当前位置:文档之家› 最新利用空间曲线的一般方程计算其曲率和挠率

最新利用空间曲线的一般方程计算其曲率和挠率

最新利用空间曲线的一般方程计算其曲率和挠率
最新利用空间曲线的一般方程计算其曲率和挠率

利用空间曲线的一般方程计算其曲率和挠

利用空间曲线的一般方程计算其曲率和挠率

殷璞

(西北师范大学数学与信息科学学院甘肃兰州 730070)

摘要空间曲线由一般方程由

?Skip Record If...?

给出时,本文给出了计算曲线曲率和挠率的公式.

关键词曲率挠率曲线的一般方程

Determine the Curvature and Torsion of a Space Curve

by the General Equation

Yin Pu

(College of Mathematics and Information Science, Northwest Normal University,

Lanzhou730070,Gansu)

Abstract : In this paper, give the general equation of a space curve

?Skip Record If...?,

we calculate the formulas of the curvature and torsion.

Key words: curvature; torsion; the general equation of a space curve

曲线的曲率描述的是曲线的切向量对于弧长的旋转速度,即曲线的弯曲程度;曲线的挠率其绝对值描述的是曲线的副法向量(或密切平面)对于弧长的旋转速度,即曲线的扭曲程度.计算曲线的曲率和挠率一般是利用曲线的自然(弧长)参数方程进行推导的,所以曲线的方程由一般方程给出时,首先要改写成参数方程,然后再计算曲线的曲率和挠率.但是有些方程不容易改写成自然参数方程,本文就从曲线的一般方程出发直接推导计算曲线的曲率和挠率的公式.

下面,设曲线?Skip Record If...?是两光滑曲面?Skip Record If...?的交线,且

?Skip Record If...?

是满秩的.

一、计算曲线的曲率

设所求曲线为?Skip Record If...?,其中?Skip Record If...?为弧长.则

?Skip Record If...? . (1) 将方程(1)式中的两式对?Skip Record If...?求导,有

?Skip Record If...? (2)

记向量

?Skip Record If...?,?Skip Record If...? (3)

则曲线?Skip Record If...?的单位切向量?Skip Record If...?的方向平行于?Skip Record

If...?的方向.在局部,选择弧长?Skip Record If...?的增加方向,使得单位切向量?Skip Record

If...?的方向就是?Skip Record If...?的方向,那么,有

?Skip Record If...??Skip Record If...??Skip Record If...??Skip Record If...?

(4)

又由(3)式知

?Skip Record If...??Skip Record If...??Skip Record If...?. (5) ?Skip Record If...?=?Skip Record If...?. (6)

且由(4)式和(5)式可知

?Skip Record If...?=?Skip Record If...??Skip Record If...?.

?Skip Record If...?=?Skip Record If...??Skip Record If...?.

?Skip Record If...?=?Skip Record If...??Skip Record If...?. (7)

将(4)式两端对弧长?Skip Record If...?求导,由Frenet公式,有

?Skip Record If...??Skip Record If...??Skip Record If...?+?Skip Record If...??Skip Record

If...?

?Skip Record If...? (8)

这里,?Skip Record If...?是单位主法向量.

将(4)式与(8)式两端分别作外积

?Skip Record If...??Skip Record If...??Skip Record If...?

?Skip Record If...? (9)

这里,?Skip Record If...?是单位副法向量.

因为?Skip Record If...??Skip Record If...?=?Skip Record If...??Skip Record If...?-

?Skip Record If...?

=-?Skip Record If...?(10)

?Skip Record If...??Skip Record If...?=?Skip Record If...??Skip Record If...??Skip Record If...?

=?Skip Record If...?. (11)

将(10)式和(11)式代入(9)式,有

?Skip Record If...??Skip Record If...??Skip Record If...?=?Skip Record If...?-?Skip Record If...?. (12)

由(3)式知

?Skip Record If...?=?Skip Record If...??Skip Record If...?

?Skip Record If...??Skip Record If...?. (13) ?Skip Record If...?=?Skip Record If...??Skip Record If...?

?Skip Record If...??Skip Record If...?.(14) 则由(5)式和(14)式,有

?Skip Record If...?

=?Skip Record If...??Skip Record If...?

=?Skip Record If...??Skip Record If...?

+?Skip Record If...??Skip Record If...?

+?Skip Record If...??Skip Record If...? (15)

=?Skip Record If...??Skip Record If...?+

?Skip Record If...??Skip Record If...?+

?Skip Record If...??Skip Record If...?.

由(5)式和(13)式,有

?Skip Record If...?

=?Skip Record If...??Skip Record If...?

=?Skip Record If...??Skip Record If...?

+?Skip Record If...??Skip Record If...?

+?Skip Record If...??Skip Record If...? (16)

=?Skip Record If...??Skip Record If...?+

?Skip Record If...? ?Skip Record If...??Skip Record If...?

又由(3)式和(12)式,有

?Skip Record If...??Skip Record If...??Skip Record If...?=?Skip Record If...?

?Skip Record If...? (17)

由(15)式和(16)式,有

?Skip Record If...?

?Skip Record If...?

+?Skip Record If...??Skip Record If...?+

?Skip Record If...??Skip Record If...??Skip Record If...?+

?Skip Record If...??Skip Record If...??Skip Record If...?.

(18)

令?Skip Record If...? (19)

将(7)式、(19)式代入(18)式,有

?Skip Record If...?

?Skip Record If...??Skip Record If...??Skip Record If...? (20)

同理,有

?Skip Record If...?

?Skip Record If...??Skip Record If...??Skip Record If...? (21)

?Skip Record If...?

?Skip Record If...??Skip Record If...??Skip Record If...? (22)

将(20)式、(21)式和(22)式代入(17)式,有

?Skip Record If...??Skip Record If...??Skip Record If...??Skip Record If...??Skip Record If...??Skip Record If...? ?Skip Record If...? (23)

由(3)式,(23)式可变为

?Skip Record If...??Skip Record If...??Skip Record If...?

=?Skip Record If...?+2?Skip Record If...?+2?Skip Record If...?

+?Skip Record If...?+2?Skip Record If...?+?Skip Record If...?.

=?Skip Record If...?

-?Skip Record If...?. (24)

令?Skip Record If...?=?Skip Record If...?. (25)

?Skip Record If...?=?Skip Record If...?. (26)

则 ?Skip Record If...??Skip Record If...??Skip Record If...?=?Skip Record If...?

(27)

两端取向量长度,得曲线的曲率为

?Skip Record If...?. (28)

二、计算曲线的挠率

将(27)式两端关于弧长?Skip Record If...?求导,有

?Skip Record If...??Skip Record If...??Skip Record If...??Skip Record If...?=?Skip Record If...?. (29)

将(27)式和(29)式两端作外积,得

?Skip Record If...??Skip Record If...??Skip Record If...?

=?Skip Record If...?. (30)

对(30)式两端向量取长度,有

?Skip Record If...??Skip Record If...??Skip Record If...?

=?Skip Record If...?. (31)

则曲线的挠率为

?Skip Record If...? . (32)

这里,?Skip Record If...?分别由(3),(13),(14),(25),(26)式计算. ?Skip Record If...?,?Skip Record If...?计算式分别为下

面(33),(34)式:

?Skip Record If...??Skip Record If...??Skip Record If...??Skip Record If...??Skip Record If...?

?Skip Record If...? ?Skip Record If...? (33)

其中,

?Skip Record If...? ?Skip Record If...??Skip Record If...??Skip Record If...? ?Skip Record If...??Skip Record If...??Skip Record If...? ?Skip Record If...? ?Skip Record If...? ?Skip Record If...? ?Skip Record If...?

?Skip Record If...??Skip Record If...? ?Skip Record If...??Skip Record If...??Skip Record If...??Skip Record If...??Skip Record If...??Skip Record If...??Skip Record If...??Skip

Record If...??Skip Record If...??Skip Record If...?

?Skip Record If...??Skip Record If...??Skip Record If...??Skip Record If...??Skip Record If...?

?Skip Record If...? ?Skip Record If...? (34).

其中,

?Skip Record If...? ?Skip Record If...? ?Skip Record If...??Skip Record If...??Skip Record If...? ?Skip Record If...??Skip Record If...??Skip Record If...??Skip Record If...? ?Skip Record If...? ?Skip Record If...? ?Skip Record If...?.?Skip Record If...??Skip Record

If...??Skip Record If...??Skip Record If...??Skip Record If...??Skip Record If...??Skip Record If...??Skip Record If...??Skip Record If...??Skip Record If...??Skip Record If...??Skip Record If...?.

三、举例

例设曲线?Skip Record If...?是二次曲面?Skip Record If...?,?Skip Record If...?的交线,求曲线?Skip Record If...?的曲率和挠率.

解记 ?Skip Record If...?①

则 ?Skip Record If...?, ②

由①式,有

?Skip Record If...?,?Skip Record If...?,?Skip Record If...?,?Skip Record

If...?,?Skip Record If...?,?Skip Record If...?,

?Skip Record If...?,?Skip Record If...?,?Skip Record If...?,?Skip Record If...?,?Skip

Record If...?,?Skip Record If...?. ③

曲率与挠率

曲率与挠率 摘要:三维欧氏空间中的曲线中的曲率与挠率是空间曲线理论中最基本、最重要的两个概念,分别刻画空间曲线在一点邻近的弯曲程度和离开密切平面的程度,本文中给出了曲率与挠率的定义及其计算公式,并根椐公式 实例进行计算,以及曲率和挠率关于刚性运动及参数变换的不变性. 关键词:曲率与挠率 平面特征 刚性运动 1. 曲率与挠率的定义及其几何意义 1.1曲率的解析定义 设曲线C 的自然参数方程为()s r r =,且()s r 有二阶连续的导矢量r ,称()s r 为曲线C 在弧长为s 的点处的曲率,记为()()s r s k =,并称()s r 为C 的曲率向量,当 ()0≠s k 时,称()() s k s p 1 = 为曲线在该点处的曲率半径. 1.2 挠率的解析定义 空间曲线不但要弯曲,而且还要扭曲,即要离开它的密切平面,为了能刻画这一扭曲程度,等价于去研究密切平面的法矢量(即曲线的副法矢量)关于弧长的变化率,为此我们先给出如下引理. 引理:设自然参数曲线C :()s r r =本向量为βα ,和γ ,则0=?α r ,即r r 垂直于α . 另一方面由于1=r ,两边关于弧于s 求导便得 0=?r r , 即r 垂直于r ,这两方面说明r 与γα ?共线,即r 与β 共线. 由()βτ s r -=(负号是为了以后运算方便而引进的)所确定的函数()s r 称为曲线C

的挠率.当()0≠s τ时,它的倒数 () 1 s τ称为挠率半径. 1.3曲率与挠率的几何意义 1.3.1 曲率的几何意义 任取曲线C :()s r r =上的一点()p s 及其邻近点()Q s s +?,P 和Q 点处的单位 切向量分别为()()s r s =α和()()s s r s s ?+=?+ α,它们的夹角设为θ?,将()s s ?+α 的起点移到()p s 点,则()()2 sin 2θ αα?=-?+s s s ,于是 ()() s s s s s s ?????=??= ?-?+θθθ θαα2 2sin 2sin 2 故 ()()s r s k = ()() s s s s s s s s ??=?????=?-?+=→?→?→?→?θθθθ ααθθ000 lim lim 2 2sin lim lim 这表明曲线在一点处的曲率等于此点与邻近点的切线向量之间的夹角关于弧长的变化率,也就是曲线在该点附近切线方向改弯的程度,它反映了曲线的弯曲程度.如果曲线在某点处的曲率愈大,表示曲线在该点附近切线方向改变的愈快,因此曲线在该点的弯曲程度愈大. 1.3.2挠率的几何意义 由挠率的定义和()γ τ =s ,因此挠率的绝对值表示曲线的副法向量关于弧长的变化率,换句话说,挠率的绝对值刻画了曲线的密切平面的变化程度.所以曲线的挠率就绝对值而言其几何意义是反映了曲线离开密切平面的快慢,即曲线的扭曲程度. 1.4 直线与平面曲线的特征

曲面曲率计算方法的比较与分析

研究生专业课程报告 题目:曲面曲率直接计算方法的比较 学院:信息学院 课程名称:三维可视化技术 任课教师:刘晓宁 姓名:朱丽品 学号:201520973 西北大学研究生处制

曲面曲率直接计算方法的比较 1、摘要 曲面曲率的计算是图形学的一个重要内容,一般来说,曲面的一阶微分量是指曲面的切平面方向和法向量,二阶微分量是指曲面的曲率等有关量.它们作为重要的曲面信息度量指标, 在计算机图形学, 机器人视觉和计算机辅助设计等领域发挥了重要的作用.此文对曲面上主曲率的2种直接估算方法(网格直接计算法和点云直接计算法)进行了论述, 并进行了系统的总结与实验, 并给出了其在颅像重合方面的应用。 关键词曲面曲率、主曲率、点云、三角网格 2、引言 传统的曲面是连续形式的参数曲面和隐式曲面, 其微分量的计算已经有了较完备的方法.随着激光测距扫描等三维数据采样技术和硬件设备的长足进步, 以及图形工业对任意拓扑结构光滑曲面造型的需求日益迫切, 离散形式的曲面———细分曲面、网格曲面和点云曲面正在逐渐成为计算机图形学和几何设计领域的新宠.于是, 对这种离散形式的曲面如何估算微分量, 就成为一个紧迫的课题。 CT扫描技术获得的原始点云和网格数据通常只包含物体表面的空 间三维坐标信息及其三维网格信息,没有明确的几何信息,而在点云和网格的简化、建模、去噪、特征提取等数据处理和模式识别中,常需要提前获知各点的几何信息,如点的曲率、法向量等,也正基于此,点云和网格的几何信息提取算法一直是研究的热点。点的法向量和曲

率通常采用离散曲面的微分几何理论来计算,由于离散曲面分为网格和点集两种形式,其法向量和曲率计算也分为两类: 一类是基于网格的法向量和曲率计算,另一类是基于散点的法向量和曲率计算。由于基于三角网的点云几何信息计算精度一般比较低,通常采用直接计算法。在点云几何信息提取中,常采用基于散乱点的点云几何信息计算方法,该类方法主要是通过直接计算法和最小二乘拟合算法获取点云的局部n 次曲面,然后根据曲面的第一基本形式和第二基本形式求解高斯曲率和平均曲率,而点云的局部曲面表示有两种: 一是基于法向距离的局部曲面表示,二是基于欧几里德距离的局部曲面表示。本节中针对近几年来国际上提出的对三角网格曲面估算离散曲率的直接估算法,从数学思想与表达形式等方面进行系统的归纳与总结. 3、三角网格曲面的曲率的计算及代码实现 为了叙述清楚起见, 引入统一的记号.k 1和k 2表示主曲率,曲面的主曲率即过曲面上某个点具有无穷个曲线,也就存在无穷个曲率(法曲率),其中存在一条曲线使得该曲线的曲率为极大,这个曲率为极大值k 1,垂直于极大曲率面的曲率为极小值k 2。这两个曲率的属性为主曲率。它们代表着法曲率的极值。主曲率是法曲率的最大值和最小值。 H 表示平均曲率,是空间上曲面上某一点任意两个相互垂直的正交曲率的平均值。如果一组相互垂直的正交曲率可表示为K1、K2,那么平均曲率则为:H= (K1 +K 2 ) / 2。 K 表示曲面的高斯曲率, 两个主曲率的乘积即为高斯曲率,又称

空间曲线的参数化

一、 空间曲线的参数化 若积分曲线Γ的参数方程 ],[)(),(),(βα∈===t t z z t y y t x x Γ,:,则曲线积分的计算公式为 ??'=++β α)())(),(),(({d d d t x t z t y t x P z R y Q x P Γ }d )())(),(),(()())(),(),((t z t z t y t x R t y t z t y t x Q '+'+ ],[d )()()())()()((d )(222βαβ α ∈'+'+'=?? t t t z t y t x t ,z t ,y t x f s x,y,z f Γ , 曲线积分计算的关键是如何将积分曲线Γ参数化。下面将给出积分曲线参数化的某些常用方法。 1. 设积分曲线???==0 ),,(0),,(z y x G z y x F Γ:,从中消去某个自变量,例如z ,得到Γ在 xoy 平面的投影曲线,这些投影曲线常常是园或是椭圆,先将它们表示成参数方程),(),(t y y t x x ==然后将它们代入0),,(0),,(==z y x G z y x F 或中,解出)(t z z =由此得到Γ的参数方程:],[)(),(),(βα∈===t t z z t y y t x x ,。 例1将曲线???==++y x a z y x Γ2222:,(其中0>a )用参数方程表示。 解:从Γ的方程中消去y ,得到xoz 平面上的投影曲线2 222a z x =+,这是椭圆, 它的参数方程为]2,0[,sin ,cos 2 π∈== t t a z t a x ,将其代入Γ的方程,得到第七讲 曲线积分与曲面积分

空间曲线方程不同形式间的转化技巧

空间曲线方程不同形式间的转化技巧 李晶晶 摘要:空间曲线的参数方程和一般方程是空间曲线方程的两种非常重要的形式, 它们表示同一条曲线,因此可以相互转化.两种形式相互转化的方法有很多,本文主 要介绍了常用的几种.在转化的过程中要保证方程的等价性和同解性. 关键词:一般方程;参数方程;互化;等价性;同解性 Transformation Techniques for Different Forms of Inter-space Curve Equation Li Jingjing (20102112052, Class 4 Grade 2010, Mathematics & Applied Mathematics ,School of Mathematics & Statistics) Abstract:Space curve parameter equation and general equation are two very important form of the equation of space curve.They represent the same curve, so they can be transformed into each other.There are many methods for the conversion between these two kinds of forms.This paper mainly introduces several methods commonly used.During the transformation process to ensure that equation equivalence and the same solution. Key words: The general equation; parameter equation; interaction; equivalence; the same solution 1引言 空间解析几何的首要问题是空间曲线的方程的求解.空间曲线方程主要包含两种形式,即一般方程(普通方程)与参数方程.空间曲线的一般方程反映的是空间曲线上点的坐标x,y,z之间的直接关系.空间曲线的参数方程是通过参数反应坐标变量之间的间接关系.在求空间曲线的弧长以及空间曲线上的第一类与第二类曲线积分等方面都用到了空间曲线的参数方程.由于任何一种曲线方程的求解方法都不能适用于所有方程的求解,因此如何完成空间曲线方程不同形式的互化便成了一个基本问题.[1] 空间曲线的方程是建立在平面曲线方程的基础之上的,研究空间曲线方程不同形式之间的转化依赖于平面曲线不同形式之间的转化.我们首先回顾之前所学的平面曲线方程的形式以及不同形式间的相互转化.

曲率和挠率对空间曲线形状的影响要点

曲率和挠率对空间曲线形状的影响 摘 要:曲率和挠率是空间曲线的特性,不同的曲率和挠率函数决定不同形状的 曲线,研究常曲率和挠率的空间曲线有特别重要的意义。 本文对曲率和挠率的形 成及意义进行了探讨,并对常曲率和挠率的空间曲线进行了一定的研究. 给出了 常曲率和挠率的空间曲线特性? 关键词:曲率 挠率 空间曲线形状 我们知道,空间曲线的形状完全由曲率和挠率决定 ?而当一个空间曲线的曲 率或挠率为常数时,这种曲线具有很强的特性,对这种曲线的特性的研究有利于 对空间曲线这部分内容的掌握和理解? 一曲率的概念和几何意义 1曲率的概念 我们首先研究空间曲线的曲率的概念。在不同的曲线或者同一条曲线的不同 点处,曲线弯曲的程度可能不同。例如半径较大的圆弯曲程度较小, 而半径较小 的圆弯曲程度较大(图1-1)又如图1-2中所示,当沿着曲线从左向右移动时, 曲线弯曲的程度变大。为了准确地刻画曲线的弯曲程度,我们引进曲率的概念。 要从直观的基础上引出曲率的确切的定义, 我们首先注意到,曲线弯曲的程 度越大,则从点到点变动时,其切向量的方向改变得越快。所以作为曲线在已知 线段PQ 的平均弯曲程度可取为曲线在 P,Q 间切向量关于弧长的平均旋转角。 图1-1

设空间中c3类曲线(c)的方程为 曲线(C)上一点P,其自然参数为S,另一邻近点p i,其自然参数为S + A S。在P, P1两 点各作曲线(c)的单位切向量*is和〉s ?厶s。两个切向量间的夹角是丄(图1-3),也就是把点p的切向量〉s平移到点P后,两个向量〉s 和::i is: =s的夹角为「。 图1-3 定义空间曲线(C)在P点的曲率为 3豐忑, 其中厶S为P点及其邻近点p间的弧长,二!'为曲线在点P和p」勺的切向量的夹角。2曲率的几何意义 利用“一个单位变向量"((即卩(t)| = 1)的微商的模A '(t)的几何意义是丫(t)对于t的旋转速度”。把这个结果应用到空间曲线(C)的切向量〉上去,则有 '■ s 八。 由于「所以曲率也可表示为 由上述空间曲线的曲率的定义可以看出,它的几何意义是曲线的切向量对于弧长的旋转速度。当曲线在一点的弯曲程度越大,因此曲率刻画了曲线的弯曲程度。

空间曲线的曲率、挠率和Frenet公式

空间曲线的曲率、挠率和Frenet公式摘要:本文研究了刻画空间曲线在某点邻近的弯曲程度和离开平面程度的量—曲率和挠率以及空间曲线论的基本公式--Frenet公式,并且举例有关曲率、挠率的计算和证明. 关键词:空间曲线;曲率;挠率;Frenet公式 Spatial curvature,torsion and Frenet formulas Abstract:This paper studies space curves depict a point near the bend in the degree and extend of the amount of leave plane-the curvature and torsion and the basic formula of space curves-Frenet formulas,and for example the curvature and torsion of the calculation and proof. Key Words: space curves; curvature; torsion; Frenet formulas 前言 空间曲线的曲率、挠率和Frenet公式是空间曲线基本理论的一部分,它是以空间曲线的密切平面和基本三棱形的知识作为基础的.空间曲线的曲率、挠率和Frenet公式在空间曲线的基本理论中占有重要位置,是空间曲线的一些基本性质和基本公式.曲线的曲率和挠率完全决定了曲线的形状.当曲线的曲率和挠率之间满足多种不同的关系时,就会得到不同类型的曲线.例如:0 k>时为直线,0 τ=时为平面曲线. 本文将从定义、公式推导和具体举例三方面逐步解析空间曲线的曲率、挠率和Frenet公式.本文第一部分讲述曲率和挠率的定义,第二部分讲述Frenet公式和曲率、挠率的一般参数表示的推导,第三部分具体举例有关曲率、挠率的计算和证明. 1.空间曲线的曲率和挠率的定义 1.1准备知识—空间曲线的伏雷内标架 给出2c类空间曲线()c和()c上一点p.设曲线()c的自然参数表示是

缓和曲线曲率半径 的计算

所谓完整缓和曲线就是某段缓和曲线的一端与直线连接点的曲率半径必须是无穷大(可用10的45次方代替,有时也可用“0”表示,具体情况具体分析),而缓和曲线两端无论在什么情况下与圆曲线相接时,其两端的曲率半径必须与对应连接圆曲线的半径相等。 现在我们来谈谈非完整缓和曲线,从上面的话知道,如果某段缓和曲线的一端与直线连接点曲率半径不是无穷大,而是一个实数,那么这段缓和曲线就是非完整缓和曲线。 设计图中遇到这种情况,一般会告诉这段缓和曲线的长度(我们把这段缓和曲线的长度记作L2,缺少的一段缓和曲线长度记作L1,L1+L2=完整缓和曲线长度L),如果没告诉这段缓和曲线的长度,也可以通过两端的桩号计算出来、设计参数A及缓和曲线另一端的曲率半径R2(应该是与一个圆曲线相接,也就是说R2等于这个圆曲线的半径)。 我们在输入匝道程序时必须要知道R1(起点曲率半径),怎么办呢?那就通过计算把R1计算出来不就行了,下面就是计算过程: 由公式:R=A2÷L 推出 R1= A2÷L1 => A2=R1*L1 ……………………………………………………① R2= A2÷(L1+L2) => A2=R2*(L1+L2) ……………………………………………………② R2= A2÷(L1+L2) => R2= A2÷L => L=A2÷ R2 …………………………………………③ 由公式①②推出 R1*L1=R2*(L1+L2) => R1=R2*(L1+L2)÷ L1 …………………………………………④ L=L1+L2 => L1=L-L2 ……………………………………………⑤ 由公式③④⑤推出 R1=R2*L÷(L-L2) => R1= A2÷(A2÷ R2-L2) …………………………………………⑥ 公式⑥就是我们要找的曲率半径公式,计算得到结果计算完毕。 现在我们在编制非完整缓和曲线程序时就清楚的知道起点和终点的曲率半径了。还要说明一点就是,计算出来的曲率半径既是起点也是终点,既是终点也是起点,关键是看线路前进方向了,只要大家细心,分清起点终点输入程序,计算出来的准没错。

关于不同类型缓和曲线的判断及起点、终点曲率半径的计算方法

目前在匝道或线路施工坐标计算中经常遇到缓和曲线,实际中相信有很多测友选择用积木法或叫线元法正反算程序进行线路坐标计算,这就牵涉到线元的起点终点曲率半径判断的问题,一般的直线元,圆曲线元的起点终点半径判断,比较容易,可能令大家感觉麻烦的就是缓和曲线起点终点半径判断问题,缓和曲线有时候判断算对了,有时候却坐标算不对,究其原因,其实问题出于该缓和曲线是否是完整缓和曲线引起的。关于这点,相关的课本教材上没有明确的讲述,网上对此问题的解释也是散见于不同的论文著作中,对于测量新手来说,线元法程序是非常适用上手的,但却往往因为遇到不完整缓和曲线的起点或终点的半径判断计算不出来导致坐标计算错误,的确是件令人恼火的事情,在此我就把自己的判断经验做一论述,给用线元法程序的测友们一同分享,当然高手们请一笑而过,也可留下你的经验与大家一起分享交流学习。 第一:先说说完整缓和曲线和不完整缓和曲线以及不对称缓和曲线与对称缓和曲线的概念问题,以免混为一谈. 1.当对于单独一段缓和曲线从其完整与否来讲是分为完整与不完整两类;当对于一个单交点内的两段缓和曲线(即常说的第一缓和曲线和第二缓和曲线而言)又有对称缓和曲线与不对称缓和曲线之分。由此看来,完整与对称与否是针对缓和曲线两个方面来看待区分的。 2.缓和曲线我们的测量教材上讲述的其实就是完整缓和曲线,也可以知道缓和曲线上:各个点的半径是不同的,起点到终点的半径值过度是从正无穷大到所接圆曲线半径之过度如从ZH向HY方向;或者是从所接圆曲线半径值向正无穷大过度的,如从YH向HZ方向。那么由此可以不难判断出来,完整缓和曲线就是符合上述特征的,那么不完整的缓和曲线就是不符合上述特征的,但是线路上的平曲线设计时候一般缓和曲线不单独存在的,整体上缓和曲线前或后一般都是要连接一个圆曲线的,那么不完整缓和曲线其实就是在完整缓和曲线上截取的一段,一般就是去掉了半径无穷大的那端而是从某个点开始的半径值向所接圆曲线半径值过度的。 3.对称与不对称缓和曲线是相对于一个单交点内的两段缓和曲线(即常说的第一

曲率和挠率对空间曲线形状的影响要点

曲率和挠率对空间曲线形状的影响 摘 要:曲率和挠率是空间曲线的特性,不同的曲率和挠率函数决定不同形状的曲线,研究常曲率和挠率的空间曲线有特别重要的意义。本文对曲率和挠率的形成及意义进行了探讨,并对常曲率和挠率的空间曲线进行了一定的研究.给出了常曲率和挠率的空间曲线特性. 关键词:曲率 挠率 空间曲线形状 我们知道,空间曲线的形状完全由曲率和挠率决定.而当一个空间曲线的曲率或挠率为常数时,这种曲线具有很强的特性,对这种曲线的特性的研究有利于对空间曲线这部分内容的掌握和理解. 一 曲率的概念和几何意义 1曲率的概念 我们首先研究空间曲线的曲率的概念。在不同的曲线或者同一条曲线的不同点处,曲线弯曲的程度可能不同。例如半径较大的圆弯曲程度较小,而半径较小的圆弯曲程度较大(图1-1)又如图1-2中所示,当沿着曲线从左向右移动时,曲线弯曲的程度变大。为了准确地刻画曲线的弯曲程度,我们引进曲率的概念。 图1-1 图1-2 要从直观的基础上引出曲率的确切的定义,我们首先注意到,曲线弯曲的程度越大,则从点到点变动时,其切向量的方向改变得越快。所以作为曲线在已知线段PQ 的平均弯曲程度可取为曲线在P,Q 间切向量关于弧长的平均旋转角。

设空间中c 3 类曲线(c )的方程为 ()s γγ= 曲线(C )上一点P ,其自然参数为S,另一 邻近点p 1 ,其自然参数为s s ?+。 在p, p 1 两点各作曲线(c )的单位切向量()s α和()s s ?+α。两个切向量间的夹 角是??(图1-3),也就是把点p 1 的切向量()s s ?+α平移到点P 后,两个向量() s α和()s s ?+α的夹角为??。 图1-3 定义 空间曲线(C )在P 点的 曲率为 ()s s s ??=→?? κ0lim , 其中s ?为P 点及其邻近点p 1 间的弧长, ??为曲线在点P 和p 1 的的切向量 的夹角。 2曲率的几何意义 利用“一个单位变向量()t γ(即()t γ1=)的微商的模)(' t γ的几何意义是()t γ对于t 的旋转速度”。把这个结果应用到空间曲线(C )的切向量α上去,则有 ()? =ακs 。 由于? α=? ?γ,所以曲率也可表示为

空间曲线的曲率、挠率和Frenet公式

空间曲线的曲率、挠率和Frenet 公式 前言 空间曲线的曲率、挠率和Frenet 公式是空间曲线基本理论的一部分,它是以空间曲线的密切平面和基本三棱形的知识作为基础的.空间曲线的曲率、挠率和Frenet 公式在空间曲线的基本理论中占有重要位置,是空间曲线的一些基本性质和基本公式.曲线的曲率和挠率完全决定了曲线的形状.当曲线的曲率和挠率之间满足多种不同的关系时,就会得到不同类型的曲线.例如:0k >时为直线,0τ=时为平面曲线. 本文将从定义、公式推导和具体举例三方面逐步解析空间曲线的曲率、挠率和Frenet 公式.本文第一部分讲述曲率和挠率的定义,第二部分讲述Frenet 公式和曲率、挠率的一般参数表示的推导,第三部分具体举例有关曲率、挠率的计算和证明. 1. 空间曲线的曲率和挠率的定义 1.1准备知识—空间曲线的伏雷内标架 给出2c 类空间曲线()c 和()c 上一点p .设曲线()c 的自然参数表示是 (),r r s = 其中s 是自然参数,得 dr ds r == α 是一单位向量.α 称为曲线()c 上p 点的单位切向量. 由于1=α,则 ⊥αα , 即 r r ⊥ . 在α 上取单位向量

= = αr βα r , (1) β称为曲线()c 上p 点的主法向量. 再作单位向量 =?γαβ, γ称为曲线()c 上p 点的副法向量. 我们把两两正交的单位向量,,αβγ称为曲线上p 点的伏雷内(Frenet)标架. 1.2 空间曲线的曲率 我们首先研究空间曲线的曲率的概念.在不同的曲线或者同一条曲线的不同 点处,曲线弯曲的程度可能不同.例如半径较大的圆弯曲程度较小,而半径较小的圆弯曲程度较大.为了准确的刻画曲线的弯曲程度,我们引进曲率的概念. 要从直观的基础上引出曲率的确切定义,我们首先注意到,曲线弯曲的程度越大,则从点到点变动时,其切向量的方向改变的越快.所以作为曲线在已知一曲线段PQ 的平均弯曲程度可取为曲线在P 、Q 间切向量关于弧长的平均旋转角. 设空间中3c 类曲线()c 的方程为 ().r r s = 曲线()c 上一点p ,其自然参数为s ,另一邻近点1p ,其自然参数为s s +?.在p 、 1p 两点各作曲线()c 的单位切向量()s α和()s s +?α.两个切向量的夹角是??,也 就是把点1p 的切向量()s s +?α平移到点p 后,两个向量()s α和()s s +?α的夹角为??. 我们把空间曲线在p 处的切向量对弧长的旋转速度来定义曲线在点p 的曲率. 定义[]1 空间曲线()c 在p 点的曲率为 ()lim s k s s ? ?→?=?, 其中s ?为p 点及其邻近点1p 间的弧长,??为曲线在点p 和1p 的切向量的夹角. 再利用命题“一个单位变向量()t r (即()1t =r )的微商的模,()r t 的几何意

(完整版)第四节空间曲线及其方程教案

重庆科创职业学院授课教案 课名:高等数学(上)教研窒:高等数学教研室班级:编写时间:

课题: 第四节 空间曲线及其方程 教学目的及要求: 介绍空间曲线的各种表示形式。为重积分、曲面积分作准备的,学生应知道各种常用立体的解析表达式,并简单描图,对投影等应在学习时特别注意。 教学重点: 1.空间曲线的一般表示形式 2.空间曲线在坐标面上的投影 教学难点: 空间曲线在坐标面上的投影 教学步骤及内容 : 一、空间曲线的一般方程 空间曲线可以看作两个曲面的交线,故可以将两个曲面联立方程组形 式来表示曲线。 ? ? ?==0),,(0 ),,(z y x G z y x F 特点:曲线上的点都满足方程,满足方程的点都在曲线上,不在曲线上的 点不能同时满足两个方程。 二、空间曲线的参数方程 将曲线C 上的动点的坐标表示为参数t 的函数: ?? ? ??===)()()(t z z t y y t x x 当给定1t t =时,就得到曲线上的一个点),,(111z y x ,随着参数的变化可得到曲线上的全部点。 旁批栏:

三、空间曲线在坐标面上的投影 设空间曲线C 的一般方程为 ? ? ?==0),,(0 ),,(z y x G z y x F (1) 消去其中一个变量(例如z )得到方程 0),(=y x H (2) 曲线的所有点都在方程(2)所表示的曲面(柱面)上。 此柱面(垂直于xoy 平面)称为投影柱面,投影柱面与xoy 平面的交线叫做空间曲线C 在xoy 面上的投影曲线,简称投影,用方程表示为 ?? ?==0 ),(z y x H 同理可以求出空间曲线C 在其它坐标面上的投影曲线。 在重积分和曲面积分中,还需要确定立体或曲面在坐标面上的投影,这 时要利用投影柱面和投影曲线。 例1:设一个立体由上半球面224y x z --=和锥面)(322y x z -=所围 成,见下图,求它在xoy 面上 的投影。 解:半球面与锥面交线为 ?????+=--=) (34:2 222y x z y x z C 消去z 并将等式两边平方整理得投影曲线为: ?? ?==+0 1 22z y x 即xoy 平面上的以原点为圆心、1为半径的圆。立体在xoy 平面上的投影为圆所围成的部分: 122≤+y x 旁批栏:

空间曲线参数方程(第五讲)

第五讲 空间曲线参数方程 一、求空间曲线(,,)0(,)0 F x y z G x y =ìG í=?:的参数方程 方法1;若把(,)0G x y =看做xoy 平面上的曲线方程,其参数方程已知,再将他们代入方程(,,)0F x y z =中,解出z ,就可以得到空间曲线G 的参数方程. 例1.设空间曲线2222 222x y z a x y b ì++=G í+=?:,()0a b 3>,求其参数方程. 解:空间曲线是球面2222x y z a ++=与圆柱222x y b +=的交线,由圆周222x y b +=的参数方程得到 cos sin x b t y b t =ìí=?,(02)t p ££ 将222x y b +=代入球面方程得到222z a b =-, 于是交线方程为 cos sin x b t y b t z =ì?=í?=?. 方法2:把变量x ,y 之一看作参数,如另x t =,由(,)0G x y =解出y ,再将它们代入方程(,,)0F x y z =,解出z 即可得到空间曲线G 的参数方程. 例2.设空间曲线2222259 x y z x y ì++=G í+=?:,求其参数方程. 解:空间曲线是球面2225x y z ++=与平面429x y +=的交线,它是空间平面429x y +=上的一个圆周. 以t 为参数,令x t =,则由平面方程得到 922y t =-, 将x ,y 代入球面方程得 22229615(2)18524 z t t t t =---=--, 即 z =U n R e i s t e r e d

由26118504t t --3,得到 18181010 t +££, 因此空间曲线参数方程为922x t y t z ì?=??=-í??=?? . 例3.设空间曲线2229x y z y z ì++=G í=? :,求其参数方程. 解:将y z =代入方程222 9x y z ++=中,得 2229x z += 该椭圆参数方程为 x t =,3sin z t =,(02)t p ££ 于是空间曲线的参数方程为 3sin x t y t z t ì=???=í??=??, (02)t p ££. 例4. 设空间曲线222(1)(1)40x y z z ì+++-=G í=?:,求其参数方程. 解:因为0z =,则22(1)3x y ++=, 令1x t =- ,y t =,于是得参数方程为 10x t y t z ì=-+??=í?=?? (02)t p ££, 例5.设空间曲线22290 x y z x y z ì++=G í++=?:,求其参数方程. U n R e g i s t e r e d

高斯曲率的计算公式汇总

第二章 曲面论 高斯曲率的计算公式 高斯曲率绝妙定理 2 122LN M K k k EG F -==- 。 注意 (,,) uu r r r L n r =?= , (,,)uv r r r M n r =?= , (,,) vv r r r N n r =?= 。 所以 2 2LN M K EG F -= - 222 1 [(,,)(,,)(,,)]() u v uu u v vv u v uv r r r r r r r r r EG F = -- ,

利用行列式的转置性质和矩阵乘法性质,得 2(,,)(,,)(,,)u v uu u v vv u v uv r r r r r r r r r - (,,)(,,) u u v u v vv v u v uv uu uv r r r r r r r r r r r r ???? ? ?=- ? ? ? ????? u u u v u vv u u u v u uv v u v v v vv v u v v v uv uu u uu v uu vv uv u uv v uv uv r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r ??????=???-????????? u vv u uv v vv v uv uu u uu v uu vv uv u uv v uv uv E F r r E F r r F G r r F G r r r r r r r r r r r r r r ??=?-??????? u vv u uv v vv v uv uu u uu v uu vv uv uv uv u uv v E F r r E F r r F G r r F G r r r r r r r r r r r r r r ??=?-????-??? , (其中用到行列式按第三行展开计 算的性质。)

曲面曲率计算方法的比较与分析

. 研究生专业课程报告 题目:曲面曲率直接计算方法的比较 学院:信息学院 课程名称:三维可视化技术 任课教师:刘晓宁 姓名:朱丽品 学号: 201520973 西北大学研究生处制

曲面曲率直接计算方法的比较 1、摘要 曲面曲率的计算是图形学的一个重要内容,一般来说,曲面的一阶微分量是指曲面的切平面方向和法向量,二阶微分量是指曲面的曲率等有关量.它们作为重要的曲面信息度量指标, 在计算机图形学, 机器人视觉和计算机辅助设计等领域发挥了重要的作用.此文对曲面上主曲率的2种直接估算方法(网格直接计算法和点云直接计算法)进行了论述, 并进行了系统的总结与实验, 并给出了其在颅像重合方面的应用。 关键词曲面曲率、主曲率、点云、三角网格 2、引言 传统的曲面是连续形式的参数曲面和隐式曲面, 其微分量的计算已经有了较完备的方法.随着激光测距扫描等三维数据采样技术和硬件设备的长足进步, 以及图形工业对任意拓扑结构光滑曲面造型的需求日益迫切, 离散形式的曲面———细分曲面、网格曲面和点云曲面正在逐渐成为计算机图形学和几何设计领域的新宠.于是, 对这种离散形式的曲面如何估算微分量, 就成为一个紧迫的课题。 CT扫描技术获得的原始点云和网格数据通常只包含物体表面的空间三维坐标信息及其三维网格信息,没有明确的几何信息,而在点云和网格的简化、建模、去噪、特征提取等数据处理和模式识别中,常需要提前获知各点的几何信息,如点的曲率、法向量等,也正基于此,点云和网格的几何信息提取算法一直是研究的热点。点的法向量

和曲率通常采用离散曲面的微分几何理论来计算,由于离散曲面分为网格和点集两种形式,其法向量和曲率计算也分为两类: 一类是基于网格的法向量和曲率计算,另一类是基于散点的法向量和曲率计算。由于基于三角网的点云几何信息计算精度一般比较低,通常采用直接计算法。在点云几何信息提取中,常采用基于散乱点的点云几何信息计算方法,该类方法主要是通过直接计算法和最小二乘拟合算法获取点云的局部n 次曲面,然后根据曲面的第一基本形式和第二基本形式求解高斯曲率和平均曲率,而点云的局部曲面表示有两种: 一是基于法向距离的局部曲面表示,二是基于欧几里德距离的局部曲面表示。 本节中针对近几年来国际上提出的对三角网格曲面估算离散曲率的直接估算法,从数学思想与表达形式等方面进行系统的归纳与总结. 3、三角网格曲面的曲率的计算及代码实现 为了叙述清楚起见, 引入统一的记号.k 1和k 2表示主曲率,曲面的主曲率即过曲面上某个点具有无穷个曲线,也就存在无穷个曲率(法曲率),其中存在一条曲线使得该曲线的曲率为极大,这个曲率为极大值k 1,垂直于极大曲率面的曲率为极小值k 2。这两个曲率的属性为主曲率。它们代表着法曲率的极值。主曲率是法曲率的最大值和最小值。 H 表示平均曲率,是空间上曲面上某一点任意两个相互垂直的正交曲率的平均值。如果一组相互垂直的正交曲率可表示为K 1、K 2,

空间曲线及其方程

§7.6 空间曲线及其方程 一空间曲线的一般方程 空间曲线可看作两曲面的交线,设 F x y z (,,)=0和G x y z (,,)=0 是两曲面的方程,它们的交线为C。曲线上的任何点的坐标x y z ,,应同时满足这两个曲面方程,因此,应满足方程组 F x y z G x y z (,,) (,,) = = ? ? ? (1) 反过来,如果点M不在曲线C上,那么它不可能同时两曲面上。所以,它的坐标不满足方程组(1)。由上述两点可知:曲线C可由方程组(1)表示。 方程组(1)称作空间曲线的一般方程。 二空间曲线的参数方程 对于空间曲线C,若C上的动点的坐标x y z ,,可表示成为参数t的函数x x t y y t z z t = = = ? ? ? ? ? () () () (2) 随着t的变动可得到曲线C上的全部点,方程组(2)叫做空间曲线参数方程。【例1】如果空间一点M在圆柱面x y a 222 +=上以角速度ω绕z轴旋转,同时又以线速度v沿平行于z轴的正方向上升(其中:ω,v均为常数),那未点M 的轨迹叫做螺旋线,试建立其参数方程。 解:取时间t为参数。 设当t=0时,动点与x轴上的点A a(,,) 00重合,经过时间t,动点由A a(,,) 00运动到M x y z (,,)。记M在xoy面上的投影为' M,它的坐标为' M x y (,,)0。

由于动点在圆柱面上以角速度ω绕z 轴旋转,经过时间t ,∠'=?AoM t ω 从而 x a t y a t ==???cos sin ωω 又由于动点同时以线速度v 沿平行于z 轴正方向上升,所以 z vt = 因此,螺旋线的参数方程为 x a t y a t z vt ===???? ?cos sin ωω 或令θω=?t ,则方程形式可化为 x a y a z b b v ===???? ?=cos sin (,)θθθωθ为参数 螺旋线有一个重要性质: 当θ从θ0变到θα0+时,z 由b θ0变到b b θα0+;这表明当oM '转过角α时,M 点沿螺旋线上升了高度h b =α; 特别地,当oM '转过一周,即απ=2时,M 点就上升固定的高度为 h b =2π,这个高度在工程技术上叫螺距。 空间曲线的一般方程也可以化为参数方程,下面通过例子来介绍其处理方法。 【例2】将空间曲线C x y z x z 222921 ++=+=????? 表示成参数方程。 解:由方程组消去z 得

空间曲线曲率计算公式及推导

1.4 空间曲线的曲率定义及 计算公式 引理 设)(s a → 是单位圆周上的向量,即1||)(||=→ s a , 设)(s s a ?+→ 与)(s a → 之间的夹角记 为θ?,则有 ||lim ||)(||0s s a s ??='→? → θ 。 证明 因为 s s a s s a s a s ?-?+='→ → →?→ ) ()(lim )(0, 所以| ||| )()(||lim ||)(||0s s a s s a s a s ?-?+='→ →→?→ |||2 2sin 2|lim |2sin 2|lim 00s s s s ?????=??=→?→?θθθ θ | |lim 0s s ??=→?θ 。 (用解等腰三角形或用余弦定理,得 θ ????-+=-?+→ → cos 11211||)()(||22s a s s a

|2 sin |2)2sin 21(222 θ θ?=?--=。) 定理1.2 设曲线Γ:)(s r r → →=(s 是弧长参数)上的每一点有一个单位向量)(s a →,)(s s a ?+→ 与)(s a → 之间的夹角记为θ?,那么 || lim ||)(||0 s s a s ??='→?→ θ 。 设曲线Γ:)(s r r → → =,这里参数s 是曲线自身的弧长,我们知道,)(s r '是曲线的切向量, 1||)(||='→ s r ,即)(s r → '是单位向量。 记)(s r T →→'=,)()(s r s T → →''=', )(s T → 与)(s s T ?+→ 的夹角 θ?, ||lim 0s s ??→?θ度量了曲线的弯曲程度。 || lim ||)(||||)(||0 s s r s T s ??=''='→?→ →θ ,我们称之为曲线)(s r → 的 曲率,用)(s k 来表

最小曲率法测斜计算中的数值方法

最小曲率法测斜计算中的数值方法* 鲁 港1 商维斌1 张 琼1 佟长海2 (1辽河油田公司勘探开发研究院 辽宁盘锦124010 2辽河石油勘探局工程技术研究院 辽宁盘锦124010) 摘 要 最小曲率法是测斜计算、井眼轨道设计中最常用的方法之一,在井眼轨迹计算中有广泛的应用。本文研究了最小曲率法计算机数值计算中的几个细节问题,给出了零井斜角测点的方位角定义,阐述了零井斜角测点方位角的二义性。分析了坐标增量计算过程,给出了减小三角函数计算次数的算法。对小弯曲角情形的坐标计算使用高精度近似公式代替容易产生除法溢出的直接计算,提高了计算过程的稳定性和计算精度。对水平投影长度的计算给出了使用Gauss数值积分法的精确计算方法。本文提出的方法可以用于使用最小曲率法时的井眼轨道计算的计算机软件开发,提高计算机软件的计算稳定性和计算精度。对涉及井眼轨迹计算的其他实际问题如定向井中靶分析预测、井眼轨迹控制、井身质量检查等都有一定的参考价值。 关键词 最小曲率法;测斜计算;井眼轨迹;井眼曲率;数值积分 0引 言 实钻井的井眼轨迹计算是钻井轨迹监控中的基本问题,在中靶预测分析、邻井防碰计算、井身质量评价等工作中都有重要的应用。目前测量仪器只能测量多个井深处的井斜角和井斜方位角数据,井眼轨迹计算的任务就是依据一组井深、井斜角、方位角数据计算出各个井深处的井眼轨迹的坐标等参数。从数学上来看,井眼轨迹是一条连续光滑的空间曲线,井斜角和方位角可以看成是井身的切线信息,而井身坐标是位置信息。仅仅知道切线信息是无法唯一确定曲线的位置的,所以必须给定附加的限制条件。在钻井轨迹计算中,常常将井眼轨迹假设为某些简单的空间曲线。 如果井眼轨迹(或井段)假设为空间斜平面上的圆弧,该圆弧在两端点处与井眼方向相切,则对应的坐标计算方法就是最小曲率法[1]。最小曲率法是井眼轨迹计算中最常用的计算方法之一,其基本计算公式在很多专著中都有介绍[2]。但是对实际计算特别是计算机软件开发中的数值计算过程的数值稳定性、计算精度控制、特殊情况的处理等具体计算细节涉及较少。另外,由于以前的计算手段落后,在计算公式中水平投影长度采用近似公式计算,影响计算结果的准确性。 本文对最小曲率法的数值计算中的几个细节问题进行了讨论,提出了提高计算精度、减少计算工作量的处理方法。还对水平投影长度的精确计算提出了使用数值积分计算的新方法。本文的新方法可用以提高计算机软件最小曲率法的计算速度和计算精度,增强计算过程的稳定性。 1最小曲率法基本公式 假设测斜数据共有N个,第i个测点的井深为L i、井斜角为 i、方位角为 i,i=1, ,N。井深单位为m,井斜角和方位角测量时单位为,但是在计算公式中使用弧度单位。 最小曲率法假设在一个测段上,井眼轨迹为空间中的一段圆弧。用(X,Y,Z)表示井眼轨迹上任意一点的北坐标、东坐标和垂直深度,则在第i个测段上,坐标增量由下式计算[2] : 16C omputer A pplic ations of Petroleu m2009,Total63No.3 *项目基金中国石油天然气股份公司油气勘探超前共性科技项目!辽河探区西部凹陷深化勘探理论与实践?(编号07-01C-01-04)的 部分研究成果。 第一作者简介鲁港(1963-),男,高级工程师,1985年毕业于复旦大学数学系,获理学学士学位,2005年毕业于大连理工大学,获软件工程硕士学位,长期从事石油钻探领域数学模型研究和计算机应用软件开发。

竖曲线计算公式

竖曲线计算公式 一、缓和曲线上的点坐标计算 已知:①缓和曲线上任一点离ZH点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l0 ④转向角系数:K(1或-1) ⑤过ZH点的切线方位角:α ⑥点ZH的坐标:xZ,yZ 计算过程: 说明:当曲线为左转向时,K=1,为右转向时,K=-1, 公式中n的取值如下: 当计算第二缓和曲线上的点坐标时,则: l为到点HZ的长度 α为过点HZ的切线方位角再加上180° K值与计算第一缓和曲线时相反 xZ,yZ为点HZ的坐标 切线角计算公式: 二、圆曲线上的点坐标计算 已知:①圆曲线上任一点离ZH点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l0 ④转向角系数:K(1或-1) ⑤过ZH点的切线方位角:α

⑥点ZH的坐标:xZ,yZ 计算过程: 说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下: 当只知道HZ点的坐标时,则: l为到点HZ的长度 α为过点HZ的切线方位角再加上180° K值与知道ZH点坐标时相反 xZ,yZ为点HZ的坐标 三、曲线要素计算公式

公式中各符号说明: l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度 l2——第二缓和曲线长度 l0——对应的缓和曲线长度 R——圆曲线半径 R1——曲线起点处的半径 R2——曲线终点处的半径 P1——曲线起点处的曲率 P2——曲线终点处的曲率 α——曲线转角值 四、竖曲线上高程计算 已知:①第一坡度:i1(上坡为“+”,下坡为“-”) ②第二坡度:i2(上坡为“+”,下坡为“-”) ③变坡点桩号:SZ

相关主题
文本预览
相关文档 最新文档