当前位置:文档之家› 细胞生物学 第九章 细胞骨架

细胞生物学 第九章 细胞骨架

细胞生物学 第九章 细胞骨架
细胞生物学 第九章 细胞骨架

第九章细胞骨架

真核细胞中由多种蛋白质纤维组成的复杂网架系统,称为细胞骨架cytoskeleton。广义的细胞骨架包括细胞核骨架(核内骨架、核纤层及染色体骨架)、细胞质骨架(微丝、微管、中间纤维)、细胞膜骨架及细胞外基质,但通常狭义的仅指细胞质骨架。目前认为细胞骨架主要功能:①维持细胞整体形态和内部结构有序的空间分布;②与细胞运动、胞内物质运输、能量转换、信息传递、细胞分裂、基因表达及细胞分化等生命活动密切相关。

一、微丝microfilament

(一)组分与性质

微丝的主要成分是肌动蛋白actin,是在真核细胞中的直径为7nm的骨架纤维,肌动蛋白的单体是球型(G-肌动蛋白),两股由G-肌动蛋白联结成的单链相互螺旋缠绕形成纤维型肌动蛋白(F—肌动蛋白)。

从球型→纤维型的变化是自组装的,除肌肉细胞的细肌丝中的微丝以及肠上皮细胞微绒毛中的微丝是稳定的结构外,通常细胞中的微丝都是处在组装和解聚的动态之中,微丝装配具有极性(即有正负极),并常表现出一端装配而

踏车行为treadmilling ,脱落下来的单体

进入细胞质中的肌动蛋白单体库。关于微丝组装的适宜条件是:ATP、Mg2+和高浓度的Na+、K+离子;而解聚的条件是:Ca2+和低浓度的Na+、K+离子。

微丝的形态是细而长,经常成束平行排列,也有的组成疏散的网络。在不同类型细胞中,微丝还含有不同种类的微丝结合蛋白,形成各自独特的结构或特定功能。例如肌细胞中的就有肌球蛋白myosin、原肌球蛋白和肌钙蛋白等。肌球蛋白约占肌肉中蛋白总量的一半,由双股多肽链盘绕成像“豆芽”状的纤维。再由多条肌球蛋白成束构成肌原纤维中的粗肌丝,其上外露的“豆芽”头部具ATP酶活性,

是粗肌丝与细肌丝(肌动蛋白纤维)能暂时性结合的部位(“横桥”),也是导致细肌丝与粗肌丝之间相对滑动的支点。而原肌球蛋白和肌钙蛋白则是特异性附着在细肌丝(即

F—肌动蛋白纤维)上的两种微丝结合蛋白,它们是以构象变化方式来调节细肌丝与粗肌丝(肌球蛋白头部)的联系。在研究微丝时,常运用“细胞松弛素B”cytochalasin B(简称CB),这是由真菌长蠕孢的代谢产物中提取的一种生物碱,能破坏微丝网络结构,对微丝的装配聚合有专一性抑制,故可用以判断细胞中哪些活动方式是受微丝控制的。一旦从试验环境中去除CB后,微丝又会马上恢复正常结构及功能。另外,还有一种由真菌中提取的鬼笔环肽,它能与微丝的F-肌动蛋白纤维强力亲合,能抑制其解聚,故也是专门用于研究微丝功能的特异药物。

(二)微丝的主要功能

微丝除与微管、中间纤维等共同构成细胞骨架,起着维持细胞形状作用之外,它还有其单独的功能:

1、肌肉收缩

动物骨骼肌(横纹肌)肌细胞是由若干条细长的肌原纤维组成的集束群,而肌原纤维则是由粗肌丝和细肌丝共同构成的,粗肌丝是由若干条肌球蛋白分子平行排列成束状,

而细肌丝却是由F-肌动蛋白纤维结合了原肌球蛋白和肌钙蛋白所组成的。肌原纤维上可见许多宽窄不同、深浅不同的横纹带,其中浅带区中的深细带(Z盘)之间称为肌小节,这是肌肉收缩的功能单元,整块肌肉的收缩实质上就是由其中每个肌小节内的细肌丝与粗肌丝相对滑动所致。其收缩的基本过程是:中枢神经系统的兴奋信号传到肌膜上,引起反极化,再经T小管传至肌质网,引起肌质网膜反极化,Ca2+通道被打开,肌质网腔内Ca2+释放到肌浆中,引起肌钙蛋白构象改变,并牵动原肌球蛋白移位,使F-肌动蛋白纤维上能与肌球蛋白头部相结合的部位暴露出

来,因此粗、细肌丝之间建立起横桥联系,拉动细肌丝在粗肌丝之间滑动,导致肌小节收缩。在横桥联系过程中,肌球蛋白头部ATP酶被激活,每水解1分子ATP,使细肌丝滑动10nm。如果兴奋信号持续,细肌丝还会进一步滑动。但一旦兴奋信号终止,肌质网膜立即复极化,Ca2+泵从肌浆中回收Ca2+,导致原肌球蛋白重新去掩盖肌动蛋白纤维上的结合部位,ATP酶失活。粗/细肌丝都恢复原位,从而肌肉出现松弛状态。

2.控制细胞质的运动

(1)胞质环流cyclosis运动:最明显、典型

的是在轮藻和丽藻的细胞中,由于在流动的

内质和静止的外质之间的界面上,有成束的

微丝平行排列,能控制细胞质流动方向和动

力。

(2)穿梭流动:原生生物的绒泡菌中,细胞质会沿菌体长轴

方向来回往返流动。这是由于其内的肌球

蛋白系统,依赖Ca2+浓度和ATP所致的流

动。

3.决定细胞的移动和形状变化

(1)阿米巴运动:变形虫、中性白细胞、巨噬细胞等是以细胞变形而移动,即前端伸出伪足,后端向内收缩,胞内原生质也随之向前流动,这是由微丝调控的。

(2)变皱膜运动:体外培养细胞依靠其底部局

部突起为支撑点,缓慢向前移动,并不断改

变细胞形状,改换支撑接触点,这是由微丝

控制的。

(3)细胞形状变化:例如质膜上内吞或外排的膜泡形状变化;或动物细胞分裂末期的中部缢缩形

成胞质分裂环;或胚胎发育中的原肠胚

形成和神经胚形成。缢缩的“瓶颈”处

都有由许多微丝组成的收缩环,收缩环

的收缩则导致形状的改变。

4.非肌细胞中的应力纤维

真核细胞的细胞皮层中存在有大

量微丝束组成的应力纤维,在细胞

质中执行着类似于肌原纤维的收

缩功能,在细胞形态发生和细胞分

化上都有重要作用。但是,肠上

皮细胞微绒毛中的微丝束是起维

持其形状作用的,是不能收缩的。

二.微管microtubule

(一)结构和组分

是中空、笔直的管状物,长度可变(几微米至几厘米),外径20—25nm,内径15nm。主要组分是微管蛋白tubulin,占总量的80—95%。此外,还有微管关联蛋白microtubule--associated protein,MAP。微管蛋白分子有α和β两种类型,其aa序列略有差别,α和β以疏水键联接形成αβ二聚体,若干个二聚体首尾相连可组成一条原纤维,而13条原纤维纵向平行排列则组成微管的管壁,∴微管横切面可见13个微管蛋白分子。各种真核细胞中的微管蛋白基本相同。微管关联蛋白(MAP)和tau蛋白不是微管的基本构件,是起促进和调节微管装配的作用。

(二)分布和形成

广泛存在于真核细胞的细胞质中,呈网状或束状分布。并参与组装纺锤体、鞭毛、纤毛、(鞭毛)基体,中心粒、(神经)轴突、神经管等结构,能介导细胞形态维持、细胞运动、细胞分裂和胞内物质运输等生理活动。微管也是自组装结构,通常形成于中心粒、基体等固定区域,该处被称为微管组织中心的MTOC,microtubule organizing center,微管的负极是指向MTOC,而其正极则是背向MTOC的。

微管的装配和解聚一般是受严格时间和空间控制的。在一定条件下,同一条微管上的装配和解聚能同时进行,即一端在装配,而另一端在解聚,亦称为踏车行为。两者的速度差别就决定了此微管是延长或是缩短。不过应注意,鞭毛、纤毛和中心粒的微管通常是不解聚的。

●微管的组装促进条件:生理温度、微管蛋白浓度、能量GTP、Mg2+及低浓度Ca2+。

●微管的解聚条件:高浓度(>1mM)Ca2+、低温、高水压。解聚后以二聚体为基本单元存在于细胞质中。

●微管研究特异药剂:秋水仙素、秋水酰胺、长春花碱及鬼臼素等生物碱能阻止微管蛋白组装,∴能用来判断微管功能活动。而紫杉酚和重水D2O则会增加微管稳定性。

●微管装配方式是:αβ二聚体头尾相接组成原纤维,

多条原纤维并列再组成片状物,

当片状物包含有13条原纤维时

则卷拢形成微管,其一端继续添

加二聚体,使之延长。

(三)纤毛和鞭毛的微管构型

这所指的是真核细胞表面特化结构,例如鞭毛虫、纤毛虫、单胞藻、动物精子及呼吸道上皮细胞的纤毛。(而细菌的鞭毛与此不同,其所含的是鞭毛蛋白,内部亦无微管构型。)

鞭毛是由鞭杆和基体(或称基粒)两部分组成(基体是嵌入质膜内的结构)。鞭杆横切面呈现(9+2)微管构型。即外围有9组二联体微管环绕,中央由中央鞘包围2个微管。每个二联体中有A管和B管。A管管壁完整由13条原纤维构成。而B管管壁仅10条原纤维,另3条共用A管的。每个A管上(顺时针)向相邻二联体的B管伸出2个“弯钩”状的动力蛋白臂(可在B管壁外滑动),此外还向中央鞘伸出

一根放射幅(其幅头可对中央鞘滑动)。

基体的横切面呈现(9+0)微管构型。即外围

环绕9组三联体微管,中央无微管。三联体

排列呈“风车”状,每个三联体由A、B、C

三管组成。

中心粒内的微管构型与基体的相同。(即是

同源性结构)

(四)微管的主要功能

1.维持细胞形态的支架作用。有些动物细胞及低等植物细

胞能呈现非球形。其非对称性形

态维持是依靠微管起支架作用

的。此外,轴突、纤毛、鞭毛等

特化结构也是以微管为支架的。例如“太阳虫”。

2.控制细胞分裂时的染色体运动。纺锤体的纺锤丝皆由微管构成。包括三种类型:①着丝点(动粒)微管;②连续微管;③中间微管。细胞分裂后期两组染色体分别向两极移

动是由微管牵引所致(秋水仙

素处理可以证实),其作用机理

现认为是:由动粒微管缩短产

生的拉力加上连续微管伸长产

生的推力(注意:拉是指拉+染色体,推是推两极。)的共

同作用结果。至于上述两种微管长度变化是因微管蛋白去组装或组装所造成的,而微管联结处的滑动是由于类动力蛋白作用的缘故。

3.控制细胞内的物质运输:①植物细胞壁形成时,对纤维素沉积排列起导向定位作用;②在神经轴突中的细胞器、小泡和颗粒的快速定向运输作为轨道(由驱动蛋白kinesin 向正极运输,而由胞质动力蛋白cytoplasmic dynein向负极运

输);③与某些动物皮肤

细胞中的色素颗粒迅速

转运有关。

◆在细胞质或神经轴突内部,有许多的细胞器及小型膜泡沿微管作定向运动或运输。这是依靠能利用ATP能量、并循微管为轨道运输物资的马达蛋白(又称“摩托蛋白”)来进行的物质运输。马达蛋白之中又可分为驱动蛋白和胞质动力蛋白两种类型。它们的功能被喻为分子马达。

4.决定了鞭毛(或纤毛)的摆动机制。其摆动可分解为若干个片段的弯曲运动,这是由轴心中所有的相邻二联体之间相互滑动所致。也就是说其轴心中的微管构型不是弹性结构,而是能变位联结的刚性结构。其中相邻二联体之间的相互滑动,其关键就在于动力蛋白臂的滑动。

三、中间纤维intermediate filament, IF

(一)中间丝的类别和分布

中间纤维又称中间丝,其直径为10nm,介于微管和微丝之间,故名。因化学性质不同于微丝和微管,目前尚未发现能鉴定它的工具药,再加之并不是在所有真核细胞之中都有中间丝(例如植物细胞中就没有,另外在酵母的核内无核纤层)。由于其成分复杂,目前一般主要分成六类:(1)角蛋白纤维:主要存在于上皮细胞中。

(2)波形蛋白纤维:存在于间质细胞、成纤维细胞中。(3)结蛋白纤维:主要存在于成熟的肌细胞中。

(4)神经元纤维:只存在于神经细胞中。

(5)核纤层蛋白:核膜内侧分布的中间纤维。

(6)神经胶质纤维:只存在于神经胶质细胞中。

各种类型中间丝的分布皆有严格的组织特异性,由于它们的肽链序列中均有一段310aa的α螺旋区,表明它们是来源于同一基因家族,在进化上具有高度保守性。

(二)中间丝的结构组装

中间丝蛋白在适宜的体外缓冲体系内能自我组装成10nm 粗的丝状结构,其组装过程不需ATP或GTP能量。中间丝的结构组装可分为四级步骤:

1、二聚体。即以两个单体的杆状区平行排列构成双螺旋的二聚体,二聚体之中有同型或异型之分,每个二聚体的长度约50nm。

2、四聚体。即两个二聚体以反向平行和半分子交错的形式组装成四聚体,它是中间丝组装的基本结构单位,没有朝向的极性。

3、原纤维。即若干个四聚体首尾相连形成原纤维。

4、中间丝。即以8根原纤维构成长圆柱状的10nm纤维。

中间纤维的功能:①参与细胞骨架的支撑作用,例如:角蛋白纤维参与桥粒的结构;结蛋白纤维参与肌原纤维上的Z盘构造;神经蛋白纤维多股组成神经原纤维;②固定细胞核和细胞器在细胞内的相对位臵;③推测它与细胞内信息传递及mRNA运输有关。

●细胞质骨架主要类型间的比较:

●分裂期核纤层结构变化对核膜崩解及重建的调控作用

核膜内层具核纤蛋白B受体,可介导核纤层蛋白B与核膜结合。当分裂前期,促分裂因子MPF的CDK1激酶(P34cdc2)使核纤层蛋白磷酸化,导致核膜和核纤层解聚,核膜碎片形成核膜小泡,核纤层蛋白B结合在小泡上,而核纤层蛋白A水解为可溶性单体分散;待分裂末期时,核纤层蛋白又发生去磷酸化,将核膜小泡引导聚集在染色质四周,相互融合重新又组装成的核纤层及双层核膜。

细胞生物学第九章细胞骨架

第九章细胞骨架 真核细胞中由多种蛋白质纤维组成的复杂网架系统,称为细胞骨架cytoskeleton。广义的细胞骨架包括细胞核骨架(核内骨架、核纤层及染色体骨架)、细胞质骨架(微丝、微管、中间纤维)、细胞膜骨架及细胞外基质,但通常狭义的仅指细胞质骨架。目前认为细胞骨架主要功能:①维持细胞整体形态和内部结构有序的空间分布;②与细胞运动、胞内物质运输、能量转换、信息传递、细胞分裂、基因表达及细胞分化等生命活动密切相关。 一、微丝microfilament (一)组分与性质 微丝的主要成分是肌动蛋白actin,是在真核细胞中的直径为7nm的骨架纤维,肌动蛋白的单体是球型(G-肌动蛋白),两股由G-肌动蛋白联结成的单链相互螺旋缠绕形成纤维型肌动蛋白(F—肌动蛋白)。 从球型→纤维型的变化是自组装的,除肌肉细胞的细肌丝中的微丝以及肠上皮细胞微绒毛中的微丝是稳定的结构外,通常细胞中的微丝都是处在组装和解聚的动态之中,微丝装配具有极性(即有正负极),并常表现出一端装配而另一端脱落的踏车行为treadmilling ,脱落下来的单体进

入细胞质中的肌动蛋白单体库。关于微丝组装的适宜条件是:ATP、Mg2+和高浓度的Na+、K+离子;而解聚的条件是:Ca2+和低浓度的Na+、K+离子。 微丝的形态是细而长,经常成束平行排列,也有的组成疏散的网络。在不同类型细胞中,微丝还含有不同种类的微丝结合蛋白,形成各自独特的结构或特定功能。例如肌细胞中的就有肌球蛋白myosin、原肌球蛋白和肌钙蛋白等。肌球蛋白约占肌肉中蛋白总量的一半,由双股多肽链盘绕成像“豆芽”状的纤维。再由多条肌球蛋白成束构成肌原纤维中的粗肌丝,其上外露的“豆芽”头部具ATP酶活性, 是粗肌丝与细肌丝(肌动蛋白纤维)能暂时性结合的部位(“横桥”),也是导致细肌丝与粗肌丝之间相对滑动的支点。而原肌球蛋白和肌钙蛋白则是特异性附着在细肌丝(即

细胞生物学考试重点

第一章:绪论 细胞学说:施来登和施旺提出 主要内容:◆所有生物都是由一个或多个细胞组成的 ◆细胞是所有生物结构和功能的基本单位 ◆一切细胞产自于已存在的细胞 意义:对细胞与生物有机体的关系及其在生物体中的作用和地位有了明确的科学理论的概括,把动植物等生物有机体在细胞水平上统一起来。对生物科学的发展起到重大推动作用。 第二章:细胞的统一性和多样性 细胞的基本共性: 1、相似的化学组成 2、脂-蛋白体系的生物膜 3、相同的遗传装置:核酸和蛋白质分子构成的遗传信息的复制与表达系统 4、一分为二的分裂方式 原核细胞主要代表:支原体、细菌、蓝藻 真核细胞的基本结构体系: 1、以脂质及蛋白质成分为基础的生物膜结构系统:质膜、细胞核、细胞质 主要功能:选择性的物质跨膜运输与信号转导 2、遗传信息表达系统: 包括细胞核和核糖体 DNA与组蛋白构成了染色质与染色体的基本结构—核小体(nucleosome) 核小体装配成染色质,继而在细胞分裂阶段形成染色体 3、细胞骨架系统:是由一系列特异的结构蛋白装配而成的网架系统。分为胞质骨架和核骨架。 (胞质骨架:由微丝、微管与中等纤维等构成的网络体系。核骨架:包括核纤层和核基质。)器官的大小主要决定于细胞的数量,与细胞的数量成正比,而与细胞的大小无关,把这种现象为“细胞体积的守恒定律”。 细胞的体积受什么因素控制? 答:与各部分细胞的代谢活动及细胞功能有关;受外界环境条件的影响;细胞的核与质之间有一定的比例关系;细胞的“比面值”与细胞内外物质的交换及细胞内物质交流的关系 原核细胞与真核细胞、植物与动物细胞的比较: 功能上的共同点:都是生命的基本结构单位;都能进行分裂;都能遗传 结构上的共同点:都有细胞膜;都有DNA和RNA;都有核糖体

医学细胞生物学

线粒体与细胞的能量转换 名词解释: 1.基粒:线粒体内膜的内表面上突起的圆球形颗粒. 2.细胞呼吸:在细胞内特定的细胞器内,在氧气的参与下,分解各种大分子物质,产生二氧化碳; 与此同时,分解代谢所释放出的能量储存于ATP中. 3.转位接触点:在线粒体的内外膜上存在一些内外膜相互接触的地方,此处膜间隙变狭窄. 4.ATP合酶复合体:这种物质就是基粒,是线粒体内膜内表面上突起的圆球形颗粒. 5.热休克蛋白70:与大多数前体蛋白结合,使前体蛋白打开折叠,防止已松弛的前体蛋白聚集. 6.基质导入序列(MTS):一种N端具有一段富含有精氨酸,赖氨酸,丝氨酸,苏氨酸的氨基酸序列,介导在细胞质中合成的前体蛋白输入到线粒体基质的信号. 问答: 1.线粒体的标志酶? 内膜标志酶为细胞色素氧化酶,外膜标志酶为单胺氧化酶,基质的标志酶为苹果酸脱氢酶, 膜间腔的标志酶为腺苷酸激酶. 2.线粒体基质蛋白的转运条件及过程? (1)需要条件:基质导入序列和分子伴侣NAC和Hsp70 (2)转运过程: a.前体蛋白与受体结合 b.mthsp70可与进入线粒体腔的前导肽链交联,防止了前导肽链退回细胞质. c.定位于线粒体内膜上,切除大多数蛋白的基质导入序列. d.多肽链需在线粒体基质内在分子伴侣的帮助下,重新折叠并成熟形成其天然构象,以行 使其功能,形成有活性的蛋白质. e.跨膜运输是单向的,需水解ATP提供能量. 3.细胞内葡萄糖彻底氧化转变为能量的反应部位和主要过程? a.葡萄糖在细胞质中进行糖酵解产生丙酮酸和NADH,丙酮酸在线粒体基质中氧化脱羧生 成乙酰CoA. b. 乙酰CoA在线粒体基质中进行三羧酸循环产生NADH和FADH2. c.在线粒体内膜进行的氧化磷酸化偶联是能量转换的关键. 4.基粒的结构和功能? 结构有头部,柄部和基片;功能有催化ADP磷酸化生成ATP,控制质子流和基粒是氧化磷酸化作用的关键装置. 5.试述线粒体的超微结构基础? 外膜:外膜是一层包围在线粒体表面的单位膜,厚约6nm,仅含少量酶蛋白. 内膜:约4.5nm,折叠形成嵴,富含各种酶蛋白,内膜上有电子传递链和基粒,有转运蛋白和各种转运系统. 膜间腔:内外膜之间空隙组成的空间,宽约6~8nm,富含可溶性酶,底物和辅助因子. 基质:含有线粒体DNA,RNA,各种酶蛋白和核糖体. 基粒:每个线粒体大约有10000~100000个,在基粒的头部具有酶活性. 6.简述线粒体的化学组成特点? a.蛋白质:线粒体的主要成分,多分布于内膜和基质,又分为可溶性和不溶性,又有很多酶系. b.脂类:占线粒体干重较多,大部分为磷脂. c. DNA和完整的遗传系统. d.多种辅酶. e.含有维生素和各类无机离子.

细胞生物学未来情况

浅谈细胞生物学未来情况 11生科111003015 康明辉 摘要:著名生物学家威尔逊早在20世纪20年代就提出“一切生物学关键问题必须在细胞中找寻”。细胞是一切生命活动结构与功能的基本单位,细胞生物学是研究细胞生命活动基本规律的科学。细胞生物学的研究范围广泛,其核心可归结为遗传和发育问题。遗传是在发育中实现的,而发育又要以遗传为基础。当前细胞生物学的主要发展趋势是用分子生物学及物理、化学方法,深入研究真核细胞基因组的结构及其表达的调节和控制,以期从根本上揭示遗传和发育的关系,以及细胞衰老、死亡和癌变的原因等基本生物问题,并为把遗传工程技术应用到高等生物,改变其遗传性提供理论依据。20世纪90年代以来,分子生物学取得很大进展,这些进展促进了细胞结构和功能调控在分子水平上的研究 关键词:细胞遗传生物学发育 细胞生物学的研究范围广泛,其核心可归结为遗传和发育问题。遗传是在发育中实现的,而发育又要以遗传为基础。当前细胞生物学的主要发展趋势是用分子生物学及物理、化学方法,深入研究真核细胞基因组的结构及其表达的调节和控制,以期从根本上揭示遗传和发育的关系,以及细胞衰老、死亡和癌变的原

因等基本生物问题,并为把遗传工程技术应用到高等生物,改变其遗传性提供理论依据。20世纪90年代以来,分子生物学取得很大进展,这些进展促进了细胞结构和功能调控在分子水平上的研究。 目前对细胞研究在方法学上的特点是高度综合性,使用分子遗传学手段,对新的结构成分、信号或调节因子的基因分离、克隆和测序,经改造和重组后,将基因(或蛋白质产物)导入细胞内,再用细胞生物学方法,如激光共聚焦显微镜、电镜、免疫细胞化学和原位杂交等,研究这些基因表达情况或蛋白质在活细胞或离体系统内的作用。分子遗传学方法和细胞生物学的形态定位方法紧密结合,已成为当代细胞生物学研究方法学上的特点。另一方面,用分子遗传学和基因工程方法,如重组技术、、同源重组和转基因动植物等,对高等生物发育的研究也取得出乎意料的惊人进展。对高等动物发育过程,从卵子发生、成熟、模式形成和形态发生等方面,在基因水平的研究正全面展开并取得巨大进展。自从“人类基因组计划”实施以来,取得了出乎意料的迅速进展。2000年6月,国际人类基因组计划发布了“人类基因组工作框架图”,可称之为“人类基因草图”,这个草图实际上涵盖了人类基因组97%以上的信息。从“人类基因组工作框架图”中我们可以知道这部“天书”是怎样写的和用什么符号写的。2001年2月,包括中国在内的六国科学家发布人类基因组图谱的“基本信息”,这说明人类现在不仅知道这部“天书”是用什么

细胞生物学课后题

一、细胞内膜泡运输的概况、类型及其主要功能 膜泡运输是蛋白质分选的一种特有的方式,普遍存在于真核细胞中。在转运过程中不仅涉及蛋白质本身的修饰、加工和组装,还涉及多种不同的膜泡靶向运输及其复杂的调控过程。主要分为一下三种类型: COPⅠ包被小泡:负责回收、转运内质网逃逸蛋白返回内质网。 COPⅡ衣被小泡:介导内质网到高尔基体的物质运输。 网格蛋白衣被小泡:介导质膜→胞内体、高尔基体→胞内体、高尔基体→溶酶体、植物液泡的物质运输 二、试述物质跨膜的种类及其特点 主要有三种途径: (一)被动运输: 指通过简单扩散或协助扩散实现物质由高浓度向低浓度方向的跨膜转运。动力来自物质的浓度梯度,不需要细胞提供代谢能量。 1、简单扩散:也叫自由扩散(free diffusion)。特点:①沿浓度梯度(或电化学梯度)扩散; ②不需要提供能量;③没有膜蛋白的协助。 2、促进扩散:特点:①比自由扩散转运速率高;②运输速率同物质浓度成非线性关系; ③特异性;④饱和性。 (二)主动运输: 是由载体蛋白所介导的物质逆浓度梯度或电化学梯度由浓度低的一侧向高的一侧进行跨膜转运的方式。 主动运输的特点是:①逆浓度梯度(逆化学梯度)运输;②需要能量;③都有载体蛋白。(三)吞排作用 真核细胞通过胞吞作用和胞吐作用完成大分子与颗粒性物质的跨膜运输。 三、试述Na+—K+泵的工作原理 Na+—K+ATP酶通过磷酸化和去磷酸化过程发生构象的变化,导致与Na+、K+的亲和力发生变化。在膜内侧Na+与酶结合,激活ATP酶活性,使ATP分解,酶被磷酸化,构象发生变化,于是与Na+结合的部位转向膜外侧;这种磷酸化的酶对Na+的亲和力低,对K+的亲和力高,因而在膜外侧释放Na+、而与K+结合。K+与磷酸化酶结合后促使酶去磷酸化,酶的构象恢复原状,于是与K+结合的部位转向膜内侧,K+与酶的亲和力降低,使K+在膜内被释放,而又与Na+结合。总的结果是每一循环消耗一个ATP;转运出3个Na+,转进2个K+。 四、试述胞间通信的主要类型 1)、细胞间隙连接 细胞间隙连接:是一种细胞间的直接通讯方式。两个相邻的细胞以连接子相联系。连接子中央为直径1.5nm的亲水性孔道。 2)、膜表面分子接触通讯 是指细胞通过其表面信号分子(受体)与另一细胞表面的信号分子(配体)选择性地相互作用,最终产生细胞应答的过程,即细胞识别。 3)、化学通讯 细胞分泌一些化学物质(如激素)至细胞外,作为信号分子作用于靶细胞,调节其功能,这种通讯方式称为化学通讯。根据化学信号分子可以作用的距离范围,可分为以下3类:内分泌、旁分泌、自分泌

医用细胞生物学知识点

医用细胞生物学知识点 细胞生物学 (cell biology ):细胞生物学是以细胞为研究对象,经历了从显微水平到亚显微和分子水平 的发展过程,成为今天在分子层次上研究细胞精细结构和生命活动规律的学科。 医学细胞生物学 (medical cell biology):医学细胞生物学以揭示人体各种细胞在生理和病理过程中 的生 命活动规律为目的,期望能对人体各种疾病的发病机制予以深入阐明,为疾病的诊断、治疗和预防提 供理论依据和策略。 对细胞概念理解的五个角度: ①细胞是构成有机体的基本单位; ②细胞是代谢与功能的基本单位; ③ 细胞是有机体生长与发育的基础; ④细胞是遗传的基本单位; ⑤没有细胞就没有完整的生命。 生物界划分的三个类型:原核细胞、古核细胞和真核细胞。 原核细胞与真核细胞的比较: p13 表 2-1 生物大分子:是由有机小分子构成的,大约有 3000种,分子量从 10000到 1000000。 核酸 (nucleic acid ) 的基本单位 :核苷酸。 核苷酸:核苷的戊糖羟基与磷酸形成酯键,即成为核苷酸。 DNA 分子的双螺旋结构模型( p18图 2-8):DNA 分子由两条相互平行而方向相反的多核苷酸链组成, 即一条链中磷酸二酯键连接的核苷酸方向是 5'→3',另一条是 3'→ 5',两条链围绕着同一个中心轴 以右手方向盘绕成双螺旋结构。 基因组:细胞或生物体的一套完整的单倍体遗传物质称为基因组。 动物细胞内含有的主要 RNA 种类及功能: p20 表 2-3 核酶 (ribozyme ) :核酶是具有酶活性的 RNA 分子。 蛋白质 ( protein )的基本单 位:氨基酸。 肽键:肽键是一个氨基酸分子上的 羧基 与另一个氨基酸分子上的 氨基经脱水缩合 而成的化学键。 肽 (peptide) :氨基通过肽键而连接成的化合物称为肽。 蛋白质分子的二级结构: α -螺旋, β-片层。 酶 (enzyme):酶是由生物体细胞产生的具有催化剂作用的蛋白质。 酶的特性:高催化效率,高度专一性,高度不稳定性。 光学显微镜的种类:普通光学显微镜,荧光显微镜,相差显微镜,暗视野显微镜,共聚焦激光扫描显 微镜。 细胞培养:细胞培养是指细胞在体外的培养技术,即无菌条件下,从机体中取出组织或细胞,模拟机 体内正常生理状态下生存的基本条件,让它在培养器皿中继续生存、生长和繁殖的方法。 细胞膜 (cell membrane ):细胞膜是包围在细胞质表面的一层薄膜,又称质膜 ( plasma membrane ) 生物膜 ( biomembrane ):目前把 质膜 和细胞内膜系统 总称为生物膜。 细胞膜的组成:主要由脂类、蛋白质和糖类组成 磷脂 (phospholipid)可分为两类:甘油磷脂 由于磷脂分子具有亲水头和疏水 尾,故称为 膜蛋白可分为三种基本类型:膜内在蛋白 蛋白 (lipid anchored protein) 。 细胞外被 ( cell coat ):在大多数真核细胞表面有富含糖类的周缘区,称为细胞外被或糖萼。 细胞外被的基本功能: 保护细胞抵御各种物理、化学性损伤 ,如消化道、呼吸道等上皮细胞的细胞外 被有助于润滑、防止机械损伤,保护黏膜上皮不受消化酶的作用。 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11 . 12 . 13 . 14 . 15 . 16 . 17 . 18 . 19. 20. 21 . 22 . 23 . 24 . 25 . 26. 27. 28. (phosphoglycerides )和鞘磷脂 (sphingomyelin,SM) 。 两亲性分子 或兼性分子 。 intrinsic protein )、膜外在蛋白 (extrinsic

医学细胞生物学-6 线粒体

第六章 线粒体与细胞的能量转换 1 化学组成和遗传体系。 2

第一节线粒体的基本特征 ●一、线粒体的形态、数量和结构 ●二、线粒体的化学组成 ●三、线粒体的遗传体系 ●四、线粒体核编码蛋白质的转运 ●五、线粒体的起源 ●六、线粒体的分裂与融合 ●七、线粒体的功能 3 一、线粒体的形态、数量和结构 1.线粒体的形态、数量与细胞的类型和生理状 态有关 形态:光镜下,线状、粒状、短杆状; 有的圆形、哑铃形、星形;还有分枝 状、环状等 ●低渗情况下,膨胀如泡状;高渗情 况下,伸长为线状 ●胚胎肝细胞线粒体:发育早期短棒 状,发育晚期长棒状 ●酸性环境下膨胀,碱性环境下粒状 4

大小:细胞内较大的细胞器。一般直径:0.5—1.0um;长度:3um。 骨骼肌细胞中可见巨大线粒体,长达7—10微米 数目:不同类型的细胞中差异较大。最少的细胞含1个线粒体,最多的达50万个。正常细胞中:1000—2000个。 ●单细胞鞭毛藻中1个线粒体 ●巨大变形虫中约50万个线粒体 ●哺乳动物肝细胞中约2000个线粒体,肾细胞中约300个 5 分布:因细胞形态和类型的不同而存在差异。通常分布于细胞生理功能旺盛的区域和需要能量较多的部位。 ●精细胞中,沿鞭毛紧密排列;肌细胞中,包装在邻近肌原纤维中间 ●细胞内线粒体分布可因细胞的生理状态改变产生移位现象 ●肾小管细胞内交换功能旺盛时,线粒体集中于质膜近腔面内缘; ●有丝分裂过程中线粒体均匀分布在纺锤丝周围。 总之:线粒体的形态、大小、 数目和分布在不同形态和类型 的细胞可塑性较大。 6

7 2. 超微结构:线粒体是由双层单位膜套叠而成的 封闭性膜囊结构 ☆内膜与外膜套叠形成囊中之囊 ☆内、外囊膜不相通 ☆内外膜组成线粒体的支架 8 (1) 外膜(outer membrane ): 包围在线粒体外表面的一层单位膜,厚5—7nm ,平整、光滑。外膜的1/2为脂类, 1/2为蛋白质。外膜含有多种 转运蛋白,形成较大的水相 通道跨越脂质双层,φ:2- 3nm ,允许分子量为10 K 以 内的物质可以自由通过。 膜间腔(外室) 外膜 内膜 嵴 嵴间腔(内室) 嵴内腔

细胞生物学实验

实验室规则和要求 一般规定 1.上课第一天请先熟悉环境,牢记“安全”是进行任何实验最重要的事项。 2.在实验室内请穿著实验衣(最好长及膝盖下),避免穿著凉鞋、拖鞋(脚 趾不要裸露)。留有长发者,需以橡皮圈束于后,以防止引火危险或污染实验。 3.在实验室内禁止吸烟、吃东西、饮食、化妆、嚼口香糖、嬉戏奔跑,食 物饮料勿存放于实验室的冰箱中,实验桌上勿堆放书包、书籍、衣服外 套及杂物等。 4.所有实验仪器、耗材、药品等均属实验室所有,不得携出实验室外。每 组分配之仪器、耗材请在课程开始前确定清点与保管,课程结束后如数 清点缴回。公用仪器请善加爱惜使用。实验前后,请把工作区域清理擦 拭,并随时保持环境清洁。 5.实验前详阅实验内容,了解实验细节的原理及操作,注意上课所告知的 注意事项。实验进行中有任何状况或疑问,随时发问,切勿私自变更实 验程序。打翻任何药品试剂及器皿时,请随即清理。实验后,适切记下 自己的结果,严禁抄袭,确实关闭不用之电源、水、酒精灯及瓦斯等。 6.身体不适、睡眠不足、精神不济或注意力无法集中,请立即停止实验。 实验时间若延长,请注意时间的管制及自身的安全,不可自行逗留实验 室。 7.实验完毕,请清理实验室、倒垃圾、灭菌、关闭灯光及冷气,离开实验 室前记得洗手。 8.任何意外事件应立即报告教师或实验室管理人员,并应熟知相关之应变 措施。

药品 1.使用任何药品,请先看清楚标示说明、注意事项,翻阅物质安全资料, 查明是否对人体造成伤害,使用完毕请放回原位。 2.新配制的试剂请清楚注明内容物、浓度、注意事项及配制日期,为避免 污染,勿将未用完的药剂倒回容器内。 3.挥发性、腐蚀性、有毒溶剂(如甲醇、丙酮、醋酸、氯仿、盐酸、硫酸、 -巯基乙醇、甲醛、酚等)要在排烟柜中戴手套量取配制,取用完应随即盖好盖子,若不小心打翻试剂,马上处理。 4.有毒、致癌药剂例如丙稀酰胺(神经毒)、溴化乙啶(突变剂)、SDS(粉 尘)请戴手套及口罩取用,并勿到处污染,脱下手套后,养成洗手的好 习惯。 5.使用后的实验试剂和材料,应放在专用的收集桶内。固体培养基、琼脂 糖或有毒物品不得倒入水槽或下水道中。 6.使用刻度吸管取物时,切勿用嘴吸取,请用自动吸管或吸耳球。 仪器 1.使用仪器前先了解其性能、配备及正确操作方法,零件及附件严禁拆卸, 勿私自调整,并注意插座电压(110V或220V)之类别。 2.使用离心机时,离心管要两两对称、重量平衡,离心机未停下不得打开 盖子。冷冻离心机于开机状态时,务必盖紧盖子,以保持离心槽之低温并避免结霜。 3.电源供应器有高电压,切勿触摸电极或电泳槽内溶液,手湿切勿开启电 源。

细胞生物学课后练习及参考答案

细胞生物学课后练习参考答案 作业一 ●一切活细胞都从一个共同的祖先细胞进化而来,证据是什么想像地球上生命进化的很早时期。可否假设那个原始的祖先细胞是所形成的第一个仅有的细胞 1、关于一个共同祖先的假说有许多方面的证据。对活细胞的分析显示出其基本组分有着令人惊异的相似程度,例如,各种细胞的许多新陈代谢途径是保守的,在一切活细胞中组成核酸与蛋白质的化合物是一样的。同样,在原核与真核细胞中发现的一些重要蛋白质有很相似的精细结构。最重要的过程仅被“发明”了一次,然后在进化中加以精细调整去配合特化细胞的特定需要。●人脑质量约1kg并约含1011个细胞。试计算一个脑细胞的平均大小(虽然我们知道它们的大小变化很大),假定每个细胞完全充满着水(1cm3的水的质量为1g)。如果脑细胞是简单的正方体,那么这个平均大小的脑细胞每边长度为多少 2、一个典型脑细胞重10-8g (1000g/1011)。因为1g水体积为1 cm3,一个细胞的体积为10-14m3。开立方得每个细胞边长2.1 × 10-5m即21 μm。 ●假定有一个边长为100μm,近似立方体的细胞 (1)计算它的表面积/体积比; (2)假设一个细胞的表面积/体积比至少为3才能生存。那么将边长为100μm,总体积为1 000 000μm3的细胞能在分割成125个细胞后生存吗 3、(1) 如图1所示,该细胞的表面积(SA)为每一面的面积(长×宽)乘以细胞的面数,即SA=100 μm ×100 μm ×6 = 60 000 μm2。细胞的体积是长×宽×高,即(100 μm)3=1 000 000 μm3因而SA/体积的比率=SA/体积=60 000μm/ 1 000 000μm= 0. 06 μm-1。 (2) 分割后的细胞将不能存活。125个立方体细胞应有表面积300 000μm2, SA/体积的比率为0.3。如果要使总表面积/体积达到3,可以假设将立方体边长分割成n份,每个小方块的表面积为SA l,总面积为SA t则有: 分割后的小方块表面积为SA l = 6 × (100/n) 2(1) 总面积为SA t = 6 × (100/n) 2 × n3(2) 根据细胞存活要求SA t/V = 3 (3) 即: 6 × (100/n) 2 × n3 / 1003 = 3 (4) 由(4)可知n=50,即细胞若要存活必须将其分割成125000个小方块。 ●构成细胞最基本的要素是________、________ 和完整的代谢系统。 4、基因组,细胞质膜和完整的代谢系统 图1 边长为100μm的立方体与分割成125块后的立方体

细胞生物学 第八章 细胞核 知识点

第八章细胞核 粗面内质网(rER)相连; 核纤层),决定细 胞核形态; : 内、外膜相互融合形成的环状开口,嵌有核孔复合体 2.核孔复合物 (1)结构 环:胞质环、核质环(核篮); 辐:柱状亚单位、腔内亚单位、环带亚单位; 中央栓 (2)功能------双向选择性亲水通道 被动运输:孔径10nm,≤60kDa 主动运输:孔径20nm >亲核蛋白的核输入信号:核定位信号(NLS) ;10个氨基酸的短肽,指导亲核蛋白完成核输入后并不切除 (NLS 、NES、信号肽和信号斑) (importinα/β、nucleoporin、Ran—GTP/GDP) >亲核蛋白的入核转运:①亲核蛋白通过NLS识别importin α,与可溶性NLS 受体importinα/β异二聚体结合,形成转运复合物; ②在importinβ的介导下,转运复合物与核孔复合体的胞质纤维结合; ③转运复合物通过改变构象的核孔复合体从胞质面被转移到核质面; ④转运复合物在核质面与Ran-GTP结合,并导致复合物解离,亲核蛋白释放;

⑤受体的亚基与结合的Ran并与importinβ解离,Ran-GDP返回核内再转换成Ran-GTP状态。 >mRNA 、tRNA和核糖体亚基的核输出:核输出信号nuclear export signal (NES)>请说明Ran在亲核蛋白的核输入过程中所起的作用。 ①在细胞质内, 受体(importin)与cargo protein的NLS结合 ②受体/亲核蛋白复合物和Ran-GDP 穿过核孔进入细胞核 ③在核质内,在GEF作用下Ran-GDP 转变为Ran-GTP,并与受体importin结合 ④构象改变导致受体释放出cargo protein ⑤受体-Ran-GTP complex 被运回细胞质, 在GAP 作用下Ran-GTP被水解为Ran-GDP, Ran与受体importin分离 3.核纤层lamina 是位于细胞核内层核膜下的纤维蛋白片层或纤维网络 (1)结构和组成:由核纤层蛋白laminA、B、C组成 (2)功能 在间期细胞中,核纤层为核膜提供一个支架; 在分裂细胞中,核纤层的可逆性解聚调节核膜的崩解和重建; 核纤层蛋白磷酸化时,核膜崩解;核纤层蛋白去磷酸化时,核膜重建; 在间期细胞中,核纤层为染色质提供核周锚锭部位,维持和稳定间期染色质高度有序的结构; 调节基因表达,调节DNA修复 二.染色质和染色体 1.组蛋白和非组蛋白 与染色质DNA结合的蛋白质负责DNA分子遗传信息的组织、复制 (1)组蛋白·构成真核生物染色体的基本结构蛋白 富含Arg和Lys的碱性蛋白质,等电点在pH10.0以上, 可以和酸性DNA紧密结合,分为H1, H2A, H2B, H3, H4五种。H2A, H2B, H3, H4为核小体组蛋白,在进化上十分保守,没有种属和组织特异性。H1的种族保守性低,有一定的种属和组织特异性。 Histone在维持染色体结构和功能的完整性上起着关键性的作用。 Histone与DNA在细胞周期的S期合成。DNA复制停止,Histone合成也立即停止。 (2)非组蛋白·主要指导与特异DNA序列结合的蛋白质 富含天冬氨酸、谷氨酸和色氨酸的酸性蛋白质。 占染色体蛋白质的60—70%,在不同组织细胞中的种类和数量都不相同。在整个细胞周期中都有不同类型的非组蛋白合成。 能识别并结合在特异的DNA序列上,识别和结合靠氢键和离子键。 非组蛋白在调节真核生物基因表达,染色体高级结构的形成等方面起着重要的作用。 α螺旋-转角-α螺旋模式 锌指模式 Cys2/His2 锌指单位和Cys2/ Cys2锌指单位

细胞生物学知识点

第一章医学细胞生物学绪论 名词解释:生物学,细胞生物学 解答题:细胞对生命活动的意义,细胞的共同属性 易考点:首次命名植物细胞的人,发现无丝分裂、减数分裂的事件,提出DNA 双螺旋模型 第二章细胞生物学研究方法 名词解释:分辨率,电子显微镜,酶细胞化学技术,流式细胞技术,细胞培养,细胞系,细胞株,细胞融合,干细胞 解答题:细胞培养的基本条件,光学显微镜技术的原理 易考点:分辨率的计算公式及各个字母代表的意思,光镜的分辨极限,暗视野显微镜观察的是细胞轮廓以及观察的范围,透射显微镜观察的是细胞内部的细微结构,扫描电子显微镜观察的是三维立体形貌。 第四章细胞膜 名词解释:生物膜,细胞膜 解答题:流动镶嵌模型,细胞膜的特性,耦联运输 易考点:功能复杂的膜中所占蛋白质的比例大,三种膜蛋白的存在形式,影响膜脂流动性的因素,细胞膜的物质转运功能(选择题形式),糖萼的本质 第六章内膜系统 名词解释:内膜系统,细胞质 解答题:信号假说的主要内容,高尔基复合体的功能,滑面内质网的功能,溶酶体的形成过程,溶酶体的功能 易考点:内质网的标志酶,高尔基复合体的形态(形成面,成熟面),溶酶体的标志酶 第七章线粒体 名词解释:三羧酸循环,氧化磷酸化,底物水平磷酸化,呼吸链,分子伴侣,导肽 解答题:描述线粒体的结构 易考点:光镜下线粒体的结构,线粒体各部位的标志酶,呼吸链的复合体中每个复合体有哪些物质,线粒体疾病的特点,化学渗透学说主要知道氧化放能

第八章细胞骨架 名词解释:细胞骨架,中间纤维结合蛋白 解答题:微管的体外装配,影响微管装配的因素,微管的功能(简单描述),微丝的组装过程,影响微丝组装的因素,微丝的功能,中间纤维结合蛋白的功能,中间纤维的组装的控制以及影响因素,中间纤维的功能 第九章细胞核 名词解释:核型,核纤层,细胞骨架,核基质, 解答题:简述细胞核的基本结构,核孔复合体的结构,常染色质和异染色质的异同点,核仁的光镜和电镜结构。 易考点:核基质的功能,人体哪几号染色体上有核仁组织区。 第十一章细胞生长与增殖 名词解释:细胞增殖,细胞周期蛋白依赖性激酶抑制物CDKI。解答题:简述有丝分裂过程及各过程标志,减数分裂过程。易考点:有丝分裂、无丝分裂、减数分裂的英文,细胞周期调控的起主要作用的物质。 第十三章细胞分化 名词解释:细胞分化,细胞决定,管家基因,奢侈基因。易考点:细胞分化实质,细胞分化特点。第十五章:名词解释:干细胞。易考点:干细胞的分类,干细胞的来源。 第十四章细胞衰老与死亡 名词解释:细胞衰老。解答题:细胞凋亡与细胞坏死的主要区别。易考点:细胞衰老的表现,细胞凋亡的特征。 第十五章:名词解释:干细胞。

智慧树知到《医学细胞生物学》章节测试答案

智慧树知到《医学细胞生物学》章节测试答案第一章 1、构成生物体的基本结构和功能单位是( )。 A:细胞膜 B:细胞器 C:细胞核 D:细胞 E:细胞质 正确答案:细胞 2、医学细胞生物学的研究对象是()。 A:生物体细胞 B:人体细胞 C:人体组织 D:人体器官 E:人体系统 正确答案:人体细胞 3、()为细胞超微结构的认识奠定了良好的基础。 A:组织培养技术 B:高速离心装置 C:光学显微镜的应用 D:电子显微镜的应用 E:免疫标记技术

正确答案:电子显微镜的应用 4、2013年诺贝尔生理学或医学奖获得者的主要研究成果是()。 A:青蒿素的发现及应用 B:细胞囊泡运输的调节机制 C:细胞程序性死亡的调控机理 D:神经系统中的信号传导 E:幽门螺杆菌在胃炎和胃溃疡中所起的作用 正确答案:细胞囊泡运输的调节机制 5、细胞生物学是从细胞的()水平对细胞的各种生命活动进行研究的学科。A:显微 B:亚显微 C:分子 D:结构 E:功能 正确答案:显微,亚显微,分子 第二章 1、构成葡萄糖-6-磷酸酶的基本单位是()。 A:氨基酸 B:核苷酸 C:脂肪 D:核酸 E:磷酸

正确答案:氨基酸 2、DNA分子是由()组成的。 A:磷酸 B:核糖 C:脱氧核糖 D:碱基 E:己糖 正确答案:磷酸,脱氧核糖,碱基 3、关于细胞中无机盐的功能,描述有误的是()。 A:是细胞含量最多的物质 B:维持细胞内外渗透压 C:维持细胞酸碱平衡 D:是细胞的主要能量来源 E:不能与蛋白质结合 正确答案:是细胞含量最多的物质,是细胞的主要能量来源,不能与蛋白质结合 4、关于细胞大小和形态,描述正确的是()。 A:人体最大的细胞是卵细胞 B:人卵细胞是已知最大的细胞 C:不同种类的细胞,其大小有差异 D:细胞的大小形态与细胞的功能有关 E:真核细胞一般比原核细胞大 正确答案:人体最大的细胞是卵细胞,不同种类的细胞,其大小有差异,细胞的大小形态与细胞的功能有关,真核细胞一般比原核细胞大

细胞生物学重点知识整理

细胞生物学 第一章:绪论 ●现代细胞生物学研究的三个层次是什么? ●细胞的发现 ●细胞学说 ●分子生物学的出现 ●真核细胞与原核细胞的比较 第三章:细胞基础 ●生物大分子 ●蛋白质一、二、三、四级结构 ●核酸分类 ●DNA/RNA结构、功能比较 ●三类主要RNA的大体结构与功能 ●DNA双螺旋结构模型 第四章:细胞膜 ●膜的化学组成:三种膜脂加二种膜蛋白 ●膜的流动镶嵌模型fluid mosaic model ●脂筏 ●膜的两大特性, ●物质运输的方式及比较:穿膜与跨膜 ●主/被动运输名词及其异同 ●内吞、外吐比较 ●细胞表面,细胞外被概念 第六章:细胞连接与细胞外基质 ●名解解释: ◆细胞连接cell junction, ◆紧密连接tightjunction, ◆锚定连接anchoringjunction, ◆通讯连接communicationjunction, ◆细胞外基质extracellular matrix, ●细胞连接可分为几种类型?在结构和功能上各有什么特点? 第七章:核糖体 ●根据来源和沉降系数,细胞中核糖体分两类,其亚基组成?其rRNA组成及组成蛋白质种类? ●细胞中核糖体有几种存在形式?所合成的蛋白质在功能上有什么不同? ●核糖体上重要活性位点 ●蛋白质合成的过程 ●遗传密码,密码子,反密码子之间有何联系和区别? ●遗传密码具有哪些特征?

(细胞生物学复习资料вTсエ莋室整理) 第一,对内膜系统的概念和相互关系有较清楚的了解和掌握; 第二,重点要了解和掌握内质网,高尔基体,溶酶体和过氧化物酶体等细胞器和结构的性质特点和主要功能,以及有关的一些重要名词术语概念。 标志酶分别是。。 Signal peptide- SRP- ribosome 膜流;溶酶体分类;有被小泡类型;膜泡定向运输机制 名词解释 内膜系统; 内质网; 粗面内质网; 滑面内质网; 信号肽,信号假说内体性溶酶体; 吞噬性溶酶体;自噬性溶酶体; 异噬性溶酶体内质网有几种类型?在形态和功能上各有何特点? ●简述分泌蛋白的合成和分泌过程 ●高尔基复合体的超微结构有何特点? ●高尔基复合体有哪些主要功能? ●简述溶酶体的形成过程(溶酶体与ER、GC的关系)。 ●溶酶体分为几类?各有何特点? ●溶酶体与过氧化物酶体比较(形态结构,化学成分,标志酶,功能) ●内膜系统各细胞器的结构与功能 第八章:线粒体 ●名词解释:(部位+结构+功能)细胞氧化,细胞呼吸, 基粒,电子传递链,氧化磷酸化 ●线粒体的超微结构如何? ●线粒体的功能 ●呼吸链及组成 ●基粒的结构与功能 ●化学渗透学说如何解释氧化磷酸化偶联? ●线粒体半自主性 第九章:细胞骨架 ●细胞骨架cytoskeleton, ?微管组织中心( MTOC ), ?微管microbubule, ?微丝microfilament, ?中间纤维intermediate filament, ?踏车现象(踏车行为)p89“快于改为等于” ●微管、微丝、中间纤维的功能 ●细胞骨架中各纤维系统的异同 ●细胞骨架中各纤维系统的装配 ●比较纤毛与微绒毛的结构组成

医学细胞生物学复习(带答案)

细胞衰老与死亡 1.衰老细胞的特征之一是常常出现下列哪种结构的固缩 A.核仁B.细胞核 C.染色体 D.脂褐质 E.线粒体 2.小鼠成纤维细胞体外培养平均分裂次数为 A.25 次B.50 次 C.100 次 D.140 次 E.12 次 3.细胞凋亡与细胞坏死最主要的区别是后者出现 A.细胞核肿胀 B.内质网扩张 C.细胞变形D.炎症反应 E.细胞质变形 4.细胞凋亡指的是 A.细胞因增龄而导致的正常死亡 B.细胞因损伤而导致的死亡 C.机体细胞程序性的自杀死亡 D.机体细胞非程序性的自杀死亡 E.细胞因衰老而导致死亡 5.下列哪项不属细胞衰老的特征 A.原生质减少,细胞形状改变 B.细胞膜磷脂含量下降,胆固醇含量上升C.线粒体数目减少,核膜皱襞D.脂褐素减少,细胞代谢能力下降 E.核明显变化为核固缩,常染色体减少 6.迅速判断细胞是否死亡的方法是 A.形态学改变 B.功能状态检测 C.繁殖能力测定D.活性染色法 E.内部结构观察 7.机体中寿命最长的细胞是 A.红细胞 B.表皮细胞 C.白细胞 D.上皮细胞E.神经细胞

细胞的统一性与多样性 1. 肠上皮细胞由肠腔吸收葡萄糖,是属于 A.单纯扩散 B.易化扩散 C.主动转运 D.入胞作用 E.吞噬 2. 在一般生理情况下,每分解一分子ATP,钠泵转运可使 A. 2个Na+移出膜外 B. 2个K+移入膜内 C. 2个Na+移出膜外,同时有2个K+移入膜内 D. 3个Na+移出膜外,同时有2个K+移入膜内 E. 2个Na+移出膜外,同时有3个K+移入膜内 小分子的跨膜运输 1.肠上皮细胞由肠腔吸收葡萄糖,是属于 A. 单纯扩散 B. 易化扩散 C. 主动转运 D. 入胞作用 E. 吞噬核糖体 1.多聚核糖体是指 A.细胞中有两个以上的核糖体集中成一团 B.一条mRNA 串连多个核糖体的结构组合 C.细胞中两个以上的核糖体聚集成簇状或菊花状结构D.rRNA 的聚合体 E.附着在内质网上的核糖体

细胞生物学第五至第八章作业答案

第五章物质的跨膜运输 1 物质跨膜运输有哪三种途径ATP驱动泵可分哪些类型 答:物质跨膜运输有简单扩散、被动运输和主动运输三种途径。ATP驱动泵可分P型泵、V型质子泵和F型质子泵以及ABC 超家族,其中P型泵包括Na+—K+泵、Ca+泵和P 型H+泵。 各种ATP驱动泵的比较: 2.简述钠钾泵的结构特点及其转运机制。 答:Na+—K+泵位于动物细胞的质膜上,由2个α和2个β亚基组成四聚体。Na+—K+泵的转运机制总结如下:在细胞内侧α亚基与Na+相结合促进ATP水解,α亚基上的一个天冬氨酸残基磷酸化引起α亚基构象发生变化,将Na+泵出细胞,同时细胞外的K+与α亚基的另一位点结合,使其失去磷酸化,α亚基的构象再次发生变化,将K+泵入细胞,完

成整个循环。 3、简述葡萄糖载体蛋白的结构特点及其转运机制。 答:葡萄糖载体蛋白,简称为GLUT,是一个蛋白质家族,包括十多种葡糖糖转运蛋白,他们具有高度同源的氨基酸序列,都含有12次跨膜的α螺旋。GLUT中多肽跨膜部分主要由疏水性氨基酸残基组成,但有些α螺旋带有Ser、Thr、Asp和Glu残基,他们的侧链可以同葡萄糖羟基形成氢键。葡萄糖载体蛋白的转运机制为:氨基酸残基为形成载体蛋白内部朝内和朝外的葡萄糖结合位点,从而通过构象改变完成葡萄糖的协助扩散。转运方向取决于葡萄糖的浓度梯度,从高浓度向低浓度顺梯度转运。 4、举例说明协同运输的机制。 答:协同运输是一类靠间接提供能量完成的主动运输方式。物质跨膜运动所需要的能量来自膜两侧离子的电化学浓度梯度,而维持这种电化学势的是钠钾泵或质子泵。根据物质运输方向与离子沿浓度梯度的转移方向,协同运输又可分为:同向协同与反向协同。 ①同向协同指物质运输方向与离子转移方向相同。如人体及动物体小肠细胞对葡萄糖的吸收就是伴随着Na+的进入,细胞内的Na+离子又被钠钾泵泵出细胞外,细胞内始终保持较低的钠离子浓度,形成电化学梯度。 ②反向协同物质跨膜运动的方向与离子转移的方向相反,如动物细胞常通过Na+/H+反向协同运输的方式来转运H+以调节细胞内的PH值,即Na+的进入胞内伴随者H+的排出。选做:5、举例说明受体介导的内吞作用。 答:受体介导内吞作用大致分为四个基本过程∶①配体与膜受体结合形成一个小窝;②小窝逐渐向内凹陷,然后同质膜脱离形成一个被膜小泡;③被膜小泡的外被很快解聚,形成无被小泡,即初级内体;④初级内体与溶酶体融合,吞噬的物质被溶酶体的酶水解。具有两个特点,即:①配体与受体的结合是特异的,具有选择性;②要形成特殊包被的内吞泡。 例如LDL受体蛋白是一个单链的糖蛋白,为单次跨膜蛋白。LDL受体蛋白合成后被运输到细胞质膜,即使没有相应配体的存在, LDL受体蛋白也会在细胞质膜集中浓缩并形成被膜小窝,当血液中有LDL颗粒,可立即与LDL的apoB-100结合形成LDL-受体复合物。一旦LDL与受体结合,就会形成被膜小泡被细胞吞入,接着是网格蛋白解聚,受体回到质膜再利用,而LDL被传送给溶酶体,在溶酶体中蛋白质被降解,胆固醇被释放出来用于质膜的装配,或进入其他代谢途径。 名词:

细胞生物学考试重点!!

细胞生物学:是研究细胞形态结构和功能和起源的科学。 细胞:是生命活动和结构的基本单位。其结构通常由细胞膜,细胞质,以及细胞器所构成。生活在地球上的细胞可分为:原核细胞;古核细胞和真核细胞三大类。 细胞学说: 一切生物,从单细胞生物到高等动植物都是由细胞组成的,细胞是生物形态结构功能活动的基本单位,细胞通过分裂形成组织。细胞来自于细胞。每个细胞相对独立,一个生物体内各细胞之间协同配合。 为什么说细胞是生命的基本单位? 细胞是生命的基本结构单位,所有生物都是由细胞组成的; 细胞是生命活动的功能单位,一切代谢活动均以细胞为基础; 细胞是生殖和遗传的基础与桥梁;具有相同的遗传语言; 细胞是生物体生长发育的基础; 形状与大小各异的细胞是生物进化的结果 没有细胞就没有完整的生命(病毒的生命活动离不开细胞) 细胞生物学学习方法: 【1】抽象思维与动态,立体的观点;【2】同一性(unity),多样性(diversity)联系性,开放性,历史性,发展性的观点;【3】实验科学与实验技术——细胞真知源于实验室,来源于观察,实验创新的观点;【4】化学成分,结构,和功能结合的观点;【5】尊重记忆的规律来进行学习。 细胞的大小和细胞分裂的原因 细胞如果太小,则最低限度的细胞器以及生命物质没有足够的空间存放;太大则表面积不够。有人认为,由于细胞的重量和体积的增长,造成了细胞表面积与体积的比例失调,从而触发细胞分裂。随着细胞生长,细胞体积增大,而细胞表面积和体积之比(表面积/体积)却在变小。活细胞不断进行新陈代谢,细胞表面担负着输入养分,排出废物的重任。表面积/体积比值的下降,意味着代谢速率的受限和下降。所以,细胞分裂是细胞生长过程中保持足够表面积,维持一定的生长速率的重要措施 原生质(protoplasm): 1839 Purkinje用原生质一词指细胞的全部活性物质,从现代概念来说它包括质膜、细胞质和细胞核(或拟核)。 细胞核:细胞核(nucleus)是细胞内最重要的细胞器,核 表面是由双层膜构成的核被膜(nuclear envelope),核内 包含有由DNA和蛋白质构成的染色体(chromosome)。核内1 至数个小球形结构,称为核仁(nucleolus)。细胞核中的原 生质称为核质。 细胞质(cytoplasm):质膜与核被膜之间的原生质。 细胞器:具有特定形态和功能的显微或亚显微结构称为细胞器 细胞质基质:细胞质中除细胞器以外的部分。又称为或胞质溶胶(cytosol),其体积约占细胞质的一半。 真核细胞:具有核膜,由膜围成的各种细胞器,如核膜、内质网、高尔基体、线粒体、叶绿体、溶酶体等在结构上形成了一个连续的体系,称为内膜系统。内膜系统将细胞质分隔成不同的区域,即所谓的区隔化。区隔化使细胞内表面积增加了数十倍,代谢能力增强。细胞质基质的功能:为细胞内各类生化反应的正常进行提供了相对稳定的离子环境;许多代谢过程是在细胞基质中完成的,如①蛋白质的合成;②核苷酸的合成;③脂肪酸合成;④糖酵解;⑤磷酸戊糖途径;⑥糖原代谢;⑦信号转导。供给细胞器行使其功能所需要的一切底物;控制基因的表达,与细胞核一起参与细胞的分化;参与蛋白质的合成、加工、运输、选择性降解 真核细胞的结构 细胞壁(植物细胞具有) 细胞细胞膜(质膜) 原生质体细胞质 细胞核 三大结构体系: 生物膜系统质膜、内膜系统(细胞器) 遗传信息表达系统染色质(体)、核糖体、mRNA、tRNA等等 细胞骨架系统胞质骨架、核骨架 植物细胞特有的结构:细胞壁、叶绿体、大液泡、胞间连丝 细胞形态:单细胞生物细胞的形态通常与细胞外沉积物或细胞骨架有关;高等生物细胞的形状与细胞功能及细胞间的相互作用有关 原核细胞:没有核膜,遗传物质集中在一个没有明确界限的低电子密度区,称为拟核。DNA为裸露的环状双螺旋分子,通常没有结合蛋白,没有恒定的内膜系统,核糖体为70S型。无细胞器, 无细胞骨架原核细胞构成的生物称为原核生物,均为单细胞生物。一般以二分裂的方式繁殖,也有的产生孢子。以无丝分裂或出芽繁殖 原核细胞真核细胞 细胞大小很小(1-10微米)较大(10-100微米) 细胞核无核膜、核仁(称“类核”)有核膜、核仁 遗传系统 DNA不与蛋白质结合 DNA与蛋白质结合成染色质, 一个细胞仅一条DNA 一个细胞有多条的染色体 细胞器无有 细胞分裂无丝分裂有丝分裂为主 质粒(plasmid) :除核区DNA外,可进行自主复制的遗传因子,是裸露的环状DNA分子,所含遗传信息量为2~200个基因,能进行自我复制,有时能整合到核DNA中去。质粒常用作基因重组与基因转移的载体。 细胞膜:细胞质与外界相隔的一层薄膜,又叫质膜 生物膜:细胞内由膜构成的结构其成分基本相近,因此又把细胞中的所有膜统称为生物膜。特征:流动性,不对称性 “单位膜”模型由厚约3.5nm的双层脂分子和内外表面各厚约2nm的蛋白质构成。 细胞膜的功能:1. 为细胞的生命活动提供相对稳定的内环境;2. 选择性的物质运输,包括代谢底物的输入与代谢产物的排出;3. 提供细胞识别位点,并完成细胞内外信息的跨膜传递4. 为多种酶提供结合位点,使酶促反应高效而有序地进行5. 介导细胞与细胞、细胞与基质之间的连接;6. 参与形成具有不同功能的细胞表面特化结构。 脂双层的特点:⑴自我封闭性⑵装配性⑶流动性⑷不对称性

相关主题
文本预览
相关文档 最新文档