当前位置:文档之家› 电化学传感器的应用及发展前景

电化学传感器的应用及发展前景

电化学传感器的应用及发展前景
电化学传感器的应用及发展前景

大学研究生考试答卷封面

考试科目:仪器分析考试得分:________________ 院别:材料与化学化工学部专业:分析化学

学生:饶海英学号:

授课教师:

考试日期:2012 年 1 月10 日

电化学传感器的应用研究

摘要:随着电分析技术的发展,电化学传感技术越来越成为生命科学、临床诊断和药学研究的重要手段之一。本文主要介绍了电化学发光免疫传感器,电化学DNA传感器、电化学氧传感器、纳米材料电化学传感器的基本概念、原理,以及这些传感器在各领域的应用。

关键词:电化学传感器免疫传感器传感器

电化学传感技术的核心是传感器。传感器能感受(或响应)规定的被测量并按照一定规律转换成可用信号输出的器件或装置。传感器通常由直接响应于被测量的敏感元件和产生可用信号输出的转换元件以及相应的电子线路所组成,是将一种信息能转换成可测量信号(一般指电学信号)的器件。传感器可分为物理传感器、化学传感器和生物传感器三大类。本文以化学传感器尤其是电化学传感器进行研究。

电致化学发光(Electrogenerated chemiluminescence),也称电化学发光(Electrochemiluminescence),简称ECL,是通过电极对含有化学发光物质的体系施加一定的电压或通过一定的电流,电极氧化还原产物之间或电极氧化还原产物与体系其它共存物质之间发生化学反应并生成某种不稳定的中间态物质,该物质分解而产生的化学发光现象。电致化学发光技术是电化学与化学发光相结合的检测技术,该技术既集成了发光与电化学分析技术的优点,又具有二者结合产生的可控性、选择性、重现性好、灵敏度高、检测限低及动力学响应围宽等新优势[ 1~3 ]。

电化学传感器可分为以下几个类型。①吸附型:通过吸附方式将修饰物质结

合在电极表面得到的修饰电极为吸附型化学修饰电极。可以制备单分子层和多分子层。根据吸附作用力的不同,又可分为平衡吸附型、静电吸附型、LB膜型、SA 膜型、涂层型。②共价键合型:在电极的表面通过键合反应把预定功能团接在电极表面而得到的化学修饰电极为共价型化学修饰电极。常用基体电极有碳电极、玻碳电极、金属和金属氧化物电极。③聚合物型:利用聚合反应在电极表面形成修饰膜的电极。制备方式有氧化还原沉积、有机硅烷缩合、等离子聚合、电化学聚合等。④其他类型:无机物修饰电极,如普鲁士蓝修饰电极、粘土修饰电极、沸石修饰电极、金属及金属氧化物修饰电极。

本文就电化学发光免疫传感器,电化学DNA传感器、电化学氧传感器、纳米材料电化学传感器集中电化学传感器进行研究。

1 电化学发光免疫传感器

1.1 电化学发光免疫传感器的原理

电致化学发光免疫传感器是一种将电致化学发光技术与免疫学分析方法相结合而发展起来的具有高灵敏度、高选择性、低背景等特点的生物传感器。其以免疫抗原抗体生物分子作为识别元件,通过固定化技术将免疫蛋白结合到感受器(电极)表面,当抗体分子超变区与抗原决定簇发生特异的免疫识别反应后,生成的免疫复合物与产生的电致化学发光信号相关联,由换能器转化这些与待测分析物浓度(或活度)相关的信号,再通过二次仪表放大输出,从而实现对待测免疫分子的定量检测。

20 世纪70年代之前,有关ECL免疫传感器的研究发展缓慢。80年代以后,大量有机化合物、无机化合物甚至半导体纳米材料等新型电致化学发光活性物质被合成。寻找新的高量子产率电致化学发光试剂或修饰这些发光试剂分子以用于

生物分子标记成为合成并研究这些新型发光试剂的源动力[2~3]。近代临床医学对疾病标志物免疫分子快速、灵敏的检测要求,极大的推动了信号放大型的电致化学发光免疫传感器的研究。且随着生物技术和纳米材料技术的迅速发展,利用化学、材料及生物等多种技术特异性地转化并放大与免疫反应有关的检测信号,成为电致化学发光免疫传感器的重要研究方。

1.2 电化学免疫传感器的应用

电化学免疫传感器在床边诊断中扮演很重要的角色。现代电化学免疫传感器有很高的灵敏度,可以用于肿瘤的早期诊断。电化学免疫传感器给提高癌症诊断和治疗检测的水平带来了希望。Zhu[4]总结了电化学免疫传感器在肿瘤标志物检测中的应用,对电位型免疫传感器,电流型免疫传感器,电容型免疫传感器,阻抗型免疫传感器,电化学免疫传感器与纳米技术联用等几个方面进行了详细的阐述。同时指出目前用于临床肿瘤诊断的标志物较多, 但往往因为敏感性、特异性不够理想, 在肿瘤的筛查、辅助诊断中存在一些局限性。

杜[12]等人研究了在PBS缓冲介质中,一种检测癌胚抗原的新型免标记电化学免疫传感器的制备及应用,石墨烯与甲苯胺蓝复合物饰于玻碳电极表面,通过循环伏安法对修饰的电极进行表征。基于以[Fe(CN)6]3-/4-为氧化还原探针,癌胚抗原抗体反应引起[Fe(CN)6]3-/4-探针的电流响应的变化,来实现癌胚抗原的检测,癌胚抗原的浓度在0.3~10.0 ng/mL围与峰电流呈良好的线性关系,回归方程为Δi=-1.926ρ+0.413,相关系数为0.9903,检测限为0.1 ng/mL,该传感器具有良好的重现性、选择性和稳定性,用于人血清样品的测定获得满意结果。

2 电化学DNA传感器

电化学DNA传感器是生物分析一个非常重要的领域,也是一种应用较为广泛

的检测手段。

2.1 电化学DNA传感器工作原理

电化学DNA传感器利用单链DNA (ssDNA-作为敏感元件通过共价键合或化学吸附固定在固体电极表面.加上识别杂交信息的电活性指示剂(称为杂交指示剂-共同构成的检测特定基因的装置/如图)所示

/

图1 电化学DNA传感器的工作原理示意图

其工作原理是利用固定在电极表面的某一特定序列的ssDNA与溶液中的互补序列DNA的特异识别作用(分子杂交-形成双链DNA (dsDNA-.同时借助一能识别ssDNA和dsDNA的杂交指示剂的电化学响应信号的改变来达到检测基因是否存在.达到定性的目的/同时.当互补序列DNA的浓度发生改变时.指示剂嵌入后的响应信号也会发生响应变化/一定围指示剂的响应信号与待测DNA物质的量浓度成线性关系.从而得以检测基因含量,达到定量的目的[5]。

2.2 电化学DNA传感器的分类

电化学DNA传感器是生物传感的一个分支,主要分为以下几类:(1)基于特异序列(包括单碱基多态性)的识别检测;(2)基于适体(aptamer)对底物的识别检测;(3)基于DNA 片段对小分子(包括金属离子等)以及结合蛋白的绑定识别检测;(4)DNA 不做为识别原件,仅仅做为信号来源的传感检测。

2.3 电化学DNA 传感器在药物检验中的应用

DNA传感器在药物分析中的应用也越来越受到关注。brett等利用DNA修饰电极建立了对抗癌药卡铂的测定方法,工作电极选择了玻碳电极.用吸附法使DNA修饰在电极表面。测定血样品中卡铂检出为5.7mol/L。用该方法还可以测定其它铂类抗癌药。[13]等人针对传统DNA测定方法中存在的严重问题,提出了新型测定DNA的技术-电化学DNA传感器测定法。

电化学DNA传感器的研究工作虽然还处于起步阶段.但它开辟了电化学与分子生物学的新领域.为生命科学的研究提供了一种全新的方法。对临床医学和遗传工程的研究具有深远的意义和应用价值。

3 电化学氧传感器

氧传感器广泛应用在工业、科研及国防领域,用于测量环境中的氧气含量。氧传感器根据工作原理的不同分为很多类型,有电化学型、热磁式、光学式以及半导体电阻型氧传感器,其中电化学氧传感器具有灵敏度高、测量围宽、响应时间快、可靠性高等特点,成为氧传感器领域研究最多,技术最为成熟的一类,也是目前唯一一类实现商业化批量生产的氧传感器。

3.1 固体电解质氧传感器的的工作原理

电化学氧传感器根据工作原理不同可以分固体电解质氧传感器,液体电解质氧传感器,热磁式氧传感器,光纤式氧传感器,可调谐激光式氧传感器等。此处着重介绍固体电解质氧传感器的的工作原理。以二氧化锆氧传感器为例,它以对氧离子有较高导电能力的ZrO2作基质[5],两面设有对氧有催化还原作用的铂电极,将其置于含氧的参比气体和待测气体中,就形成了氧的浓差电池:参比气体| Pt,ZrO2,Pt | 待测气体。其电池反应为:O2(参)_O2(测)。按能斯特公式测得

我国电化学生物传感器的研究进展.

第12卷第6期重庆科技学院学报(自然科学版2010年12月 收稿日期:2010-07-20 基金项目:重庆市教委科学技术研究资助项目(KJ101315 作者简介:刘艳(1968-,女,四川乐山人,副教授,研究方向为电化学传感器。 在生命科学研究和医学临床检验中,需对各种各样的生物大分子进行选择性测定。据统计,全世界每年要进行数亿次免疫学和遗传学病理检验。常用的检验小型化分析装置和检测方法,成为目前现代分析化学研究领域的前沿课题。 1962年,Clark 提出将生物和传感器联用的设 想,并制得一种新型分析装置“酶电极”。这为生命科学打开一扇新的大门,酶电极也成为发展最早的一类生物传感器。生物传感器结合具有分子识别作用的生物体成分(酶、微生物、动植物组织切片、抗原和抗体、核酸或生物体本身(细胞、细胞器、组织作为敏感元件与理化换能器,能产生间断的或连续的信号,信号强度与被分析物浓度成比例。 电化学生物传感器是将生物活性材料(敏感元件与电化学换能器(即电化学电极结合起来组成的生物传感器。当前,电化学生物传感器技术已在环境监测、临床检验、食品和药物分析、生化分析[2-4]等研究中有着广泛的应用。本文在此综述电化学生物传感器的工作原理、分类及几个当今研究的热点。 1 电化学生物传感器概述 1.1 电化学生物传感器的原理 电化学生物传感器是将生物活性材料(敏感元

件与电化学换能器(即电化学电极结合起来组成的生物传感器。当电化学池中溶液的化学成分变化时,电极上流过的电流或电极表面与溶液的电势差会随之发生变化,这样通过测定电流或电势的 变化就可以获取溶液成分或相应的化学反应的变化信息。 电化学生物传感器是在上述电化学传感器原理的基础上,以具有生物活性的物质作为识别元件,通过特定反应使被测成分消耗或产生相应化学计量数的电活性物质,从而将被测成分的浓度或活度变化转换成与其相关的电活性物质的浓度变化,并通过电极获取电流或电位信息,最后实现特定物质的检测。如图1所示,这类传感器中使用的生物活性材料包括酶、微生物、细胞、组织、抗体、抗原等等。 图1电化学生物传感器的工作原理 1.2电化学生物传感器的类别 生物传感器主要包括生物敏感膜和换能器两部 分。按照敏感元件所用生物材料的不同,电化学生物传感器分为酶电极传感器、微生物电极传感器、电化学免疫传感器、组织电极与细胞器电极传感器、电化学DNA 传感器等,其中酶电极由于其高效、专一、反应条件温和且具有化学放大作用而成为电化学生物传感器的研究主流。 按照检测信号的不同,电化学生物传感器可分 我国电化学生物传感器的研究进展 刘 艳 (长江师范学院,重庆408100 摘

1电化学传感器重点

1电化学传感器 这类传感器以电化学半电池为基础[6],由一对贵金属电极组成的电极系统,充以特定的电解液 (与被测气体有关)并经全密封封装组成 (图1)。传感器中另一个重要部件是半通透膜,它可选择性地让被测气体分子通过扩散方式进入传感器电解液,将大部分干扰物质的分子阻隔掉,因而有效减少干扰。透过的气体在工作电极上,在水分子上参与下,发生氧化还原反应,引起电子转移而形成与被测气体浓度有关的电极电流或电势。常见气体的电化学反应如下: 氧气: O 2 +2H 2O + 4e + → 4OH - 一氧化碳:CO + H 2O → CO 2 + 2H + + 2e + 甲醛: HCHO + H 2O → CO 2 + 4H + + 4e + 电化学传感器可用于绝大多数游离态小分子的检测。一般说,凡是能与某种特定电解质溶液发生氧化还原法反应的分子都可通过电测法进行定量分析,如表3所示。 表1:可使用电化学传感器检测的气体 传感器的最大测量范围和它最高可达到的分辨率是互相排斥的,一般不能同时满足。

对比表2,大部分气体传感器的技术指标已能满足对室内环境污染的检测要求。 电化学传感器的结构比较简单,成本比较低,高质量的产品性能稳定,测量范围和分辨率基本能达到室内环境检测的要求。但缺点是只适用于对大部分无机气体和小部分有机小分子气体的检测,且由于电解质与被测气体发生不可逆化学反应而被消耗,故其工作寿命一般比较短,约为2-3年。 2 光学检测器 当一束光线照射到物质表面时,它与物质的原子和分子相互作用。光线可能透过物质,可能部分被吸收,可能发生放射,散射和衍射,也可能发出荧光。因此光学检测器的形式有多种多样,常用的有基于光的吸收,散射和衍射;荧光,光电离和光声转换。能用光学检测器测量的物质种类很广泛,几乎涵盖有机,无机和生化物质的所有形态:固态,液态和气态。本文仅将对用于室内环境污染检测的光学检测器作简单介绍。 2.1 光能吸收式检测器 该检测器工作原理基于Beer-Lambert 定律,如图2: P 0 P 图2 图 3 所示为一个红外光吸收式检测器[7],它可以同时检测CO,CO 2和烷烃类可燃性气体。该检测器包括一个非分光式红外发生器,红外光线被导入一个封闭的金属腔内,腔内充有被测气体,特定波长的红外光将被气体吸收后,专门测定该特定波长的红外检测管将吸收后的能量测出,用以表示被测气体浓度。 T = log (P 0 / P) = e - γ b c 式中:T – 透光率; P 0 – 入射光能量;P –透射光能量 γ – 被测物吸收常数; 图3 λ1 λ2 λ3 光的吸收特性(波长)与被测气体的分子结构密切相关,即每种气体都有它自己的特征吸收峰。 大多数的光吸收式检测器采用红外光或激光光源,以减少杂散光的干扰。 该检测器 分辨率和测量精度较高,理论上使用寿命比电化学传感器要长得多,价格比较贵。基于红外光吸收式检测器的便携式二氧化碳测试仪已被国家标准列入推荐方法之一。

电化学气体传感器通用说明书

工作原理 A氧气传感器 氧气传感器采用隔膜式伽伐尼电池工作原理。这类传感器通常包括具有催化活性的贵重金属阴极,易极化的活泼金属阳极,酸、碱、盐的水溶液、或其它离子导体构成的电解质,密闭外壳,管脚等。氧气传感器的外壳是一个密闭容器并充满电解液,此密闭容器的顶部有一个毛细微孔,允许氧气通过并进入工作电极。此时氧气将在传感器内部被电解,导致传感器内部导电离子浓度发生变化。通过测量流过两电极的电解电流可以准确感知环境中氧气浓度的变化。在适当的范围内,电解电流与氧气浓度呈良好的线性关系。 氧气在传感器中的电化学过程被描述为:当氧气到达工作电极时,立即如反应(1)被还原成氢氧根离子: O2+2H2O+4e→4OH-(1) 这些氢氧根离子通过电解质到达阳极(铅),与铅发生氧化反应(2),生成对应的金属氢氧化物。 2Pb+4OH-→2Pb(OH)2+4e(2) 总电池反应: O2+2Pb+2H2O=2Pb(OH)2(3) 反应生成的电流大小相应地取决于氧气扩散速度,氧气的扩散速度则取决于氧分压和毛细孔孔径的大小。可外接一只已知电阻来测量产生的电势差,这样就可以准确测量出氧气的浓度。 电化学反应中,活泼金属铅参与到氧化反应中被不断消耗和钝化,使传感器具有一定的使

用期限,当所有可利用的活泼金属铅完全被氧化或钝化时,传感器将停止工作。通常氧气传感器的预期使用寿命为1-2年,但也可以通过增加阳极铅的含量或限制接触阳极的氧气量来延长传感器的使用寿命。 B毒性气体传感器 利用待测气体在电解池中工作电极上的电化学氧化过程,通过电子线路将电解池的工作电极和参比电极恒定在一个适当的电位,在该电位下可以发生待测气体的电化学氧化,由于氧在氧化和还原反应时所产生的法拉第电流很小,可以忽略不计,于是待测气体电化学反应所产生的电流与其浓度成正比并遵循法拉第定律。这样,通过测定电流的大小就可以确定待测气体的浓度。 通常,三电极电化学式气体传感器主要由电极、电解液、电解液的保持材料、除去干涉气体的过滤材料、密闭外壳,管脚等零部件组成。 传感器中的电极包括工作电极、参比电极和对电极,是由对被测气体具有催化作用的材料制成。电化学式气体传感器的化学反应系统主要有三个电极组成: W极——用于氧化反应的工作电极; C极——用于还原反应的对电极; R极——可提供恒电位的参比电极; 电化学毒性气体传感器的代表性构造如图2所示。 进入传感器内的气体在工作电极被氧化(大多数的气体)或被还原(举例来说二氧化氮和氯)。反应按化学计量比进行。如一氧化碳在工作电极上的反应: CO+H2O→CO2+2H++2e

电流型电化学传感器的研究进展

电流型电化学传感器的研究进展 作为一种新科技革命和信息社会的重要技术基础,传感技术已成为人们现代生活的重要组成部分。近年来,电化学传感器的研究受到人们的广泛关注。电极系统组成、电极类型、电解液等重要组成部分的选择对于电流型传感器的性能影响尤为关键。文章详细总结了电流型电化学气体传感器的发展状况,阐述了电极系统、电解液类型对传感器性能的影响,并讨论了电流型传感器的未来发展和应用前景。 标签:传感器;电极;电解液 1 概述 传感器是一种能感应信息并将其转换为可测量信号的器件[1]。作为一种新技术革命和信息社会的重要基础技术,传感器的发展特别迅速,已成为人们现代生活的重要组成部分[2]。 按照感性信号不同,传感器可分为物理传感器和化学传感器,化学传感器可以详细划分为电化学式传感器、光学式传感器、热学式传感器和质量式传感器等。其中电化学传感器由于其敏感度高、能耗低、信号稳定等特点,被广泛使用[3,4]。 电化学传感器是目前发展最为成熟和应用最广的一类传感器[5],按照其输出信号的不同可以分为电位型电化学传感器、电流型电化学传感器和电导型电化学传感器[6]。其中电位型傳感器是基于电极电势与被测组分浓度之间的关系,通过电极电势的变化来感知浓度的变化。电导型传感器是基于被测物质氧化或还原后电解质溶液电导变化实现检测的。本文主要介绍电流型传感器及其性能影响因素。 2 电流型传感器 电流型传感器是在电位恒定的条件下,使被测物发生定电势电解,基于扩散控制条件下极限电流与浓度的线性关系,从而检测被测物质组分的实时变化的一类传感器[7]。通常也被称为控制电位电解型气体传感器,这种传感器包括供气体进入的气室或薄膜、电极、离子导电性的电解质溶液几部分。电流型传感器是当前业内应用最为广泛的传感器。电流型传感器的工作过程一般包括被测气体进入传感器气室;待测物质通过反应气室到达透气膜附近,并向电极-电解液界面扩散;电活性物质在电解液中溶解;电活性物质在电极表面吸附;扩散控制下的电化学反应;产物脱附;产物离开电极表面的扩散;产物的排除等过程。 3 性能影响因素 影响传感器性能的最主要因素包括电极因素和电解液因素两部分,电极因素

电化学气体传感器

电化学气体传感器的研究 电化学气体传感器是由膜电极和电解液灌封而成的。气体浓度信号将电解液分解 成阴阳带电离子,通过电极将信号传出。它的优点是:反映速度快、准确(可用于ppm级),稳定性好、能够定量检测,但寿命较短(大于等于两年)。它主要适用于 毒性气体的检测,目前国际上绝大部分毒气检测采用该类型传感器。 电化学气体传感器的分类 电化学气体相当一部分的可燃性的、有毒有害气体都有电化学活性,可以被电化学氧 化或者还原。利用这些反应,可以分辨气体成份、检测气体浓度。电化学分很多子类:(1)、原电池型气体传感器(也称:加伏尼电池型气体传感器,也有称燃料电池型气体传感器,也有称自发电池型气体传感器),他们的原理行同我们用的干电池,只是,电池的碳锰电极被气体电极替代了。以氧气传感器为例,氧在阴极被还原,电子通过电流 表流到阳极,在那里铅金属被氧化。电流的大小与氧气的浓度直接相关。这种传感器 可以有效地检测氧气、二氧化硫、氯气等。 (2)、恒定电位电解池型气体传感器,这种传感器用于检测还原性气体非常有效,它的原理与原电池型传感器不一样,它的电化学反应是在电流强制下发生的,是一种真正 的库仑分析的传感器。这种传感器已经成功地用于:一氧化碳、硫化氢、氢气、氨气、肼、等气体的检测之中,是目前有毒有害的主流传感器。 (3)、浓差电池型气体传感器,具有电化学活性的气体在电化学电池的两侧,会自发形成浓差电动势,电动势的大小与气体的浓度有关,这种传感器的成功实例就是汽车用 氧气传感器、固体电解质型二氧化碳传感器。 (4)、极限电流型气体传感器,有一种测量氧气浓度的传感器利用电化池中的极限电流与载流子浓度相关的原理制备氧(气)浓度传感器,用于汽车的氧气检测,和钢水中氧 浓度检测。 电化学气体传感器是通过检测电流来检测气体的浓度,分为不需供电的电池式以 及需要供电的可控电位电解式。 基于电化学原理工作的传感器其最简单的一种型式就是两电极系统。其工作电极 和对电极由一薄层电解液隔开并经由一个很小的电阻联通外电路。当气体扩散进入传 感器后,在敏感电极表面进行氧化或还原反应,产生电流并通过外电路流经两个电极。该电流的大小比例于气体的浓度,可通过外电路的负荷电阻予以测量。 为了让反应能够发生,敏感电极的电位必须保持在一个特定的范围内。但气体的浓度 增加时,反应电流也增加,于是导致对电极电位改变(极化)。由于两电极是通过一 个简单的负荷电阻连接起来的,虽然敏感电极的电位也会随着对电极的电位一起变化。如果气体的浓度不断地升高,敏感电极的电位最终有可能移出其允许范围。至此传感 器将不成线性,因此两电极气体传感器检测的上限浓度受到一定限制。

气体传感器原理

I体传感器原理

分析气体传感器选择及其分类 气体传感器是气体检测系统的核心,通常安装在探测头内。从本质上讲,气体传感器是一种将某种气体体积分数转化成对应电信号的转换器。探测头通过气体传感器对气体样品进行调理,通常包括滤除杂质和干扰气体、干燥或制冷处理、样品抽吸,甚至对样品进行化学处理,以便化学传感器进行更快速的测量。 气体的采样方法直接影响传感器的响应时间。目前,气体的采样方式主要是通过简单扩散法,或是将气体吸入检测器。(简单扩散是利用气体自然向四处传播的特性。目标气体穿过探头内的传感器,产生一个正比于气体体积分数的信号。由于扩散过程渐趋减慢,所以扩散法需要探头的位置非常接近于测量点。扩散法的一个优点是将气体样本直接引入传感器而无需物理和化学变换。样品吸入式探头通常用于采样位置接近处理仪器或排气管道。这种技术可以为传感器提供一种速度可控的稳定气流,所以在气流大小和流速经常变化的情况下,这种方法较值得推荐。将测量点的气体样本引到测量探头可能经过一段距离,距离的长短主要是根据传感器的设计,但采样线较长会加大测量滞后时间,该时间是采样线长度和气体从泄漏点到传感器之间流动速度的函数。对于某种目标气体和汽化物,如SiH4 以及大多数生物溶剂,气体和汽化物样品量可能会因为其吸附作用甚至凝结在采样管壁上而减少。) 根据测量对象与测量环境确定传感器的类型。要进行—个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下一些具体问题:量程的大小;被测位置对传感器体积的要求;测量方式为接触式还是非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,国产还是进口,价格能否承受,还是自行研制。在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标。 稳定性:传感器在整个工作时间内基本响应的稳定性,取决于零点漂移和区间漂移。零点漂移是指在没有目标气体时,整个工作时间内传感器输出响应的变化。区间漂移是指传感器连续置于目标气体中的输出响应变化,表现为传感器输出信号在工作时间内的降低。理想情况下,一个传感器在连续工作条件下,每年零点漂移小于10%。 响应特性(反应时间):传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有—定延迟,希望延迟时间越短越好。传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械系统的惯性较大,因而频率低的传感器可测信号的频率较低。在动态测量中,应根据信号的特点(稳态、瞬态、随机等)响应特性,以免产生过大的误差。 线性范围:传感器的线性范围是指输出与输入成正比的范围。以理论上讲,在此范围内,灵敏度保持定值。传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内,可将非线性误差较小的传感器近似看作线性的,这会给测量带来极大的方便。 灵敏度的选择通常在传感器的线性范围内,希望传感器的灵敏度越高越好。因为只有灵敏度高时,与被测量变化对应的输出信号的值才比较大,有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影

电化学传感器

背景:最早的电化学传感器可以追溯到20世纪50年代,当时用于氧气监测。到了20世纪80年代中期,小型电化学传感器开始用于检测PEL范围内的多种不同有毒气体,并显示出了良好的敏感性与选择性。目前,为保护人身安全起见,各种电化学传感器广泛应用于许多静态与移动应用场合。 电化学传感器的工作原理: 电化学传感器通过与被测气体发生反应并产生与气体浓度成正比的电信号来工作。典型的电化学传感器由传感电极(或工作电极)和反电极组成,并由一个薄电解层隔开。 气体首先通过微小的毛管型开孔与传感器发生反应,然后是疏水屏障层,最终到达电极表面。采用这种方法可以允许适量气体与传感电极发生反应,以形成充分的电信号,同时防止电解质漏出传感器。 穿过屏障扩散的气体与传感电极发生反应,传感电极可以采用氧化机理或还原机理。这些反应由针对被测气体而设计的电极材料进行催化。 通过电极间连接的电阻器,与被测气浓度成正比的电流会在正极与负极间流动。测量该电流即可确定气体浓度。由于该过程中会产生电流,电化学传感器又常被称为电流气体传感器或微型燃料电池。 在实际中,由于电极表面连续发生电化发应,传感电极电势并不能保持恒定,在经过一段较长时间后,它会导致传感器性能退化。为改善传感器性能,人们引入了参考电极。 参考电极安装在电解质中,与传感电极邻近。固定的稳定恒电势作用于传感电极。参考电极可以保持传感电极上的这种固定电压值。参考电极间没有电流流动。气体分子与传感电极发生反应,同时测量反电极,测量结果通常与气体浓度直接相关。施加于传感电极的电压值可以使传感器针对目标气体。 分类: 电化学传感器可分为以下几个类型 ①吸附型:通过吸附方式将修饰物质结合在电极表面得到的修饰电极为吸附型化学修饰电极。可以制备单分子层和多分子层。根据吸附作用力的不同,又可分为平衡吸附型、静电吸附型、LB膜型、SA膜型、涂层型。 ②共价键合型:在电极的表面通过键合反应把预定功能团接在电极表面而得到的化学修饰电极为共价型化学修饰电极。常用基体电极有碳电极、玻碳电极、金属和金属氧化物电极。 ③聚合物型:利用聚合反应在电极表面形成修饰膜的电极。制备方式有氧化还原沉积、有机硅烷缩合、等离子聚合、电化学聚合等。 ④其他类型:无机物修饰电极,如普鲁士蓝修饰电极、粘土修饰电极、沸石修饰电极、金属及金属氧化物修饰电极。 电化学DNA传感器电化学DNA传感器是生物分析一个非常重要的领域,也是一种应用较为广泛的检测手段。 电化学DNA传感器工作原理电化学DNA传感器利用单链DNA (ssDNA-作为敏感元件通过共价键合或化学吸附固定在固体电极表面.加上识别杂交信息的电活性指示剂(称为杂交指示剂-共同构成的检测特定基因的装置/如图)所示

电化学葡萄糖传感器研究进展_吴爱坪

2015年第23期 科技创新科技创新与应用 电化学葡萄糖传感器研究进展 吴爱坪 (国家知识产权局专利局专利审查协作江苏中心,江苏苏州215000) 葡萄糖检测在医学、食品、生物技术及工业等领域有着广泛的应用,例如在医学上,常用电化学葡萄糖检测试条对病人血液、尿液或是唾液中的葡萄糖进行检测,从而指导饮食调节或是调整糖尿病用药,有助于糖尿病病情的治疗与控制;在食品方面,葡萄糖常见的碳水化合物,分析食品中(如饮料、果汁等饮品中)的葡萄糖含量也十分必要;葡萄糖含量的多少对微生物的发酵过程也有一定的影响;此外葡萄糖电化学传感器也用于检测工业废水中葡萄糖的含量。采用电化学传感器检测葡萄糖,其线性检测范围宽、灵敏度高、成本比较低,近年来,获得快速发展,已成为目前研究和应用最多的生物传感器。 1电化学酶传感器 酶传感器一般是由固定化酶和电极组合构建而成。利用酶的高度专一性及催化性,将酶作为生物传感器的敏感元件,从而实现生物分子,如糖类、醇类、有机酸化合物、氨基酸化合物的浓度检测。用于葡萄糖检测的酶常为葡萄糖氧化酶。根据检测过程中传感器的电荷传递机理不同,主要有以下几种类型的电流型葡萄糖传感器。 1.1氧气作为电子传递介体 在葡萄糖氧化酶存在的条件下,葡萄糖和氧气反应生成葡萄糖酸和双氧水,葡萄糖浓度的变化与双氧水或是氧气的浓度变化成线性关系。采用电化学方法检测过氧化氧的浓度和氧浓度可实现葡萄糖浓度的检测。张彦等采用壳聚糖固定化葡萄糖氧化酶生物传感器测定葡萄糖的含量,通过电极检测氧气消耗量,并依据反应中消耗的氧气与葡萄糖的浓度成正比的关系,建立了检测葡萄糖含量的电化学方法[1]。由于这类传感器借助于中间物质氧气或是双氧水,极易受检测环境的影响,如氧气不足时,难以对高浓度的血糖进行测定;双氧水浓度过高还容易导致酶的失活[2]。 1.2利用电子媒介体代替氧气作为电子受体 电子媒介体,是指能将酶反应过程中产生的电子从酶反应中心转移到电极表面,从而使电极产生相应电流变化的分子导电体。其克服了葡萄糖酶传感器受氧气限制的缺点。电子媒介体能够使电子在酶的氧化还原中心与工作电极表面之间进行快速、往复传递。常见的电子媒介体有有机染料、二茂铁及其衍生物、醌及其衍生物、四硫富瓦烯、富勒烯及导电有机盐等。陈国松等用电子媒介体硒杂二茂铁制备得到的葡萄糖电极[3];莫昌莉等以蔡酚绿B为介体制备葡萄糖传感器,加入葡萄糖标准溶液前后对蔡酚绿B进行循环伏安扫描,根据蔡酚绿B氧化峰的电流值与葡萄糖浓度成正比从而实现葡萄糖的定量测定[4]。 1.3无介体传感器 其主要特点就是不经过酶与电极间电子交换,酶自身与电极之间直接进行电子转移。由于氧化还原活性中心深埋在葡萄糖氧化酶的分子内部,电子无法与电极表面以足够快速率进行转移,因此增强电子转移速度、缩短其与电极的距离是无介质传感器的研究热点。通常主要通过将酶共价键合在修饰电极表面、或将酶固定在导电聚合物修饰电极表面,达到酶催化反应的专一和高效。蔡称心等利用吸附的方法将葡萄糖氧化酶固定到CNT/GC电极表面,形成GOx-CNT/GC电极,通过葡萄糖氧化酶的直接电子转移实现葡萄糖的检测[5],Xinhuang Kang等采用葡萄糖氧化酶-石墨烯-壳聚糖修饰电极实现葡萄糖的直接电化学检测,借助于石墨烯的高比表面积和高导电性,实现葡萄糖氧化酶在电极表面的高吸附量,并加快了葡萄糖氧化酶与电极之间的电子传递速度[6]。 2电化学非酶传感器 酶的活性容易受到外界环境影响这一缺点限制了酶传感器的应用,通过在电极上修饰对葡萄糖有催化作用的材料构建非酶葡萄糖传感器越来越引起人们的关注。常见的用于构建非酶葡萄堂传感器的材料主要有金属纳米材料如Au、Ag、Pt等、金属合金如Pt-Pb、金属纳米氧化物纳米CuO等、碳纳米管、石墨烯、聚合物膜、水滑石等。非酶葡萄糖传感器克服了酶容易失活这一缺点,表现出良好的重现性及稳定性。 纳米材料由于其尺寸效应等具备良好的催化性能,越来越广泛应用于电化学传感器的研究中。丁海云等将制备了Cu纳米粒子修饰电极,其与大粒径的Cu粒子修饰电极相比较,Cu纳米粒子修饰电极对葡萄糖的检出限更低[7],罗立强等制备氧化铜-石墨烯纳米复合物修饰电极,测定人血清样品,其结果与生化分析仪得出的结果基本一致[8]。特殊形状的纳米结构性能更佳,王蕊通过电沉积的方法在金电极表面制备了具有三维Pt-Pb“纳米花”状纳米结构,其电活性面积和电催化活性都有极大的提高,且稳定性和选择性也很好[9]。黄新堂等制备钛基底上镍-铝水滑石纳米片阵列无酶葡萄糖传感器电极CN101598697A。 电极表面的聚合物膜可以消除干扰,提高电极选择性。俞建国等制备的修饰过氧化聚吡咯膜的微镍电极用于葡萄糖的检测,有效的减少了常见的干扰物质(如抗坏血酸、尿酸)对检测结果的干扰,提高修饰电极的稳定性[10]。 3结束语 酶传感器具有高度的专一性,非酶传感器具备良好的稳定性,两者均具备自己的优势,无论哪种传感器,其最终目的是实现葡萄糖传感器的高效、专一、长期检测。未来在酶传感器的酶的活性保持及非酶传感器的专一性等方面的研究将会是葡萄糖电化学传感器的研究热点。 参考文献 [1]张彦,等.壳聚糖固定化葡萄糖氧化酶生物传感器测定葡萄糖的含量[J].分析化学,2009,37(7):1049-1052. [2]Guilbault G Q Lubrano G G.An enzyme electrode for ampero-metric determination of glucose[J].Analytica ChimicaActa,1973,64(3):439-455. [3]陈国松,等.CN102297886A[P].2011 [4]莫昌莉,等.以蔡酚绿B为介体的葡萄糖生物传感器[J].化学传感器,2003,23(1):26-31. [5]蔡称心,等.碳纳米管修饰电极上葡萄糖氧化酶的直接电子转移[J].中国科学(B辑),2003,33(6):511-518. [6]Xinhuang Kang,等.Glucose Oxidase-graphene-chitosan modified e lectrode for direct electrochemistry and glucose sensing[J].Biosensors and Bioelectronics,2009,25:901-905. [7]丁海云,等.纳米铜修饰玻碳电极的制备及其对葡萄糖的催化氧化[J].分析化学,2008,36(6):839~842. [8]罗立强,等.CN102520035A[P].2012. [9]王蕊.Pt-Pb纳米花修饰无酶葡萄糖传感器的研究[D].天津大学材料学院,2010. [10]俞建国,等.高选择性的镍基无酶葡萄糖微传感器的研制及应用[J].分析化学,2008,36(9):1201-1206. 摘要:电化学传感器法检测葡萄糖是葡萄糖检测的常见方法,广泛应用于临床检测、食品生产、生物技术、发酵控制等领域,文章介绍了葡萄糖电化学传感器的常见类型及其工作原理,并对其优缺点进行了简单分析。 关键词:葡萄糖;电化学传感器;研究分析 63 --

半导体与电化学气体传感器特性对比说明[1]

一氧化碳传感器气体传感器简述 一、电化学一氧化碳气体传感器 电化学一氧化碳气体传感器工作原理: 基于电化学原理开发的一氧化碳气体传感器是目前广范应用于各类工业现场、矿山、家居环境中防止一氧化碳中毒的一种毒性气体传感器。其工作过程遵循法拉第定律。可简单表述为利用一氧化碳气体在传感器中工作电极上的电化学氧化过程,氧气在对电极上的电化学还原过程。一氧化碳气体电化学反应所产生的电流与其浓度成正比并遵循法拉第定律。这样,通过测定电流的大小就可以确定待测气体的浓度。 该种传感器设计的理念最初主要基于预防工业、矿业等现场群体性一氧化碳中毒事件的发生,因此器件的精度和可靠性是其设计的最核心内容。工艺技术的不断成熟、制造成本的快速降低,使得在工业用一氧化碳传感器技术基础上衍生的用于家居环境中的一氧化碳传感器大规模应用变成现实,其具有的工业应用产品标准的品质使其几乎成了欧美发达国家居民家庭一氧化碳检测的唯一选择。 电化学一氧化碳气体传感器特性: 1.功耗低,能满足严格防爆要求。由於它是一只电池,响应时不消耗 能量,所附加的恒定电位较低,一般在几十毫伏至二百毫伏内,且 漏电流极小,约为零点几微安。因此这种传感器用一节五号电池便 可连续工作数百小时。再则这种传感器在室温中工作,对CO等易燃 易爆气体使用较安全。它可在地面恶劣环境中使用,也可在地下坑 道中使用,能够满足严格的防爆要求。 2.有较好的抗干扰性能。由於由不同气体的电极和电解液组成、配方

均不同,它们的电极电位不同,反应电流的最佳电极电位也不相同,因此具有较好的抗干扰性能。如在实验中测定CO气体传感器的响应电流时,测量不受甲烷、汽油气、NO、NO2、SO2等气体的干扰。 3.有稳定的较高的输出性能。由于工作电极是在恒定电位下工作,被 测气体能产生稳定的电化学反应,因而保证了这种气体传感器有优良的稳定输出性能。只要加在参比电极上的电压不变,它的输出响应就不会发生突变。因此这种传感器的测量精度较高,可达到 0.5×10-6。 4.响应时间较快,20秒内可达90%。无需取样,在不增加气泵的情况 下,只要被测气体对准传感器的窗口,通过气体扩散进入扩散电极便会迅速产生响应。 5.有较好的线性特性与温度性能。从工作原理已知,在恒电位条件下, 当传感器的结构和电解液一定时,气体扩散电极一定,此时,反应电流I就只与气体浓度C成正比,I=KC,因此这类传感器必然有较好的线性特性。 6.由于所用电解液浓度高时吸收环境中的水蒸气,而浓度低时电解液 中的水分较易挥发,其电解液浓度会自动平衡,电导率变化较小,从而传感器灵敏度受环境变化的影响较小。 二、金属氧化物半导体一氧化碳传感器 金属氧化物半导体一氧化碳传感器工作原理: 基于半导体原理开发的一氧化碳气体传感器,常见的有旁热式元件和自加热元件(也叫常温元件)由于其工作原理简单、易于制造、使用方便、价格低廉等特点曾引起业界的广泛关注。其原理可简单表述为金属氧化物

电化学传感器的应用及发展前景

苏州大学研究生考试答卷封面 考试科目:仪器分析考试得分:________________院别:材料与化学化工学部专业:分析化学 学生姓名:饶海英学号: 033 授课教师: 考试日期: 2012 年 1 月 10 日

电化学传感器的应用研究 摘要:随着电分析技术的发展,电化学传感技术越来越成为生命科学、临床诊断和药学研究的重要手段之一。本文主要介绍了电化学发光免疫传感器,电化学DNA 传感器、电化学氧传感器、纳米材料电化学传感器的基本概念、原理,以及这些传感器在各领域的应用。 关键词:电化学传感器免疫传感器传感器 电化学传感技术的核心是传感器。传感器能感受(或响应)规定的被测量并按照一定规律转换成可用信号输出的器件或装置。传感器通常由直接响应于被测量的敏感元件和产生可用信号输出的转换元件以及相应的电子线路所组成,是将一种信息能转换成可测量信号(一般指电学信号)的器件。传感器可分为物理传感器、化学传感器和生物传感器三大类。本文以化学传感器尤其是电化学传感器进行研究。 电致化学发光(Electrogenerated chemiluminescence),也称电化学发光(Electrochemiluminescence),简称ECL,是通过电极对含有化学发光物质的体系施加一定的电压或通过一定的电流,电极氧化还原产物之间或电极氧化还原产物与体系其它共存物质之间发生化学反应并生成某种不稳定的中间态物质,该物质分解而产生的化学发光现象。电致化学发光技术是电化学与化学发光相结合的检测技术,该技术既集成了发光与电化学分析技术的优点,又具有二者结合产生的可控性、选择性、重现性好、灵敏度高、检测限低及动力学响应范围宽等新优势[ 1~3 ]。 电化学传感器可分为以下几个类型。①吸附型:通过吸附方式将修饰物质结合在电极表面得到的修饰电极为吸附型化学修饰电极。可以制备单分子层和多分子层。根据吸附作用力的不同,又可分为平衡吸附型、静电吸附型、LB膜型、SA 膜型、涂层型。②共价键合型:在电极的表面通过键合反应把预定功能团接在电极表面而得到的化学修饰电极为共价型化学修饰电极。常用基体电极有碳电极、玻碳电极、金属和金属氧化物电极。③聚合物型:利用聚合反应在电极表面形成修饰膜的电极。制备方式有氧化还原沉积、有机硅烷缩合、等离子聚合、电化学聚合等。④其他类型:无机物修饰电极,如普鲁士蓝修饰电极、粘土修饰电极、

电化学气体传感器的优缺点

不同电化学气体传感器中所包含的不同成份决定了它可与相应的毒气发生反应;测量头可测量反应所产生的电流并将其转换成气体浓度值(ppm或ppb)。催化传感器在涂有催化剂的小球上“无焰燃烧”可燃性气体;测量头可测量电阻的变化并通过a/d 转换,显示变化相应的读数。一般以爆炸下限作为满量程。 由于电化学型和催化燃烧型测量头相对较低的成本,它们通常被用于“源点”(即泄漏有可能发生的地方)处的测量。因而对泄漏的反应迅速并可连续探测。另外,由于没有可移动部件,所以不会造成机械故障。 但是,这两种类型的传感器也有缺点:一些气体传感器不但对与之相应的气体(即它们按照设计应该反应的气体)反应,而且对其他气体(干扰气体)也发生反应,因此有必要注意在设计和安装过程中避免将这些传感器用在有可能有干扰气体存在的地方。传感器需要定期标定,通常为三个月一次(视不同品牌,工作环境,工作状态等因素的影响);传感器在使用1到3年后通常需要更换(视不同品牌,工作环境,工作状态等因素的影响)。另外,有些品牌的传感器使用的是电解溶液,这就需要定期填充电解液。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关传感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.doczj.com/doc/c75388098.html,。

化学传感器的研究进展

武汉工程大学 “E+”国家人才培养模式创新实验区 科研训练 项目名称:化学传感器的研究进展 学生姓名:康福强 班级学号: 1306210607 指导教师:李辉 成绩评定: “E+”国家级人才培养实验区外语学院制

化学传感器的研究进展 摘要:化学传感器是当代信息产业的重要组成部分,其发展迅速,已在人类现代生活中发挥了重要的作用。本文介绍了化学传感器的基本概念,工作原理和分类,在此基础上着重总结了相关最新研究进展,并对化学传感器的发展做出了展望。 关键词:化学传感器;研究进展;电流型气体传感器;光纤化学传感器 Abstract:Chemical sensor is an important part of modern information industry, its development is rapid, been in the human has played an important role in modern life.This paper introduces the basic concepts of sensor, the working principle and classification, on this basis mainly related to the latest research progress are summarized, and the prospects are made on the development of chemical sensors. Key words:Chemical sensors;The research progress;Current type gas sensor;Fiber optic chemical sensor 1引言 在科学研究和工农业生产、环境保护等很多领域,化学量的检测与控制技术正在得到越来越广泛的应用,而化学传感器是这个过程的首要环节[1]。近儿十年化学传感器的研究和发表明,化学传感器的应用已深入人们现代生活的各个方面,环境的保持和监控,预防灾难和疾病的发生,以及不断提高人们的工农业活力和生活水平,仍然是当前乃至今后相当长时期化学传感器应用的主要领域。本文介绍了化学传感器及其最新研究进展。 2化学传感器 2.1化学传感器的概念 化学传感器(chemical sensor)通常描述成一种分析方法,这种分析方法更适合于被称作“分析化验”或者“感觉系统”,但是化学传感器通常是连续的获得数据信息,而感觉系统获得信息是不连续的[2]。在R. W . C atterall的著作[3]中将化学传感器定义为一种装置,通过某化学反应以选择性方式对特定的待分析物质产生响应从而对分析质进行定性或定量测定。此传感器用于检测及测量特定的某种或多种化学物质。 2.2化学传感器的工作原理和分类 化学传感器的组成包括具有对待测化学物质的形状或分子结构选择性俘获功能的接受器和将俘获的化学量有效转换为电信号功能的转换器。接受器将待测物的某一化学参数(常常是浓度)与传导系统连结起来。它主要具有两种功能:选择性地与待测物发生作用,反应所测得的化学参数转化成传导系统可以产生响应的信号。 分子识别系统是决定整个化学传感器的关键因素。因此,化学传感器研究的主要问题就是分子识别系统的选择以及如何反分子识别系统与合适的传导系统相连续。化学传感器的传导系统接受识别系统响应信号,并通过电极、光纤或质量敏感元件将响应信号以电压、电流或光强度等的变化形式,传送到电子系统进行放大或进行转换输出,最终使识别系统的响应信号转变为人们所能用作分析的信号,检测出样品中待测物的量。 化学传感器的种类繁多、原理各异,检测对象儿乎涉及各种参数。通常一种传感器可以

气体传感器的分类及应用

气体传感器的分类及应用 所谓气体传感器是指用于探测在一定区域范围内是否存在特定气体和/或能连续测量气体成分浓度的仪表。在煤矿、石油、化工、市政、医疗、交通运输、家庭等安全防护方面,气体传感器常用于探测可燃、易燃、有毒气体的浓度或其存在与否,或氧气的消耗量等。在电力工业等生产制造领域,也常用气体传感器定量测量烟气中各组分的浓度,以判断燃烧情况和有害气体的排放量等。在大气环境监测领域,采用气体传感器判定环境污染状况,更是十分普遍。 气体传感器的分类,从检测气体种类上,常分为可燃气体传感器(常采用催化燃烧式、红外、热导、半导体式)、有毒气体传感器(一般采用电化学、金属半导体、光离子化、火焰离子化式)、有害气体传感器(常采用红外、紫外等)、氧气(常采用顺磁式、氧化锆式)等其它类传感器;从仪表使用方法上,分为便携式和固定式;从获得气体样品的方式上,分为扩散式(即传感器直接安装在被测对象环境中,实测气体通过自然扩散与传感器检测元件直接接触)、吸入式(是指通过使用吸气泵等手段,将待测气体引入传感器检测元件中进行检测。根据对被测气体是否稀释,又可细分为完全吸入式和稀释式等);从分析气体组分上,分为单一式 (仅对特定气体进行检测)和复合式(对多种气体成分进行同时检测);按传感器检测原理,分为热学式、电化学式、磁学式、光学式、半导体式、气相色谱式等。

热学式气体传感器 热学式气体传感器主要有热导式和热化学式两大类。热导式是利用气体的热导率,通过对其中热敏元件电阻的变化来测量一种或几种气体组分浓度的,其在工业界的应用已有几十年的历史,其仪表类型较多,能分析的气体也较广泛(如H2、CO2、SO2、NH3、Ar 等)。热化学式是基于被分析气体化学反应的热效应,其中广泛应用的是气体的氧化反应(即燃烧),其典型为催化燃烧式气体传感器,其关键部件为涂有燃烧催化剂的惠斯通电桥,主要用于检测可燃气体,如煤气发生站、制气厂用来分析空气中的CO、H2 、C2H2等可燃气体,采煤矿井用于分析坑道中的CH4含量,石油开采船只分析现场漏泄的甲烷含量,燃料及化工原料保管仓库或原料车间分析空气中的石油蒸气、酒精乙醚蒸气等。美国RAE Systems公司生产的FGM-3100催化燃烧式可燃气体检测仪,其采样方式为扩散式,检测精度达±2%满量程,响应时间<15s。 催化燃烧式气体传感器 催化燃烧式气体传感器的主要优点是对所有可燃气体的响应有广谱性,对环境温度、湿度影响不敏感,输出信号近线性,且其结构简单,成本低。但其主要不足是精度低,工作温度高 (内部温度可达700~800℃),电流功耗大,易受硫化物、卤素化合物等中毒的不利影响等。

电化学气体传感器概述

电化学气体传感器 氧气传感器 概况 所有的氧气传感器都是自身供电,有限扩散,其金属-空气型电池由空气阴极,阳极和电解液组成。 氧气传感器简单来说是一个密封容器(金属的或塑料的容器),它里面包含有两个电极:阴极是涂有活性催化剂的一片PTFE(聚四氟乙烯),阳极是一个铅块。这个密封容器只在顶部有一个毛细微孔,允许氧气通过进入工作电极。两个电极通过集电器被连接到传感器表面突出的两个引脚,而传感器通过这两个触角被连接到所应用的设备上。传感器内充满电解质溶液,使不同种离子得以在电极之间交换(参见图1)。 Figure 1 - Schematic of oxygen sensor. 进入传感器的氧气的流速取决于传感器顶部的毛细微孔的大小。当氧气到达工作电极时,它立刻被还原释放出氢氧根离子: O2 + 2H2O + 4e-4OH- 这些氢氧根离子通过电解质到达阳极(铅),与铅发生氧化反应,生成对应的金属氧化物。 2Pb + 4OH-2PbO + 2H2O + 4e-

上述两个反应发生生成电流,电流大小相应地取决于氧气反应速度(法拉第定律),可外接一只已知电阻来测量产生的电势差,这样就可以准确测量出氧气的浓度。 电化学反应中,铅极参与到氧化反应中,使得这些传感器具有一定的使用期限,一旦所有可利用的铅完全被氧化,传感器将停止运作。通常氧气传感器的使用寿命为1-2 年,但也可以通过增加阳极铅的含量或限制接触阳极的氧气量来延长传感器的使用寿命。 毛细微孔氧传感器和分压氧传感器 城市技术生产的氧气传感器根据进入传感器的氧气的扩散方式的不同分为两种,一种是在传感器顶部设有一毛细微孔,而另一种设有一层固体薄膜允许气体通过。细孔传感器测量的是氧气浓度,而固体薄膜传感器测量的是氧气的分压。 细孔传感器产生的电流反映的是被测氧气的体积百分比浓度,与气体总压力无关。但当氧气压力瞬间发生变化时,传感器会产生一个瞬间电流,如果没有控制好就会出现问题。同样的问题在传感器受到重复压力脉冲时也会出现,例如进入传感器的气体是抽运式的。对这个现象的解释如下所示: 压力瞬变 当细孔氧气传感器遇到急剧增压或减压,气体将被迫通过细孔栅板(大流量)。气体的增加(或减少)产生了一个瞬变电流信号。一旦情况重新稳定不再有压力脉冲,瞬变即告结束。此类瞬变可以通过仪器报警,这样CityTech就可以努力寻求解决方案以减小压力影响。 所有城市技术的细孔氧气传感器都采用了抗大流量机制,见图2。根本上来说,可以增加一个PTFE 抗大流量薄膜来减弱压力变化带来的瞬变影响。这层薄膜用一个金属盖或塑料盖紧紧固定在细孔上,这个设计可以很大程度上减少信号的瞬间变化影响。 Figure 2 - Bulk Flow Membrane on Capillary Sensor 但某些压力变化产生的瞬变力量超过了这种设计允许的范围,特别是使用抽取式仪器对传感器输送气体的设备。某些泵产生的气体对CiTiceL 氧传感器造成持续的压力脉冲,人为地增强了信号。在这种情况下,有必要在传感器外设计一个气体膨胀室减小对传感器的压力脉冲。 部分分压型氧传感器 毛细微孔控制气体扩散并不是控制氧气进入传感器的唯一方法,我们还可以使用一个非常薄的塑料薄膜覆

相关主题
文本预览
相关文档 最新文档