当前位置:文档之家› 4.硫酸_白土精制工艺在废机油再生中的应用

4.硫酸_白土精制工艺在废机油再生中的应用

4.硫酸_白土精制工艺在废机油再生中的应用
4.硫酸_白土精制工艺在废机油再生中的应用

废润滑油的回收再利用的发展现状

废润滑油的回收再利用的发展现状 随着世界经济的发展,润滑油的应用日益广泛,全世界每年平 均消耗润滑油约4000万t。我国作为世界第二大润滑油消费国,2005 年润滑油的消耗量也高达600多万t。在世界能源日趋紧张的形势下,废润滑油的回收和再生成为需迫切解决的问题。在欧洲,每年大约 就有500万t废弃润滑油,其中40%—50%未作任何处理就扩散到环 境中,而我国以往的润滑油回收量还不到废润滑油总量的20%。 润滑油从组成上讲由80%—90%的基础油和10%—20%的添加剂组成,主要化学成分是多种烃类以及少量非烃类的混合物。然而润滑 油在使用一段时间后由于物理化学或人为因素导致了润滑油的性能 劣化,生成了如醛、酮、树脂、沥青胶态物质、碳黑及有机酸、盐、水金属屑等污染杂质[6],不能再继续使用而变成废润滑油。实际上 废油并不废,而用过的润滑油真正变质的只是其中的百分之几[7], 因此如何有效的去除废油中的杂质,是废油再生的关键。各废油回 收率见表1[8]。而近年来,除了大量开发基础油为多元醇酯、复合脂 和植物油的可迅速生物降解型的全损耗润滑油之外,将废润滑油再 精炼成润滑油基础油也得到了日益发展。 各种废油的回收率 品种再生收率(%) 内燃机油75—85 机械油85—90 变压器油90—92

各种杂油68—80 1、国内废润滑油再生利用发展现状 我国润滑油产量约占石油产品总量的百分之二,数量每年在300 万t以上。而且是仅次于美国和俄罗斯的世界第三大润滑油消费国。 根据“九五”期间我国润滑油需求的实际增长情况和2001—2010年 我国国民经济发展计划安排,2003年我国润滑油的总需求量约为425—435万t,预计2010年约为490—510万t[9]。润滑油在使用的过程中 由于高温及空气的氧化作用,会逐渐老化变质,再加上摩擦部件上 磨下来的金属粉末、呼吸作用及其它原因而进入油中的水分、从环 境中侵入的杂质,这些不仅污染了润滑油,而且还促进润滑油的氧化,从而可能引起机器的各种故障。所以润滑油在使用一定时间, 变质达到一定程度之后,必须更换。 许多润滑油中加有重金属盐添加剂,还有些加有含氯有机化合物、含硫有机化合物、含磷有机化合物、含硫磷有机化合物,有些 含氯化合物是多环芳烃的氯取代物。这些含重金属、硫、磷、氯的 化合物都属于有毒物,对人体及生物有害,有可能通过各种渠道危 害人类[10]。进入水系的油对水有很强的污染力,据估计,一大桶(200L)废油流入湖海,能污染近3.5km2的广大水面。被污染的水域,由于油膜覆盖水面,阻止了水中的溶解气体与大气的交换,水中的 溶解氧被生物及污染物消耗后得不到补充,使水中的含氧量明显下降,油膜覆盖在水生植物的叶子上、鱼类贝类等水生动物的呼吸器 官上,阻碍水生动植物的呼吸,使整个食物链都受到损害[11]。 一般来说,可供回收的废润滑油量应为消费量的40%—45%, 然而目前我国污染废润滑油回收率非常低,每年回收再生的油品仅 有20—30万t,其中一部分排人了环境而造成污染[12]。我国废润滑油 再生始于本世纪30年代,70年代进入鼎盛时期。当时商业部制定的

酸再生设备工艺说明

廢酸再生工廠設備的情況說明 1、焙燒爐(Spray Roaster )-圖號 32250 工作原理:焙燒爐由燃氣加熱到600~700℃之間。被濃縮的廢酸經爐頂的噴嘴霧化噴灑 成微小液滴,濃縮酸中的氯化鐵顆粒在燃燒的氣體中被焙燒成游離氯化氣和氧化鐵。 物理結構:焙燒爐為立式圓柱形焊接結構。

2、旋風除塵分離機(Dust Cyclone)-圖號32170 工作原理:雙旋風除塵分離機用於分離焙燒爐烟氣中帶出的氧化鐵粉顆粒。被分離出的氧化鐵粉顆粒通過旋轉閥及插入焙燒爐中的斜管再進入焙燒爐下部。 物理結構:分離器由兩個錐形体構成,用耐磨鋼製成。

3、氧化鐵粉裝置(Oxide Air Blaster )- 圖號 33340 在氧化鐵粉儲槽的出口處安裝有此裝置,係利用瞬間噴出爆炸的壓縮空氣直接吹進下方錐形部位,避免大量鐵粉造成阻塞。 鐵粉排放口 氣爆槍 混凝土基礎 鐵粉過濾器

4、酸再生儲槽過濾裝置(Storage Tanks Filter for ARP)-圖號22210;22211 本過濾裝置是用于分離廢酸中的固體物質,過濾器內襯膠並裝有濾芯。 預濃縮酸過濾器廢酸液過濾器

5、除氯裝置(Chloride Reduction)-圖號33110 为了减少氧化铁粉中的氯化物含量在螺旋輸送機上裝有小型燃燒器,將含有HCl 的气体通过热螺旋输送机经过除尘分离器输回反应炉中。

6、洗滌塔液滴分離設備(Scrubber Drop Separator)-圖號32561 洗滌塔是用沖洗水直接射入含有粉塵顆粒的烟氣中。然後沖洗水和烟氣在文丘里管端加速霧化,藉以分離出水和鐵粉顆粒。 連續不斷流出的烟氣和水由分離機分離,向下流的水由下方的噴嘴排放,烟氣則分離後由上方排出。

国内外废润滑油的再生工艺技术

龙源期刊网 https://www.doczj.com/doc/c75666677.html, 国内外废润滑油的再生工艺技术 作者:蔡茂 来源:《中国化工贸易·中旬刊》2018年第08期 摘要:润滑油在机械行业制造领域中的应用十分广泛,然而润滑油在使用一段时间后, 由于性能指标降低,所以会形成废油,如果直接将其进行处理,不仅会造成大量的资源浪费,同时也会对生态环境造成严重影响。因此,废润滑油再生工艺的研究成为了机械制造领域的重点,需要相关业内人士提供高度重视。文章重点就国内外废润滑油的再生工艺技术进行研究分析,以供参考和借鉴。 关键词:国内外;废润滑油;再生工艺;技术 对于机械制造而言,其发动机传动系统的正常有序运行离不开润滑油,而润滑油在工作一段时间后会发生质变,特别是在冷却、传动和热处理装置中使用的润滑油,其质变的速度更快,如此会导致润滑油的性能有所降低,最终形成废润滑油。而废润滑油的再生工艺技术主要是将其进行回收处理,最终进行二次利用,一方面缓解当下世界的能源危机,另一方面也对环境保护起到一定的积极性效果。 1 国内废润滑油再生工艺技术研究 1.1 蒸馏-酸洗-白土精制工艺 现阶段,我国大部分企业都是采用蒸馏-酸洗-白土精制工艺进行废润滑油的再生处理。相对比其它工艺技术,该技术主要原料是酸和白土,所以成本投入较低,加之处理工艺相对简便、对设备依赖性较低、适用于多种废润滑油的处理,所以其成为主流的工艺再生技术。蒸馏-酸洗-白土精制工艺进行废润滑油处理主要应用的是硫酸,而硫酸加入量的多少主要取决于废润滑油的废弃程度,同时对于白土的添加量也需要根据废潤滑油的要求而定。尽管蒸馏-酸洗-白土精制工艺具有多种优势,但是也不可避免的存在一些不足,例如该工艺进行废润滑油处理的再生利用率较低,同时再生的润滑油在质量和性能方面指标较差。另外,由于蒸馏-酸洗-白土精制工艺涉及到硫酸和白土的大量使用,所以为后续的处理提出了更高的要求,一旦处理不到位,就会造成严重的生态环境污染。 1.2 沉降-蒸馏-酸洗-钙土精制工艺 相对比蒸馏-酸洗-白土精制工艺,沉降-蒸馏-酸洗-钙土精制工艺更加适用于当下的工业生产。该工艺的主要原理如下,即废润滑油经过硫酸酸化处理后,向体系中加入一定量的石灰粉进行中和反应,去除体系中的硫酸和石油磺酸等物质,不仅极大地提高了废润滑油的再生质量和性能,同时也更加的环保。另外,沉降-蒸馏-酸洗-钙土精制工艺中对于硫酸和白土的使用量较低,成本投入较少,所以应用前景十分广阔。

酸再生改造方案

攀钢集团 攀枝花钢钒有限公司冷轧厂酸再生机组废气处理工艺改进技术方案 四川和翔环保科技有限公司二○一二年六月

目录 1.项目简介3 2.污染物特点 4 3.现有工艺存在的问题 4 4.系统工艺设计5 5.改造后效果及工艺说明9

1.项目简介 酸洗带钢产生的废盐酸,因富含氯化亚铁而采用喷雾焙烧法进行再生处理,废酸焙烧产生的含酸气体经吸收塔吸收后再生,残留废气经洗涤塔洗涤后排入大气。主要工艺如下: 由于废气中HCL气体、Fe2O3颗粒物状态及物理性质存在不稳定性,导致吸收和洗涤的过程变得更为复杂,现有工艺参数控制环节与废气特征不能完全匹配,当工艺条件或设备工况改变时,废气排放指标就不能达到环保要求,造成环境污染。因废气排放不达标导致机组停机或无法正常生产的时间累计达437.5小时/年,约460m3左右的废酸无法再生而排放,导致生产成本增加。 目前攀钢冷轧厂废气排放中的HCL含量和氧化铁粉无法满足≤120mg/m3的要求,粉尘排放含量也不稳定,经常出现因尾气中Fe2O3颗粒物超标而冒红烟现严重污染周围环境且对人的呼吸系统也产生伤害,废气中的酸雾危害大气且氯离子对臭氧层有很大的破坏性。因此必须对废气排放不达标的原因进行研究并通过技术改进来解决排放超标问题。 2.污染物特点 2.1 组份的多相性 废气中包含了固相、液相、气相多成分物理状态污染物,极大限制了污染物的处理方式,属复杂废气治理范畴。 2.2 强酸易挥发性 HCL气体虽易溶于水,但其溶液又具有挥发性,形成双向解压特征,介质吸收率和吸收速度受温度和压力影响较大。 2.3高沉积粘滞性 吸收液中组份复杂,含有FeCL3、Fe2O3、HCL及其它固体微粒混合物,容易产生絮凝、粘附、结晶等现象。 3.现有工艺存在的问题 3.1系统风量控制 废气抽吸为离心风机,通过变频调速控制炉内负压,但基于离心风机运行的曲线特征,直接改变风机转速会导致系统工作极不稳定。 3.2 预浓缩器 当文丘里预浓缩器循环废酸喷淋不均匀、密度不够,或烟气浓度和流速发生变化,以及喷嘴发生阻塞时,会出现焙烧气体温度过高,氧化铁分离效率降低等问题。 3.3吸收塔 由于对再生酸有浓度要求,因此吸收塔不能完全吸收掉废气中的HCl 气体和氧化铁粉,从吸收塔出来的气体含过量HCL而作为废气进入净化塔。再生酸浓度受以下因素影响: 焙烧炉中气体的HCL含量; 焙烧气体温度; 吸收水的喷流量。 3.4 洗涤塔 目前工艺采用清水作为吸收洗涤剂,选用250Y型孔板波纹填料,单级循环喷淋,由于循环水成份质量不受控制,只能依靠进水量补充来实现更新,当前端工艺不稳定时,循环水被污染程度在一段时间内可能会很严重,将显著影响了循环水的清洗效果。由于循环水中不可避免的颗粒物容易造成填料阻塞,在选择孔板波纹填料时过滤精度较粗,同时但对F2O3微粉及HCL最后吸收和拦截效率也较低。 4.系统工艺设计 4.1方案选择原则 在酸再生工艺流程中,即使采用更多控制手段,系统仍无法避免不稳定因素,因此改进方案

酸再生操作规程

酸再生操作规程 1.主要技术参数 1.1机组能力:处理废酸量6m3/h 1.2废酸:来自酸洗机组 总铁量:120g/L 总HCL:200g/L(游离和化合) 1.3再生酸:HCL浓度190~200g/L 铁含量≤5g/L 产量约5880L/h 1.4氧化铁粉:Fe2O3≥98.5% FeO ≤0.4% SiO2≤0.02% CL-≤0.01% H2O ≤0.1% 原生粒度≤1.0 m 产量约985kg/h(废酸含铁120g/L) 1.5炉顶负压:-250Pa 1.6炉顶温度:395℃ 1.7预浓缩器后炉气温度:≤95℃ 1.8新盐酸性能及盐酸酸洗原液的配制 1.8.1新盐酸性能 新盐酸(工业合成盐酸GB320-93)无色或浅黄色透明液体,用于配制酸洗机组用盐酸酸洗原液,其性能指标如下表:

用于盐酸酸洗的新盐酸,严格限制氟含量,氢氟酸最大允许量为5PPm 。 1.8.2盐酸酸洗原液的配制 当新盐酸浓度N=31%,即每吨新酸含HCL 310公斤,H 2O 690公斤。 每吨新盐酸浓度31%,可稀释20%酸洗原液重量: Kg 155020 311000=? 每吨新盐酸配制20%酸洗原液稀释耗水量: 1550-310=1240Kg 式中:31为新盐酸浓度31% 20为酸洗原液浓度20% 举例:按上述公式计算,配制15500公斤浓度20%的酸洗原液,需要10吨浓度31%新盐酸,耗水12400公斤。 2.工艺过程叙述 来自酸洗机组的废酸,收集在废酸罐中,用废酸泵经废酸过滤器送入预浓缩器(流量用气动调节阀自动控制)。废酸通过预浓缩器循环泵经浓缩酸过滤器送至预浓缩器顶部进行喷洒,与来自焙烧炉的炉气(395℃)进行直接热交换,将废酸中的部分水份(约25~30%)蒸发掉,废酸得到浓缩。浓缩后的废酸由焙烧炉给料泵经废酸过滤站送至焙烧炉顶部,再经喷杆、过滤网、喷嘴进入焙烧炉进行喷洒。焙烧炉设有3杆喷枪,每杆喷枪上各装有5个喷嘴,喷枪可自动插入焙烧炉内部。 焙烧炉本体是个钢壳,内衬有耐火耐酸砖,在本体上呈切线均布3个烧嘴加热(600~650℃),使喷洒到炉内浓缩酸蒸发、干燥、结晶分解,其在焙烧炉内反应如下: 2FeCl 2+2H 2O+1/2O 2=Fe 2O 3+4HCL 2FeCl 3+3H 2O=Fe 2O 3+6HCL 分解后的Fe 2O 3固体颗粒,以粉末形式落在焙烧炉下部锥体中,经破碎机、

废白土的回收

废白土的回收和综合利用 项目关键词: 废白土,废白土渣 废白土是精炼油过程中产出的废弃物,含油百分之十五至四十.我厂是专业处理废白土的资深单位,因各地区生产单位无法处理,随便乱倒,既影响环境又浪费资源. 以下是综合处理方法 案例一:(溶剂萃取法) 以石油脑(60-90℃)为抽提溶剂, 白土与抽提溶剂为1:1, 抽提次数为2, 室温下搅拌15分钟(二次抽提共30分钟), 回流液质量比为5%, 油回收率约为92%。 案例二:(水洗加表面活性剂)

白土中加入表面活性剂(1.5%质量份),回收:187327,68617 这是[手][机][号] 混合表面活性剂(十二烷基苯磺酸钠:脂肪醇聚氧乙烯醚质量比4:1),95℃,搅拌30分钟, 油回收率最高可达88.82%。

案例三:煮沸提油法 将废白土装在有直接蒸汽管的敞口锅中,加入l5 ~30 %的热水,开启直接蒸汽煮沸,加1.5 %的碳酸钠沸煮3O~40分钟,在沸煮过程中加入10% 的食盐水持续一段时间-然后静置沉淀,撤取上层油脂,这种方法简便易行.成本低,可降低废白土中残油,但回收的油质量较差,只能做工业用油。 案例四:浸出提油法回收:187327,68617 这是[手][机][号] 将废白土放置在一种连续浸出的单独提油设备一一三相分离塔中,用正已烷进行浸出。 然后用热水分离溶剂。 该法工艺先进,而且全都过程自动化,所分离回收的油脂质量好.此法可使废白土中残油降至1% 以下.有条件的油厂可以推广使用。 案例五:溶剂萃取 萃取剂:6号提取溶剂(低烷烃混合物), 萃取温度:55℃, 萃取物料比:1:1.1, 萃取时间:30分钟, 萃取次数:5次, 残油低于1.8%。 案例六:水溶法 PH值控制在7.5, 搅拌温度90℃, 搅拌时间30分钟。

废润滑油再生循环利用现状与发展

废润滑油再生循环利用现状与发展 摘要:本文综述了废润滑油再生循环利用现状,分析了废油再生利用的可能性,总结了它所造成的环境影响。对国内外现有的再生利用技术和研究工作及一些再生处理的新技术进行了概括,展望了废润滑油再生循环利用的前景,并在此基础上对废润滑油再生循环利用提出了一些建议。 关键词:综述;废润滑油;再生利用技术;前景 SITUATION AND DEVELOPMENT OF WASTE LUBRICATING OIL REGENERATIVE RECYCLING Abstract: This paper reviewed the status of waste lubricating oil regenerative recycling, the possibility of regenerative recycling had been analyzed, and the impact of waste lubricating oil to environment had been summed. Domestic and foreign technical and research work about t waste lubricating oil regenerative recycling were also summed up ,at the same time, some new technology were introduced. The prospects of the used lube oil regenerative recycling was looked head, at last, based on the paper, some recommendations were given. Key words: Review; waste lubricating oil; recycling technology; prospects 1 前言 废润滑油是润滑油在使用过程中由于氧化、老化、变质、混入燃料油组分、混入杂质水分而与新润滑油在质量指标上有明显区别的油[1]。一般其中真正变质的只有百分之几,如果将这些变质的成分除去,就可以得到与天然油生产的质量相当的基础油来。 随着工业的发展和消费水平的提高,对石油的需求量不断增长,同时产生的废油数量也日益增加,在世界能源日趋紧张的形势下,为了节约能源与资源,废润滑油的回收和再生成为需迫切解决的问题。我国的废润滑油如果回收50 %的话,实际上相当于建了12个炼油厂,或相当于节约了一个中等的石油基地[2-4]。由此看来,废润滑油的再生加工利用可以产生巨大的经济效益和社会效益[5]。 随着全球经济的发展,环境保护意识越来越得到人们的关注。废润滑油以量少面宽的方式,时刻都对环境造成污染。若把废油排放出来进入土壤,可导致植物死亡,被污染土壤内微生物灭绝;若废油进入饮水源,一吨废油可污染l00万吨饮用水[6],所以润滑油对环境的污染越来越引起各国的重视。 2 国内外废润滑油处理方式及环境影响 目前,国内外废润滑油的主要去向有以下4种路径:

酸再生机组工艺流程图

再生机组工艺流程、参数及产品描 再生机组工艺流程图 废酸罐1级废酸过滤器予浓缩器吸收塔 大气 塑烧板除尘器 装袋机门型阀铁粉料仓破碎机焙烧炉 外运大气洗涤塔液滴分离器排烟风机 1、酸 a 新盐酸:无色或浅黄色透明液体 各项指标: 酸 (HCL) ≥ 31% 铁≤ 0.01% 砷≤ 0.001% 灼烧残渣≤ 0.15% 氯化物≤ 0.01% 含铁、硫酸盐、灼烧残渣、氯化物等各项指标低的盐酸为一级品或优质品,用于酸洗的盐酸,严格限制含氟(含氟严格限定为:F≤5ppm)。 b 废酸:来自酸洗线 总铁量≥120 g/l 总HCL ≤ 200 g/l 其中:游离HCL 3-5% Fe 120g/L 温度≤90℃ c 再生酸 HCL 浓度 190-210g/l 铁含量≤5 g/l 产量约3000L/h d 氧化铁粉 可分离出来的铁浓度为115g/l时,约产生492Kg/h氧化铁粉 氧化铁粉各项指标: Fe 2O 3 % 98.7--99 FeO % ≤0.4 H 2 O % ≤0.09 比表面积 m2/g 3-3.9 粒度μm ≤1.0 Cl-含量 % ≤0.2(重量) SiO2 % ≤0.02 2、能力与热耗 a 酸溶解铁能力 酸洗热轧板总量 40万吨/年

酸洗铁损 0.5% 废酸液浓度~200g/L HCL(游离与化合) 废酸液温度≤90℃ 废酸中Fe含量~120 g/L废酸 b 再生能力 年再生运行时间: 6500h/年 40万t/年的酸洗热轧钢板将产生: 40万t/年×0.5%=2000吨的Fe,溶解在酸洗液中。即在酸洗废酸液中溶有120g/L Fe。 在再生过程中,从废酸中分离Fe的效率并非100%,约有5g/L的Fe仍然残留在再生酸中。按从废酸液可分离出115g/L废酸的Fe求得:2000×1000×1000g =17391304.3 115g/L 每小时要求再生能力为: 17391304.3 =2676L/h 6500h 经园整后,取再生能力为3m3/h。 3m3/h再生机组将产生492kg/h氧化铁粉。 3m3/h再生装置,废酸99%转化成再生酸。 c 酸再生的能耗 在设备正常运行焙烧炉热平衡时:耗750Kcal/升废酸。 设天然气热值:8350Kcal/Nm3 需天然气量:200 N m3/h 压力:8000-10000Pa 助燃空气:2970Nm3/h 压力:8000-12000Pa 压缩空气:120Nm3/h(仪表用气)压力:0.5-0.7MPa 年耗电量:165.75×104kW·h 工业水量:Max5 m3/h,正常耗量2 m3/h 脱盐水量:2 m3/h(二级除盐水) 3、环保指标 a 噪音:噪音不超过80Db。高噪音的设备,将安装在隔离室中隔离。 b 排废烟气 自洗涤塔出口排放的烟气中含: HCL <30mg/Nm3 Fe2O3(湿态)<50mg/Nm3 氧化铁粉料仓顶部排放废气,Fe2O3含量≤20mg/ Nm3。 c 排液 机组正常运行无废水液排放,只有开车、停车时,或清洗喷枪、设备时,机组才有废液排出。且是间断排液。 废水排放:4 m3/次,温度:40℃,比重:1.01 kg/L, 含Fe 5g/L,含HCL 0~200g/L d 车间空气 HCL含量≤5mg/Nm3(湿态) Fe2O3含量≤10mg/Nm3(湿态) 4、现场 新盐酸再生机组,占地面积为21×27=567m2 5 公用工程 a 电 电压等级:380V AC,3相220V AC,单相 频率:50Hz

废硫酸水的处理方法简介

废硫酸水的处理方法简介 硫酸在化工、钢铁等行业广泛应用。在许多生产过程中,硫酸的利用率很低,大量的硫酸随同含酸废水排放出去。这些废水如不经过处理而排放到环境中,不仅会使水体或土壤酸化,对生态环境造成危害,而且浪费大量资源。近年来许多国家已经制定了严格的排放标准,与此同时,先进的治理技术也在世界各地迅速发展起来。 废硫酸和硫酸废水除具有酸性外,还含有大量的杂质。根据废酸、废水组成和治理目标的差异,目前国内外采用的治理方法大致可分为3大类:回收再用、综合利用和中和处理。 一、废硫酸的回收再用 废硫酸中硫酸浓度较高,可经处理后回收再用。处理主要是去除废硫酸中的杂质,同时对硫酸增浓。处理方法有浓缩法、氧化法、萃取法和结晶法等。 (一)浓缩法 该法是在加热浓缩废稀硫酸的过程中,使其中的有机物发生氧化、聚合等反应,转变为深色胶状物或悬浮物后过滤除去,从而达到去除杂质、浓缩稀硫酸的双重目的。这类方法应用较广泛,技术较成熟。在普遍应用高温浓缩法的基础上又发展了较为先进的低温浓缩法,下面分别加以介绍。 1、高温浓缩法

淄博化工厂三氯乙醛生产过程中有废硫酸产生,其中H2SO4质量分数为65%~75%、三氯乙醛质量分数为1%~3%、其它有机杂质的质量分数为1%。该厂将其沉淀过滤后,用煤直接加热蒸馏,回收的浓硫酸无色透明,H2SO4质量分数大于95%,无三氯乙醛检出,而沉淀物经碱解、蒸馏和过滤后可回收氯仿。该厂废硫酸处理量为4000t/a,回收硫酸创利润55万元/a。 日本木村-大同化工机械公司的废硫酸浓缩法是用搪玻璃管升膜蒸发和分段真空蒸发相结合,将废硫酸中H2SO4的质量分数从10%~40%浓缩到95%,其工艺可分为3段,前两段采用不透性石墨管加热器蒸发浓缩,后一段采用搪玻璃管升膜蒸发器浓缩,在每一段中H2SO4质量分数渐次升高,分别达到60%、80%和95%。加热过程采用高温热载体,温度为150~220℃,可将有机物转变为不溶性物质,然后过滤除去,该工艺以2t/h的规模进行中试,5a运转良好。该工艺适应能力很强,可用于含多种有机杂质的废硫酸的处理。 2、低温浓缩法 高温浓缩法的缺点在于:硫酸的强腐蚀性和酸雾对设备和操作人员的危害很大,实际操作非常麻烦。因此,近年来开发出了一种改进的浓缩法,称为汽液分离型非挥发性溶液浓缩法(简称WCG法)。 WCG法的原理和工艺如下:将废稀硫酸由储槽用耐酸泵打入循环浓缩塔浓缩,然后经换热器加热后进入造雾器和扩散器强迫雾化并进一步强迫汽化,分离后的气体经高度除雾后进入气体净化器,净化后排放。分离后的酸液再度回到循环浓缩塔,经反复循环浓缩蒸馏,

废白土处置的常见方法

废白土处置的常见方法 废白土处理方法,可分为填埋法、焚烧法、固化法三类。 废白土的处置,是指将废白土焚烧和用其他改变其物理、化学、生物特性的方法,达到减少已产生的废白土数量、缩小废白土体积、减少或者消除其危险成分的活动,或者将废白土最终置于符合环境保护规定要求的场所或者设施并不再回取的活动。 填埋法 土地填埋是最终处置废白土的一种方法。此方法包括场地选择、填埋场设计、施工填埋操作、环境保护及监测、场地利用等几方面。其实质是将废白土铺成一定厚度的薄层,加以压实,并覆盖土壤。这种处理技术在国内外得到普遍应用。 1、安全土地填埋 安全土地填埋是一种改进的卫生填埋方法,也称为安全化学土地填埋。安全土地填埋主要用来处置危险废物。因此,对场地的建造技术要求更为严格。如衬里的渗透系数要小于10-8cm/s,浸出液要加以收集和处理,地面迳流要加以控制,还要考虑对产生的气体的控制和处理等。 土地填埋法与其他处置方法相比,其主要优点是:此法为一种完全的、最终的处置方法,若有合适的土地可供利用,此法最为经济;它不受废物的种类限制,且适合于处理大量的废物;填埋后的土地可重新用作停车场、游乐场、高尔夫球场等。缺点是:填埋场必须远离居民区;回复的填埋场将因沉降而需要不断地维修;填埋在地下的废白土,通过分解可能会产生易燃、易爆或毒性气体,需加以控制和处理等。 焚烧法 焚烧法是高温分解和深度氧化的综合过程。通过焚烧可以使可燃性的废白土氧化分解,达到减少容积,去除毒性,回收能量及副产品的目的。 对于同一批废白土,其组成、热值、形状和燃烧状态都会随着时间与燃烧区域的不同而有较大的变化,同时燃烧后所产生的废气组成和废渣性质也会随之改变。因此,废白土的焚烧设备必须适应性强,操作弹性大,并有在一定程度上自动调节操作参数的能力。 一般来说,差不多所有的有机性危险废物都可用焚烧法处理,而且最好是用焚烧法处理。而对于某些特殊的有机性危险废物,只适合用焚烧法处理,如石化工业生产中某些含毒性中间副产物等。 焚烧法的优点在于能迅速而大幅度地减少可燃性废白土的容积。如在一些新设计的焚烧装置中,焚烧后的废物容积只是原容积的5%或更少。一些有害废物通过焚烧处理,可以破坏其组成结构或杀灭病原菌,达到解毒、除害的目的。

废机油再生技术

废机油再生技术 油广泛用于机械、化工等领域中。机油使用后便混入水份、有机物、色素和灰尘等各种各样的杂质而常常废弃。如何使这些混入各种杂质的废置机油再生而回收利用呢? 一、再生原理根据油水难溶和水的沸点比机油低的原理,可通过加热和静置分离除去水分。利用浓H2SO4的氧化性去除有机物,利用活性白土吸附色素,通过过滤除去机械杂质,这样便可达到机油再生目的。 二、操作过程机油再生一般要经过如下五个步骤; 1.除水:将废机油收集到集油池除水后,置于炼油锅内,升温到70~80℃后停止加热,让其静置24小时左右,将表面的明水排尽,然后缓慢升温到120℃(当油温接近100℃时,要慢慢加热,防止油沸腾溢出),使水分蒸发掉,约经两小时,油不翻动,油面冒出黑色油气即可。 2.酸洗:待油冷却至常温,在搅拌下缓慢地加入硫酸(浓度为92~98%左右),酸用量一般为油量的5~7%(系根据机油脏污程度而定)。加完酸后,继续搅拌半小时,然后静置12小时左右,将酸渣排尽。 3.碱洗:将经过酸洗的机油重新升温到80℃,在搅拌下加入纯碱(Na2CO3),充分搅拌均匀后,让其静置1小时,然后用试纸检验为中性时,再静置4小时以上,将碱渣排尽。 4.活性白土吸附:将油升温到120~140℃,在恒温和搅拌下加入活性白土(其用量约为油量的3.5%),加完活性白土后,继续搅拌半小时,在110~120℃下恒温静置一夜,第二天趁热过滤。 5.过滤:可采用滤油机过滤,过滤后即得合格油。如无滤油机,采用布袋吊滤法也可。以上即为提纯机油的一般操作过程,但应根据实际情况而定。如含杂质水很少,则第一步可省掉;如经过酸碱处理后,油的颜色己正常,则就不必用活性白土脱色吸附。 废油再生方法随废油种类、性质不同而异,常用的方法如下: (1)废机油、润滑油等的再生,一般采用蒸汽加热法。这种方法再生效果较好,设备费、运转费都比较低。 (2)废乳化油再生,通常采用下述步骤回收:首先脱水加碱。脱水是尽量减少废油中水分,加碱目的是将憎水性金属皂类置换成亲水性皂类,使之恢复乳化性能。碱液的添加浓度一般为30%,用量为3%一6%,过量时可用油酸调整。pH控制在8—9之间。其次添加乳化刑,应先添加具有清洗能力的乳化剂,如油酸纳皂等;再添加石油硝酸钠之类乳化剂,一般用量为3%一6%;而后添加稳定剂,如添加适量乙醇以便增加乳化效果。根据不同的乳化油成分再适量投加润滑剂——机油,清洗剂——油酸三乙醇肤皂,防锈剂——磺酸钡,防腐剂——苯酚等对乳化液更有好处。如此再生的乳化油,完全满足生产上的清洗、润滑、防锈等要求。 废机油(各种废矿物油)提炼再生柴油工艺技术概况 1、原料状况:原料油(废机油、工业换油、清缸油)系属于带胶质、高粘度的弃残重油,作为燃料,不仅热值低,而且其中不能被完全燃烧的部份(即黑浓烟)排入大气,就会对大气环境产生极为严重的污染。 2、生产工艺,采用中国石油学院研制发明的实用新型,一种带胶质的烃油催化蒸馏技术。其原理是利用原料废油中各组分沸点不同,通过加热至280-350℃蒸馏后分离出燃

废酸回收简介

金属在表面处理过程中使用大量的废酸。当酸液中的金属达到一定的浓度后,因处理效果达不到工艺要求,酸液需要重新配制和更换。在这个过程中,大量的废酸液被产生。这些废酸液中由于含有较高浓度的酸和金属,对环境造成一定的威胁,需要进行处理,废酸洗液回收再生方法主要有:加热蒸发法,特种树脂交换法和扩散渗析膜法三种。加热蒸发法随着能源价格涨高,已经不符和经济性价比,随着科技发展,树脂交换法和扩散渗析膜法技术发展成型。扩散渗析法在德国已经商品化,进几年国内有些厂家在少量试生产,该设备最大处理能力为5M3/d, 因处理量小,膜寿命短,易老化破损,性价比过高等原因,限制工业生产使用。 树脂交换法是将废酸洗液通过纯化回收设备,酸离子被填料阻滞吸附,金属离子随液体穿透填料层,酸与金属杂质分离,用穿透液等量的水冲洗填料上酸根,便得到与废酸洗液浓度大致相等的再生酸,可重新配置酸洗液使用。穿透液根据杂质性质回收。 产品特点 对盐酸,硫酸,硝酸,磷酸,氢氟酸以及混合酸都可以纯化回收。 纯化回收酸浓度高,循环使用降低生产成本。 酸,金属盐分离,有利于金属盐回收。 废酸洗液经纯化回收设备处理后,能够实现废水零排放。 清洗化生产,节能减排,绿色环保设备。 全程自动化,精作简单,节省人力成本。 技术参数 单体设备处理量5--30M3/d. 外形尺寸:1000×2000×1200mm 酸回收率85--90% 工作电压380V 50HZ 特别说明 填料是纯化回收设备技术核心,需要根据企业废酸洗液进行探索实验,小试,选择最佳分离纯化填料。 进行中试确定纯化回收工艺参数,根据中试数据确定产品参数,设计制造。 若企业拟实行废水零排放,需要增加其他处理设备。 废硫酸回收再利用 硫酸在化工、钢铁等行业广泛应用。在许多生产过程中,硫酸的利用率很低,大量的硫酸随同含酸废水排放出去。这些废水如不经过处理而排放到环境中,不仅会使水体或土壤酸化,对生态环境造成危害,而且浪费大量资源。近年来许多国家已经制定了严格的排放标准,与此同时,先进的治理技术也在世界各地迅速发展起来。 废硫酸和硫酸废水除具有酸性外,还含有大量的杂质。根据废酸、废水组成和治理目标的差异,目前国内外采用的治理方法大致可分为3大类:回收再用、综合利用和中和处理。 1 废硫酸的回收再用 废硫酸中硫酸浓度较高,可经处理后回收再用。处理主要是去除废硫酸中的杂质,同时对硫酸增浓。处理方法有浓缩法、氧化法、萃取法和结晶法等。 1.1 浓缩法

废油再生工艺流程

废油再生工艺流程 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

废油再生工艺流程废油按来源也可分为两类:一类是机械产品加工过程的清洗、润滑、冷却及产品的热处理,机械装备与设备运转、传动油。此类油被加入了各类添加剂,并在使用过程中由于机械磨损等原因混入了各类物理及化学杂质,除去它们成为这类油品得以再利用的关键。第二类是各类车辆、机械运行后排放的各类润滑油品,由于这类油品仅作润滑,所以需要的处理工艺相对简单。 废油回收处理工艺分为三部分,分别为脱水、精炼、分离阶段。预处理采用高频破乳脱水;精炼采用蒸馏-酸洗-白土工艺;分离部分对废油中各类油品组分进行馏份分割,切割为轻质、中性、基础油三部分。 脱水部分包括高频破乳脱水和热力蒸馏脱水两阶段;精炼部分包括分解、除杂、脱色三阶段;分离部分则是将混合油品通过蒸馏的方式分割为轻质油、中性油、基础油三种产物。此工艺能处理组分较多、经历不同物理、化学应用过程、杂质含量大且成分不确定的工业混合废旧油品。 东科环保设备就此工艺流程详细跟大家探讨一下。 1.脱水工艺 废油脱水分为两阶段进行,第一阶段预处理,采用高频电场破乳脱水,分出大部分的水分。第二阶段采用蒸馏脱水。将废油水份彻底除掉,同时蒸出低沸点短链低碳物,保持再生油有一定的粘度和闪点。破乳后的废油被送入该工艺阶段,设备采用填料塔。操作温度取塔顶温度110℃,常压。塔顶组分冷凝后,进入油水分离器分出轻质油品与水份。主要油品组分在本阶段由塔底流出,再送往精炼进行下一阶段处理。 2.精炼工艺

废油精炼部分设置了高温分解、酸洗、白土吸附三阶段。 废油精炼的第一步就是用高温分解工业废油中所含各类化学添加剂。采用高温操作,是为了尽可能使各类化合物分解。工艺条件上以裂解塔温度为360℃、压力为负。塔顶组分出塔后进入冷凝器,与经过热交换器的塔底组分先后进入搅拌釜内进行酸洗。 由于搅拌釜反应不是连续操作,故采用两平行装置。废油通过浓硫酸的酸洗作用,使杂质沉淀分离。酸洗釜的操作条件为温度50℃,在裂解冷却油中加入约6%的浓硫酸,维持搅拌1小时,然后静置使油中的酸渣沉降,待沉降稳定后由釜底分出。酸洗后的油品送去脱色处理。 废油脱色工艺是用活性白土吸附去除未被酸洗掉的沥青、胶质、环烷烃、多环芳香烃等杂质,起进一步脱水、脱色作用。这时油品中所含杂质以分散杂质为主,使用的活性白土应保证其活性。活性白土加入量为油品的10%,温度在50℃、维持搅拌1小时,待吸附作用完成后静置,待其沉降分离。随后将油品送入分离阶段进行馏分分割。 3.分离工艺 废油处理后的油品粗分为轻质油、中性油、基础油三种。通过填料精馏塔将其按照馏分分割。 分离设备包括两个分离塔,第一分离塔塔顶温度在160℃、压力保持在负,塔顶组分为蒸馏脱水阶段未被得到的轻质油。塔底油品送入第二分离塔,再分离出中性油和基础油。第二分离塔塔顶温度在220℃、压力保持在负,塔顶组分为中性油,基础油由塔底分出。

废酸再生技术

精心整理 废酸资源化技术摘要 钢铁热轧所产生的酸洗废液一般含有0.05~5g /L 的 H+和 60~250 g /L 的 Fe2+,由于严重的腐蚀性,已被列入《国家危险废物名录》。该类废液的直接排放不仅严重污染环境,而且造成极大的浪费。 Ca (OH 1 特性,在焙烧炉中直接将FeCl2 转化为盐酸和Fe2O3,其反应如下: 4FeCl2+4H2O+O2=SHCIt↑+2Fe2O3

反应生成的和从酸里蒸发出来的HCl气体被水吸收后得到再生酸。这是一种最彻底、最直接处理酸洗废液的方法。由于盐酸具有挥发性,所以该方法更适合于盐酸酸洗废液的处理。实践证明该方法可以处理任何含铁量的盐酸酸洗废液。 流化床焙烧法与喷雾焙烧法是直接焙烧法中两种应用最早、最成熟的工艺形式。虽然采用的具体设备和工作过程不完全相同,但工作原理相同,它们将废液的加热、 厂、 除了上述两种方法以外,还有日本的开米拉依托法、奥托(OTTO)法、PORI法及滑动床法等方法。开米拉依托法在直接焙烧法的基础之上,加入了氧化铁的提纯工艺,可以生产出高纯度氧化铁,是钢铁工业与电气磁性材料的结合。 直接焙烧法原理简单,而且一般自动化程度都较高,解决了钢铁企业不熟悉化工生产操作的难题,但是由于其要求系统内各个程序的控制相互协调,而且要求酸洗工

序与之密切配合,需要具有较高的设计、管理和控制水平,同时由于在高温下盐酸有强烈的腐蚀性,因此接触废液的设备均需要采用优质的耐腐蚀材料,造成设备成本、零部件消耗、维修费用及运行费用都很高,因此该法更适合于大型企业采用。 目前已经建立了许多无废液排放的带钢酸洗厂,即将直接焙烧处理工艺与钢材的酸洗工艺有效地结合起来。 1.2 1.2.l 晶体的 由于盐酸具有挥发性,容易再生,所以在对盐酸酸洗废液进行浓缩处理的同时,可以回收得到稀盐酸,与浓酸混合后可循环用于酸洗工艺。也可以用萃取法再生盐酸后进行铁盐的回收[1]。 1.2.2 膜法分离

废润滑油回收处理再生技术工艺

废润滑油回收处理再生技术工艺 1.废润滑油回收处理再生技术工艺 由于润滑油的用途、性能和污染程度的不同,对于污染润滑油的再生处理根据其劣化程度的不同又分为以物理方法为主的再净化 工艺和以化学方法为主的再精制工艺[13]。 1.1 废润滑油的再净化工艺(物理方法为主) 润滑油在初期劣化过程中仅仅出现了少量的酸性或极少的沉 淀及部分水分,而其主要性质功能并没有发生大的变化,此时仅仅通过物理方法如沉降、过滤、离心分离和水洗等处理即可满足需要。该净化工艺和过程主要应用于透平油、磷酸酯抗燃油、变压器油、液压油、磨合机械油等污染废油的再生净化处理。国内外在这方面也有大量的研究如日本曾报道,将废机械油送入离心机高速离心,脱去水杂。日本还有专利报道,将废油加热,进行水蒸汽汽提,除去水及汽油等。美国有一项专利报道,将废油加热后送入旋风流动的容器,使水及汽油汽化,与机械油分离,脱去水及汽油的废油再经过一个过滤器滤去机械杂质。 韩国的SOKYONG HO(KR)在1989年申请“油压真空过滤装置” 的韩国专利《Filter.Sep.》在1995年第9期报道了英国的Headline Filters Ltd.开发的真空滤油机[14]-[18]。它与机械过滤法及物理化学法不同,它是根据油液为绝缘流体的特点,利用静电场对带电粒子的静电吸附力而除掉油中污染物的方法。它对油产生两个方面的作用:

一是对油中的杂质产生絮凝作用;二是在油水乳化的状况下进行破乳。并且纳垢容量大,处理杂质范围宽,不仅能吸附微粒污染物,滤除小至0.0l m的颗粒杂质和微量水分以及微小气泡等同时还对油中的添 加剂无不良影响,还可以去除堵塞滤油器的油泥之类的污染物,静电净油机既可作为附属设备与液压设备配套,用于净化系统的液压油,又可单独使用对废油进行净化再生。但是它的局限在于它必须在不击穿油液的安全电场下进行,耗电量大、成本高[19],不适合工业投资应用。 1.2 废润滑油的再精制工艺(化学方法为主) 当润滑油经长时间的运行使用后,由于苛刻的环境条件和超负荷的工作,使得润滑油的粘度,低温流动性能,抗氧化性,热稳定性,清净分散性能,抗磨损性能,防腐蚀、抗锈蚀性能等等,会发生严重的劣化变质,使用性能急剧下降,而如果单纯的采用物理过程来净化再生显然已经达不到再生的目的,此时必须采用化学方法来精制再生。由于技术和侧重点的不同,促使了废润滑油再精制加工工艺朝两个不同的方向发展,产生了以传统的酸洗—白土为代表的有酸污染的再生工艺和丙烷抽提为代表的无酸环保再生工艺。主要工艺如下: (1)传统的污染废润滑油再生工艺 传统的污染废油再生工艺以Meinken开发的硫酸精制工艺为主,主要衍生发展的有:沉降—酸洗—白土工艺,沉降—酸洗—碱洗—白土工艺,蒸馏—酸洗—白土工艺,沉降—蒸馏—酸洗—白土工艺,这

酸再生工艺简介

酸再生工艺简介 来自酸洗机组的废酸,收集在废酸罐中,用废酸泵经废酸过滤器送入预浓缩器,由预浓缩器循环泵经浓缩酸过滤器送至预浓缩器顶部喷洒,与来自焙烧炉的炉气(395°)进行直接热交换,蒸发废酸中部分水份,废酸得到浓缩。浓缩后的废酸由焙烧炉给料泵经过滤站送至焙烧炉顶部,再经喷杆,过滤网,喷嘴进入焙烧炉喷洒。焙烧炉本体上呈切线分布两个烧嘴加热。使喷洒到炉内浓缩酸蒸发、干燥、结晶分解。其在炉内反应如下: 2FeCl2+2H2O+1/2O2=Fe2O3+4HCL 2FeCl3+3H2O=Fe2O3+6HCL 分解后的Fe2O3固体颗粒,以粉末形式落在焙烧炉下部椎体中,经破碎机、旋转阀排出,由一气动输送系统输送到铁粉料仓。在料仓上部安装有一台塑烧板式除尘器,以过滤输送氧化铁粉时用过的空气,然后将空气排放到大气中。料仓中的氧化铁粉,经门型阀进到装袋机装袋。 焙烧炉气(由燃烧废气,水蒸汽和氯化氢气体组成)自顶部出来经双旋风分离器将炉气中夹带的部分氧化铁粉分离出来,氧化铁粉经管道返回到焙烧炉底部。炉气进入预浓缩器,直接与循环酸接触,冷却和清洗炉气中残留的微量氧化物,并进入吸收塔,与经吸收塔给料泵送至顶部喷洒的冲洗水均匀接触。炉气中的氯化氢成分被水吸收形成再生酸。再生酸从塔底部自流至再生酸储罐中。 含有微量氯化氢气体的炉气从吸收塔顶部离开,经排烟风机进入洗涤塔(排烟风机控制系统处于负压状态,保证不会有氯化氢泄露出来),用冲洗水喷淋洗涤。在洗涤塔上部烟囱脱盐水再进行两段洗涤。洗涤水流至收集水罐,用于

吸收塔喷洒,使含酸清洗水全部回收。废气达标排放。 工艺流程简图: 酸洗车间冲洗水酸洗车间废酸 ↓↓ 冲洗水罐废酸罐 (100m3*1个)(100m3*2个) 经冲洗水过滤器经废酸过滤器 ↓ 浓缩酸铁粉 焙烧炉铁粉仓 高温含酸炉气装袋外卖 含酸炉气 再生酸 吸收塔再生酸罐酸洗车间 (50m3*4个) 炉气 洗涤塔 净化后炉气排放

废酸再生技术

废酸再生技术 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

废酸资源化技术摘要钢铁热轧所产生的酸洗废液一般含有0.05~5g/L的H+和60~250g/L的Fe2+,由于严重的腐蚀性,已被列入《国家危险废物名录》。该类废液的直接排放不仅严重污染环境,而且造成极大的浪费。为避免酸洗液的酸污染,传统方法一般采用石灰、电石渣或石灰消化反应的产物Ca (OH)2进行中和,中和后虽然pH值可以达到要求,但是其余各项指标很难达标,而且产生的泥渣脱水困难、不易干燥、后处理难度大,大部分情况是堆积待处理,占用了大量土地,造成二次污染,同时该方法浪费了大量的酸和铁资源。为了保护环境,节约及合理利用资源,国内外学者长期以来进行了大量的研究和探索,提出了不同类型的处理和回收方法及技术,取得了较好的应用效果。1资源化处理酸洗废液的主要方法1.1F e C l2直接焙烧法直接焙浇法是利用FeCl2在高温、有充足水蒸气和适量氧气的条件下能定量水解的特性,在焙烧炉中直接将F e C l2转化为盐酸和F e2O3,其反应如下:4F e C l2+4H2O+O2=S H C I t↑+2F e2O3反应生成的和从酸里蒸发出来的HCl气体被水吸收后得到再生酸。这是一种最彻底、最直接处理酸洗废液的方法。由于盐酸具有挥发性,所以该方法更适合于盐酸酸洗废液的处理。实践证明该方法可以处理任何含铁量的盐酸酸洗废液。

流化床焙烧法与喷雾焙烧法是直接焙烧法中两种应用最早、最成熟的工艺形式。虽然采用的具体设备和工作过程不完全相同,但工作原理相同,它们将废液的加热、脱水、亚铁盐的氧化和水解、氯化氢气体的收集及吸收成盐酸有机地结合在一个系统内一并完成。具有处理能力大、设施紧凑、资源回收率高(可达98%~99%)、再生酸浓度高、酸中含F e2+少、氧化铁品位高(可达98%左右)及应用广等特点。这两种工艺形式的设备组成系统,都有主体设备、酸贮罐区和氧化铁输送贮存设备三部分。主体设备都有焙烧炉、旋风除尘器、预浓缩器、吸收塔和清洗设备,但主体设备的结构却有很大区别。世界上流化床法盐酸再生装置已建成50多套,我国武钢1700mm冷连轧的盐酸再生工艺就是从西德陶瓷化学公司(KCH)引进的流化床焙烧工艺机组。美国SHARON厂、VALLYCITY 等钢铁厂的冷轧工序及我国鞍钢、宝钢、上海益昌和攀钢冷轧薄板厂都采用逆流喷雾焙烧盐酸再生装置。除了上述两种方法以外,还有日本的开米拉依托法、奥托(OTTO)法、PORI法及滑动床法等方法。开米拉依托法在直接焙烧法的基础之上,加入了氧化铁的提纯工艺,可以生产出高纯度氧化铁,是钢铁工业与电气磁性材料的结合。直接焙烧法原理简单,而且一般自动化程度都较高,解决了钢铁企业不熟悉化工生产操作的难题,但是由于其要求系统内各个程序的控制相互协调,而且要求酸洗工序与之密切配合,需要具有较高的设计、管理和控制水平,同时由于在高温下盐酸有强烈的腐蚀性,因此接触废液的设备均需要采用优质的耐腐蚀材料,造成设备成本、零部件消耗、维修费用及运行费用都很高,因此该法更适合于大型企业采用。

相关主题
文本预览
相关文档 最新文档