当前位置:文档之家› 地图投影

地图投影

地图投影
地图投影

地图投影

概念

地图投影,是指按照一定的数学法则将地球椭球面上的经纬网转换到平面上,使地面的地理坐标(φ,λ)与平面直角坐标(x,y)建立起函数关系。这是绘制地图的数学基础之一。由于地球是一个不可展的球体,使用物理方法将其展平会引起褶皱、拉伸和断裂,因此要使用地图投影实现由曲面向平面的转化。投影的一般公式为\begin{cases} x = f_{1}(\phi,\lambda) , \\ y = f_{2}(\phi,\lambda) , \end{cases}

投影变形

在使用投影时,可以在平面与球面之间建立相对应函数关系,但是经过投影后的平面并不能保持球面上的长度、角度和面积的原形。所以经过投影的地图只能在长度、角度和面积之中的一项不变形,而其他几种变形,只能是变形值相对较小。

通常引进一个椭圆来说明地图投影的变形。在地面上取一个极小的微分圆(面积可以忽略,因此可以看成一个平面),投影变形后将成为一个椭圆,这个椭圆称作“变形椭圆”。利用这个椭圆,可以检验地图投影的变形性质和大小。

?长度变形:可以使用长度比μ来表示。长度比是指地面上的微分线段经过投影后的长度与原有长度的比值。值得注意的是,这与比例尺并非一个概念。

长度比是一个变量,它随着在地图上位置的变化而变化。

?面积变形:可以使用面积比Ρ来表示。面积比是指地面上的微分面积经过投影后的大小与原有大小的比值。面积比也是一个变量。

?角度变形:是指地面上的任意两条线的夹角α与经过投影后的角α′的差。由于地面上的一点可以引出无穷条方向线,因此角度变形一般指最大角度变形。

投影方法和分类

投影方法分为几何投影法和数学解析法。几何投影法是按照几何原理绘制的投影变形,适用于比较简单的投影,比如球心正轴方位投影;而数学解析法是利用笛卡尔提出的解析几何理论绘制的投影变形,适用于比较复杂的投影,比如等角正轴方位投影。

到目前为止,还没有一个对地图投影分类的统一标准。实际上,通常是按照构成方法或构成性质把地图投影分类。

如果按照构成方法分类,可以分成几何投影和非几何投影。几何投影源于几何透视原理。以几何特征为依据,将地球上的经纬网投影到可以展开的平面(如圆锥、圆柱等)上,可以构成方位投影、圆柱投影(麦卡托投影法)和圆锥投影(亚尔勃斯投影)。非几何投影不借助辅助投影面,用数学解析法求出公式来确立地面与地图上点的函数关系,有伪方位投影、伪圆柱投影、伪圆锥投影(彭纳投影)和多圆锥投影。

按照构成性质分类,可以分为等角投影(正形投影)、等积投影以及任意投影。

目前主要的投影方式主要有方位角(Azimuthal)与方位投影(Azimuthal Equidistant)、正射切面投影(Orthographic)、球心切面投影(Gnomic)、球面透视切面投影(Stereographic)、心状投影(Cordiform)、拟心状投影(Pseudocordiform)、球状投影(Globular)、梯形投影(Trapezoidal)以及椭圆形投影(Oval):

格林登投影

麦卡托投影法

亚尔勃斯投影

古德投影

彭纳投影

毛尔威特投影

等角圆柱投影

等距圆锥投影

等角圆锥投影

等积方位投影

等角方位投影

等距投影

等差分纬线多圆锥投影

罗宾森投影

地图投影的应用

制图的区域的位置、形状和范围,地图的比例尺、内容、出版方式影响了投影的种类。比如在极地就应该是正轴方位投影,中纬地区使用正轴圆锥投影。

制作世界地图时使用的彭纳投影

制作地形图通常使用高斯-克吕格投影,制作区域图通常使用方位投影、圆锥投影、伪圆锥投影,制作世界地图通常使用多圆锥投影、圆柱投影和伪圆柱投影。但通常而言,要依据实际情况具体选择。

UTM投影

什么是UTM

UTM投影全称为:通用横轴墨卡投影,是一种等角横轴割圆柱投影。椭圆柱割地球于南纬80度,北纬84度两条等高圈。投影后两条相割的经线上没有变形,而中央经线的长度比为0.9996。国际大地测量学会曾建议,中央子午线投影后,其投影长度适当缩短,(即长度比例因子K为0.9996,中央经线比例因子取0.9996是为了保证离中央经线约330Km处有两条不失真的标准经线)以减少投

影边缘地区的长度变形。这个建议就是统一横轴墨卡托投影,也称为通用横轴墨卡投影,简称为UTM投影。

作用

这个投影系统是美国编制世界各地军用地图和地球资源卫星像片所采用的投影系统,是为了全球战争需要创建的,美国于1948年完成了这种通用投影系统的计算。

高斯克吕格投影

概括

由德国数学家,物理学家,天文学家高斯(Carl Friedrich Gauss1777--1855)于十九世纪二十年代拟定的,后经德国大地测量学家克吕格(Johannes Kruger1857--1928)于1912年对投影公式加以补充完善。即等角横切椭圆柱投影。故名为高斯—克吕格投影(Gauss--Kruger)

我国的基本比例尺地形图(1:5千,1:1万,1:2.5万,1:5万,1:10万,1:25万,1:50万,1:100万)中,大于等于50万的均采用高斯-克吕格投影(Gauss-Kruger),这是一个等角横切椭圆柱投影,又叫横轴墨卡托投影(Transverse Mercator);小于50万的地形图采用等角正轴割园锥投影,又叫兰勃特投影(Lambert Conformal Conic);海上小于50万的地形图多用等角正轴圆柱投影,又叫墨卡托投影(Mercator)。一般应该采用与我国基本比例尺地形图系列一致的地图投影系统。

地图坐标系由大地基准面和地图投影确定,大地基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的大地基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的IAG 75地球椭球体建立了我国新的大地坐标系--西安80坐标系,目前GPS定位所得出的结果都属于WGS84坐标系统,WGS84基准面采用WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心的坐标系。

高斯-克吕格投影是设想用一个椭圆柱横套在地球椭球的外面,并与设定的中央经线相切。

高斯-克吕格投影分带规定:该投影是国家基本比例尺地形图的数学基础,为控制变形,采用分带投影的方法,在比例尺1:2.5万-1:50万图上采用6°分带,对比例尺为1:1万及大于1:1万的图采用3°分带。

6°分带法

从格林威治零度经线起,每6°分为一个投影带,全球共分为60个投影带,东半球从东经0°- 6°为第一带,中央经线为3°,依此类推,投影带号为1-30。其投影代号n和中央经线经度L0的计算公式为:L0=(6n-3)°;西半球投影带从180°回算到0°,编号为31-60,投影代号n和中央经线经度L0的计算公式为

L0=360-(6n-3)°。

3°分带法

从东经1°30′起,每3°为一带,将全球划分为120个投影带,东经1°30′-4°30′,...178°30′-西经178°30′,...1°30′-东经1°30′。

东半球有60个投影带,编号1-60,各带中央经线计算公式:L0=3°n ,中央经线为3°、6°...180°。西半球有60个投影带,编号1-60,各带中央经线计算公式:L0=360°-3°n ,中央经线为西经177°、...3°、0°。

当地中央子午线决定于当地的直角坐标系统,首先确定您的直角坐标系统是3度带还是6度带投影,然后再根据如下公式推算。

6度带:

带号N=round[(L+3)/6],即对(L+3)/6的值四舍五入取整数,L为当地经度;

则中央子午线经度L0=6 ×N-3。

3度带:

带号N=round(L/3),即对(L/3)的值四舍五入取整数,L为当地经度;

则中央子午线经度L0=3 ×N。

高斯-克吕格投影

我国规定将各带纵坐标轴西移500公里,即将所有y值加上500公里,坐标值前再加各带带号以18带为例,原坐标值为y=243353.5m,西移后为y=743353.5,加带号通用坐标为y=18743353.5 。

UTM投影与高斯---克吕格投影的异同

一,两者都是横轴墨卡托投影的变种。

二,从投影的几何看,高斯-克吕格投影是等角横切椭圆柱投影,投影后中央经线保持不变,比例系数为1。UTM投影是等角横轴割圆柱投影,圆柱割地球于南纬80度,北纬84度两条等高圈。投影后两条割线上没有长度变形,中央经线上长度比为0.9996。我国的卫星影像资料多采用UTM投影。

三,从计算的结果来看,两者主要差别在比例系数上,高斯—克吕格投影中央经线上的比例系数为1,UTM投影的为0.9996。两个投影之间可近似的采用X (UTM)=0.9996* (高斯) 和y(UTM)=0.9996* (高斯) (如果坐标纵轴Y值西移了500公里,转换时必顺将Y值减去500公里乘上比例系数后再加500公里。)进行转换,为了保证精度可采用控制点上的比例因子K来代替0.9996。

四,两个投影的投影正反解公式不同:高斯-克吕格投影正解公式:(B,L)→(X,Y),原点纬度0,中央经度L0上面公式中东纬偏移FE = 500000米+ 带号*

1000000;高斯-克吕格投影比例因子k0 = 1

UTM投影正解公式:(B,L)→(X,Y),原点纬度0,中央经度L0。上面公式中东纬偏移FE= 500000米;北纬偏移FN北半球= 0,FN南半球= 10000000米;

UTM投影比例因子k0 = 0.9996,其它参数同高斯-克吕格投影正解公式

高斯-克吕格投影反解公式:(X,Y) →(B,L),原点纬度0,中央经度L0UTM 投影反解公式:(X,Y) →(B,L),原点纬度0,中央经度L0式中参数同高斯-克吕格投影反解公式

五,分带的方式不同,两个投影的分带起点不同,高斯---克吕格投影自首子午线起每隔经差6度自西向东分带。第一带的中央经度为3度。UTM投影自西经180度起,每隔经差6度自西向东分带,第一带的中央经度是—177度。因此高斯投影的第一带是UTM投影的第31带。两个投影都是按分带方法各自进行投影,故各带坐标成独立系统。以中央经线投影为纵横X,赤道投影为横轴Y,两轴交点即为各带的坐标原点,为了避免横坐标Y出现负值,高斯-克吕格投影与UTM北半球投影中规定将坐标纵横X西移500公里当做起始轴。而UTM南半球投影除了将纵轴X西移500公里外,横轴Y南移了10000公里。为了区别某一坐标系统属于哪一带,通常在横轴Y坐标前加上带号。

六,我们施工的二期项目被强制采用了UTM南33投影。本项目段落离33带中午子午线15度较远。在地形起伏不大时,离中央子午线越远,使用UTM投影引起的变形越大。刚果布首都布拉柴维尔位于东经15度17分,南纬4度16分。两个投影的主要区别在于长度比的不同,相差为1-0.9996=0.0004。因此在UTM投影下每公里的长度变形值就有40公分。所以在施工测量中要用长度比来进行修正(长度比就是两点之间的实地测量长度与投影下长度之比,也就是某段实地测量长度与投影下长度的缩放系数k )。因些在用全站仪进行测量时要进行改正。用GPS进行测量时只要把手薄里的投影类型改为UTM投影就可以了,不用考虑修正系数的问题。

地图投影的基本问题

3.地图投影的基本问题 3.1地图投影的概念 在数学中,投影(Project)的含义是指建立两个点集间一一对应的映射关系。同样,在地图学中,地图投影就是指建立地球表面上的点与投影平面上点之间的一一对应关系。地图投影的基本问题就是利用一定的数学法则把地球表面上的经纬线网表示到平面上。凡是地理信息系统就必然要考虑到地图投影,地图投影的使用保证了空间信息在地域上的联系和完整性,在各类地理信息系统的建立过程中,选择适当的地图投影系统是首先要考虑的问题。由于地球椭球体表面是曲面,而地图通常是要绘制在平面图纸上,因此制图时首先要把曲面展为平面,然而球面是个不可展的曲面,即把它直接展为平面时,不可能不发生破裂或褶皱。若用这种具有破裂或褶皱的平面绘制地图,显然是不实际的,所以必须采用特殊的方法将曲面展开,使其成为没有破裂或褶皱的平面。 3.2地图投影的变形 3.2.1变形的种类 地图投影的方法很多,用不同的投影方法得到的经纬线网形式不同。用地图投影的方法将球面展为平面,虽然可以保持图形的完整和连续,但它们与球面上的经纬线网形状并不完全相似。这表明投影之后,地图上的经纬线网发生了变形,因而根据地理坐标展绘在地图上的各种地面事物,也必然随之发生变形。这种变形使地面事物的几何特性(长度、方向、面积)受到破坏。把地图上的经纬线网与地球仪上的经纬线网进行比较,可以发现变形表现在长度、面积和角度三个方面,分别用长度比、面积比的变化显示投影中长度变形和面积变形。如果长度变形或面积变形为零,则没有长度变形或没有面积变形。角度变形即某一角度投影后角值与它在地球表面上固有角值之差。 1)长度变形 即地图上的经纬线长度与地球仪上的经纬线长度特点并不完全相同,地图上的经纬线长度并非都是按照同一比例缩小的,这表明地图上具有长度变形。 在地球仪上经纬线的长度具有下列特点:第一,纬线长度不等,其中赤道最长,纬度越高,纬线越短,极地的纬线长度为零;第二,在同一条纬线上,经差相同的纬线弧长相等;第三,所有的经线长度都相等。长度变形的情况因投影而异。在同一投影上,长度变形不仅随地点而改变,在同一点上还因方向不同而不同。 2)面积变形 即由于地图上经纬线网格面积与地球仪经纬线网格面积的特点不同,在地图上经纬线网格面积不是按照同一比例缩小的,这表明地图上具有面积变形。 在地球仪上经纬线网格的面积具有下列特点:第一,在同一纬度带内,经差相同的网络面积相等。第二,在同一经度带内,纬线越高,网络面积越小。然而地图上却并非完全如此。如在图4-9-a上,同一纬度带内,纬差相等的网格面积相等,这些面积不是按照同一比例缩

中国常用的地图投影

中国常用的地图投影举例 第三节中国常用的地图投影举例 科学事业的发展同社会制度和经济基础是密切相联系的,旧中国是一个半封建半殖民地的国家,测绘事业也濒于停顿,编制出版的少量地图质量也很差,更少考虑到采用自己设计及计算的地图投影。在解放前出版的几种地图中曾采用过的几种地图投影,也多半是因循国外陈旧的地图投影,很少自行设计新投影。解放后,在党和政府的领导下,非常重视测绘科学事业的发展,我国测绘工作者不仅在地图投影的理论上有了研究,同时结合我国具体情况,设计了一些适合于我国情况的新的地图投影。下面介绍我国出版的地图中常用的一些地图投影。 世界地图的投影 等差分纬线多圆锥投影 正切差分纬线多圆锥投影(1976年方案) 任意伪圆柱投影:a=0.87740,6=0.85 当φ=65°时P=1.20 正轴等角割圆柱投影 半球地图的投影 东半球图 横轴等面积方位投影φ0=0°,λ0=+70° 横轴等角方位投影φ0=0°,λ0=+70° 西半球图 横轴等面积方位投影φ0=0°,λ0=-110° 横轴等角方位投影φ0=0°,λ0=-110° 南、北半球地图 正轴等距离方位投影 正轴等角方位投影

正轴等面积方位投影 亚洲地图的投影斜轴等面积方位投影φ0=+40°,λ0=+90° φ0=+40°,λ0=+90° 彭纳投影标准纬线φ0=+40°,中央经线λ0=+80°标准纬线φ0=+40°,中央经线λ0=+80° 欧洲地图的投影斜轴等面积方位投影φ0=52°30′,λ0=20° 正轴等角圆锥投影φ1=40°30′,λ0=65°30′ 北美洲地图的投影斜轴等面积方位投影φ0=+45°,λ0=-100° 彭纳投影 南美洲地图的投影斜轴等面积方位投影φ0=0°,λ0=+20° 桑逊投影λ0=+20° 澳洲地图的投影斜轴等面积方位投影φ0=-25°,λ0=+135° 正轴等角圆锥投影φ1=34°30′,φ2=-15°20′ 拉丁美洲地图的投影斜轴等面积方位投影φ0=-10°,λ0=-60° 中国地图的投影中国全图 斜轴等面积方位投影

几种常见地图投影各自的特点及其分带方法

高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。德国数学家、物理学家、天文学家高斯(Carl Friedrich Gauss,1777一 1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于 1912年对投影公式加以补充,故名。设想用一个圆柱横切于球面上投影带的中央经线,按照投影带中央经线投影为直线且长度不变和赤道投影为直线的条件,将中央经线两侧一定经差范围内的球面正形投影于圆柱面。然后将圆柱面沿过南北极的母线剪开展平,即获高斯一克吕格投影平面。 一、只谈比较常用的几种:“墨卡托投影”、“高斯-克吕格投影”、“UTM 投影”、“兰勃特等角投影” 1.墨卡托(Mercator)投影 1.1 墨卡托投影简介 墨卡托(Mercator)投影,是一种" 等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。 “海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。基准纬线取至整度或整分。 1.2 墨卡托投影坐标系 取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。 2.高斯-克吕格(Gauss-Kruger)投影和UTM(Universal

几种常用地图投影

一:等角正切方位投影(球面极地投影) 概念:以极为投影中心,纬线为同心圆,经线为辐射的 直线,纬距由中心向外扩大。 变形:投影中央部分的长度和面积变形小,向外变形逐渐增 大。 用途:主要用于编绘两极地区,国际1∶100万地形图。 二:等距正割圆锥投影 概念:圆锥体面割于球面两条纬线。 变形:纬线呈同心圆弧,经线呈辐射的直线束。 各经线和两标纬无长度变形,即其它纬线均有 长度变形,在两标纬间角度、长度和面积变形 为负,在两标纬外侧变形为正。离开标纬愈远, 变形的绝对值则愈大。 用途:用于编绘东西方向长,南北方向稍宽地区 的地图,如前苏联全图等。 三:等积正割圆锥投影 概念:满足mn=1条件,即在两标纬间经线长度放 大,纬线等倍缩小,两标纬外情况相反。 变形:在标纬上无变形,两标纬间经线长度变形为正, 纬线长度变形为负;在两标纬外侧情况相反。角度 变形在标纬附近很小,离标纬愈远,变形则愈大。 用途:编绘东西南北近乎等大的地区,以及要求面积 正确的各种自然和社会经济地图。

四:等角正割圆锥投影 概念:满足m=n条件,两标纬间经线长度与纬线长度 同程度的缩小,两标纬外同程度的放大。 变形:在标纬上无变形,两标纬间变形为负,标纬外变 形为正,离标纬愈远,变形绝对值则愈大。 用途:用于要求方向正确的自然地图、风向图、洋流图、 航空图,以及要求形状相似的区域地图;并广泛用于制 作各种比例尺的地形图的数学基础。 如我国在1949年前测制的1∶5万地形图,法国、比利 时、西班牙等国家亦曾用它作地形图数学基础,二次大 战后美国用它编制1∶100万航空图。 五:等角正切圆柱投影——墨卡托投影 概念:圆柱体面切于赤道,按等角条件,将经 纬线投影到圆柱体面上,沿某一母线将圆柱体 面剖开,展成平面而形成的投影。是由荷兰制 图学家墨卡托(生于今比利时)于1569年创拟 的,故又称(墨卡托投影)。 变形:经线为等间距的平行直线,纬线为非等 间距垂直于经线的平行直线。离赤道愈远,纬 线的间距愈大。纬度60°以上变形急剧增大, 极点处为无穷大,面积亦随之增大,且与纬线 长度增大倍数的平方成正比,致使原来只有南 美洲面积1/9的位于高纬度的格陵兰岛,在图 上比南美洲大。 用途:等角航线表现为直线,用于编制海图、印度尼西亚和赤道非洲等赤道附近国家和地区的地图、世界时区图和卫星轨迹图等。

地图投影的选择、设计和变换

一、地图的用途和性质 这是最重要的因素。一旦确定,便可确定投影的性质。 等积投影:适用于经济、政治和自然地图 等角投影:适用于航行、军事和地形图 等距离投影:普通地图等各种变形具有同等重要意义的地图 任意投影:教学地图和各种科学一览图。 特种地图对投影有特殊的要求,如球心投影,等距离方位投影,时区图等等。 二、制图区域的形状和地理位置 可以确定投影的类型 圆形地区:方位投影 中纬度东西延伸地区:圆锥投影 赤道附近或沿赤道两侧东西延伸地区:正轴圆柱投影 南北延伸地区:横轴圆柱投影或多圆锥投影 斜向延伸地区:斜轴圆柱或圆锥投影 在小区域内,各种投影的影响均不大,此时可考虑用计算方便,格网简单的投影。 三、制图区域的大小 其影响表现在由于面积的增大,使投影的选择更为复杂化,要考虑的因素更多。 如大比例尺地图就不需要更多考虑区域的形状和地理位置。 实际工作中,凡面积不超过5-6百平方公里的区域,选择投影的变形为0.5%即可;面积在3.5-4.0千平方公里的区域,长度变形在2-3%即可;若是更大的区域,其长度变形往往超过3%。对于中等或不大的区域,投影选择一般只考虑几何因素,不必考虑地图的用途和性质。 ? 1.世界地图的投影 世界地图的投影主要考虑要保证全球整体变形不大,根据不同的要求,需要具有等角或等积性质,主要包括:等差分纬线多圆锥投影、正切差分纬线多圆锥投影(1976年方案)、任意伪圆柱投影、正轴等角割圆柱投影。 2.半球地图的投影 东、西半球有横轴等面积方位投影、横轴等角方位投影;南、北半球有正轴等面积方位投影、正轴等角方位投影、正轴等距离方位投影。 3.各大洲地图投影 1)亚洲地图的投影:斜轴等面积方位投影、彭纳投影。 2)欧洲地图的投影:斜轴等面积方位投影、正轴等角圆锥投影。 3)北美洲地图的投影:斜轴等面积方位投影、彭纳投影。 4)南美洲地图的投影:斜轴等面积方位投影、桑逊投影。 5)澳洲地图的投影:斜轴等面积方位投影、正轴等角圆锥投影。 6)拉丁美洲地图的投影:斜轴等面积方位投影。 4.中国各种地图投影 1)中国全国地图投影:斜轴等面积方位投影、斜轴等角方位投影、彭纳投影、伪方位投影、正轴等面积割圆锥投影、正轴等角割圆锥投影。 2)中国分省(区)地图的投影:正轴等角割圆锥投影、正轴等面积割圆锥投影、正轴等角圆柱投影、高斯-克吕格投影(宽带)。 3)中国大比例尺地图的投影:多面体投影(北洋军阀时期)、等角割圆锥投影(兰勃特投影)(解放前)、高斯-克吕格投影(解放以后)。

地图投影

世界地图常用地图投影知识大全 在不同的场合和用途下使用不同的地图投影,地图投影方法及分类名目众多,象:墨卡托投影,空间斜轴墨卡托投影,桑逊投影,摩尔维特投影,古德投影,等差分纬线多圆锥投影,横轴等积方位投影,横轴等角方位投影,正轴等距方位投影,斜轴等积方位投影,正轴等角圆锥投影,彭纳投影,高斯-克吕格投影,等角圆锥投影等等。 一、世界地图常用投影 1、等差分纬线多圆锥投影(Polyconic Projection With Meridional Interval on Same Parallel Decrease Away From Central Meridian by Equal Difference) 普通多圆锥投影的经纬线网具有很强的球形感,但由于同一纬线上的经线间隔相等,在编制世界地图时,会导致图形边缘具有较大面积变形。1963年中国地图出版社在普通多圆锥投影的基础上,设计出了等差分纬线多圆锥投影。 等差分纬线多圆锥投影的赤道和中央经线是相互垂直的直线,中央经线长度比等于1;其它纬线为凸向对称于赤道的同轴圆弧,其圆心位于中央经线的延长线上,中央经线上的纬线间隔从赤道向高纬略有放大;其它经线为凹向对称于中央经线的曲线,其经线间隔随离中央经线距离的增加而按等差级数递减;极点投影成圆弧(一般被图廓截掉),其长度等于赤道的一半(图2-30)。 通过对大陆的合理配置,该投影能完整地表现太平洋及其沿岸国家,突出显示我国与邻近国家的水陆关系。从变形性质上看,等差分纬线多圆锥投影属于面积变形不大的任意投影。我国绝大部分地区的面积变形在10%以内。中央经线和±44o纬线的交点处没有角度变形,随远离该点变形愈大。全国大部分地区的最大角度变形在10o以内。等差分纬线多圆锥投影是我国编制各种世界政区图和其它类型世界地图的最主要的投影之一。

世界地图常用地图投影知识大全

世界地图常用地图投影知识大全 2009-09-30 13:20 在不同的场合和用途下使用不同的地图投影,地图投影方法及分类名目众多,象:墨卡托投影,空间斜轴墨卡托投影,桑逊投影,摩尔维特投影,古德投影,等差分纬线多圆锥投影,横轴等积方位投影,横轴等角方位投影,正轴等距方位投影,斜轴等积方位投影,正轴等 角圆锥投影,彭纳投影,高斯-克吕格投影,等角圆锥投影等等。 一、世界地图常用投影 1、等差分纬线多圆锥投影(Polyconic Projection With Meridional Interval o nSame Parallel Decrease AwayFrom Central Meridian by E qual Difference) 普通多圆锥投影的经纬线网具有很强的球形感,但由于同一纬线上的经线间隔相等,在编制世界地图时,会导致图形边缘具有较大面积变形。1963年中国地图出版社在普通多圆锥投影的基础上,设计出了等差分纬线多圆锥投影。 等差分纬线多圆锥投影的赤道和中央经线是相互垂直的直线,中央经线长度比等于1;其它纬线为凸向对称于赤道的同轴圆弧,其圆心位于中央经线的延长线上,中央经线上的纬线间隔从赤道向高纬略有放大;其它经线为凹向对称于中央经线的曲线,其经线间隔随离中央经线距离的增加而按等差级数递减;极点投影成圆弧(一般被图廓截掉),其长度等于赤道的一半(图2-30)。 通过对大陆的合理配置,该投影能完整地表现太平洋及其沿岸国家,突出显示我国与邻近国家的水陆关系。从变形性质上看,等差分纬线多圆锥投影属于面积变形不大的任意投影。我国绝大部分地区的面积变形在10%以内。中央经线和±44o纬线的交点处没有角度变形,随远离该点变形愈大。全国大部分地区的最大角度变形在10o以内。等差分纬线多圆锥投影是我国编制各种世界政区图和其它类型世界地图的最主要的投影之一。

常用地图投影公式

常用地图投影公式 1.约定 本文中所列的转换公式都基于椭球体 a -- 椭球体长半轴 b -- 椭球体短半轴 f -- 扁率 e -- 第一偏心率 e’-- 第二偏心率 N -- 卯酉圈曲率半径 R -- 子午圈曲率半径 B -- 纬度,L -- 经度,单位弧度(RAD) -- 纵直角坐标, -- 横直角坐标,单位米(M) 2.椭球体参数 我国常用的3个椭球体参数如下(源自“全球定位系统测量规范GB/T 18314-2001”): 椭球体长半轴a(米)短半轴b(米) Krassovsky (北京54采用)6378245 6356863.0188 IAG 75(西安80采用)6378140 6356755.2882

WGS 84 6378137 6356752.3142 需要说明的是,在“海洋地质制图常用地图投影系列小程序”中,程序界面上的所谓“北京1954“西安1980”及“WGS 84”在实际计算中只涉及了相应的椭球体参数。 3.墨卡托(Mercator)投影 3.1 墨卡托投影简介 墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定, 假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确

地图投影和坐标系

地球坐标系与投影方式的理解(关于北京54,西安80,WGS84;高斯,兰勃特,墨卡托投影) 一、地球模型 地球是一个近似椭球体,测绘时用椭球模型逼近,这个模型叫做参考椭球,如下图: 赤道是一个半径为a的近似圆,任一圈经线是一个半径为b的近似圆。a称为椭球的长轴半径,b称为椭球的短轴半径。 a≈6378.137千米,b≈6356.752千米。(实际上,a也不是恒定的,最长处和最短处相差72米,b的最长处和最短处相差42米,算很小了) 地球参考椭球基本参数: 长轴:a 短轴:b 扁率:α=(a-b) / a 第一偏心率:e=√(a2-b2) / a 第二偏心率:e'=√(a2-b2) / b 这几个参数定了,参考椭球的数学模型就定了。 什么是大地坐标系? 大地坐标系是大地测量中以参考椭球面为基准面建立起来的坐标系。地面点的位置用大地经度、大地纬度和大地高度表示:(L, B, H)。

空间直角坐标系是以参考椭球中心为原点,以原点到0度经线与赤道交点的射线为x轴,原点到90度经线与赤道交点的射线为y轴,以地球旋转轴向北为z 轴:(x, y, z) 共同点:显然,这两种坐标系都必须基于一个参考椭球。 不同点:大地坐标系以面为基准,所以还需要确定一个标准海平面。而空间直角坐标系则以一个点为基准,所以还需要确定一个中心点。 只要确定了椭球基本参数,则大地坐标系和空间直角坐标系就相对确定了,只是两种不同的表达而矣,这两个坐标系的点是一一对应的。 二、北京54,西安80,WGS84 网上的解释大都互相复制,语焉不详,隔靴搔痒,说不清楚本质区别。为什么在同一点三者算出来的经纬度不同?难道只是不认同对方的测量精度吗?为什么WGS84选地球质心作原点,而西安80选地表上的一个点作原点?中国选的大地原点有什么作用?为什么选在泾阳县永乐镇?既然作为原点,为什么经纬度不是0?下面是我个人的理解。 首先,三者采用了不同的参考椭球建立模型,即长短轴扁率这组参数是不同的。北京54:长轴6378245m,短轴6356863,扁率1/298.2997381 西安80:长轴6378140m,短轴6356755,扁率1/298.25722101 WGS84:长轴6378137.000m,短轴6356752.314,扁率 1/298.257223563,第一偏心率0.0818********,第二偏心率 0.082095040121 这些参数不同,决定了椭球模型的几何中心是不同的。那么为什么这三种坐标系的参数有这么大差别呢?除了测量精度不同之外,还有一个原因,就是侧重点不一样。 WGS84是面向全球的,所以它尽量逼近整个地球表面,优点是范围大,缺点是局部不够精确。 北京54用的是前苏联的参数,它是面向苏联的,所以它在前苏联区域这个曲面尽量逼近,而其它国家地区偏多少它不管。它以苏联的普尔科沃为中心,离那越远,误差就越大。 西安80是面向中国的,所以它在中国区域这个曲面尽量逼近,而其它国家地区偏多少它不管。而且这个逼近是以西安附近的大地原点为中心的,也就是说,在西安大地原点处,模型和真实地表参考海平面重合,误差为0,而离大地原点越远的地方,误差越大。所谓的大地原点就是这么来的,它是人为去定的,而不是必须在那里,它要尽量放在中国的中间,使得总的误差尽量小而分布均匀。然后,我国在自已境内进行的建筑,测绘,勘探什么的所绘制的图,都以这个大地原点为基准,去建立各种用途的地表坐标系,就能统一起来了。

几种地图投影的特点及分带方法

一、只谈比较常用的几种:“墨卡托投影”、“高斯-克吕格投影”、“UTM投影”、“兰勃特等角投影。 1.墨卡托(Mercator)投影 1.1 墨卡托投影简介 墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(GerhardusMercator1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。 “海底地形图编绘规范”(GB/T17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。基准纬线取至整度或整分。 1.2 墨卡托投影坐标系 取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。 2.高斯-克吕格(Gauss-Kruger)投影和UTM(UniversalTransverseMercator)投影 2.1 高斯-克吕格投影简介 高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。德国数学家、物理学家、天文学家高斯(CarlFriedrichGauss,1777一1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(JohannesKruger,1857~1928)于1912年对投影公式加以补充,故名。设想用一个圆柱横切于球面上投影带的中央经线,按照投影带中央经线投影为直线且长度不变和赤道投影为直线的条件,将中央经线两侧一定经差范围内的球面正形投影于圆柱面。然后将圆柱面沿过南北极的母线剪开展平,即获高斯一克吕格投影平面。 高斯一克吕格投影后,除中央经线和赤道为直线外,其他经线均为对称于中央经线的曲线。高斯-克吕格投影没有角度变形,在长度和面积上变形也很小,中央经线无变形,自中央经线向投影带边缘,变形逐渐增加,变形最大处在投影带内赤道的两端。由于其投影精度高,变形小,而且计算简便(各投影带坐标一致,只要算出一个带的数据,其他各带都能应用),因此在大比例尺地形图中应用,可以满足军事上各种需要,并能在图上进行精确的量测计算。 按一定经差将地球椭球面划分成若干投影带,这是高斯投影中限制长度变形的最有效方法。分带时既要控制长度变形使其不大于测图误差,又要使带数不致过多以减少换带计算工作,据此原则将地球椭球面沿子午线划分成经差相等的瓜瓣形地带,以便分带投影。通常按经差6度或3度分为六度带或三度带。六度带自0度子午线起每隔经差6度自西向东分带,带号依次编为第1、2…60带。三度带是在六度带的基础上分成的,它的中央子午线与六度带的中央子午线和分带子午线重合,即自1.5度子午线起每隔经差3度自西向东分带,带号

地理信息系统常用的地图投影

地理信息系统常用的地图投影 1、高斯-克吕格投影--------实质上是横轴切圆柱正形投影 该投影是等角横切椭圆柱投影。想象有一椭圆柱面横套在地球椭球体外面,并与某一条子午线(称中央子午线或轴子午线)相切,椭圆柱的中心轴通过椭球体中心,然后用一定的投影方法将中央子午线两侧各一定经差范围内的地区投影到椭圆柱面上,再将此柱面展开即成为投影面。 高斯平面直角坐标系以中央经线和赤道投影后为坐标轴,中央经线和赤道交点为坐标原点,纵坐标由坐标原点向北为正,向南为负,规定为 X轴,横坐标从中央经线起算,向东为正,向西为负,规定为Y轴。所以,高斯-克吕格坐标系的X、Y轴正好对应一般GIS 软件坐标系中的Y和X。 高斯投影的条件和特点 ★中央经线和赤道投影后为互相垂直的直线,且为投影的对称轴 高斯投影的条件★投影具有等角性质 ★中央经线投影后保持长度不变 ★中央子午线长度变形比为1,其他任何点长度比均大于1 ★在同一条经线上,长度变形随纬度的降低而增大,在赤道处为最大 高斯投影的特点★在同一条纬线上,离中央经线越远,变形越大,最大值位于投影带边缘★投影属于等角性质,没有角度变形,面积比为长度比的平方 ★长度比的变形线平行于中央子午线 高斯投影6°和3 为了控制变形,我国地图采用分带方法。我国1:1.25万—1:50万地形图均采用6度分带,1:1万及更大比例尺地形图采用3度分带,以保证必要的精度。 6度分带从格林威治零度经线起,每6度分为一个投影带,该投影将地区划分为60个投影带,已被许多国家作为地形图的数字基础。一般从南纬度80到北纬度84度的范围内使用该投影。 3度分带法从东经1度30分算起,每3度为一带。这样分带的方法在于使6度带的中央经线均为3度带的中央经线;在高斯克吕格6度分带中中国处于第13 带到23带共12个带之间;在3度分带中,中国处于24带到45带共22带之间。 高斯--克吕格投影的优点:★等角性别适合系列比例尺地图的使用与编制; ★径纬网和直角坐标的偏差小,便于阅读使用; ★计算工作量小,直角坐标和子午收敛角值只需计算一个带。 ★由于高斯-克吕格投影采用分带投影,各带的投影完全相同,所以各投影带的直角坐标值也完全一样,所不同的仅是中央经线或投影带号不同。为了确切表示某点的位置,需要在Y坐标值前面冠以带号。如表示某点的横坐标为米,前面两位数字“20”即表示该点所处的投影带号。 2、墨卡托投影---------- 等角正切圆柱投影 定义:假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 特性:墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。 墨卡托投影的用途 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和

各种地图投影全解析

地图投影全解析 科技名词定义 中文名称:地图投影 英文名称:map projection 定义1:按照一定的数学法则,把参考椭球面上的点、线投影到可展面上的方法。 所属学科:测绘学(一级学科);测绘学总类(二级学科) 定义2:根据一定的数学法则,将地球表面上的经纬线网相应地转绘成平面上经纬线网的方法。 所属学科:大气科学(一级学科);动力气象学(二级学科) 定义3:运用一定的数学法则,将地球椭球面的经纬线网相应地投影到平面上的方法。即将椭球面上各点的地球坐标变换为平面相应点的直角坐标的方法。 所属学科:地理学(一级学科);地图学(二级学科) 本内容由全国科学技术名词审定委员会审定公布 地图投影是利用一定数学方法则把地球表面的经、纬线转换到平面上的理论和方法。由于地球是一个赤道略宽两极略扁的不规则的梨形球体,故其表面是一个不可展平的曲面,所以运用任何数学方法进行这种转换都会产生误差和变形,为按照不同的需求缩小误差,就产生了各种投影方法。 目录

展开 定义 地图投影,Map Projection.把地球表面的任意点,利用一定数学法则,转换到地图平面上的理论和方法。 地图投影 书面概念化定义:地图投影就是指建立地球表面(或其他星球表面或天球面)上的点与投影平面(即地图平面)上点之间的一一对应关系的方法。即建立之间的数学转换公式。它将作为一个不可展平的曲面即地球表面投影到一个平面的基本方法,保证了空间信息在区域上的联系与完整。这个投影过程将产生投影变形,而且不同的投影方法具有不同性质和大小的投影变形。 由于球面上任何一点的位置是用地理坐标(λ,φ)表示的,而平面上的点的位置是用直角坐标(χ,у)或极坐标(r,)表示的,所以要想将地球表面上的点转移到平面上,必须采用一定的方法来确定地理坐标与平面

第二章 地球体与地图投影分解

第二章地球体与地图投影 2.1 地球体 一、地球的自然表面 浩瀚宇宙之中地球是一个表面光滑、蓝色美丽的正球体。 事实上:通过天文大地测量、地球重力测量、卫星大地测量等精密测量,发现:地球并不是一个正球体,而是一个极半径略短、赤道半径略长,北极略突出、南极略扁平,近于梨形的椭球体。 二、地球的物理表面 (一)大地水准面(一级逼近) 假想将静止的平均海水面延伸到大陆内部,形成一个连续不断的,与地球比较接近的形体,其表面称为大地水准面。 它实际是一个起伏不平的重力等位面——地球物理表面。 大地水准面的意义 1. 地球形体的一级逼近: 对地球形状的很好近似,其面上高出与面下缺少的相当。 2. 起伏波动在制图学中可忽略: 对大地测量和地球物理学有研究价值,但在制图中,均把地球当作正球体。 3. 重力等位面: 可使用仪器测得海拔高程(某点到大地水准面的高度)。 三、地球体的数学表面(地球椭球体) 大地水准面仍然不是一个规则的曲面。因为重力线方向并非恒指向地心,导致处处与重力线方向正交的大地水准面也不是一个规则的曲面。大地水准面实际上是一个起伏不平的重力等位面。 为了测量成果的计算和制图工作的需要,选用一个同大地体相近的,可以用数学方法来表达的旋转椭球体来代替地球。这个旋转椭球是一个椭球绕其短轴旋转而成,其表面成为旋转椭球面。 椭球体三要素: 长轴a(赤道半径) 短轴b(极半径) 椭球扁率f=(a-b)/a 中国1952年前采用海福特(Hayford)椭球体 1953—1980年采用克拉索夫斯基椭球体(坐标原点是前苏联玻尔可夫天

文台) 自1980年开始采用 GRS 1975(国际大地测量与地球物理学联合会 IUGG 1975 推荐)新参考椭球体系,并确定陕西泾阳县永乐镇北洪流村为“1980西安坐标系”大地坐标的起算点。 四、大地基准面(Geodetic datum) 参考椭球体定义了地球的形状,而基准面则描述了这个椭球中心距地心的关系。基准面是建立在选择的参考椭球体上的,且考虑到了当地复杂的地表情况。因为参考椭球体还是不能够很好的描述地球上每个地方的具体情况,可以理解为基准面就是参考椭球向某个地方的大地水准面逼近的结果,它与参考椭球是多对一的关系。 (1)地心基准面 在过去的15年,使用卫星采集数据给测量学家们提供了一个很好的模拟地球的椭球体,即地心坐标系统。地心坐标系是使用地球的质心作为中心,目前使用最广泛的就是WGS 1984这种地心坐标系。 地球表面、参考椭球体和大地基准面的关系 (2)本地基准面(Local Datum) 本地基准面是将参考椭球体移动到更贴近当地地表形状的位置,参考椭球体上的某一点必然对应着地表上的某一位置,这个点就称作大地起算原点。大地起算原点的坐标值是固定的,其他点的坐标值都可以由该点计算得到。本地坐标系统的起始位置一般就不在地心的位置了,而是距地心一定的偏移量。 每个国家或地区均有自己的大地基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。 我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球 体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的1975地球椭球体(IAG75)建立了我国新的大地坐标系--西安80坐标系。 G PS测量采用的WGS84坐标系采用的是WGS84基准面和 WGS1984椭球体。 五、地理坐标 一、地理坐标——用经纬度表示地面点位的球面坐标。 (一)天文经纬度:表示地面点在大地水准面上的位置,用天文经度和天文纬度表示。 天文经度:观测点天顶子午面与格林尼治天顶子午面间的两面角。 在地球上定义为本初子午面与观测点之间的两面角。 天文纬度:在地球上定义为铅垂线与赤道平面间的夹角。

常用地图投影转换公式

常用地图投影转换公式 作者:青岛海洋地质研究所戴勤奋  投影计算公式往往表达方式不止一种,有时很难分辨谁对谁错,我只把“墨卡托投影”、“高斯-克吕格投影”、“UTM投影”、“兰勃特等角投影”(1:100万地形图规范中称作正轴等角圆锥投影,GB/T 14512-93)的正反转换公式列出,因为我基本能保证这些公式的正确性。1.约定 本文中所列的转换公式都基于椭球体 a -- 椭球体长半轴 b -- 椭球体短半轴 f -- 扁率 e -- 第一偏心率 e’ -- 第二偏心率 N -- 卯酉圈曲率半径 R -- 子午圈曲率半径 B -- 纬度,L -- 经度,单位弧度(RAD) -- 纵直角坐标, -- 横直角坐标,单位米(M) 2.椭球体参数 我国常用的3个椭球体参数如下(源自“全球定位系统测量规范 GB/T

界面上的所谓“北京1954“西安1980”及“WGS 84”在实际计算中只涉及了相应的椭球体参数。 3.墨卡托(Mercator)投影 3.1 墨卡托投影简介 墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定, 假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。 “海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。基准纬线取至整度或整分。 3.2 墨卡托投影坐标系 取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。 3.3 墨卡托投影正反解公式 墨卡托投影正解公式:(B,L)→(X,Y),标准纬度B0,原点纬度 0,原点经度L0

浅谈地图投影及其选择与应用

浅谈地图投影及其选择与应用 信息科学技术的进步,为现代地图学带来了全新的发展,数字化技术大大缩短了测绘地图周期,使快速成图变为现实,由4D 产品衍生的复合型地图成果也随之出现,但在地图投影选择、投影参数确定、地图数据叠加等方面凸显问题,从而使地图投影作为地图学的重要组成部分和建立地图的数学基础,再次引起广大科技工作者的重视。笔者就复合型地图以及运用多数据编制较小比例尺区域地图、专题地图、地图集等所涉及的地图投影谈谈自己的一点认识,供大家参考。 ?地图与地图投影概念 一幅现代地图必须是具备严密的数学基础,运用科学的制图综合方法,采用特定的地图符号、注记,表达出地面的三维信息和信息动态的图件。地图由此而产生的特性不同于地面写景图、照片或风景画,它是建立在一定数学基础之上的。 地图投影学正是研究建立地图数学基础的一门学科,即研究如何将地球椭球面(或圆球面)无裂隙、无重叠、平整地转换到平面(或可展曲面)上的理论与方法。因此,地图投影的实质就是建立地球椭球面地理坐标点(φ,λ)和平面直角坐标点(X ,Y )的函数对应关系,其数学表达式为: X =F 1 (φ,λ) Y =F 2 (φ,λ) 这种函数关系式必须是单值、有限而连续的。 众所周知,地球体面是一个不可展的曲面,无论采用何种地图投影法都不可能将地球体表面表示在平面上保持原样,都将产生变形或误差,其变形包括长度变形、面积变形和角度变形。一般情况下,三种变形同时存在,但在特殊情况下,或可保持角度无变形,或可保持面积无变形,或可保持某个特定方向上的长度无变形。相应地我们根据变形性质把投影分为等角投影、等面积投影和任意投影(包括等距离投影)三类,它们之间是相互联系相互影响的,其关系是: ?在等面积投影中,不能保持等角特性。 ?在任意投影中,不能保持等面积和等角特性。 ?在等面积投影中,形状变形比其它投影大;在等角投影中,面积变形比其它投影大。 根据投影的经纬线形状,我们也可把地图投影分为方位投影、圆锥投影、圆柱投影、伪方位投影、伪圆锥投影、伪圆柱投影、多圆锥投影和组合投影等。下面简要地介绍部分常用地图投影。 ?方位投影——假设将一平面相切(或相割)于地球体表面,将地球体曲面上的经纬线投影到平面上。此时的纬线为同心圆,经线为同心圆半径,两经线间夹角保持不变。例如联合国徽标就是典型的方位投影世界地图。 ?圆柱投影——假设将圆柱内侧相切(或相割)于地球体表面,将地球体曲面上的经纬线投影到圆柱面上,然后沿一母线切开并展成一矩形平面。此时纬线为平行直线,经线为垂直于纬线的另一组等距离直线,两经线距离与相应经差成正比。例如世界时区图。 ?圆锥投影——假设将一圆锥相切(或相割)于地球体表面,将地球体曲面上的经纬线投影到圆锥面上,然后将圆锥面沿一母线切开并展成一扇形平面。此时纬线为同心圆弧,经线为同心圆弧半径,两经线间的夹角与相应经差成正比。例如中华人民共和国全图。 当然还有其它种类繁多的投影,在此不一一赘述。 ?地图投影选择与应用 在设计编制任何性质的地图或地图集时,选择一个适当的地图投影,不但能保证最适合于地图用途的要求,而且可根据需要选定其变形性质并限定变形大小,提高地图的使用精度。在此笔者仅就在实际工作中选择地图投影应考虑的几点作一浅述。

我国常用的三种地图投影

椭球体参数 我国常用的3个椭球体参数如下(源自“全球定位系统测量规范GB/T 18314-2001”)Krassovsky (北京54采用)(长轴a: 6378245, 短轴b: 6356863.0188) IAG 75(西安80采用)(长轴a: 6378140, 短轴b: 6356755.2882) WGS 84(长轴a: 6378137, 短轴b: 6356752.3142) 墨卡托(Mercator)投影 墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定, 假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。 “海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。基准纬线取至整度或整分。 墨卡托投影坐标系 取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。 高斯-克吕格(Gauss-Kruger)投影和UTM(Universal Transverse Mercator)投影 高斯-克吕格投影与UTM投影异同 高斯-克吕格(Gauss-Kruger)投影与UTM投影(Universal Transverse Mercator,通用横轴墨卡托投影)都是横轴墨卡托投影的变种,目前一些国外的软件或国外进口仪器的配套软件往往不支持高斯-克吕格投影,但支持UTM投影,因此常有把UTM投影当作高斯-克吕格投影的现象。从投影几何方式看,高斯-克吕格投影是“等角横切圆柱投影( transverse conformal cylinder projection)”,投影后中央经线保持长度不变,即比例系数为1;UTM投影是“等角横轴割圆柱投影”,圆柱割地球于南纬80度、北纬84度两条等高圈,投影后两条割线上没有变形,中央经线上长度比0.9996。从计算结果看,两者主要差别在比例因子上,高斯-克吕格投影中央经线上的比例系数为1,UTM投影为0.9996,高斯-克吕格投影与UTM投影可近似采用X[UTM]=0.9996 * X[高斯],Y[UTM]=0.9996 * Y[高斯],进行坐标转换(注意:如坐标纵轴西移了500000米,转换时必须将Y值减去500000乘上比例因子后再加500000)。从分带方式看,两者的分带起点不同,高斯-克吕格投影自0度子午线起每隔经差6度自西向东分带,第1带的中央经度为3°;UTM投影自西经180°起每隔经差6度自西向东分带,第1带的中央经度为-177°,因此高斯-克吕格投影的第1带是UTM的第31带。此外,两投影的东伪偏移都是500公里,高斯-克吕格投影北伪偏移为零,UTM北半球投影北伪偏移为零,南半球则为10000公里。 高斯-克吕格投影简介 高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。德国数学家、物理学家、天文学家高斯(Carl Friedrich Gauss,1777一1855)于十九世纪二十年代拟定,后经德国

相关主题
文本预览
相关文档 最新文档