以得W拉-WG=ΔEk[来源:.]

所以拉力的功

W拉=ΔEk+WG=ΔEk+mgh

=×104 J+×103×10×5 J

=×104 J

答案:×104 J ×104 J

3.如图5-2-9所示,质量为m的小车在水平恒力F推动下,从山坡(粗糙)底部A处由静止起

运动至高为h 的坡顶B ,获得速度为v ,AB 之间的水平距离为s ,重力加速度为g .下列说法正确的是( ) A .小车克服重力所做的功是mgh B .合外力对小车做的功是1

2mv 2

C .推力对小车做的功是1

2mv 2+mgh

D .阻力对小车做的功是1

2mv 2+mgh -Fs 图5-2-9

解析:小车克服重力做功W =Gh =mgh ,A 选项正确;由动能定理小车受到的合力做的功等于小车动能的增加,W 合

=ΔE k =12mv 2,B 选项正确;由动能定理,W 合=W 推+W 重+W 阻=12mv 2,所以推力做的功W 推=12mv 2-W 阻-W 重=1

2mv 2

+mgh -W 阻,C 选项错误;阻力对小车做的功W 阻=12mv 2-W 推-W 重=1

2mv 2+mgh -Fs ,D 选项正确.

·

答案:ABD

4.一个木块静止于光滑水平面上,现有一个水平飞来的子弹射入此木块并深入2 cm 而相对于木块静止,同时间内木

块被带动前移了1 cm ,则子弹损失的动能、木块获得动能以及子弹和木块共同损失的动能三者之比为( )

A .3∶1∶2

B .3∶2∶1

C .2∶1∶3

D .2∶3∶1

解析:设子弹深入木块深度为d ,木块移动s ,则子弹对地位移为d +s ;设子弹与木块的相互作用力为f ,由动能定理,子弹损失的动能等于子弹克服木块阻力所做的功,即ΔE 1=f (d +s ),木块所获得的动能等于子弹对木块作用力所做的功,即ΔE 2=fs ,子弹和木块共同损失的动能为ΔE 3=ΔE 1-ΔE 2=fd ,即三者之比为(d +s )∶s ∶d =3∶1∶2. 答案:A

5. 一个质量为m 的小球,用长为l 的轻绳悬挂于O 点,小球在水平力F 作用下,从平衡位置P 很缓慢地移动到Q 点,如图所示,则力F 所做的功为 ( C ) A .θcos mgl B .θsin Fl C .)cos 1(θ-mgl D .)cos 1(θ-Fl

6. 汽车在平直的公路上从静止开始做匀加速运动,当汽车速度达到v m 汽车继续滑行了一段时间后停止

运动,其运动的速度如图3所示。若汽车加速行驶时其牵引力做功为W 1,汽车整个运动中克服阻力做功等于W 2,则W 1与W 2的比值为________。牵引力和阻力大小之比为________。 1∶1;4∶1

三、个性天地

1.如图5-2-15所示,一块长木板B 放在光滑的水平面上,在B 上放一物体A ,现以恒定的外力拉B ,由于A ,B 间摩

擦力的作用,A 将在B 上滑动,以地面为参考系,A 和B 都向前移动一段距离,在此过程中( ) —

A .外力F 做的功等于A 和

B 动能的增量

B .B 对A 的摩擦力所做的功等于A 的动能的增量

C .A 对B 的摩擦力所做的功等于B 对A 的摩擦力所做的功

D .外力F 对B 做的功等于B 的动能的增量与B 克服摩擦力所做的功之和

解析:A 物体所受的合外力等于B 对A 的摩擦力,对A 物体运用动能定理,则有B 对A 的摩擦力所做的功,等于A 的动能的增量,即B 对.A 对B 的摩擦力与B 对A 的摩擦力是一对作用力与反作用力,大小相等,方向相反,但是由于A 在B 上滑动,A ,B 对地的位移不等,故二者做功不等,C 错.对B 物体应用动能定理,W F -W f =ΔE k B ,即W F =ΔE k B +W f ,就是外力F 对B 做的功等于B 的动能增量与B 克服摩擦力所做的功之和,D 对.由前述讨论知B 克服摩擦力所做的功与A 的动能增量(等于B 对A 的摩擦力所做的功)不等,故A 错. 答案:BD

图3

P

θ

Q

O

2.质量不等,但有相同动能的两物体,在动摩擦因数相同的水平地面上滑行直到停止,则下列说法正确的有() A.质量大的物体滑行距离大B.质量小的物体滑行距离大

C.质量大的物体滑行时间长D.质量小的物体滑行时间长

解析:物体的动能全部用来克服摩擦阻力做功,有E k=μmgl?l=E k

μmg,质量小,滑行距离大.{

而t=

v

a=

2E k

m

μg,质量小,滑行时间长.

答案:BD

3.小球由地面竖直上抛,上升的最大高度为H,设所受阻力大小恒定,地面为零势能面.在上升至离地高度h处,小球的动能是势能的2倍,在下落至离地高度h处,小球的势能是动能的2倍,则h等于()

解析:设小球上升离地高度h时,速度为v1,地面上抛时速度为v0,下落至离地面高度h处速度为v2,设空气阻力为f

上升阶段:-mgH-fH=-

1

2mv20,-mgh-fh=

1

2mv21-

1

2mv20

又2mgh=

1

2mv21

下降阶段:mg(H-h)-f(H-h)=

1

2mv22,mgh=2×

1

2mv22

由上式联立得:h=

4

9H.

答案:D

4质量为m的物体静止在水平桌面上,它与桌面之间的动摩擦因数为μ,物体在水平力F作用下开始运动,发生位移s1时撤去力F,问物体还能运动多远

解析:研究对象:质量为m的物体.

研究过程:从静止开始,先加速,后减速至零.

受力分析、过程草图如图所示,其中mg(重力)、F(水平外力)、N(弹力)、f(滑动摩擦力),设加速位移为s1,减速位移为s2

方法一:可将物体运动分成两个阶段进行求解

物体开始做匀加速运动位移为s1,水平外力F做正功,f做负功,mg、N不做功;初始动能E k0=0,末动能E k1=2

1

2

1

mv

根据动能定理:Fs1-fs1=2

1

2

1

mv-0

又滑动摩擦力f=μN,N=mg

则:Fs1-μmgs1=2

1

2

1

mv-0

物体在s2段做匀减速运动,f做负功,mg、N不做功;初始动能E k1=2

1

2

1

mv,末动能E k2=0

根据动能定理:-fs2=0-2

1

2

1

mv,又滑动摩擦力f=μN,N=mg

则:μmgs 2=0-

212

1mv 即Fs 1-μmgs 1-μmgs 2=0-0 s 2=

mg

s mg F μμ1

)(-.

二项式定理知识点总结

二项式定理 一、二项式定理: ()n n n k k n k n n n n n n b C b a C b a C a C b a +++++=+-- 110(*∈N n )等号右边的多项式叫做 ()n b a +的二项展开式,其中各项的系数k n C )3,2,1,0(n k ???=叫做二项式系数。 对二项式定理的理解: (1)二项展开式有1+n 项 (2)字母a 按降幂排列,从第一项开始,次数由n 逐项减1到0;字母b 按升幂排列,从第一项开始,次数由0逐项加1到n (3)二项式定理表示一个恒等式,对于任意的实数b a ,,等式都成立,通过对b a ,取不同的特殊值,可为某些问题的解决带来方便。在定理中假设x b a ==,1,则 ()n n n k n k n n n n n x C x C x C x C x +++++=+- 101(*∈N n ) (4)要注意二项式定理的双向功能:一方面可将二项式()n b a +展开,得到一个多项式; 另一方面,也可将展开式合并成二项式()n b a + 二、二项展开式的通项:k k n k n k b a C T -+=1 二项展开式的通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=是二项展开式的第1+k 项,它体现了 二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用 对通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=的理解: (1)字母b 的次数和组合数的上标相同 (2)a 与b 的次数之和为n (3)在通项公式中共含有1,,,,+k T k n b a 这5个元素,知道4个元素便可求第5个元素 例1.n n n n n n C C C C 13 21393-++++ 等于 ( ) A .n 4 B 。n 43? C 。134-n D.3 1 4-n 例2.(1)求7 (12)x +的展开式的第四项的系数; (2)求9 1()x x -的展开式中3 x 的系数及二项式系数

(物理)物理动能与动能定理练习题20篇

(物理)物理动能与动能定理练习题20篇 一、高中物理精讲专题测试动能与动能定理 1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37?角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。 (1)求小物块经过B 点时对轨道的压力大小; (2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。 【答案】(1)62N (2)60N (3)10m 【解析】 【详解】 (1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==? 解得:04 m /5m /cos370.8 A v v s s = ==? 小物块经过A 点运动到B 点,根据机械能守恒定律有: ()2211cos3722 A B mv mg R R mv +-?= 小物块经过B 点时,有:2 B NB v F mg m R -= 解得:()232cos3762N B NB v F mg m R =-?+= 根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有: 22011222 C B mgL mg r mv mv μ--?= - 在C 点,由牛顿第二定律得:2 C NC v F mg m r += 代入数据解得:60N NC F = 根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N

二项式定理11种题型解题技巧

二项式定理知识点及11种答题技巧 1.二项式定理: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L , 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的 次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系 数是a 与b 的系数(包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N * -=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=L , 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???= ?=L ④奇数项的系数和与偶数项的系数和:

动能和动能定理复习_专题训练

动能定理专题 题型1:弄清求变力做功的几种方法 等值法 1.如图所示,定滑轮至滑块的高度为h,已知细绳的拉力为F(恒定),滑块沿水平面由A点前进S至B点,滑块在初、末位置时细绳与水平方向夹角分别为α和β。求滑块由A点运动到B点过程中,绳的拉力对滑块所做的功。

微元法(不推荐,但希望同学们知道这种方法) 2.如图所示,某力F=10N作用于半径R=1m的转盘的边缘上,力F的大小保持不变,但方向始终保持与作用点的切线方向一致,则转动一周这个力F做的总功应为 ( ) A、 0J B、20πJ C 、10J D、20J. 平均力法 3.一辆汽车质量为105kg,从静止开始运动,其阻力为车重的0.05倍。其牵引力的大小与车前进的距离变化关系为F=103x+f0,f0是车所受的阻力。当车前进100m时,牵引力做的功是多少? 动能定理求变力做功法 4.如图所示,AB为1/4圆弧轨道,半径为0.8m,BC是水平轨道,长 L=3m,BC处的摩擦系数为1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止。求物体在轨道AB段所受的阻力对物体做的功。

机械能守恒定律求变力做功法 5.如图所示,质量m=2kg的物体,从光滑斜面的顶端A点以V0=5m/s的初速度滑下,在D点与弹簧接触并将弹簧压缩到B点时的速度为零,已知从A到B的竖直高度h=5m,求弹簧的弹力对物体所做的功。 题型2:弄清滑轮系统拉力做功的计算方法 图8 F1 F2 6.如图所示,在倾角为30°的斜面上,一条轻绳的一端固定在斜面上,绳子跨过连在滑块上的定滑轮,绳子另一端受到一个方向总是竖直向上,大小恒为F=100N的拉力,使物块沿斜面向上滑行1m(滑轮右边的绳子始终与斜面平行)的过程中,拉力F做的功是( ) A.100J B.150J C.200J D.条件不足,无法确定 V0 S0 α P 图11 题型3:应用动能定理简解多过程题型。 7.如图11所示,斜面足够长,其倾角为α,质量为m的滑块,距挡板P 为S0,以初速度V0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块

二项式定理 练习题 求展开式系数的常见类型

二项式定理 1.在()103x -的展开式中,6 x 的系数为 . 2.10()x -的展开式中64x y 项的系数是 . 3.92)21(x x -展开式中9x 的系数是 . 4.8)1(x x - 展开式中5x 的系数为 。 5.843)1()2 (x x x x ++-的展开式中整理后的常数项等于 . 6.在65 )1()1(x x ---的展开式中,含3x 的项的系数是 . 7.在x (1+x )6的展开式中,含x 3项的系数为 . 8.()()8 11x x -+的展开式中5x 的系数是 . 9.72)2)(1(-+x x 的展开式中3x 项的系数是 。 10.54)1()1(-+x x 的展开式中,4x 的系数为 . 11.在6 2)1(x x -+的展开式中5x 的系数为 . 12.5)212(++x x 的展开式中整理后的常数项为 . 13.求(x 2+3x -4)4的展开式中x 的系数.

14.(x 2+x +y )5的展开式中,x 5y 2的系数为 . 15.若 32()n x x -+的展开式中只有第6项的系数最大,则n= ,展开式中的常数项是 . 16.已知(124 x +)n 的展开式中前三项的二项式系数的和等于37,求展式中二项式系数最大的项的系数. 17.在(a +b )n 的二项展开式中,若奇数项的二项式系数的和为64,则二项式系数的最大值为________. 18.若2004200422102004...)21(x a x a x a a x ++++=-)(R x ∈,则展开式的系数和为________. 19.已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7,则a 1+a 2+…+a 7的值是________. 20.已知(1-2x +3x 2)7=a 0+a 1x +a 2x 2+…+a 13x 13+a 14x 14.求:(1)a 1+a 2+…+a 14; (2)a 1+a 3+a 5+…+a 13.

高考物理专题复习 动能 动能定理练习题

2008高考物理专题复习 动能 动能定理练习题 考点:动能.做功与动能改变的关系(能力级别:Ⅰ) 1.动能 (1)定义:物体由于运动而具有的能量叫做动能. (2)计算公式:221mv E k = .国际单位:焦耳(J). (3)说明: ①动能只有大小,没有方向,是个标量.计算公式中v 是物体具有的速率.动能恒为正值. ②动能是状态量,动能的变化(增量)是过程量. ③动能具有相对性,其值与参考系的选取有关.一般取地面为参考系. 【例题】位于我国新疆境内的塔克拉玛干沙漠,气候干燥,风力强劲,是利用风力发电的绝世佳境.设该地强风的风速v =20m/s,空气密度ρ=1.3kg/m 3,如果把通过横截面积为s=20m 2的风的动能全部转化为电能,则电功率的大小为多少?(取一位有效数字). 〖解析〗时间t 内吹到风力发电机上的风的质量为 vts m ρ= 这些风的动能为 22 1mv E k = 由于风的动能全部转化为电能,所以发电机的发电功率为 W s v t E P k 531012 1?≈== ρ 2.做功与动能改变的关系 动能定理 (1)内容:外力对物体做的总功等于物体动能的变化.即:合外力做的功等于物体动能的变化. (2)表达式: 12k k E E W -=合 或k E W ?=合 (3)对动能定理的理解: ①合W 是所有外力对物体做的总功,等于所有外力对物体做功的代数和,即:W 合=W 1+ W 2+ W 3+…….特别是在全过程的各个阶段受力有变化的情况下,只要把各个力在各个阶段所做的功都按照代数和加起来,就可以得到总功. ②因动能定理中功和能均与参考系的选取有关,所以动能定理也与参考系的选取有关,一般以地球为参考系. ③不论做什么运动形式,受力如何,动能定理总是适用的. ④做功的过程是能量转化的过程,动能定理中的等号“=”的意义是一种因果联系的数值上相等的符号, 它并不意谓着“功就是动能的增量”,也不意谓着“功转变成动能”,而意谓着“合外力的功是物体动能变化的原因,合外力对物体做多少功物体的动能就变化多少”. ⑤合W >0时,E k2>E k1,物体的动能增加; 合W <0时,E k2

二项式定理知识点总结复习过程

二项式定理知识点总 结

二项式定理 一、二项式定理: ()n n n k k n k n n n n n n b C b a C b a C a C b a +++++=+--ΛΛ110(*∈N n )等号右边的多项式 叫做()n b a +的二项展开式,其中各项的系数k n C )3,2,1,0(n k ???=叫做二项式系数。 对二项式定理的理解: (1)二项展开式有1+n 项 (2)字母a 按降幂排列,从第一项开始,次数由n 逐项减1到0;字母b 按升幂排列,从第一项开始,次数由0逐项加1到n (3)二项式定理表示一个恒等式,对于任意的实数b a ,,等式都成立,通过对b a ,取不同的特殊值,可为某些问题的解决带来方便。在定理中假设 x b a ==,1,则()n n n k n k n n n n n x C x C x C x C x +++++=+-ΛΛ101(*∈N n ) (4)要注意二项式定理的双向功能:一方面可将二项式()n b a +展开,得到一个多项式;另一方面,也可将展开式合并成二项式()n b a + 二、二项展开式的通项:k k n k n k b a C T -+=1 二项展开式的通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=是二项展开式的第1+k 项,它体现了二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用 对通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=的理解: (1)字母b 的次数和组合数的上标相同 (2)a 与b 的次数之和为n (3)在通项公式中共含有1,,,,+k T k n b a 这5个元素,知道4个元素便可求第5个元素 例1.n n n n n n C C C C 13 21393-++++Λ等于 ( ) A .n 4 B 。n 43? C 。134-n D.314-n 例2.(1)求7(12)x +的展开式的第四项的系数;

最新高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)

最新高考物理动能与动能定理常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

二项式定理10种题型的解法

二项式定理十种题型及解法 1.二项式定理: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L , 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的 次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系 数是a 与b 的系数(包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N * +=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N * -=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=L , 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???= ?=L ④奇数项的系数和与偶数项的系数和:

二项式定理考点大全(详解)

二项式定理高考知识点总结 1.求103 )1 (x x -展开式中的常数项 2.已知9)2(x x a -的展开式中3x 的系数为4 9,求常数a 的值 3.求84)21(x x +展开式中系数最大的项; 4.若n x x )21 (-+的展开式的常数项为-20.求n .

5求当25 (32)x x ++的展开式中x 的一次项的系数? 6.已知n x x )21(4?+ 的展开式前三项中的x 的系数成等差数列. (1)求展开式中所有的x 的有理项; (2)求展开式中系数最大的项. 7. 已知二项式n x x )2(2 -,(n ∈N *)的展开式中第5项的系数与第3项的系数的比是10:1, (1)求展开式中各项的系数和 (2)求展开式中系数最大的项以及二项式系数最大的项 8.求6 998.0的近似值,使误差小于001.0;

9.求证:15151 -能被7整除。 10.求证:32n + 2-8n-9能被64整除. 11 求9192除以100的余数. 12 求证:C n 0+21C n 1+31C n 2+…+11+n C n n =1 1+n (2n+1-1). 13 计算c C C C n n n n n n n 3)1( (279313) 2 1 -++-+-; 14.求值:

15、已知数列{a n }(n 为正整数)是首项为a 1,公比为q 的等比数列。 (1)求和:;,3 342331320312231220 2 1C a C a C a C a C a C a C a -+-+- (2)由(1)的结果归纳概括出关于正整数n 的一个结论,并加以证明; (3)设q ≠1,S n 是等比数列{an }的前n项和,求: . )1(134231201n n n n n n n n C S C S C S C S C S +-++-+- 16.规定! )1()1(m m x x x C m x +--= ,其中x ∈R ,m 是正整数,且10=x C ,这是组合数m n C (n 、 m 是正整数,且m ≤n )的一种推广. (1) 求3 15-C 的值; (2) 设x >0,当x 为何值时,213)(x x C C 取得最小值? (3) 组合数的两个性质; ①m n n m n C C -=. ②m n m n m n C C C 11+-=+. ?是否都能推广到m x C (x∈R,m 是正整数)的情形?若能推广,则写出推广的形式并给出证明;若不能,则说明理由.

二项式定理试题类型大全

二项式定理试题类型大全 一.选择题 1.有多少个整数n 能使(n+i)4成为整数(B )A.0 B.1 C.2 D.3 2. ()82x -展开式中不含..4x 项的系数的和为(B )A.-1 B.0 C.1 D.2 3.若S=123100123100A A A A ++++L L ,则S 的个位数字是(C ) A 0 B 3 C 5 D 8 4.已知(x - x a )8展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是( C )A.28 B.38 C.1或38 D.1或28 5.在3100(25)+的展开式中,有理项的个数是()A.15个B.33个.17个D.16个 6.在2431??? ? ??+x x 的展开式中,x 的幂指数是整数的项共有(C ) A .3项 B .4项 C .5项 D .6项 7.在(1-x)5-(1-x)6的展开式中,含x 3的项的系数是( C ) A 、-5 B 、 5 C 、10 D 、-10 8.35)1()1(x x +?-的展开式中3x 的系数为( ) A .6B .-6 C .9D .-9 9.若x= 21,则(3+2x)10的展开式中最大的项为(B )A.第一项B.第三项 C.第六项 D.第八项 10.二项式431(2)3n x x - 的展开式中含有非零常数项,则正整数n 的最小值为( ) A .7 B .12 C .14 D .5 11.设函数,)21()(10x x f -=则导函数)(x f '的展开式2x 项的系数为(C ) A .1440 B .-1440 C .-2880 D .2880 12.在51(1)x x +-的展开式中,常数项为( B ) (A )51 (B )-51 (C )-11 (D )11 13.若32(1)1()n n x x ax bx n *+=+++++∈N L L ,且:3:1a b =,则n 的值为( C ) A.9 B.10 C.11 D.12 14.若多项式102x x +=10109910)1()1()1(++++???+++x a x a x a a ,则=9a ( ) (A ) 9 (B )10 (C )9- (D )10- 故选D 。 17.若二项式6)sin ( x x -θ展开式的常数项为20,则θ值为( B ) A. )(22Z k k ∈+ππ B. )(22z k k ∈-ππ C. 2π D. 2π- 18.5310 被8除的余数是( )A 、1 B 、2 C 、3 D 、7 19已知i x +=2,设444334224141x C x C x C x C M +-+-=,则M 的值为( ) A 4 B -4i C 4i D 20.数(1.05)6的计算结果精确到0.01的近视值是………………………( ) A .1.23 B .1.24 C .1.33 D .1.44

人教版高一物理动能定理专题练习题

动能定理练习 例1.下列关于运动物体所受合外力做功和动能变化的关系,下列说法中正确的是( ) A .如果物体所受合外力为零,则合外力对物体所的功一定为零; B .如果合外力对物体所做的功为零,则合外力一定为零; C .物体在合外力作用下做变速运动,动能一定发生变化; D .物体的动能不变,所受合力一定为零。 例3.在光滑的地板上,用水平拉力分别使两个物体由静止获得相同的动能,那么可以肯定( ) A .水平拉力相等 B .两物块质量相等 : C .两物块速度变化相等 D .水平拉力对两物块做功相等 例5.一子弹以水平速度v 射入一树干中,射入深度为s ,设子弹在树中运动所受的摩擦阻力是恒定的,那么子弹以v /2的速度射入此树干中,射入深度为( ) A .s B .s/2 C .2/s D .s/4 例6.两个物体A 、B 的质量之比m A ∶m B =2∶1,二者动能相同,它们和水平桌面的动摩擦因数相同,则二者在桌面上滑行到停止所经过的距离之比为( ) A .s A ∶s B =2∶1 B .s A ∶s B =1∶2 C .s A ∶s B =4∶1 D .s A ∶s B =1∶4 例7.质量为m 的金属块,当初速度为v 0时,在水平桌面上滑行的最大距离为L ,如果将金属块的质量增加到2m ,初速度增大到2v 0,在同一水平面上该金属块最多能滑行的距离为( ) A .L B .2L C .4L D . 例8.一个人站在阳台上,从阳台边缘以相同的速率v 0,分别把三个质量相同的球竖直上抛、竖直下抛、水平抛出,不计空气阻力,则比较三球落地时的动能( ) ~ A .上抛球最大 B .下抛球最大 C .平抛球最大 D .三球一样大 例9.在离地面高为h 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,当它落到地面时速度为v ,用g 表示重力加速度,则此过程中物块克服空气阻力所做的功等于( ) A .2022121mv mv mgh -- B .mgh mv mv --2022 121 C .2202121mv mv mgh -+ D .2022121mv mv mgh -- 例10.水平抛出一物体,物体落地时速度的方向与水平面的夹角为θ,取地面为参考平面,则物体刚被抛出时,其重力势能与动能之比为( ) A .sin 2θ B .cos 2θ C .tan 2θ D .cot 2θ 例11.将质量为1kg 的物体以20m/s 的速度竖直向上抛出。当物体落回原处的速率为16m/s 。在此过程中物体克服阻力所做的功大小为( ) A .200J B .128J C .72J D .0J \ 例12.(多选)一质量为1kg 的物体被人用手由静止向上提升1m ,这时物体的速度为2m/s ,则下列说法中正确的是( ) A .手对物体做功12J B .合外力对物体做功12J C .合外力对物体做功2J D .物体克服重力做功10J 例13.物体A 和B 叠放在光滑水平面上m A =1kg ,m B =2kg ,B 上作用一个3N 的水平拉力后,A 和B 一起前进了4m ,如图1所示。在这个过程中B 对A 做 的功等于( ) A .4J B .12J C .0 D .-4J — 图1

二项式定理知识点总结

二项式定理知识点总结 1.二项式定理公式: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L , 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。 各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是0 1 2 ,,,,,,. r n n n n n n C C C C C ??????项的系数是a 与b 的系数(包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N * +=++++++∈L L

令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即 0,n n n C C =·1 k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=L , 从而得到:0242132111222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???= ?=L ④奇数项的系数和与偶数项的系数和: 00112220120120011222021210 01230123()()1, (1)1,(1)n n n n n n n n n n n n n n n n n n n n n n n n n n n n a x C a x C a x C a x C a x a a x a x a x x a C a x C ax C a x C a x a x a x a x a x a a a a a a x a a a a a a ----+=++++=+++++=++++=++++=++++=+---------=--+-++=-----L L L L n n L n n n L 024135(1)(1),() 2 (1)(1),() 2 n n n n n n a a a a a a a a a a a a ----++-++++=+---+++=n n n n L n n n n n n n n n n L n n n n n n n ⑤二项式系数的最大项: 如果二项式的幂指数n 是偶数时,则中间一项的二项式系数21 2n n n C T +=取得最大值。

[专题分类]2020高三物理一轮复习练习卷:动能定理

动能定理 题型一 动能定理的理解 【例1】 (2018·高考全国卷Ⅱ)如图,某同学用绳子拉动木箱,使它从静止开始沿粗糙水平路面运动至具有某一速度.木箱获得的动能一定( ) A .小于拉力所做的功 B .等于拉力所做的功 C .等于克服摩擦力所做的功 D .大于克服摩擦力所做的功 【变式】关于运动物体所受的合外力、合外力做的功及动能变化的关系.下列说法正确的是( ) A .合外力为零,则合外力做功一定为零 B .合外力做功为零,则合外力一定为零 C .合外力做功越多,则动能一定越大 D .动能不变,则物体合外力一定为零 题型二 动能定理在直线运动中的应用 【例2】(2019·吉林大学附中模拟)如图所示,小物块从倾角为θ的倾斜轨道上A 点由静止释放滑下,最终停在水平轨道上的B 点,小物块与水平轨道、倾斜轨道之间的动摩擦因数均相同,A 、B 两点的连线与水平方向的夹角为α,不计物块在轨道转折时的机械能损失,则动摩擦因数为( ) A .tan θ B .tan α C .tan(θ+α) D .tan(θ-α) 【变式1】如图所示,质量为m 的小球,从离地面H 高处从静止开始释放,落到地面后继续陷入泥中h 深 度而停止,设小球受到空气阻力为f ,重力加速度为g ,则下列说法正确( ) A .小球落地时动能等于mgH B .小球陷入泥中的过程中克服泥的阻力所做的功小于刚落到地面时的动能 C .整个过程中小球克服阻力做的功等于mg (H +h ) D .小球在泥土中受到的平均阻力为mg (1+H h ) 【变式2】如图为某同学建立的一个测量动摩擦因数的模型.物块自左侧斜面上A 点由静止滑下,滑过下面

高考物理动能定理的综合应用技巧小结及练习题及解析

高考物理动能定理的综合应用技巧小结及练习题及解析 一、高中物理精讲专题测试动能定理的综合应用 1.为了备战2022年北京冬奥会,一名滑雪运动员在倾角θ=30°的山坡滑道上进行训练,运动员及装备的总质量m=70 kg.滑道与水平地面平滑连接,如图所示.他从滑道上由静止开始匀加速下滑,经过t=5s到达坡底,滑下的路程 x=50 m.滑雪运动员到达坡底后又在水平面上滑行了一段距离后静止.运动员视为质点,重力加速度g=10m/s2,求: (1)滑雪运动员沿山坡下滑时的加速度大小a; (2)滑雪运动员沿山坡下滑过程中受到的阻力大小f; (3)滑雪运动员在全过程中克服阻力做的功W f. 【答案】(1)4m/s2(2)f = 70N (3)1.75×104J 【解析】 【分析】 (1)运动员沿山坡下滑时做初速度为零的匀加速直线运动,已知时间和位移,根据匀变速直线运动的位移时间公式求出下滑的加速度. (2)对运动员进行受力分析,根据牛顿第二定律求出下滑过程中受到的阻力大小.(3)对全过程,根据动能定理求滑雪运动员克服阻力做的功. 【详解】 (1)根据匀变速直线运动规律得:x=1 at2 2 解得:a=4m/s2 (2)运动员受力如图,根据牛顿第二定律得:mgsinθ-f=ma 解得:f=70N (3)全程应用动能定理,得:mgxsinθ-W f =0 解得:W f =1.75×104J 【点睛】 解决本题的关键要掌握两种求功的方法,对于恒力可运用功的计算公式求.对于变力可根据动能定理求功. 2.如图所示,AC为光滑的水平桌面,轻弹簧的一端固定在A端的竖直墙壁上.质量 的小物块将弹簧的另一端压缩到B点,之后由静止释放,离开弹簧后从C点水平1 m kg

二项式定理的高考常见题型及解题对策

二项式定理的高考常见题型及解题对策 浙江省温州22中学 高洪武 325000 二项式定理是初中学习的多项式乘法的继续,它所研究的是一种特殊的多项式----二项式的乘方的展开式。二项式定理既是排列组合的直接应用,又与概率理论中的三大概率分布之一的二项分布有着密切联系。掌握好二项式定理既可对初中学习的多项式的变形起到很好的复习,深化作用,又可以为进一步学习概率统计作好必要的知识储备。所以有必要掌握好二项式定理的相关内容。二项式定理在每年的高考中基本上都有考到,题型多为选择题,填空题,偶尔也会有大题出现。本文将针对高考试题中常见的二项式定理题目类型一一分析如下,希望能够起到抛砖引玉的作用。 题型一:求二项展开式 1.“n b a )(+”型的展开式 例1.求4 )13(x x + 的展开式; 解:原式=4 )13( x x += 2 4 ) 13(x x + = ])3()3()3()3([144 3 4 2 2 4 3 1 4 4 42 C C C C C x x x x x ++++ = )112548481(12 3 4 2 ++++x x x x x =5411284812 2 ++ + +x x x x 小结:这类题目一般为容易题目,高考一般不会考到,但是题目解决过程中的这种“先化简在展开”的思想在高考题目中会有体现的。 2. “n b a )(-”型的展开式 例2.求4 )13(x x - 的展开式; 分析:解决此题,只需要把4 )13(x x - 改写成4 )]1(3[x x - +的形式然后按照二 项展开式的格式展开即可。本题主要考察了学生的“问题转化”能力。 3.二项式展开式的“逆用” 例3.计算c C C C n n n n n n n 3 )1( (279313) 2 1 -++-+-; 解:原式=n n n n n n n n C C C C C )2()31()3(....)3()3()3(3 3 3 2 2 1 1 -=-=-++-+-+-+ 小结:公式的变形应用,正逆应用,有利于深刻理解数学公式,把握公式本质。 题型二:求二项展开式的特定项

高中物理动能与动能定理专项训练100(附答案)

高中物理动能与动能定理专项训练100(附答案) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,两物块A 、B 并排静置于高h=0.80m 的光滑水平桌面上,物块的质量均为M=0.60kg .一颗质量m=0.10kg 的子弹C 以v 0=100m/s 的水平速度从左面射入A ,子弹射穿A 后接着射入B 并留在B 中,此时A 、B 都没有离开桌面.已知物块A 的长度为0.27m ,A 离开桌面后,落地点到桌边的水平距离s=2.0m .设子弹在物块A 、B 中穿行时受到的阻力大小相等,g 取10m/s 2.(平抛过程中物块看成质点)求: (1)物块A 和物块B 离开桌面时速度的大小分别是多少; (2)子弹在物块B 中打入的深度; (3)若使子弹在物块B 中穿行时物块B 未离开桌面,则物块B 到桌边的最小初始距离. 【答案】(1)5m/s ;10m/s ;(2)2 3.510B m L -=?(3)22.510m -? 【解析】 【分析】 【详解】 试题分析:(1)子弹射穿物块A 后,A 以速度v A 沿桌面水平向右匀速运动,离开桌面后做平抛运 动: 2 12 h gt = 解得:t=0.40s A 离开桌边的速度A s v t = ,解得:v A =5.0m/s 设子弹射入物块B 后,子弹与B 的共同速度为v B ,子弹与两物块作用过程系统动量守恒: 0()A B mv Mv M m v =++ B 离开桌边的速度v B =10m/s (2)设子弹离开A 时的速度为1v ,子弹与物块A 作用过程系统动量守恒: 012A mv mv Mv =+ v 1=40m/s 子弹在物块B 中穿行的过程中,由能量守恒 2221111()222 B A B fL Mv mv M m v = +-+① 子弹在物块A 中穿行的过程中,由能量守恒 222 01111()222 A A fL mv mv M M v =--+②

排列组合 二项式定理知识点

排列组合二项定理考试内容: 分类计数原理与分步计数原理. 排列.排列数公式. 组合.组合数公式.组合数的两个性质. 二项式定理.二项展开式的性质. 考试要求: (1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题. (2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题. (3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题. (4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题. 排列组合二项定理知识要点 一、两个原理. 1. 乘法原理、加法原理. 2. 可.以有 ..重复 ..的排列. ..元素 从m个不同元素中,每次取出n个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n位上选取元素的方法都是m个,所以从m个不同元素中,每次取出n个元素可重复排列数m·m·… m = m n.. 例

如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解: n m 种) 二、排列. 1. ⑴对排列定义的理解. 定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ⑵相同排列. 如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ⑶排列数. 从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示. ⑷排列数公式: 注意:!)!1(!n n n n -+=? 规定0! = 1 111--++=?+=m n m n m n m m m n m n mA A C A A A 11--=m n m n nA A 规定10 ==n n n C C 2. 含有可重元素...... 的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排列个数等于! !...!! 21k n n n n n = . 例如:已知数字3、2、2,求其排列个数3! 2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列个数1! 3!3==n .

2018年高考二项式定理十大典型问题及例题

学科教师辅导讲义 1.二项式定理: 011 ()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=++ ++ +∈, 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系数是a 与b 的系数 (包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+- ++ +-∈ 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C +++++ +=, 变形式1221r n n n n n n C C C C ++ ++ +=-。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123 (1)(11)0n n n n n n n n C C C C C -+-++-=-=, 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++ ++???= ?= ④奇数项的系数和与偶数项的系数和:

相关主题
文本预览
相关文档 最新文档