当前位置:文档之家› NMCL-III型电力电子及电气传动实验台2013.12.5(

NMCL-III型电力电子及电气传动实验台2013.12.5(

NMCL-III型电力电子及电气传动实验台2013.12.5(
NMCL-III型电力电子及电气传动实验台2013.12.5(

NMCL-III型电力电子及电气传动教学实验台一、概述

NMCL-III型电力电子及电气传动教学实验台主要是根据陈伯时教授的?电力拖动自动控制系统—运动控制系统?第三版教材和西安交通大学王兆安教授?电力电子技术?设计而成的,我公司在2004年5月并为这二本教材召开了教材培训和研讨会。

该实验装置主要针对半导体变流技术、现代电力电子器件、现代电力电子器件的典型线路、直流调速系统(模拟部分)、直流调速系统(数字部分)、交流调速(模拟部分)、交流调速系统(数子部分)、针对研究生实验平台和教师提高实验内容。内容从不同的器件在不同场合的应用,不同器件外围线路的不同设计,各种现代典型系统实验,较为系统和完善地从实验角度为学生提供了很好地实验平台。

该系统经过浙江大学电气工程学院二位教授长达5年多的系统设计和求是公司每年的逐步完善,目前无论从可靠性、美观性和设备设计的合理性方面都达到了从未有过的完善,设备的维护率大大降低。

该设备通过清华大学、天津大学、浙江大学、上海交通大学、哈尔滨工业大学、哈尔滨工程大学、吉林大学、大连理工大学、青岛大学、西安交通大学、华南理工大学、华北电力大学(北京、保定)、中国矿业大学、华中科技大学、四川大学等许多著名院校的使用,并提出了很多宝贵修改意见才达到今天的水平,我公司的电力电子及电气传动教学实验台被各高校评为目前市场占有

领先地位,代表专业水平的教学产品。

二、实验装置技术特点

1、本实验台和国内同类设备相比,具有紧密结合教材,线路典型,面板美观,学生动手方便,保护功能完善,可靠性高等优点。

2、该实验台在完成传统的实验项目的同时,突出对现代电力电子器件和现代控制理论的研究。整个现代电力电子及电气传动实验分成三大部分:器件的研究、线路的研究、系统的研究(模拟控制、数字控制)。

1)器件的研究主要是对GTR、MOSFET、IGBT、GTO的开关特性及其驱动电路、缓冲和保护电路研究。可通过改变不同的参数来研究器件的特性,具有研究价值。

2)线路主要有Buck-Boost电路、开关电源、单相交流调压电路、全桥DC/DC 变换、软开关、整流电路的有源功率因数提高等。

3)系统则是直流脉宽调速系统(采用MOSFET)、交流变频调速系统(功率器件采用IPM智能功率模块)和直流方波无刷电机的调速系统(采用GTR模块,可扩展)。

4)产品还设计了研发型实验内容,开放硬件环境和软件环境,可以允许学生在MATLAB环境下完成系统的控制算法的研究。(可扩展)

学生通过完成以上实验,能对各种器件在不同的场合的应用有了深刻的了解,对目前流行的各种线路均能熟练掌握,直至能够独立地设计各种线路甚至系统。

3.在进行直流调速系统实验时,除可用常规的由运算放大器构成的PID调节器进行控制外,还可以和计算机相连,由上位机进行数字控制,并采集转速曲线和电流反馈信号。

4. 该实验台最新的由数字信号处理器(DSP)控制的高性能变频调速系统实验组件,采用高分辨率的编码器作为转速反馈元件,采用LEM传感器作为电流检测元件,既能完成SPWM和空间矢量的变频调速实验,又能进行磁场定向变频调速实验。同时,该实验组件可与计算机进行相连,通过计算机对调速系统的参数进行调节,对转速等动态波形进行分析。

5、交流电源的输出不仅设计了过流保护功能,还在不同的触发电路加了高压保护,功率器件加了安全保护。为了不使强电信号加入弱电电路中,采用了不同的实验导线,使学生接线时高低压线路不会插错,而导致低压电路的损坏。

6、我公司推出的实验教学平台,可让教师和有能力的学生不仅可以熟悉MitLab软件,还可以在MitLab环境下,设计各种控制方式的交流调速系统。

三、实验项目

1、电力电子技术(晶闸管部分)

1)单结晶体管触发电路及单相半波可控整流电路实验2)正弦波同步移相触发电路实验

3)锯齿波同步移相触发电路实验

4)单相桥式半控整流电路实验

5)单相桥式全控整流电路实验

6)单相桥式有源逆变电路实验

7)三相半波可控整流电路的研究

8)晶闸管三相半波有源逆变电路的研究

9)三相桥式半控整流电路实验

10)三相桥式全控整流及有源逆变电路实验

11)单相交流调压电路实验

12)三相交流调压电路实验

2、电子技术(全控型器件特性部分)

1)功率场效应晶体管(MOSFET)的主要参数测量

2)功率场效应晶体管(MOSFET)的驱动电路研究

3)绝缘栅双极型晶体管(IGBT)特性及其驱动电路的研究4)电力晶体管(GTR)驱动电路的研究

5)电力晶体管(GTR)的特性研究

6)电力晶体管(GTO)驱动电路的研究

7)电力晶体管(GTO)的特性研究

3、电力电子技术(全控型器件典型线路部分)

1)直流斩波电路(Buck、Cuk、Boost、Sepic、Buck-Boost、Zeta等六种电路)的性能研究

2)单相交直交变频电路的性能研究

3)单端反激式隔离开关电源的性能研究

4)单端正激式开关电源的性能研究

5)采用自关断器件的单相交流调压实验

6)单相正弦波(SPWM)逆变电路实验

7)全桥DC/DC变换电路实验

4、直流模拟调速系统实验

1)晶闸管直流调速系统参数和环节特性的测定

2)晶闸管直流调速主要单元调试

3)不可逆单闭环直流调速系统静特性的研究

4)双闭环晶闸管不可逆直流调速系统

5)双闭环控制的直流脉宽调速系统(PWM)

5、直流数字调速系统实验(求是公司独有的实验)

1)双闭环晶闸管不可逆数字直流调速系统

2)双闭环控制的数字直流脉宽调速系统(PWM)

6、传统的交流调速系统实验

1)双闭环三相异步电机调压调速系统

2)双闭环三相异步电机串级调速系统

7、交流数字调速系统实验

1)异步电机的SPWM变频调速系统(IPM)

2)异步电机的空间矢量控制的变频调速系统

3)采用DSP的异步电机直接转矩变频调速系统

4)采用DSP的异步电机磁场定向变频调速系统

8、可扩展的实验内容(求是公司独有的实验,学校可选择)

1). 单端正激/反激开关电源及单相APFC整流电路实验(数字电力电子实验)

2).采用DSP控制的直流方波无刷电机调速系统

3).采用DSP控制的直流方波无刷电机伺服系统

4). 在MATLAB研发环境下的变频调速系统

5). 采用FPGA控制的研究型交流伺服电机数字调速系统

以下是学校可选择的实验挂箱

四、实验台技术条件

1.整机容量:≤1.5kV A

2.工作电源:AC3N/380V/50Hz/3A

3.尺寸:1.60m×0.75m×1.50m

4.重量:300kg。

五、实验台技术说明

1、控制屏及实验桌技术说明

1)设备的人身安全保护

◆三相隔离变压器的浮地保护,将实验用电与电网完全隔离,对人身安全起到有效的

保护作用;

◆三相电源输入端设有电流型漏电保护器,设备的漏电流大于30mA即可断开开关,

符合国家标准对低压电器安全的要求;

◆三相隔离变压器的输出端设有电压型漏电保护,一旦实验台有漏电压将会自动保护

跳闸。

◆强电实验导线采用全塑封闭型手枪式导线,导线内部为无氧铜抽丝而成发丝般细的

多股线,质地柔软,护套用粗线径、防硬化化学制品制成,插头采用实芯铜质件,避免学生触摸到金属部分而引起的双手带电操作触电的可能。

2)设备的安全保护体系

◆三相交流电源输出设有过流保护功能,其输出电流大于2A即可断开电源,并告警指示;

◆晶闸管的门阴极和各触发电路的观察孔设有高压保护功能,避免学生误接线;

◆实验台采用三种实验导线,相互间不能互插,强电采用全塑型封闭安全实验导线,弱电采用金属裸露实验导线(其实芯铜直径大于强电导线),观察孔采用2#实验导线,避免了学生误操作将强电接到弱点的可能;

◆由于示波器的接地端、2个通道的接地端和实验台的地线是相互连接的,为了使所有的实验台的地线独立,我公司在单相交流电源插座前设有单相隔离变压器,保证了整个实验室实验的正常进行。否则必须折断示波器插头的接地端,如此又会造成人身安全得不到保障;

◆实验台交直流电源设有过流和短路保护功能。

3)控制屏和实验桌

实验桌为铁质双层亚光密纹喷塑结构,桌面采用意大利进口生产设备和工艺生产的高密度度防腐防火板。造型美观大方,设有两只抽屉和存放柜,用于置放工具,挂箱及资料等。实验桌设有四个轮子和四个可调固定支撑脚,便于移动和固定,有利于实验室布置。

4)NMCL-31 低压电源及仪表

◆仪表说明

该装置建议采用指针式仪表较为合理,由于指针式仪表瞬间响应较快,可以观察到电机起动的动态过程。

直流电压表:提供0.5级精度、测量范围为±300V带镜面的指针电压表。

直流电流表:提供0.5级精度、测量范围为±2A带镜面的指针电流表。

交流电压表:提供0.5级精度、测量范围为300V带镜面的指针电压表。

交流电流表:提供0.5级精度、测量范围为1A带镜面的指针电流表。

◆速度变换器,给定,零速封锁器;

提供速度变换器、给定、零速封锁器系统实验电路。

◆低压直流电源:提供±15V/1A直流稳压电源。

5)NMCL-32 电源控制屏

◆三相交流电源:通过开关切换分别输出三相200V和230V交流电源,给直流调速和交流调速提供输入电源,带过流保护。该电源经过电流型漏电保护、三相隔离变压器、电压型漏电保护等安全保护电路后供学生实验用电。

◆220V/0.5A直流励磁电源:供直流电动机和直流发电机励磁绕组。

6)其它:提供鸿雁牌多功能单相三芯电源插座2只。

2、实验模块的技术说明

1)NMCL-331 电抗器

2)NMCL-35三相变压器

3)NMCL-22D单端反激/正激开关电源

4)NMCL-22E半桥型开关稳压电源的性能研究

5)NMCL-38直流调速计算机接口

陈伯时教授已将直流调速的数字调速作为必讲的教学内容,我公司与之配套的直流调速计算机接口可完成此功能。该功能由台湾研华带有PCI插槽的A/D D/A板卡和计算机接口控制板以及相应的软件组成。其主要可实现直流调速速度单闭环、不可逆双闭环和直流脉宽调速等系统的数字调速,上位机软件采用VC和Matlab编制,每一种实验项目在界面上都由对应的数字模型和原理框图,学生只要点击框图,就会弹出需修改参数的对话框,供学生进行操作。同时可以通过计算机实时检测各种动态波形

3、实验箱技术说明

1)NMCL-33 三相触发电路及主回路实验箱

触发电路:采用数字集成电路,抗干扰能力强,三相脉冲间隔均匀,一直性好,产生双窄脉冲,脉冲移相范围为0-160°。在面板上可观察三相同步电压和六个脉冲波形,并通过“Uct”端对a教进行控制。面板还装以六路琴键开关,可分别对每一路脉冲进行“通”、“断”控制,可模拟三相整六电路丢

脉冲或逆变电路颠覆的故障现象。另有两脉冲控制端“Ublr”、和”Ublf”,分别对I、II组脉冲放大电路进行控制,在进行“逻辑武环六可逆直流调速系统”实验中,通过对“Ublr”、和”Ublf”的点平进行控制以实验电机的正反转。主回路:由12只可孔硅,6只二极管以及平波电抗器,RC吸收回路组成。可孔硅采用上海整离器厂生产的6A800V金属封装,过载能力强、可靠性高、干扰能力强,平波电抗器采用中心抽头方式,分别为50mH、100 mH、200Mh/700Mh.在电流小于1.5A 时保持线性。

2)NMCL-18转速调节器、电流调节器、逻辑无环流控制器、可变电容

提供交、直流调速闭环控制系统的模拟PID转速调节器和电流调节器、逻辑无环流可逆双闭环调速系统的逻辑控制器以及4组可变电容器。

3)NMCL-07C电力电子器件实验箱

此实验箱实验项目除含GTR、MOSFEF、IGBT、GTO等器件的驱动电路和开关特性研究外,还可对快恢复二极管,高速光耦、电感等电力电子的常用元件进行分析。面板设计时,留有较多的波形观察孔,便于学生分析各工作点的情况。线路设计时,遵循先易后难,先分离后集成的原则,挑选了几种常见的比较具有实用价值的驱动电路,使学生可学以致用。

整个实验箱精心设计了各种保护电路,例如短路、du/dt di/dt等保护。

4)NMCL-13A DSP控制的高性能变频调速系统

变频调速系统由主回路和控制电路组成。

主电路利用交—直—交电源型变频器,功率器件采用智能功率模块IPM

控制系统由DSP、信号检测电路、驱动与保护电路等组成。DSP采用美国TI 公司的16位数字信号处理器TMS320F240。该芯片是专门为电机的数字化控

制而设计的,它集DSP的信号高速处理能力及适用与电机控制的优化外围电路与一体,为电动机数字控制系统应用提供了一个理想的解决方案。

DSP控制的高性能变频调速系统可完成SPWM、空间矢量、磁场定向以及直接转矩控制方式的实验,可观察电动机线电压、线电流、气隙磁通分量以及突加与突减给定以及突加与突减负载时的iu=f(t)与n=f(t)动态波形。并可测量系统开环、闭环机械特性n=f(M_)

5)NMCL-22现代电力电子电路和直流脉宽调速实验箱

此实验箱可完成直流斩波电路、交流调压电路、单相交频电路以及直流脉宽调速等实验项目。

直流斩波电路:面板上提供若干的电源、功率场效应晶体管、电抗器、电阻、二极管、电容等,并画有常见的六种斩波电路(Buck、Cuk、Boost、Sepic、Buck-Boost、Zeta)原理示意图。学生根据示意图可以自行搭建不同的电路进行分析、比较、斩控式交流调压:主回路由IGBT管组成,驱动电路由SG3525、运放等构成,通过示波器可观察输入的电压、输出电压以及电流波形。

单相交直流变频电路:主回路中间直流电压由交流电整流而得,逆变部分采用单相桥式PWM电路,功率器件采用600V14A的MOSFET。

6)NMEL-03A可调电阻器

提供可调电阻900Ω/0.41A二组,90Ω/1.3A一组,供发电机负载电阻和其它实验阻性负载用。

4、实验电机及电机导轨

1)M01 直流复励发电机

2)M03 直流并励电动机

3)M04A三相笼型异步电动机和编码器

4)M09三相绕线式异步电动机

5)MEL-14电机导轨

5、实验导线技术说明

实验连接导线采用高可靠全封闭手枪插型式,内部为无氧铜抽丝而成发丝般细的128股线,质地柔软,护套用粗线径、防硬化化学制品制成,插头采用实芯铜质件

6、可扩展的实验内容(学校可以选择)

1)NMCL-14A DSP控制的直流方波无刷电机调速系统伺服系统

本调速系统由方波无刷电机、电机转子位置传感器、转速传感器、由功率管构成的逆变器、以DSP为核心的数字控制器等构成。系统可工作在无转子位置传感器状态,此时转子位置通过观测器获得两种工作状态,通过开关K切换,系统也可以不用转速传感器,而利用转子位置信号即可检测电机的转速。主要实验内容包括有:

◆有与无转子位置传感器情况下,测量电动机转子位置信号

◆有与无转子位置传感器情况下,研究电动机的起动特性

◆功率晶体管基极驱动波形,电机定子线电压波形

2)NMCL-13B基于MATLAB环境下的研究型DSP控制的高性能变频调速实验系统

本实验系统,利用TI公司32位高性能TMS320F2812(DSP2812) DSP最新产品做为控制核心芯片,并设计成为基于PCI总线的DSP2812运动控制器,利用超高速度的PC实现电机控制算法,本系统解决了Windows操作系统下实时控制的关键技术,并开发出电机控制实时控制软件和Matlab实时控制模块库。利用本运动控制卡和接口软件,可以完成交流感应电机的实时控制实验,直接在Windows系统上使用C、C++或者Basic语言编写电机控制算法,无须了解任何DSP电机控制相关技术。

利用Visual C++开发的交流感应电机控制算法软件和Matlab程序可以轻易完成以下实验内容,并且提供C语言电机控制算法源代码,用户可以在很方便进行修改。

◆SPWM调制方式下V/F曲线测定

◆马鞍波调制方式下V/F曲线测定

◆空间电压矢量调制方式下V/F曲线测定

◆开环正弦波调制(SPWM)的高性能变频调速实验

◆开环马鞍波调制(SPWM)的高性能变频调速实验

◆开环空间矢量控制(SVPWM)的高性能变频调速实验

◆磁场定向控制(FOC)的高性能变频调速实验

◆直接转矩控制(DTC)的高性能变频调速实验

3)基于FPGA开发的研究型三相永磁同步交流伺服电机系统

本交流伺服实验系统,首创性地使用XILINX公司高性能FPGA作为控制核心芯片。交流伺服闭环控制算法采用硬件描述语言编写,开环控制算法采用Simulink建模,直接生成硬件描述语言。本系统的上位机控制软件具有操作简单、可设置参数丰富和界面生动等特色,非常适合教学使用和研究所系统验证。使用本系统,学生可修改各种控制参数观看控制结果,利用Simulink 也可动手编程电机算法并进行实验,以及利用Matlab进行电机数据分析和处理。因此学习VHDL语言与使用FPGA验证先进电机控制设计为未来研究方向。

实验内容

◆交流伺服永磁同步电机的速度伺服实验

◆交流伺服永磁同步电机的转矩伺服控制实验

◆利用System Generator基于Simulink开发伺服电机开环SPWM控制算法实验

变频调速系统由主回路和控制电路组成。主回路采用交—直—交电源型工作电路,功率器件采用大功率IGBT模块。控制系统由FPGA XILINX公司的XC3S700A的开发板、信号检测电路、驱动与保护电路、过流保护电路等模块组成。

软件示例

4)DPE-02单端正激/反激开关电源及单相APFC 整流电路实验箱

DPE-02单端正激/反激开关电源及单相APFC 整流电路实验箱包括单端正激/反激开关电源的主电路、单相APFC 整流电路的主电路和DSP 控制系统(TMS320F2812)三部分。

单端正激/反激开关电源由构成正激开关电源和反激开关电源的若干单元电路和DSP 控制系统组成。DSP 控制系统产生开关电源功率管的PWM 信号,并采集开关电源的输出电压值,实现开关电源的恒压输出,同时在实验控制软件中实时显示开关电源的运行参数。

单相APFC 整流电路由整流主电路和DSP 控制系统组成。DSP 控制系统采集整流电路输入的交流电压和电流信号以及输出直流电压信号,经过运算后控制功率管的PWM 信号,完成单相APFC 整流电路的正常工作。并在实验控制软件中实现控制参数的设置和实时参数的显示。

电力电子技术A实验讲义

实验四三相半波可控整流电路的研究一.实验目的 了解三相半波可控整流电路的工作原理,研究可控整流电路在电阻负载和电阻—电感性负载时的工作情况。 二.实验线路与原理 三相半波可控整流电路用三只晶闸管,与单相电路比较,输出电压脉动小,输出功率大,三相负载平衡。不足之处是晶闸管电流即变压器的二次电流在一个周期内只有1/3时间有电流流过,变压器利用率低。 实验线路见图4-1。 1) 电源控制屏位于MEL-002T; 2) L平波电抗器位于NMCL-331挂件; 3) 可调电阻R位于NMEL-03/4挂件 4) G给定(Ug)位于NMCL-31调速系统控制单元中; 5) Uct位于NMCL-33F挂件; 6) 晶闸管位于NMCL-33F挂件。 图4-1 三.实验内容

1.研究三相半波可控整流电路供电给电阻性负载时的工作情况。 2.研究三相半波可控整流电路供电给电阻—电感性负载时的工作情况。 四.实验设备与仪表 1.教学实验台主控制屏 2.触发电路与晶闸主回路组件 3.电阻负载组件 4.示波器 五.注意事项 整流电路与三相电源连接时,一定要注意相序。 六.实验方法 1. 三相半波可控整流电路带电阻性负载。 合上主电源,接上电阻性负载R。 ⑴改变给定电压U g,观察在不同触发移相角α(30°、60°)时,可控整流电路的输出电压U d的波形,并记录相应的U d、I d 值。 ⑵改变给定电压U g,当α=30°时,记录晶闸管A、K间端电压U VT=f(t)的波形。 2. 三相半波可控整流电路带电阻—电感性负载。 接入的电抗器L=700mH。 ⑴改变给定电压U g,观察在不同触发移相角α(30°、60°)时,可控整流电路的输出电压U d的波形,并记录相应的U d、I d 值。 ⑵改变给定电压U g,当α=30°时,记录晶闸管的端电压U VT=f(t)(电阻性负载、电阻—电感性负载)、I d=f(t)(电阻—电感性负载)的波形。 实验方法的具体内容,可参照表4进行。 七. 实验报告

电力电子与电气传动概述

电力电子与电气传动概述 电气C142张启文 1 电力电子与电气传动主要内容 电力电子与电气传动包括电力电子技术与电气传动两大部分。 电力电子技术的主要内容:电力电子器件及其应用,即应用电力电子器件实现电力变换:AC/DC、DC/DC、DC/AC、AC/AC。 电气传动的主要内容:直流调速与交流调速 信息电子技术——信息处理 电力电子技术——电力变换 电子技术一般即指信息电子技术,广义而言,也包括电力电子技术。 电力电子技术——使用电力电子器件对电能进行变换和控制的技术,即 应用于电力领域的电子技术。 2、电力电子技术的发展概况 1904年:电子管问世 1930-1947:水银整流器时代 1957-1970:晶闸管时代 1985-2000:IGBT及功率集成器件和发展时代 电力电子技术的发展史是以电力电子器件的发展史为纲的。

3、电力电子技术的应用 一般工业: 交直流电机、电化学工业、冶金工业交通运输: 电气化铁道、电动汽车、航空、航海电力系统: 高压直流输电、柔性交流输电、无功补偿电子装置电源: 为信息电子装置提供动力 家用电器: “节能灯”、变频空调 其他: UPS、航天飞行器、新能源、发电装置 AC/DC可控整流:将交流电变为直流电 有源逆变:将直流电变为交流电回送电网 交流调压:将固定的交流电变为可调的交流电 变频:将频率固定的交流电变为频率可调的交流电 直流斩波:将固定的直流电变为可调的直流电

4、就业前景 (一)应用逐渐多元化,顺应时代趋势 电力传动系统是电力电子器件典型的应用领域,在国民经济中占有极其重要的地位,具有广阔的发展前景。电力电子作为节能,自动化、智能化、机电一体化的基础正朝着应用技术高频化、硬件结构模块化、产品性能绿色化的方向发展。譬如,风能是正在开发中的具有广阔前景的新能源之一。它对寻求新能源,改善生态环境,发展偏远地区经济,都具有重大的意义。 在当今积极提倡环保节能的国际大环境下,现代电力电子技术是21世纪各国竞相发展的强国兴邦技术之一,随着与微电子技术的不断融合,其应用范围日益广泛,并且有向各行业渗透的趋势,面临来自环境和资讯等方面的严峻挑战,现代电力行业急需一批既懂电力工程技术,又懂电力电子与电气传动技术的高层次复合型人才。 (二)无处不在的新兴学科 近几十年来,电力电子技术得到迅猛发展,应用范围极其广泛,在各级工业、交通运输、电力系统、通信系统、计算机系统、新能源系统以及家电产品等国民经济和人民生活的各个领域都有重要的应用:大到航天飞行器中的特种电源、远程特高压电压传输系统,小到家用的空调、冰箱和计算机电源,电力电子及电力传动技术可以说是无处不在。可以毫不夸张地说,只要是需要电能的地方,就需要电力电子和电力传动。电气传动技术也正在向智能化迈进,具有巨大的研究价值和广泛的应用前景,从而也为广大毕业生提供了源源不断的就业机会。 5、就业方向 本专业适合到电力系统、电气工程及其相关领域的高校、科研单位及企业从事教学、研发、管理、生产等方面的工作。例如,研究新型电力电子器件、电能的变换与控制、电力电子电源、电力传动及其自动化等理论技术和应用。

电力电子及电气传动教学试验台和MCL系统挂箱介绍和使用说明

《电力电子与变频技术》实验实训指导书 李翔编写 适用专业:电气自动化 机电一体化 安徽国防科技职业学院机电工程系 2011 年 11 月

第一部分电力电子技术实验指导 实验一三相半波可控整流电路的研究 一.实验目的 了解三相半波可控整流电路的工作原理,研究可控整流电路在电阻负载和电阻—电感性负载时的工作。 二.实验线路及原理 三相半波可控整流电路用三只晶闸管,与单相电路比较,输出电压脉动小,输出功率大,三相负载平衡。不足之处是晶闸管电流即变压器的二次电流在一个周期内只有1/3时间有电流流过,变压器利用率低。 实验线路见图2-1。 三.实验内容 1.研究三相半波可控整流电路供电给电阻性负载时的工作。 2.研究三相半波可控整流电路供电给电阻—电感性负载时的工作。 四.实验设备及仪表 1.MCL系列教学实验台主控制屏。 2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。 3.MCL—33组件或MCL—53组件(适合MCL—Ⅱ、Ⅲ、Ⅴ) 4.MEL—03组件(900Ω,0.41A)或自配滑线变阻器. 5.双踪示波器。 6.万用电表。 五.注意事项 1.整流电路与三相电源连接时,一定要注意相序。 2.整流电路的负载电阻不宜过小,应使I d不超过0.8A,同时负载电阻不宜过大,保证I d超过0.1A,避免晶闸管时断时续。 3.正确使用示波器,避免示波器的两根地线接在非等电位的端点上,造成短路事故。 六.实验方法 1.按图接线,未上主电源之前,检查晶闸管的脉冲是否正常。 (1)打开MCL—18电源开关,给定电压有电压显示。 (2)用示波器观察MCL-33(或MCL-53,以下同)的双脉冲观察孔,应有间隔均匀,幅度相同的双脉冲 (3)检查相序,用示波器观察“1”,“2”单脉冲观察孔,“1”脉冲超前“2”脉冲600,则相序正确,否则,应调整输入电源。 (4)用示波器观察每只晶闸管的控制极,阴极,应有幅度为1V—2V的脉冲。 2.研究三相半波可控整流电路供电给电阻性负载时的工作 合上主电源,接上电阻性负载,调节主控制屏输出电压U uv、U vw、U wv,从0V调至110V:

电力电子装置及系统设计课程设计

《电力电子装置及系统》 课程设计 题目:基于UC3842的单端反激 开关电源的设计 学院电力学院 专业电子科学与技术 姓名 学号 指导教师 完成时间2016.11.25

目录 摘要 (1) 第一章:开关电源的概述 1.1:开关电源的发展历史 (2) 1.2:开关稳压电源的优点 (2) 1.2.1:内部功率损耗小,转换效率高 (2) 1.2.2:体积小,重量轻 (3) 1.2.3:稳压范围宽 (3) 1.2.4:滤波效率大为提高,滤波电容的容量和体积大为减小 (3) 1.2.5:电路形式灵活多样,选择余地大 (3) 1.3:开关稳压电源的缺点 (3) 1.3.1:开关稳压电源存在着较为严重的开关噪声和干扰 (4) 1.3.2:电路结构复杂,不便于维修 (4) 1.3.3:成本高,可靠性低 (4) 第二章:UC3842的原理及技术参数 2.1:UC3842的工作原理 (5) 2.2:UC3842的引脚及技术参数 (6) 第三章:单端反激开关电源 3.1:单端反激开关电源的原理 (7) 3.2:反激式开关电源设计 (9) 3.2.1:输出直流电压隔离取样反馈外回路 (9) 3.2.2:初级线圈充磁峰值电流取样反馈内回路 (11) 总结 (13) 参考文献 (13)

基于UC3842的单端反激开关电源的设计 摘要 开关电源是一种利用现代电子技术,控制开关晶体管和关断的时间比率,维持稳定输出电压的一种电源,也是一种效率很高的电源变换电路,开关电源一般由脉冲宽度调制(PWM)和MOSFET构成。具有高频率,高功率密度,高可靠性等优点。 本文主要介绍一种以UC3842作为控制核心,根据UC3842的应用特点,设计了一种基于UC3842为控制芯片,实现输出电压可调的开关稳压电源电路。 关键词:开关电源脉冲宽度调制 UC3842

电力电子技术实验指导书

实验一单结晶体管触发电路及示波器使用 班级学号姓名 同组人员 实验任务 一.实验目的 1.熟悉单结晶体管触发电路的工作原理及各元件的作用。 2.掌握单结晶体管触发电路的调试步骤和方法。 3.详细学习万用表及示波器的使用方法。 二.实验设备及仪器 1.教学实验台主控制屏 2.NMCL—33组件 3.NMCL—05E组件 4.MEL—03A组件 5.双踪示波器(自备) 6.万用表(自备) 7. 电脑、投影仪 三.实验线路及原理 将NMCL—05E面板左上角的同步电压输入接SMCL-02的U、V输出端,触发电路选择单结晶体管触发电路,如图1所示。 图1单结晶体管触发电路图 四.注意事项 双踪示波器有两个探头,可以同时测量两个信号,但这两个探头的地线都与示波器的外

壳相连接,所以两个探头的地线不能同时接在某一电路的不同两点上,否则将使这两点通过示波器发生电气短路。为此,在实验中可将其中一根探头的地线取下或外包以绝缘,只使用其中一根地线。当需要同时观察两个信号时,必须在电路上找到这两个被测信号的公共点,将探头的地线接上,两个探头各接至信号处,即能在示波器上同时观察到两个信号,而不致发生意外。 五.实验内容 1.实验预习 (1)画出晶闸管的电气符号图并标明各个端子的名称。 (2)简述晶闸管导通的条件。 (3)示波器在使用两个探针进行测量时需要注意的问题。 2. 晶闸管特性测试 请用万用表测试晶闸管各管脚之间的阻值,填写至下表。 + A K G - A K G 3.单结晶体管触发电路调试及各点波形的观察 按照实验接线图正确接线,但由单结晶体管触发电路连至晶闸管VT1的脉冲U GK不接(将NMCL—05E面板中G、K接线端悬空),而将触发电路“2”端与脉冲输出“K”端相连,以便观察脉冲的移相范围。 合上主电源,即按下主控制屏绿色“闭合”开关按钮。这时候NMCL—05E内部的同步变压器原边接有220V,副边输出分别为60V(单结晶触发电路)、30V(正弦波触发电路)、7V(锯齿波触发电路),通过直键开关选择。 合上NMCL—05E面板的右下角船形开关,用示波器观察触发电路单相半波整流输出(“1”),梯形电压(“3”),梯形电压(“4”),电容充放电电压(“5”)及单结晶体管输出电压(“6”)和脉冲输出(“G”、“K”)等波形,并绘制在下图相应位置。

电力电子装置及系统复习题及答案

概念部分(小题) 1、电力电子装置的主要类型:AC/DC、DC/DC、DC/AC、AC/AC、静态开关 通信电源交流稳压电源 充电电源通用逆变电源 3、直流电源装置电解电镀直流电源交流电源装置不间断UPS电源 开关电源 4、缓冲电路的主要作用:抑制开关器件的di/dt 、du/dt,改变开关轨迹,减少开关损耗 ,使之工作在安全工作区内。 5、常用耗能式缓冲电路:无极性、有极性、复合型注:p14电路模型区分。 6、过电流保护方法:(1)利用参数状态识别对单个期间进行自适保护 (2)利用常规方法进行最终保护。 7、为防止桥臂中两个开关器件直通,通常对两个开关器件的驱动信号进行互锁并设置死区 8、缓冲电路类型(判断或者填空) 无源功率因数校正(在电源输入端加入低频大电感) 9、功率因数校正有源滤波器无功谐波补偿 有源功率因数校正 功率因数校正电路(单项有源校正装置主要是 boost,可分为不连续电流模式和连续电流模式) 10、UPS典型结构:稳压器整流器逆变器转换开关 UPS主要分类:后备式、双变换在线式、在线互动式、双变换电压补偿在线式(delta 变换式) 其中:后备式是以市电供电为主的UPS,一般后备式UPS功率多在2kV A以下。其工作原理图见书P95图4.2 双变换在线式是以逆变器为主的工作方式,原理图书P95图4.3 11此外,在相同开关频率下,单极性的波动频率较双极性波提高一倍。 13、无源的功率因数校正是在输入端加电容电感进行被动补偿这是一种预补偿 有源的是主动补偿比如我们讲的Boost功率因数校正器 14、逆变类型:全桥半桥推挽 15、开关电源结构, 16、功率因数校正概念, 17、逆变器结构, 18、感应加热电源 (这些有的没有写出答案的大家自己对着书看一下啊,要断电了,来不及找了)

电力电子与电力传动简介

电力电子与电力传动简介 本文章来源:考研网发布者:wenpinger 浏览次数:3051 发布时间:2010-2-01 16:34 对电力电子与电力传动专业的介绍 电力电子与电力传动学科主要研究新型电力电子器件、电能的变换与控制、功率源、电力传动及其自动化等理论技术和应用。它是综合了电能变换、电磁学、自动控制、微电子及电子信息、计算机等技术的新成就而迅速发展起来的交叉学科,对电气工程学科的发展和社会进步具有广泛的影响和巨大的作用。 学科研究范围: 电力电子器件的原理、制造及其应用技术;电力电子电路、装置、系统及其仿真与计算机辅助设计;电力电子系统故障诊断及可靠性;电力传动及其自动控制系统;电力牵引;电磁测量技术与装置;先进控制技术在电力电子装置中的应用;电力电子技术在电力系统中的应用;电能变换与控制;谐波抑制与无功补偿。 研究方向: 1 )谐波抑制与无功补偿 2 )电力电子电路仿真与设计 3 )计算机控制系统 4 )电气系统智能控制技术 5 )现代控制理论及其电气传动中的应用 6 )系统故障诊断技术及应用 7 )现代交、直流电机调速技术 8 )功率变换技术的研究 该学科对实践动手能力要求很高,难度较大。本科是电气工程、自动化、电子信息工程的适合报考这个专业。该专业需要的基础是电路基础,模拟电路与数字电路,电机学,单片机技术,计算机控制技术,电力电子技术,电力拖动自动控制系统,数字信号处理。 该专业实力最强的几所院校:浙大(拥有国内唯一的电力电子国家实验室,师资力量雄厚,有汪栖生院士和徐德鸿等知名教授,科研成果较多)西安交通大学(西交的电力电子与能源研究中心在国内处于领先水平,科研成果较多,有电力电子知名专家王兆安教授)南京航空航天大学(有航空电源航空科技重点实验室,师资力量雄厚,科研成果较多)合肥工业大学和中国矿业大学(有电力电子与电力传动国家重点学科) 电力电子专业状况及职场发展 老是看到好多新同学打听这个专业,N多人还在比较电力系统和电力电子与电力传动,哪个更好?哪个更有前(钱)途?马上就过年了,今天有点空,也想冒下泡,想跟对这一方向有点兴趣的兄弟姐妹简单聊一下总体情况。我也只是一名研发工程师,说得不对不全之处,请各位拍砖时手下留情。 毫无疑问,电力系统是电气工程下面一个非常非常传统的专业,毕业后较大的可能进入国家电网或南方电网下属的各级电力公司,君不见这个坛子里好多人讲电力的高薪,因而也

电力电子与电力传动排名

080804 电力电子与电力传动

中国科学院--电工研究所-- 电力电子与电力传动 北京航空航天大学--自动化科学与电气工程学院-- 电力电子与电力传动 北京交通大学--电气工程学院-- 电力电子与电力传动 北京理工大学--机械与车辆工程学院-- 电力电子与电力传动 南开大学--物理科学学院-- 电力电子与电力传动

天津大学--电气与自动化工程学院-- 电力电子与电力传动 华北电力大学--电气与电子工程学院-- 电力电子与电力传动 北方工业大学--机电工程学院-- 电力电子与电力传动 燕山大学--电气工程学院-- 电力电子与电力传动 华北电力大学(保定)--电力工程系-- 电力电子与电力传动 太原理工大学--电气与动力工程学院-- 电力电子与电力传动 东北大学--信息科学与工程学院-- 电力电子与电力传动 大连海事大学--自动化与电气工程学院-- 电力电子与电力传动 辽宁工学院--信息科学与工程学院-- 电力电子与电力传动 沈阳工业大学--电气工程学院-- 电力电子与电力传动 辽宁科技大学--电子与信息工程学院-- 电力电子与电力传动 吉林大学--仪器科学与电气工程学院-- 电力电子与电力传动 长春工业大学--电气与电子工程学院-- 电力电子与电力传动 东北电力大学--电气工程学院-- 电力电子与电力传动 哈尔滨工程大学--自动化学院-- 电力电子与电力传动 大庆石油学院--电气信息工程学院-- 电力电子与电力传动 武汉大学--电气工程学院-- 电力电子与电力传动 东华大学--信息科学与技术学院-- 电力电子与电力传动 上海大学--机电工程与自动化学院-- 电力电子与电力传动 上海海事大学--物流工程学院-- 电力电子与电力传动 上海交通大学--电子信息与电气工程学院-- 电力电子与电力传动 上海理工大学--电气工程学院-- 电力电子与电力传动

电力电子装置及系统 考试 知识点 太原理工大学(13届 葬仪落 任影汐整理)

第一章绪论 1、电力电子技术的核心是电能形式的变换和控制,并通过电力电子装置实现其应用。 2、电力电子装置定义:以满足用电要求为目标,以电力半导体器件为核心,通过合理的电路拓扑和控制方式,采用相关的应用技术对电能实现变换和控制的装置。 3、电力电子控制系统:电力电子装置和负载组成的闭环控制系统称为电力电子控制系统。 4、电力电子装置的主要类型: AC/DC变换器(整流器) DC/DC变换器(采用PWM控制的变换器也叫直流斩波器) AC/AC变换器(输入输出频率相同叫做交流调压器,频率变化叫变频器) DC/AC变换器(逆变器) 静态开关(静态开关通、断时没有触点动作,从而消除了电弧的危害。且静态开关由电子电路控制,自动化程度高。) 5、电力电子装置的应用 (1)直流电源装置:通信电源、充电电源、电解电镀直流电源、开关电源 (2)交流电源装置:交流稳压电源、通用逆变电源、不间断电源UPS (3)特种电源装置:静电除尘用高压电源、超声波电源、感应加热电源、焊接电源 (4)电力系统用装置:高压直流输电、无功功率补偿装置和电力有源滤波器、电力开关(5)电机调速用电力电子装置:直流、交流 (6)其他实用装置:电子整流器和电子变压器、空调电源、微波炉、应急灯等电源 6、电力电子装置的发展前景:交流变频调速、绿色电力电子装置、电动车、新能源发电、信息来源 7、半导体电力电子开关器件:电力二极管、晶闸管、电力晶体三极管、电力场效应晶体管、绝缘门极双极型晶体管IGBT 8、电力转换模块:把同类或不同类的一个或多个开关器件按一定的拓扑结构及转换功能连接并封装在一起的开关器件组合体。 功率集成电路PIC:将电力电子开关器件与电力电子变换器控制系统中的某些环节制作在一个整体上,就叫功率集成电路。 电源管理集成电路:可以提供各种方式来控制电源转换并管理各种器件的集成电路。 9、散热: (1)为什么要散热?答:PN结是电力电子器件的核心,PN结的性能与温度密切相关,因而每种器件都规定最高允许结温,器件运行不得超过这个温度,否则许多特性参数改变,甚至使器件永久性烧坏,不散热,100A的二极管长时间流过50A也可能被烧坏。 (2)散热的原理。散热途径有三种,但电力电子器件采用热传导和热对流两种方式。(3)散热措施:减少器件损耗:采用软开关电路,增加缓冲电路等措施。 散热措施:提高接触面光洁度,涂导热硅脂,施加合适安装压力。 选择有效散热面积大的散热器。 结构设计注意风道的形成,可以用水、油等介质管道帮助冷却。 10、缓冲电路: (1)作用:抑制开关器件的di/dt、du/dt,改变开关轨迹,减少开关损耗,使之工作在安全工作区域内。 (2)普通晶闸管用无极性缓冲电路,GTO、BJT、IGBT等自关断器件,工作频率比SCR高得多,用有极性缓冲电路。

电力电子与电气传动综合课程设计任务书(1)

电力电子与电气传动综合课程设计任务书 一、目的及要求: 通过电力电子与电气传动的综合课程设计教学环节,使学生掌握以直流电动机为对象组成的运动控制,包括转速单闭环调速系统,转速、电流双闭环控制调速系统,静态、动态性能分析及工程设计方法,掌握以交流电动机为对象组成的运动控制,包括基于稳态模型和动态模型的异步电动机调速系统以及同步电动机调压调速系统的工作原理和性能特点。 通过该课程的学习,培养学生理论联系实际的能力,掌握电气传动控制系统的工作原理和设计方法,从实际出发,深入地进行理论分析,应用理论解决电气传动系统中的实际问题,提高学生分析问题和解决问题的能力。检验同学们对所学知识的掌握程度和运用能力。 二、内容及步骤: 内容: 1、设计一个三相桥式全控整流电路,电源相电压为220V,利用可调的 直流电压驱动直流电机进行调速,仿真观察整流电路输出电压和电 流波形,电机电流、转速、转矩变化曲线。 2、设计一个双闭环直流电动机调速系统,整流装置采用三相桥式电路, 电动机参数:UN=220V,IdN=136A,nN=1460r/min,Ce=0.132V.min/r, 过载倍数λ=1.5,整流装置放大系数Ks=40,电枢回路总电阻R =0.5欧,时间常数Tl=0.03s,Tm=0.18s,电流反馈系数β=0.05V/A, 转速反馈系数α=0.007V.min/r,要求实现稳态无静差,电流超调 量σ i %≤5%,空载起动到额定转速时的转速超调量σ n %≤10%, 取电流反馈滤波时间常数T oi =0.0017s,转速反馈滤波时间常数T on =0.01s,取转速调节器和电流调节器的饱和值为12V,输出限幅值 为10V,额定转速时转速给定U n *=10V。仿真观察系统的转速、电流响应和设定参数变化对系统响应的影响。 3、完成基于IGBT逆变电路的异步电机恒压频比变频调速系统仿真,电 机参数如下:额定功率为 2.2kW,额定线电压为380V,额定频率为 50Hz,额定转速为1423pm,定子电阻为 3.478Ω,定子漏感为 0.01254H,转子电阻为2.546Ω,转子漏感为0.01226H,励磁电感 为0.3329H,转动惯量为0.0131,极对数为2。 4、采用三相SPWM技术设计一个转速开环变频调速系统,观察电动机的 电流、转速和转矩曲线。 步骤如下: 1、查阅调速系统资料。 2、设计调速系统原理图和动态结构框图。 3、计算各控制参数。 4、熟悉MATLAB仿真工具。 5、对原理图和结构框图进行仿真。 6、总结课程设计报告。 三、课程设计时间和进度安排: 1、时间安排第16-18周

电机电力电子及电气传动教学实验台介绍

第1章 MCL系列 电机电力电子及电气传动教学实验台介绍 一概述 1.特点: (1)采用组件式结构,可根据不同内容进行组合,故结构紧凑,使用方便灵活,并且可随着功能的扩展只需增加组件即可,能在一套装置上完成《电力电子学》,《电力拖动自动控制系统》等课程的主要实验。 (2)装置布局合理,外形美观,面板示意图明确,直观,学生可通过面板的示意查寻故障,分析工作原理。电机采用导轨式安装,更换机组简捷,方便,所采用的电机经过特殊设计,其参数特性能模拟3KW左右的通用实验机组,能给学生正确的感性认识。除实验控制屏外,还设置有实验用台,内可放置机组,实验组件等,并有可活动的抽屉,内可放置导线,工具等,使实验更方便。 (3)实验线路典型,配合教学内容,满足教学大纲要求。控制电路全部采用模拟和数字集成芯片,可靠性高,维修,检测方便。触发电路采用数字集成电路双窄脉冲。 (4)装置具有较完善的过流、过压、RC吸收、熔断器等保护功能,提高了设备的运行可靠性和抗干扰能力。 (5)面板上有多只发光二极管指示每一个脉冲的有无和熔断器的通断。触发脉冲可外加,也可采用内部的脉冲触发可控硅,并可模拟整流缺相和逆变颠覆等故障现象。 2.技术参数 (1)输入电源:380V 10% 50H Z1H Z (2)工作条件:环境温度:-5 ~ 400C 相对湿度:〈75% 海拔:〈1000m (3)装置容量:〈1KVA (4)电机容量:〈200W (5)外形尺寸:长1600mm X宽700mm(长1300mm X宽700mm) 1

2 电力电子技术.半控型器件: 1.单结晶体管同步移相触发电路及单相半波可控整流电路2.正弦波同步移相触发电路及单相半波可控整流电路3.锯齿波同步移相触发电路 4.单相桥式半控整流电路 5.单相桥式全控整流电路 6.单相桥式有源逆变电路 7.三相半波可控整流电路 8.三相半波有源逆变电路 9.三相桥式半控整流电路 10.三相桥式全控整流电路 11.三相桥式有源逆变电路 12.直流斩波电路 13.单相并相逆变电路 14.单相交流调压电路 15.三相交流调压电路 电力电子技术.全控型器件特性部分 1.功率场效应晶体管(MOSFET)的主要参数测量 2.功率场效应晶体管(MOSFET)的驱动电路研究 3.绝缘栅双极型晶体管(IGBT)特性及其驱动电路的研究4.电力晶体管(GTR)驱动电路的研究 5.电力晶体管(GTR)的特性研究 电力电子技术.全控型器件典型线路部分 1.直流斩波电路(升压斩波、降压斩波)的性能研究2.单相交直交变频电路的性能研究 3.半桥型开关稳压电源的性能研究 4.电流控制型脉宽调制开关稳压电源研究 5.直流斩波电路(Buck-Boost变换器)的研究 6.采用自关断器件的单相交流调压实验 7.单相正弦波(SPWM)逆变电路实验 8.全桥DC/DC变换电路实验

电力电子与电力传动学科

电力电子与电力传动学科硕士研究生培养方案 电力电子与电力传动学科硕士研究生培养方案 本学科是电气工程一级学科下的二级学科,是一个既涉及传统电气技术,又会聚了现代电力电子技术、信息与控制技术的工程应用学科。特点是综合了强电与弱电、电力与电子、硬件与软件、测量与控制等多学科的知识,实现对供配电系统、电力拖动系统及机电自动化设备与生产线的供电、驱动与控制及深层次的理论研究。 本学科与电子科学与技术、信息与通信工程、计算机科学与技术、仪器科学与技术、电路与系统等学科相互交叉,紧密联系,理论深入而又工程性强。近年来发展势头良好,社会对此方面的高级技术人才有很好的需求。 一、培养目标 本学科硕士学位培养过程中以电力电子、电机拖动及控制、供配电技术与测量传感及工程控制为核心,硕士学位获得者应掌握电力电子与电力传动科学的基础理论与技术,并掌握电子科学、计算机科学及信息科学的一般理论与技术,具有从事电力拖动与控制系统、供电系统和电子信息系统科学以及相关领域的研究开发及教学工作能力,有严谨求学的学风和高尚的职业道德,熟练掌握一门外语。 二、研究方向 01机电伺服驱动及控制技术 02电力传动控制与变流技术 03电力电子智能功率驱动及控制 04电力系统自动化 05电力电子与电力传动系统 06电能质量与控制 三、培养方式和学习年限 全日制硕士研究生学习年限一般为两年半至三年;在职硕士研究生学习年限一般为三年半至四年;提前完成硕士学业者,可提前半年毕业;若因客观原因不能按时完成学业者,可申请适当延长学习年限,延长时间不得超过半年。 四、学分与课程学习基本要求 总学分要求不低于26学分,其中课程总学分不低于24个学分,必修环节不低于2学分。课程学分要求中,学位课不低于15学分,其中所有公共基础课必修(皆为校统考课程),基础课至少选修一门。 学位课可以代替非学位课,但非学位课不能代替学位课。对于跨学科专业或同等学力录取的硕士生须补相应专业本科核心课程至少3门,但不计学分。 五、课程设置(详见课程设置表) 六、必修环节(参见第98页) 七、学位论文(参见第98页) ·1·

电力电子技术实验内容5

电力电子技术实验内容 实验一晶闸管的测试及导通关断条件测试实验 1.实验目的 (1)观察晶闸管的结构,掌握正确的晶闸管的简易测试方法; (2)验证晶闸管的导通条件及关断方法。 2.预习要求 (1)阅读电力电子技术教材中有关晶闸管的内容,弄清晶闸管的结构与工作原理; (2)复习晶闸管基本特征的有关内容,掌握晶闸管正常工作时的特性; 3.实验器材 (1)±5V、±12V直流稳压电源(双路)一台 (2)万用表一块 (3)晶闸管几个(用面板上的三相整流桥中的晶闸管) (4)DJDK-1型实验台 (5)灯泡12V/0.1A一个 (6)交流毫伏表一个 4.实验内容 (1)鉴别晶闸管的好坏; (2)晶闸管的导通条件测试; (3)晶闸管的关断方法的测试。 5.实验电路 图3-1 晶闸管的测试图3-2 晶闸管导通条件实验电路 图3-3 晶闸管的测试图3-4 晶闸管关断条件实验电路 6.实验内容及步骤 (1)鉴别晶闸管的好坏 见图3-1,用万用表的R×1K电阻档测试两只晶闸管的阳极(A)—阴极(K)、门极(G)—阳极(A)之间的正反向电阻,再用万用表的R×100K电阻档测量两只晶闸管的门极(G)—阴级(K)之间的正反向电阻,将测量数据填入下表,并鉴别晶闸管的好坏。

(2)晶闸管的导通条件(见图3-2) a)12V正向阳极电压,门极开路或接-5V电压,观察灯泡亮否,判断晶闸管是否导通; b)加12V反向阳极电压,门极开路或接-5V电压或接+5V电压,观察灯泡是否亮,判断晶闸管是否导通; c)阳极加12V正向电压,门极加+5V正向电压,观察灯泡亮否,判断晶闸管是否导通; d)灯亮后去掉门极电压,看灯泡亮否,再加-5V反向门极电压,看灯泡是否继续亮。 e)写出导通条件,说明门极作用。 (3)晶闸管关断条件实验(见图3-3、图3-4) a)按图8-5接线,接通12V电源电压,再在门极接通+5V电压使晶闸管导通,灯泡亮,接着断开门极电压; b)去掉12V阳极电压,观看灯泡是否亮; c)使晶闸管导通,然后断开门极电压,即打开K2,接着闭合K1,再打开K1,观察灯泡是否熄灭; d)再使晶闸管导通,断开门极电压,逐渐减小阳极电压,当电流表指针有某值逐渐降到零时,记下该值,即被测晶闸 管的维持电流,此时若再升高阳极电源电压,灯泡也不再发亮,说明晶管已关断; e)总结关断晶闸管的方法。 7.注意事项 用万用表测试闸管门极与阴极正反高电阻时,发现有的晶闸管正反向电阻很接近,这种现象并不能说明晶闸管已经损坏,只要正向电阻比反向电阻小些,该晶闸管就是好的。注:用万表表测试晶闸管门极与阴极电阻时,不能用R×10?档,以防损坏门极,一般用R×1K档测量; 8.实验报告要求 (1)回答实验中提出的问题; (2)总结简易判断晶闸管好坏的方法。 实验二正弦波同步移相触发电路实验 一.实验目的 1.熟悉正弦波同步触发电路的工作原理及各元件的作用。 2.掌握正弦波同步触发电路的调试步骤和方法。 二.实验内容 1.正弦波同步触发电路的调试。 2.正弦波同步触发电路各点波形的观察。 三.实验线路及原理 电路分脉冲形成,同步移相,脉冲放大等环节,具体工作原理可参见“电力电子技术”有关教材。 四.实验设备及仪器 1.教学实验台主控制屏

第一章 THPDC-1型电力电子及电气传动实训装置简介

第一章 THPDC-1型电力电子及电气传动 实训装置简介 一、特点 (1)电力电子及电气传动实训装置是为维修电工(高级工)的培训、考核而开发设计的。该装置不仅可以完成普通高等院校、职业院校、高级技校电气类专业《电力电子技术》、《直流调速系统》、《交流调速系统》等课程所开设的主要实验项目,还可以作为对从业人员进行岗位培训、就业培训以及各省、市的维修电工培训和鉴定考核使用。当不进行故障设置时该装置可作为一般的教学实验台来使用,当需要进行考核时,老师可以通过操作“故障设置箱”里的故障设置开关来给学生设置多种故障,学生根据故障现象来进行分析、测试(所有故障点都有测试孔引出),从而确定故障的类型及位置,按下对应的“故障点排除按钮”即可排除故障。同时“排故计数器”将会对学生按下排故按钮的次数进行记录,老师可根据计数器的记录来判定学生的成绩。该装置对培养(考核)学生对实际问题的分析、解决能力是十分有效的,使其真正掌握电力电子及电气传动的实用技术与操作技能。 (2)实训装置采用挂件式结构,可根据不同实验内容进行自由组合,故结构紧凑、使用方便、功能齐全、综合性能好;实训装置占地面积小,节约实验室用地,无需设置电源控制屏、电缆沟、水泥墩等,可减少基建投资;实验装置只需三相四线的电源即可投入使用,实验室建设周期短、见效快。 (3)实验机组容量小,耗电小,配置齐全;装置使用的电机经过特殊设计,其参数特性能模拟3KW左右的通用实验机组。 (4)装置布局合理,外形美观,面板示意图明确、清晰、直观;实验连接线采用强、弱电分开的手枪式插头,两者不能互插,避免强电接入弱电设备,造成该设备损坏;电路连接方式安全、可靠、迅速、简便;除电源控制屏和挂件外,还设置有实验桌,桌面上可放置机组、示波器等实验仪器,操作舒适、方便。电机采用导轨式安装,更换机组简捷、方便;实验台底部安装有轮子和不锈钢固定调节机构,便于移动和固定。 (5)控制屏供电采用三相隔离变压器隔离,设有电压型漏电保护装置和电流型漏电保护装置,切实有效保护操作者的人身安全,为开放性的实验室创造了前提条件。 (6)挂件面板分为三种接线孔,强电、弱电及波形观测孔,三者有明显的区别,不能互插。 二、技术参数 (1)输入电压:三相四线(380V±10% 50Hz) (2)工作环境:温度-5—+40℃相对湿度<85%(25℃)海拔<4000m (3)装置容量:<1.5kVA

电力电子装置及系统

电力电子装置及系统概述 张密李静怡牟书丹李子君 0 引言 在电力系统中,许多功能的实现都需要靠电力电子装置来完成。比如说可再生能源的并网发电、无功和谐波的动态补偿、储能装置的功率转换、配用电能的双向流动、交直流电网的柔性互联等。 随着科技的日益发展,大功率、高电压电力电子器件的发展,变换器单元化、模块化以及智能化水平的提高,控制策略和调制策略性能的提升,电力电子装置在电力系统中的作用会越来越大。 1 电力电子装置及系统的概念 电力电子装置是以满足用电要求为目标,以电力半导体器件为核心,通过合理的电路拓扑和控制方式,采用相关的应用技术对电能实现变换和控制的装置。 电力电子装置和负载组成的闭环控制系统称为电力电子控制系统,其基本组成如图所示。它是通过弱电控制强电实现其功能的。控制系统根据运行指令和输入、输出的各种状态,产生控制信号,用来驱动对应的开关器件,完成其特定功能。 2 电力电子装置的主要类型 电力电子装置的种类繁多,根据电能转换形式的不同,基本上可以分为5大类:交流-直流变换器(AC/DC)、直流-交流变换器(DC/AC)、直流-直流变换器(DC/DC)、交流-交流变换器(AC/AC)和电力电子静态开关。 1.AC/DC变换器 AC/DC变换器又称整流器。用于将交流电能变换为直流电能。 2.DC/DC变换器 DC/DC变换器用于将一种规格的直流电能变换为另一种规格的直流电能。采用PWM 控制的DC/DC变换器也称直流斩波器,主要用于直流电机驱动和开关电源。 3.DC/AC变换器 DC/AC变换器又称逆变器。用于将直流电能变换为交流电能。根据输出电压及频率的变化情况,可分为恒压恒频(CVCF)及变压变频(VVVF)两类,前者用作稳压电源,后者用于交流电动机变频调速系统。 4.AC/AC变换器 AC/AC变换器用于将一种规格的交流电能变换为另一种规格的直流电能。输入和输出频率相同的称为交流调压器,频率发生变化的称为周波变换器或变频器。 5.静态开关 静态开关又称无触点开关,它是由电力电子器件组成的可控电力开关。 根据需要,以上各类变换可以组合应用。此外,各类变换器正在向模块化发展,可方便地组成不同功率等级的变换器。 3 电力电子装置的应用概况 3.1发电阶段中的应用 (1)发电机组励磁。 大型发电机组应用静止励磁技术,与励磁机相比,具有调节速度快、控制简单的特点,显著提高

电力电子与电力传动专业情况及学校排名

电力电子与电力传动专业情况及学校排名 电力电子与电力传动学科主要研究新型电力电子器件、电能的变换与控制、功率源、电力传动及其自动化等理论技术和应用。它是综合了电能变换、电磁学、自动控制、微电子及电子信息、计算机等技术的新成就而迅速发展起来的交叉学科,对电气工程学科的发展和社会进步具有广泛的影响和巨大的作用。 学科研究范围: 电力电子器件的原理、制造及其应用技术;电力电子电路、装置、系统及其仿真与计算机辅助设计;电力电子系统故障诊断及可靠性;电力传动及其自动控制系统;电力牵引;电磁测量技术与装置;先进控制技术在电力电子装置中的应用;电力电子技术在电力系统中的应用;电能变换与控制;谐波抑制与无功补偿。 研究方向: 1 )谐波抑制与无功补偿 2 )电力电子电路仿真与设计 3 )计算机控制系统 4 )电气系统智能控制技术 5 )现代控制理论及其电气传动中的应用 6 )系统故障诊断技术及应用 7 )现代交、直流电机调速技术 8 )功率变换技术的研究 该学科对实践动手能力要求很高,难度较大。本科是电气工程、自动化、电子信息工程的适合报考这个专业。该专业需要的基础是电路基础,模拟电路与数字电路,电机学,单片机技术,计算机控制技术,电力电子技术,电力拖动自动控制系统,数字信号处理。 该专业实力最强的几所院校:浙大(拥有国内唯一的电力电子国家实验室,师资力量雄厚,有汪栖生院士和徐德鸿等知名教授,科研成果较多)西安交通大学(西交的电力电子与能源研究中心在国内处于领先水平,科研成果较多,有电力电子知名专家王兆安教授)南京航空航天大学(有航空电源航空科技重点实验室,师资力量雄厚,科研成果较多)合肥工业大学和中国矿业大学(有电力电子与电力传动国家重点学科) 华北电力大学的张一工教授是国内谐波抑制与无功补偿领军人物之一,另外石新春和韩

电力电子装置与系统考试资料

电力电子装置与系统考试资料仅供参考 学院:机电学院 专业:应用电子 班级: 学号: 姓名:

摘要:本文简单回顾了电力电子技术及其器件的发展过程,介绍了现在主流的电力电子器件的工作原理、应用范围及其优缺点,探讨了在21世纪中新型电力电子器件的应用展望。关键词:电力电子技术;晶闸管;功率集成电路; 引言 电力电子技术包括功率半导体器件与IC技术、功率变换技术及控制技术等几个方面,其中电力电子器件是电力电子技术的重要基础,也是电力电子技术发展的“龙头”。从1958年美国通用电气(GE)公司研制出世界上第一个工业用普通晶闸管开始,电能的变换和控制从旋转的变流机组和静止的离子变流器进入由电力电子器件构成的变流器时代,这标志着电力电子技术的诞生。到了70年代,晶闸管开始形成由低压小电流到高压大电流的系列产品。同时,非对称晶闸管、逆导晶闸管、双向晶闸管、光控晶闸管等晶闸管派生器件相继问世,广泛应用于各种变流装置。由于它们具有体积小、重量轻、功耗小、效率高、响应快等优点,其研制及应用得到了飞速发展。 由于普通晶闸管不能自关断,属于半控型器件,因而被称作第一代电力电子器件。在实际需要的推动下,随着理论研究和工艺水平的不断提高,电力电子器件在容量和类型等方面得到了很大发展,先后出现了GTR、GTO、功率MOSET等自关断、全控型器件,被称为第二代电力电子器件。近年来,电力电子器件正朝着复合化、模块化及功率集成的方向发展,如IGPT、MCT、HVIC等就是这种发展的产物。 电力整流管 整流管产生于本世纪40年代,是电力电子器件中结构最简单、使用最广泛的一种器件。目前已形成普通整流管、快恢复整流管和肖特基整流管等三种主要类型。其中普通整流管的特点是:漏电流小、通态压降较高(1.0~1.8V)、反向恢复时间较长(几十微秒)、可获得很高的电压和电流定额。多用于牵引、充电、电镀等对转换速度要求不高的装置中。较快的反向恢复时间(几百纳秒至几微秒)是快恢复整流管的显著特点,但是它的通态压降却很高(1.6~4.0V)。它主要用于斩波、逆变等电路中充当旁路二极管或阻塞二极管。肖特基整流管兼有快的反向恢复时间(几乎为零)和低的通态压降(0.3~0.6V)的优点,不过其漏电流较大、耐压能力低,常用于高频低压仪表和开关电源。目前的研制水平为:普通整流管(8000V/5000A/400Hz);快恢复整流管(6000V/1200A/1000Hz);肖特基整流管(1000V/100A/200kHz)。

电力电子与电力传动发展浅析

电力与电子传动发展浅析 论文摘要:在人类所利用的能源当中,电能是最清洁最方便的;电气传动无疑有着 很大的意义,随着电力电子技术、计算机技术以及自动控制技术的迅速发展,电气传动技术也得到了长足的发展。本文在对大量国内外文献分析的基础上,总结和论述了我国在电力电子和电力传动系统领域的研究现状。从学术的角度来看,电力电子技术的主要任务是研究电力电子器件(功率半导体)设备,转换器拓扑结构,控制和电力电子应用,实现电力和磁场的能量转换、控制、传输和存储,以便实现合理和有效使用的各种形式的能源,高品质的人力的电力和磁场的能量。 论文关键词:电力工程电力电子电力传动系统 论文内容: 1 电力电子的研究方向 就目前情况而言,我国电力电子的研究范围与研究内容主要包括: 1)电力电子元器件及功率集成电路; 2)电力电子变换器技术的研究主要包括新的或电力能源的节约和新能源电力电子,军事和空间应用等作为特殊的电力电子转换器技术的智能电力电子变换器技术,控制电力电子系统和计算机仿真建模; 3)电力电子技术的应用,其研究内容包括超高功率转换器,在能源效率,可再生能源发电,钢铁,冶金,电力,电力牵引,船舶推进应用,电力电子系统的信息化和网络;电力电子系统的故障分析和可靠性;复杂的电力电子系统的稳定性和适应性; 4)电力电子系统集成,其研究内容包括标准化电力电子模块;单芯片和多芯片系统设计,集成电力电子系统的稳定性和可靠性。 2 我国电力电子发展中存在的问题 当前的主要问题是:中国的电力电子产品和设备目前生产的大部分是也主要是晶闸管,虽然它可以创造一些高科技电子产品和电气设备,但他们都使用电力电子外国生产设备和多组分组装集成的制造方法,尤其是先进的全控型电力电子器件全部依赖进口,而许多关系到国民经济和国家安全,在一些关键领域的核心技术,软件,硬件和关键设备,我国的外资控制和封锁。特别是在关系国民经济和国家安全,更多先进水平的核心技术差距的关键领域,这种情况正在迅速变化的挑战和我们的道德律令。在过去,虽然我国国民经济的各个部门,先后引进了国外先进技术,已开始注意到国内突出的问题,从表面上看,虽然对引进技术的绝大多数可以在几年后达到国产化率70%的要求,但只要仔细分析,不难发现,并最终拒绝外国公司转让技术和关键部件,都涉及到高科技的电力电子技术和动力传动产品在核心技术。目前国外和问题的主要区别是:电力电子器件的全面控制,不能制造国内制造的高功率转换器,低技术,设备可靠性差,电力电子数字控制技术水平仍处于初级阶段;应用程序的控制技术和系统控制软件的水平较低;缺乏经验的重大项目等。高性能高功率转

相关主题
文本预览
相关文档 最新文档