当前位置:文档之家› 行列式测试题有答案

行列式测试题有答案

行列式测试题有答案
行列式测试题有答案

行列式测试题有答案Last revision on 21 December 2020

第九讲

行列式单元测试题点评

一、填空题(每小题2分,满分20分)

1.全体3阶排列一共有 6 个,它们是123,132,213,231,312,321;

2. 奇排列经过奇数次对换变为偶排列,奇排列经过偶数次对换变为

奇排列;

3. 行列式D和它的转置行列式D'有关系式D D'

=;

4. 交换一个行列式的两行(或两列),行列式的值改变符号;

5. 如果一个行列式有两行(或两列)的对应元素成比例,则这个行列

式等于零;

6. 一个行列式中某一行(列)所有元素的公因子可以提到行列式

符号的外边;

7. 把行列式的某一行(列)的元素乘以同一数后加到另一行(列)的

对应元素上,行列式的值不变;

8. 行列式的某一行(列)的元素与另一行(列)的对应元素的代数余

子式的乘积之和等于零;

9.

11121

222

1122

; 00

n

n

nn

nn

a a

a

a a

a a a

a

=

10.当k=2

2

±

时,5

42

k k

k

=。

二、判断题(每小题3分,满分24分)

1.1)(,)(31221±==k i i i i k i i i n n ππ则若 (∨)

的符号

的一般项则设n n j i j i j i nn

n n n

n

a a a a a a a a a a a a D

2211D ,.221

22221

11211

=

.)

1()

(21n j j j π-是 (×)

3. 若n(n>2)阶行列式D=0,则D 有两行(列)元素相同. (×) 4.若n 阶行列式D 恰有n 个元素非0,则D ≠0. (×) 5.对于线性方程组,只要方程个数等于未知数个数,就可以直接使用克莱姆法则求解。 (×) 6.若行列式D 的相同元素多于2n n -个,则D=0. (×)

7.

11

121313233321222312

222331

32

33

11

21

31

a a a a a a a a a a a a a a a a a a = (×)

阶行列式主对角线上元素乘积项带正号,副对角线上元素乘积项带负号。 (×) 三、单项选择题(每小题4分,满分20分) 1.位于n 级排列12111k k n i i i i i -+中的数1与其余数形成的反序个

数为( A )

(A )k-1 (B) n-k-1 (C) k n C (D) 2

n C k -

2.设12n i i i 是奇排列,则121n n i i i i -是(C )

(A )奇排列; (B ) 偶排列;

(C )奇偶性不能仅由n 的奇偶性确定的排列;

(D )奇偶性仅由n 的奇偶性确定的排列。

3.一个不等于0的n 阶行列式中非零元素个数至少为(D ); 4.以下数集作成数环的是( C )

(1) S={}

Z ∈; (2) S={}

0a a Q ≠∈;

(3) S={},a b Z +∈; (4)

S={}

,a a b Q +∈.

(A )(1)、(3) (B )(2)、(4) (C )(3)、(4) (D )(1)、(4)

5.行列式000

000

a e b

f g

c h d

中元素f 的代数余子式是( C ) 四、计算下列各题(每小题5分,满分20分)

1.计算(

)π(2k)1(2k-1)2(k+1)k ;

3.计算行列式

D=

2223

3

3

4

44

3453453

4

5

345的值。

4.计算行列式 1

2

3

1110

022

00

11n n

n

n

--=---n D 的值。

五、证明下列各题(满分16分)

1212,F F F F 1.设均为数域,证明也是数域。(5分)

2.已知a,b,c均不为0,证明

ay bx c

cx az b

bz cy a

+=

?

?

+=

?

?+=

?

有唯一解。(5分)

证明因为方程组的系数行列式

所以有克莱姆法则知,方程组有唯一解。

3.设a,b,c是一个三角形的三边,证明0

0.

a b c

a c b

b c a

c b a

<(6分)证明

(因为a,b,c是三角形的三边)本讲作业:

(一)解答下列各题

1.计算行列式

123

113

121

123

1

n

x n D x n

x

+

=+

+

2.计算n阶行列式

5100

0 6

51

00 06500

00051

00065 D=

22222

2222

222

2

2

2

2

12312(1)(1)1(2)2341n n n n n n ---说明:此行列式称为循环行列式,以后见到以下类型的行列式计算,可直接利用这一结果。

例如计算行列式 D=(二)阅读教材P49-60,并回答什么是矩阵、矩阵的相等矩阵有哪些运算和性质有哪些特殊矩阵和特殊性质

工程数学教案行列式的性质与计算

教案头 教学详案 一、回顾导入(20分钟) ——复习行列式的概念,按照定义计算一个四阶行列式,一般需要计算四个三阶行列式,如果计算阶数较高的行列式利用定义直接计算会比较麻烦,为简化行列式的计算,我们需要研究行列式的主要性质。 二、主要教学过程(60分钟,其中学生练习20分钟) 一、行列式的性质 定义 将行列式D 的行换为同序数的列就得到D 的转置行列式,记为T D 。 性质1 行列式与它的转置行列式相等。 性质2 互换行列式的两行(列),行列式变号。 推论 如果行列式有两行(列)完全相同,则此行列式为零。性质3 行列式的某一行(列)中所有的元素都乘以同一数k ,等于用数k 乘此行列式。 推论 行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面。性质4 行列式中如果有两行(列)元素成比例,则此行列式为零。性质5 若行列式的某一列(行)的元素都是两数之和。 性质6 把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。二、行列式按行(列)展开 定义 在n 阶行列式中,把元素 ij a 所在的第i 行和第j 列划去后,留下来的1-n 阶行列式叫做元素ij a 的余子式,记作ij A 。记ij j i ij M A +-=)1(,叫做元素ij a 的代数余子式。引理 一个n 阶行列式,如果其中第i 行所有元素除ij a 外都为零,那末这行列式等于ij a 与它的代数余子式的乘积,即 ij ij A a D =。定理 行 列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即 ),,2,1(,2211n i A a A a A a D in in i i i i =+++=。 推论 行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即 j i A a A a A a D jn in j i j i ≠+++=,2211 。 行列式的代数余子式的重要性质: ???≠===∑=;,0,,1j i j i D D A a ij n k kj ki 当当δ???≠===∑=;,0, ,1j i j i D D A a ij n k jk ik 当当δ

(完整版)线性代数行列式第一章练习题答案

《线性代数》(工)单元练习题 一、填空题 1、设矩阵A 为4阶方阵,且|A |=5,则|A*|=__125____,|2A |=__80___,|1-A |= 1/5 2、若方程组?? ? ??=+=+=+a bz cy b az cx ay bx 0 有唯一解,则abc ≠ 0 3、把行列式的某一列的元素乘以同一数后加到另一列的对应元素上,行列式 0 . 4、当a 为 1 or 2 时,方程组??? ??=++=++=++0 40203221321321x a x x ax x x x x x 有非零解. 5、设=-+----=31211142,4 101322 13A A A D 则 .0 二、单项选择题 1.设) (则=---===33 3231312322212113 1211113332312322 211312 11324324324,1a a a a a a a a a a a a D a a a a a a a a a D B (A)0 ; (B)―12 ; (C )12 ; (D )1 2.设齐次线性方程组??? ??=+-=++=+02020z y kx z ky x z kx 有非零解,则k = ( A ) (A )2 (B )0 (C )-1 (D )-2 3.设A=7 925138 02-,则代数余子式 =12A ( B ) (A) 31- (B) 31 (C) 0 (D) 11- 4.已知四阶行列式D 中第三列元素依次为-1,2,0,1,它们的余子式依次分别为5,3,-7,4, 则D= ( A ) (A ) -15 (B ) 15 (C ) 0 (D ) 1 三、计算行列式

行列式试题库

一.判断题 (易)1、n 阶行列式 11121212221 2n n n n nn a a a a a a a a a ??????????????是由2n 个数构成的n 行n 列的数表( ). 答案:× (较容易)2、6216 210 0000000λλλ=λλλΛΛ M M M M M ΛΛ. ( ). 答案:× (较容易)3、8218 210 0000000k k k k k k ΛΛ M M M M M ΛΛ=.( ). 答案: √ (较容易)4.若方阵A 的各行元素之和为零,则0A = ( ) 答案: √ 二.填空题 (中等)1.设12345 77733 324523332246523 =A ,313233++=A A A _________,3435+=A A ________ 答案:0,0 (中等)2.1234 243141321432 = D , 求11213141+++A A A A =________ 答案:0 (较容易)3. 5阶行列式D 的第2列元素依次为1,1,0,2,1它们对应的余子式分别为-1,3,-2,0,1,则=D ________. 答案:3 (较容易)4.d b a c d b c a b d c a b d a c = . 答案:0

(较容易)5. y x y x x y x y x y x x y x 323222 +++++= . 答案:)(2y x xy +- (较容易)6. 621 7213424435431014327 427246-= 答案:510294?- (中等)7.已知三阶行列式 9 876543 21 =D ,它的元素ij a 的代数余子式为ij A (3,2,1,3,2,1==j i ), 则与232221cA bA aA ++对应的三阶行列式为 . 答案: 9 873 21 c b a (中等)8. 设行列式3 0402222,07 5 3 22 D = -- 则第四行各元素余子式之和的值为 . 答案:–28 (较容易)9. 1111001 1110 y y y x x x --= . 答案:22 x y (中等)10. 行列式 1 1 1 1 111111111111 --+---+---x x x x = . 答案:4x (较容易)11. 当λ= 或μ= 时,齐次方程组??? ??=+μ+=+μ+=++λ0 200 321 321321x x x x x x x x x 有非零解. 答案:1,0

线性代数第1章行列式试卷及答案

第一章 行列式 一、单项选择题 1.行列式D 非零的充分条件是( D ) (A) D 的所有元素非零 (B) D 至少有n 个元素非零 (C) D 的任何两行元素不成比例 (D)以D 为系数矩阵的非齐次线性方程组有唯一解 2.二阶行列式 1 2 21--k k ≠0的充分必要条件是( C ) A .k ≠-1 B .k ≠3 C .k ≠-1且k ≠3 D .k ≠-1或≠3 3.已知2阶行列式 2 21 1b a b a =m , 2 21 1c b c b =n ,则 2 22 111c a b c a b ++=( B ) +n (m+n ) 4.设行列式==1 11103 4 222,1111304z y x z y x 则行列式( A ) A. 32 D.3 8 5.下列行列式等于零的是(D ) A .100123123- B. 031010300- C . 100003010- D . 2 61422613- 6.行列式 1 1 1 101111011110------第二行第一列元素的代数余子式21A =( B ) A .-2 B .-1 C .1 D .2 8.如果方程组?? ? ??=+=-=-+0404033232321kx x x x x kx x 有非零解,则 k =( B ) 9.(考研题)行列式 0000000a b a b c d c d =( B ) A.()2ad bc - B.() 2ad bc -- C.2222 a d b c - D.22 2 2 b c a d - 二、填空题 1.四阶行列式中带负号且含有因子12a 和21a 的项为 44332112a a a a 。 2. 行列式11 1 2 3 44916 中(3, 2 )元素的代数余子式 A 32=___-2___. 3. 设7 3 43690211 1 1 875 1----= D ,则5A 14+A 24+A 44=_______。 解答:5A 14+A 24+A 44= 1501 3430 90211 1 15751-=--- 4.已知行列式01 110321 2=-a ,则数a =____3______. 5.若a ,b 是实数,则当a =___且b =___时,有=---10100 a b b a 0。 解答:0)(1 0100 22=+-=--=---b a a b b a a b b a a =0, b =0 6. 设1 31 2 4321322 )(+--+-+= x x x x f ,则2 x 的系数为 23 。 7. 五阶行列式=6 200357020381002 300031000___________。 解答:4232 1 2 331)1(6 200357020381002 30003100032=?? -=? 8. (考研题)多项式2 1 1 111 )(32 132132 1321+++++= x a a a a x a a a a x a a a a x f 的所有零 点为 01=x ,12-=x ,23-=x 。 9、(考研题)设x d c b d x c b d c x b d c b x x f = )(,则方程0)(=x f 的根为=x 。 【分析】 )(x f 是关于x 的四次多项式,故方程0)(=x f 应有四根,利用行列式的性质知,当d c b x ,,=时,分别会出现两行相等的情况,所以 行列式为零,故d c b x ,,=是方程的三个根。 再将后三列均加到第一列上去可以提取一个公因子为 d c b x +++,所以当)(d c b x ++-=时,满足0)(=x f ,所以得方程的 第四根)(d c b x ++-=。 故方程的四个根分别是:)(,,,d c b d c b ++-。 二、计算题 1、计算000100 0200020120002013000 002014 D = 。 【分析】方法一:此行列式刚好只有n 个非零元素 nn n n n a a a a ,,,,112211--- ,故非零项只有一项: nn n n n t a a a a 112211)1(---- ,其中2 ) 2)(1(--= n n t , 因此 (20141)(20142) 2 (1) 2014!2014!D --=-= 方法二:按行列展开的方法也行。 2、计算行列式 3 214214314324 321= D 。 分析:如果行列式的各行(列)数的和相同时,一般首先采用的是将各列(行)加到第一列(行),提取第一列(行)的公因子(简称列(行)加 法). 解 这个行列式的特点是各列4个数的和为10 ,于是,各行加到第一行,得

第一章行列式练习题目及答案

第一章 行列式 一、单项选择题 1.=0 001001001001000( ). (A) 0 (B)1- (C) 1 (D) 2 2. =0 001100000100100( ). (A) 0 (B)1- (C) 1 (D) 2 3. 若2 1 33 32 31 232221 131211 ==a a a a a a a a a D ,则=---=32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 4.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 5. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 6. 若5 734111113263478 ----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 7. 若2 23 5 00 1 011110403 --= D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)0

8. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 二、填空题 1. 行列式=0 100111010100111. 2.行列式 = -0 10000200 0010 n n . 3.行列式 =--0 01) 1(2211)1(111 n n n n a a a a a a . 4.如果M a a a a a a a a a D ==3332 31 232221131211 ,则=---=32 323331 2222232112121311133333 3a a a a a a a a a a a a D . 5.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为 . 6.行列式 = --+---+---111 1 111111111111 x x x x . 7.n 阶行列式=+++λλλ 111 1 11111 . 8.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3, 2, 1,则该行列式的值为 .

行列式-矩阵练习题

行列式 矩阵练习题 一、单项选择题 1. 设行列式D=a 522315 21-=0,则a =( B ). A. 2 B. 3 C. -2 D. -3 2. 设A 是k ×l 矩阵,B 是m ×n 矩阵,如果AC T B 有意义,则矩阵C 的为( B ). A. k ×m B. k ×n C. m ×l D. l ×m 3. 设A 、B 均为n 阶矩阵,下列各式恒成立的是( B ). A. AB=BA B. (AB)T =B T A T C. (A+B)2=A 2+2AB+B 2 D. (A+B)(A-B)=A 2-B 2 4. A 为n 阶方阵,下面各项正确的是( C ). A. |-A|=-|A| B. 若|A|≠0,则AX=0有非零解 C. 若A 2=A,则A=E D. 若秩(A)k B. 秩(A)≥k C. 秩(A)=k D. 秩(A)≤k 6. 设A 、B 为同阶方阵,则下面各项正确的是( A ). A. 若|AB|=0, 则|A|=0或|B|=0 B. 若AB=0, 则A=0或B=0 C. A 2-B 2=(A-B)(A+B) D. 若A 、B 均可逆,则(AB)-1=A -1B -1 7. 当k 满足( A )时,?????=+=++=++0 z 2y -kx 0z ky 2x 0z ky kx 只有零解. A. k=2或k=-2 B. k ≠2 C. k ≠-2 D. k ≠2且k ≠-2 8. 设A 为n 阶可逆阵,则下列( B )恒成立. A.(2A)-1=2A -1 B. (2A -1)T =(2A T )-1 C. [(A -1)-1]T =[(A T )-1]-1 D. [(A T )T ]-1=[(A -1)-1]T 二、填空题

高二数学上册 9.4《三阶行列式》教案(3) 沪教

9.4(1)三阶行列式 一、教学内容分析 三阶行列式是二阶行列式的后继学习,也是后续教材学习中一个有力的工具.本节课的教学内容主要围绕三阶行列式展开的对角线法则进行,如何理解三阶行列式展开的对角线法则和该法则的应用是本节课的重点内容. 二、教学目标设计 经历观察、比较、分析、归纳的数学类比研究,从二阶行列式的符号特征逐步形成三阶行列式的符号特征,从二阶行列式展开的对角线法则逐步内化形成三阶行列式展开的对角线法则,感悟类比思想方法在数学研究中的应用. 三、教学重点及难点 三阶行列式展开的对角线法则、三阶行列式展开的对角线法则形成的过程. 四、教学用具准备 可以计算三阶行列式值的计算器 五、教学流程设计 六、教学过程设计 一、情景引入 1.观察

(1)观察二阶行列式的符号特征: 1325 023 1 - 612 711 - a b c d (2)观察二阶行列式的展开式特征: 13112321=?-? 02013(2)3 1-=?-?- 6 12 6(11)712711 =?--?- a b a d c b c d =?-? 2.思考 (1)二阶行列式算式的符号有哪些特征? (2)你能总结一下二阶行列式的展开式有哪些特征吗? [说明] (1)请学生观察二阶行列式的符号特征,主要是观察二阶行列式有几个元素,这几个元素怎么分布?从而可以类比得到三阶行列式的符号特征. (2)请学生观察和总结二阶行列式的展开式特征,可以提示学生主要着力于以下几个方面: ① 观察二阶行列式的展开式有几项? ② 二阶行列式的展开式中每一项有几个元素相乘;这几个元素在行列式中的位置有什么要求吗? ③ 二阶行列式的元素在其展开式中出现了几次?每个元素出现的次数一样吗? 二、学习新课 1.新课解析 【问题探讨】 结合情景引入的两个思考问题,教师可以设计一些更加细化的问题引导学生发现二阶行列式的符号特征以及二阶行列式的展开式特征,从而类比得到三阶行列式相应特征.比如教师可以设计如下几个问题: 问题一,通过学习和观察,我们发现二阶行列式就是表示四个数(或式)的特定算式,这四个数分布成两行两列的方阵,那么三阶行列式符号应该有怎么样的特征呢? 问题二,说出二阶行列式的展开式有哪些特征? (① 二阶行列式的展开式共有两项;② 二阶行列式的展开式中每一项有两个元素相乘;③ 相乘的两个元素在行列式位于不同行不同列;④ 二阶行列式的元素在其展开式中出现了

行列式检验测试题(有规范标准答案)

第九讲 行列式单元测试题点评 一、填空题(每小题2分,满分20分) 1.全体3阶排列一共有 6 个,它们是123,132,213,231,312,321; 2. 奇排列经过奇数次对换变为偶排列,奇排列经过偶数次 对换变为奇排列; 3. 行列式D和它的转置行列式D'有关系式D D' =; 4. 交换一个行列式的两行(或两列),行列式的值改变符号; 5. 如果一个行列式有两行(或两列)的对应元素成比例,则这 个行列式等于零; 6. 一个行列式中某一行(列)所有元素的公因子可以提到 行列式符号的外边; 7. 把行列式的某一行(列)的元素乘以同一数后加到另一行(列) 的对应元素上,行列式的值不变; 8. 行列式的某一行(列)的元素与另一行(列)的对应元素的 代数余子式的乘积之和等于零; 9. 11121 222 1122 ; 00 n n nn nn a a a a a a a a a = L L K M M M M L

10.当 k=22 ±时,542k k k =。 二、判断题(每小题3分,满分24分) 1.1)(,)(31221±==k i i i i k i i i n n ΛΛππ则若 (∨) 的符号 的一般项则设n n j i j i j i nn n n n n a a a a a a a a a a a a D ΛΛ M M M M ΛΛ2211D ,.221 2222111211= .)1() (21n j j j Λπ-是 (×) 3. 若n(n>2)阶行列式D=0,则D 有两行(列)元素相同. (×) 4.若n 阶行列式D 恰有n 个元素非0,则D ≠0. (×) 5.对于线性方程组,只要方程个数等于未知数个数,就可以直接使用克莱姆法则求解。 (×) 6.若行列式D 的相同元素多于2n n -个,则D=0. (×) 7. 11 121313233321222312 222331 32 33 11 21 31 a a a a a a a a a a a a a a a a a a = (×) 8.n 阶行列式主对角线上元素乘积项带正号,副对角线上元素乘积项带负号。 (×) 三、单项选择题(每小题4分,满分20分) 1.位于n 级排列12111k k n i i i i i -+L L 中的数1与其余数形成的反序个数为( A )

线性代数第一章行列式试题及答案

如何复习线形代数 线性代数这门课的特点主要有两个:一是试题的计算量偏大,无论是行列式、矩阵、线性方程组的求解,还是特征值、特征向量和二次型的讨论都涉及到大量的数值运算,稍有不慎,即会出错;二是前后内容紧密相连,纵横交织,既相对独立又密不可分,形成了一个完整、独特的知识体系. 在掌握好基本概念、基本原理和基本方法的前提下,下面谈谈在复习过程中应注意的一些问题. 一、加强计算能力训练,切实提高计算的准确性 二、扩展公式结论蕴涵,努力探索灵活解题途径 三、注重前后知识联系,努力培养综合思维能力 线性代数不仅概念多,公式结论多,而且前后知识联系紧密,环环相扣,几乎从任何一个知识点都可切入将前后知识联系起来考查 四、加强综合题型训练,全面系统地掌握好知识 计算能力的提高不是一朝一夕的事,除了要不断归纳总结一些重要公式和结论并加以巧妙、适当的应用外,还要靠平时的积累,要养成踏踏实实、有始有终将最后结果计算出来的习惯,只要持之以恒、坚持练习,计算准确性的提高并不是一件困难的事. 而对整个知识的融会贯通、综合应用也有赖于适当地多做这方面的练习, 第一章行列式 一.概念复习 1. 形式和意义 形式:用n2个数排列成的一个n行n列的表格,两边界以竖线,就成为一个n阶行列式: a11 a12 (1) a21 a22 (2) ………. a n1 a n2…a nn 如果行列式的列向量组为1,2, …,n,则此行列式可表示为|1,2, …,n|. 意义:是一个算式,把这n2个元素按照一定的法则进行运算,得到的数值称为这个行列式的值. 请注意行列式和矩阵在形式上和意义上的区别. 当两个行列式的值相等时,就可以在它们之间写等号! (不必形式一样,甚至阶数可不同.) 每个n阶矩阵A对应一个n阶行列式,记作|A|. 行列式这一讲的的核心问题是值的计算,以及判断一个行列式的值是否为0. 2. 定义(完全展开式) 一般地,一个n阶行列式 a11 a12 (1) a21 a22 (2) ……… a n1 a n2…a nn 的值是许多项的代数和,每一项都是取自不同行,不同列的n个元素的乘积,其一般形式为: n nj j j a a a 2 1 2 1 ,这里把相乘的n个元素的行标按自然顺序排列,它们的列标j1j2…j n构成1,2, …,n的一个全排列(称为一个n元排列), 一个n元排列的总项数共有n!个,因此n阶行列式的值是n!项的代数和。 所谓代数和是在求总和时每项先要乘+1或-1.规定(j1j2…j n)为全排列j1j2…j n的逆序数,全排列的逆序数即小数排列在大数右面的现象出现的个数. 逆序数可如下计算:标出每个数右面比它小的数的个数,它们的和就是逆序数.例如求436512的逆序数: 2 3 2 3 215 6 3 4,(436512)=3+2+3+2+0+0=10. 则项 n nj j j a a a 2 1 2 1 所乘的是. )1 () (2 1n j j j τ -即逆序数是偶数时,该项为正;逆序数是奇数时,该项为负;在一个n元排列的n!项中,奇排列和偶排列各有n!/2个。至此我们可以写出n阶行列式的值: a11 a12 (1) a21 a22…a2n =. )1 ( 2 1 2 1 2 1 2 1 ) ( n n n nj j j j j j j j j a a a τ - ∑ ……… a n1 a n2…a nn

行列式练习题及答案

一、填空题 1.设自然数从小到大为标准次序,则排列1 3 … )12(-n 2 4 … )2(n 的逆序数为 ,排列1 3 … )12(-n )2(n )22(-n …2的逆序数为 . 2.在6阶行列式中,651456314223a a a a a a 这项的符号为 . 3.所有n 元排列中,奇排列的个数共 个. 二、选择题 1.由定义计算行列式n n 0000000010 020001000 -= ( ). (A )! n (B )!)1(2) 1(n n n -- (C )!) 1(2) 2)(1(n n n --- (D )!)1()1(n n n -- 2.在函数x x x x x x f 2 1 1 23232101)(= 中,3x 的系数是( ). (A )1 (B )-1 (C )2 (D )3 3.四阶行列式的展开式中含有因子32a 的项,共有( )个. (A )4; (B )2; (C )6; (D )8. 三、请按下列不同要求准确写出n 阶行列式)det(ij a D =定义式: 1. 各项以行标为标准顺序排列; 2. 各项以列标为标准顺序排列; 3. 各项行列标均以任意顺序排列. 四、若n 阶行列式中,等于零的元素个数大于n n -2,则此行列式的值等于多少?说明理由.

一、填空题 1.若D=._____324324324,133 32 3131 232221211312111113332 31 232221131211=---==a a a a a a a a a a a a D a a a a a a a a a 则 2.方程 2 2913251323 2 213211x x --=0的根为___________ . 二、计算题 1. 8 1 71160451530169 14 4312----- 2. d c b a 100 1100 11001--- 3.a b b b a b b b a D n =

第一章行列式与矩阵计算练习(含答案)

行列式及矩阵的计算(课堂练习) 一、填空 1.已知三阶方阵A 的行列式为3,则 2A -= -24 2. 设12,01A -?? = ???1()32x g x x -= -+,则()g A =0800-?? ??? 3.设,,αβγ为3维列向量,记矩阵(,,),(,,)A B αβγαββγγα==+++,若 3,A B =则=,,,,6αβγ βγα+= 4.行列式1 1 1 11 1 11 ---x 的展开式中,x 的系数是 2 . 5.设???? ??=1201A 则=k A 1021k ?? ??? 。(k 为正整数). 6.设321,,ααα,21,ββ都是四维列向量,且四阶行列式1123,,,m αααβ=, 1232,,,n αααβ=,则12312,,,2αααββ-=16m n + 解:11231232,,,2,,,D αααβαααβ=+- 14412312322,,,(1),,,16m n αααβαααβ=+-=+ 7. 已知四阶行列式D 中第三列元素分别为1,3,-2,2,它们对应的余子式分 别为3,-2,1,1,则行列式D =-3 .

解:D =1×3+3×(-2)+(-2)×1+2×1=-3 二、判断题 1.设A 、B 均为n 阶方阵,则A B A B =. ( × ) 2.设A 、B 均为n 阶方阵,则AB A B =. (√ ) 三、行列式计算 (1)4 3 3 3 34333 343 3334 Λ ΛΛΛΛΛΛ ΛΛ=n D 解: n D n c c c c c c +++13121M 4 3 3 1 334313334133331 3Λ ΛΛΛΛΛΛΛΛ++++n n n n 1 1312r r r r r r n ---M 1 01000 0103 3313Λ ΛΛΛΛΛΛΛΛ+n =13+n (2)11111231 149118271 D --=-- 解:(范得蒙行列式)=(-1-3)(-1+2)(-1-1)(3+2)(3-1)(-2- 1)=-240 五、a 为何值时,线性方程组:??? ??-=++=++=++a ax x x x ax x x x x a 322321 321321有唯一解? 解:2 )1)(2(11111 1det -+==a a a a a A ,2-≠a 且1≠a 时,有唯一解.

线代教案第1章行列式

第1章行列式(共4学时) 一、教学目标及基本要求 1.了解逆序数的概念 2.掌握n阶行列式的定义和行列式的性质 3.掌握行列式的按行(列)展开定理 4.利用行列式的性质和展开定理计算行列式的值 二、教学内容与学时分配 1.预备知识 2.n阶行列式的定义(2学时) 3.行列式的性质 4.行列式的展开(2学时) 三、教学内容的重点及难点 重点:利用行列式性质及展开计算行列式 难点:行列式的计算技巧 四、教学内容的深化和拓宽 行列式的拉普拉斯展开定理及行列式在实际中的应用,或讲稿中部分结论推广 五、思考题与习题 思考题:见讲稿 作业:2,(2),(4),(6);3,(1),(3);7,(1),(3),(5) 六、教学方式与手段 注意行列式定义的引入,应用启发式

讲稿内容 1.1 预备知识 为什么要学习行列式呢?因为它是一个很重要的数学工具,在数学的各个分支中都经常用到,比如,用二阶行列式来解二元线性方程组,用三阶行列式来解三元方程线性组等;又如,已知平面的三点 ),(),,(),,(332211y x y x y x ,则以这三点为顶点的三角形面积为下面行列式的绝对值:.1112 1 3 3 22 11 y x y x y x 这一章主要引进行列式的概念并讨论行列式的性质,以及利用行列式的性来计算行列式的值。下面我们利用线性方程组的求解引入行列式的概念。 设有二元线性方程组 ?? ?? ?=+=+)2()1(22221211212111b x a x a b x a x a 可用消元法来解该方程组。 1222211211222111222)(:)2()1(a b a b x a a a a a a -=-?-? 2111122211222112111)(:)1()2(a b a b x a a a a a a -=-?-? 若0)(21122211≠-a a a a ,则21 1222112111122211222111222211,a a a a a b a b x a a a a a b a b x --=--= 如果我们定义 bc ad d c b a -=, d c b a 称为二阶行列式,横排称为行,纵排称为列,二阶行列式共有二行 二列四个元素,其值等于主对角线元素之积与次对角线元素之积的差。这样一来,二元线性方程组的解可简 单表示为 D D x D D x 2211,== 其中22 211211a a a a D = 为方程组未知数的系数所组成的行列式称为方程组的系数行列式; 2221211a b a b D = (用方程组的常数项代替系数行列式的第1列) 2 211 11 2b a b a D = (用方程组的常数项代替系数行列式的第2列) 类似地,我们可用三阶行列式来解三元线性方程组: ??? ??=++=+=++33332321 3123232221211 313212111b x a x a x a b x a x a x a b x a x a x a + 定义32211331231233221133 32 31 23222113 1211 a a a a a a a a a a a a a a a a a a D ++==

行列式练习题

《线性代数》第一章练习题 一、填空题 1、_____________)631254(=N 2、要使排列(3729m14n5)为偶排列,则m =_______, n =_________ 3、关于x 的多项式x x x x x 22111---中含2 3 ,x x 项的系数分别 是 4、 A 为3阶方阵,2=A ,则__ __________3* =A 5、四阶行列式)det(ij a 的反对角线元素之积(即41 322314a a a a )一项的符号为 6、求行列式的值 (1) 4692469234 1234=_____; (2) 13 14102 4 2 121=____ ; (3) 2005 000200410020030102002 200120001--=_______; (4) 行列式2 4 3 012 321---中元素0的代数余子式的值为 _______ 7、 64 8149712551 = ; 125 2786425941653241111--= 8、设矩阵A 为4阶方阵,且|A |=5,则|A*|=______,|2A |=_____,|1 -A |= 9、 11101110= ; =0 001003102222210 。 10、若方程组 ?? ? ??=+=+=+a bz cy b az cx ay bx 0 有唯一解,则abc ≠ 11、把行列式的某一列的元素乘以同一数后加到 另一列的对应元素上,行列式 。 12、行列式 中 在项的项共有214312344214231144 43 42 41 3433323124 23222114131211,,a a a a a a a a a a a a a a a a a a a a a a a a ,

方阵的行列式教案

第四章 第一节 行列式的定义 『教案』 一、教学目标: 1. 了解行列式的定义和性质; 2. 掌握二阶、三阶行列式的计算法,会计算简单的n 阶行列式; 3. 了解排列与对换; 4. 会用Gramer 法则解线性方程组。 二、教学重点: 1. 行列式的计算方法。 2. 用行列式求矩阵的秩和逆矩阵。 3. 克莱姆法则。 三、教学难点: 1、行列式的按行(列)展开。 2、、克莱姆法则。 四、教学的必要条件及方法: 1.条件:多媒体网络教室(联网)、黑板 2.教学方法:讲练结合 五、教学课时:2 课时 六、教学环节: 一. 二阶行列式 设二元一次方程组(*)?? ?=+=+2 221 11c y b x a c y b x a (其中y x ,是未知数,2121,,,b b a a 是未知数的系数且不全为零,21,c c 是常数项.) 用加减消元法解方程组(*): 当01221≠-b a b a 时,方程组(*)有唯一解:??? ? ??? --=--=1221122112211221b a b a c a c a y b a b a b c b c x , 引入记号 2 1a a 2 1b b 表示算式1221b a b a -,即 2 1a a 2 1b b 1221b a b a -=. 举例说明: 课本例1 从而引出行列式的相关概念,包括行列式、二阶行列式、行列式的展开式、行列式的值、行

列式的元素、对角线法则等. 记= D 2 1a a 2 1 b b ,= x D 2 1c c 2 1b b ,= y D 2 1a a 2 1c c , ①则当= D 2 1a a 2 1b b =01221≠-b a b a 时,方程组(*)有唯一解, 可用二阶行列式表示为??? ? ?? ?==D D y D D x y x . ②当D =0时,0x y D D == 无穷组解; ③当D =0时,0,0x y D or D ≠≠ 无解。 系数行列式1 1 2 2 a b D a b = 也为二元一次方程组解的判别式。 二. 三阶行列式 对角线方式展开 三.n 阶行列式 七、教学反思与改进 本次课,让学生掌握了求极限的方法,以及两个重要极限的应用,并举例子让学生练习巩固学生学习。 第四章 第三节 行列式按行(列)展开 『教案』 一、教学目标: 1. 掌握行列式掌握; 2. 用行列式求矩阵的秩和逆矩阵. 二、教学重点: 1. 行列式的计算方法。 2. 用行列式求矩阵的秩和逆矩阵。

(完整版)第一章行列式试题及答案

第一章 行列式试题及答案 一 选择题 (每小题3分,共30分) ⑴ n 元排列 i 1 i 2… i n 经过相邻对换,变为i n … i 2 i 1,则相邻对换的次数为( ) (A) n (B) n /2 (C) 2n (D) n (n -1)/2 ⑵ 在函数()x x x x x x f 21421 12---=中,x 3的系数是( ) (A) -2 (B) 2 (C) -4 (D) 4 ⑶ 若D n =det(a ij )=1,则det(-a ij ) = ( ) (A) 1 (B) -1 (C) (-1)n (D) (-1)n(n -1)/2 ⑷ 设 n n λλλλλλN O 21 2 1 = ,则n 不可取下面的值是( ) (A)7 (B) 2k +1(k ≥2) (C) 2k (k ≥2) (D) 17 ⑸ 下列行列式等于零的是( ) (A)100123123- (B) 031010300- (C) 100003010- (D) 2614226 13- ⑹ 行列式D 非零的充分条件是( ) (A) D 的所有元素非零 (B) D 至少有n 个元素非零 (C) D 的任何两行元素不成比例 (D)以D 为系数矩阵的非齐次线性方程组有唯一解 ⑺ =+++1 11 22 2c bc ac bc b ab ac ab a ( ) (A) 1 000100 01222 +c bc ac bc b ab ac ab a (B) 1111122222 +++++c bc ac bc b ab ac ab c bc ac bc b ab ac ab a (C) 101011122 22 2 +++++c bc bc b ac ab c bc ac bc b ab ac ab a (D) 1 1122 2 bc ac bc ab ac ab c bc ac bc b ab ac ab a + ⑻ 设a ,b ,c 两两不同,则02 22=+++c b a c b a b a a c c b 的充要条件是( ) (A) abc =0 (B) a+b+c =0 (C) a =1, b =-1, c =0 (D) a 2=b 2, c =0 ⑼ 四阶行列式 =4 4 3 322 1 1 a b a b b a b a ( ) (A) (a 1a 2- b 1b 2) (a 3a 4- b 3b 4) (B) (a 1a 4- b 1b 4) (a 2a 3- b 2b 3) (C) (a 1b 2- a 2b 1) (a 3b 4- a 4b 3) (D) (a 1b 4- a 4b 1) (a 2b 3- a 3b 2) ⑽ 齐次线性方程组??? ??=-+=+-=-+03020 223 21321321x x x x x x x x x λ只有零解,则λ应满足的条 件是( ) (A) λ=0 (B) λ=2 (C) λ=1 (D) λ≠1 二 填空 (每小题3分,共15分) ⑴ 在五阶行列式中,3524415312a a a a a 的符号是_________。 ⑵ 五阶行列式=6 200357020381002 300031000___________。 ⑶ 设7 3 4 369 02 111 1875 1----= D ,则5A 14+A 24+A 44=_______。 ⑷ 若a ,b 是实数,则当a =___且b =___时,有=---10100 a b b a 0。 ⑸ 设x 1,x 2,x 3是方程x 3+px +q =0的根,则行列式=1 32213 3 21 x x x x x x x x x __。 三 计算行列式 (每小题6分,共30分) ⑴ 0 1 1 2 2 1032101132 221 13 132 11----- ⑵ ()()()()()()()()()()()()2 22 2 222222222222321321321321++++++++++++d d d d c c c c b b b b a a a a ⑶ y y x x -+-+11 1 1 111111111111 ⑷ a c b a c b a c b a c b a ⑸ x b b b a x b b a a x b a a a x D n Λ ΛM M O M M Λ Λ =(a ≠b ) 四 证明题 (每小题10分,共20分) ⑴ 用归纳法证明: 任意一个由自然数1,2,…,n 构成的n 元排列,一定可以经过不超过n 次对换变成标准排列12…n ⑵ 设平面上三条不同的直线为 000 =++=++=++b ay cx a cy bx c by ax , 证明: 三条直线交于一点的充分必要条件是0=++c b a

高代-行列式测试题

高等代数 《行列式》测 验 一 填空题(2'612'?=) 1. 六阶行列式的展开式共有( )项. (A )120 (B )60 (C) 720 (D) 240 2. 排列1 2345a a a a a 的逆序数为a ,则排列5 4321a a a a a 的逆序数为( ). (A) a - (B) 10a - (C) 10a - (D) 2 a -或a +2 3. 0001002003004 =( ). (A) 24 (B) -24 (C) 0 (D) 12 4. 已知11 121311111212132122232121222223313233313132323341 42 43 4141 42 42 43 , ,a a a b a a b a a a a b a a b a m n a a a b a a b a a a a b a a b a == 则行列式 11121311122122232122313233313241 4243 4142a a a b b a a a b b a a a b b a a a b b ++= ++( ). (A) m n + (B) n m - (C) m n - (D) () m n -+ 5. 已知2 31421,1 1 1 D =- i j A 为D 的元素ij a 的代数余子式,则( ). (A) 1112130 A A A ++= (B) 1121310 A A A ++= (C) (A),(B)都成立 (D) (A),(B)都不成立

6. 0001 00002000 10 n n =- ( ). (A) 1 (1) !n n +- (B) (1) 2 (1) !n n n -- (C) (1) 2 (1) !n n n +- (D)!n 二 填空题(2'816'?=) 1. 2011阶反对称行列式的值为 . 2. 13234425k l a a a a a 为五阶行列式ij D a =中带负号的项,则k = , l = . 3. 排列(1)321n n - 的逆序数为 , 13(21)24(2) n n - 的逆序 数为 . 4. 线性方程组 1212040 x x x x λλ+=?? +=?有唯一解,则λ满足 . 5. 若n 阶行列式D 中等于0的元素个数大于2 n n -,则D = . 6. 2 1 1203101311 112 x x ----的展开式中2 x 的系数为 . 7. 1 1111234149161 8 27 64 = . 8. 已知四阶行列式D 的第3行元素为3,3,1,1--, 其对应的余子式的值 为1,2,5,4, 则行列式D = .

相关主题
文本预览
相关文档 最新文档