当前位置:文档之家› 10t脱硫技术方案钠碱法脱硫

10t脱硫技术方案钠碱法脱硫

10t脱硫技术方案钠碱法脱硫
10t脱硫技术方案钠碱法脱硫

――有限公司

10t/h锅炉烟气脱硫工程

技术方案

――有限公司

2015年03月

目录

1. 工程概况 (2)

2. 主要设计原则 (2)

3. 设计依据 (2)

3.2 设计基础资料 (3)

4. 工作界限 (3)

5. 技术要求 (3)

5.1 脱硫系统总体性能要求 (3)

5.2 工艺选择 (3)

5.3 工艺流程 (5)

5.4工艺组成 (6)

5.5 电气控制部分 (10)

6. 脱硫系统供货设备清单 (10)

7.系统运行经济分析 (11)

7.1运行经济分析表 (11)

7.2效益评估分析 (12)

8. 设计参数及性能指标 (13)

8.1 系统设计基础数据 (13)

8.2 统性能指标 (13)

9. 工程投资概算 (14)

10、安全生产、环境保护、节能 (14)

10.1 安全生产 (14)

10.2 环境保护 (15)

10.3 消防 (16)

10.4 节能 (16)

11、脱硫工程技术规范 (17)

12、质量保证 (22)

附件:

烟气脱硫系统工艺流程图

烟气脱硫系统主体立面图

1. 工程概况

贵公司现新建1台10t/h燃煤锅炉,为确保烟气SO2排放浓度≤200mg/N m3,需安装脱硫设备,以确保烟气达标排放。

2. 主要设计原则

2.1采用合理的脱硫工艺,确保烟气SO2排放浓度≤200mg/Nm3。

2.2本着降低投资及运行成本的原则,本方案采用钠碱法脱硫工艺,脱硫系统主要由烟气系统、脱硫剂系统、SO2吸收系统组成。

2.3采用脱硫塔顶直排烟囱,烟囱采用304不锈钢制做。

2.4 根据现场条件,力求脱硫系统流程简单、布局合理。

3. 设计依据

在设计、制造、安装及调试过程中,遵循以下(但不限于)技术标准和规范:《工业蒸汽锅炉参数系列》GB 1921-2004

《钢制压力容器》GB150-1998

《锅炉锅筒制造技术条件》JB/T 1609-93

《锅炉大气污染物排放标准》(GB13271-2001)

《工业锅炉水质》(GB1576-2001)

《蒸汽锅炉安全技术监察规程》

《工业锅炉安装工程施工及验收规范》GB 50273-1998

《蒸汽锅炉安全技术监察规程》劳部发[1996]276号

《工业蒸汽锅炉用离心引风机》JB-T 4357-1999

3.2 设计基础资料

(1)锅炉出力10t/h

(2)单台锅炉烟气量~30000m3/h

(3)燃煤含硫量≤1%

4. 工作界限

4.1烟道接口:脱硫塔进口烟道至烟囱出口;

4.2电气接口:由用户负责将配电系统引至现场所需地点;

4.3 工艺用水接口:由用户负责将工艺用水引至现场所需地点。

5. 技术要求

5.1 脱硫系统总体性能要求

SO2排放浓度≤200mg/N m3

5.2 工艺选择

5.2.1 脱硫工艺选择

目前国内外脱硫技术应用最广泛的是湿式石灰/石灰石—石膏法,但该技术工程投资大,系统复杂,适合于大型机组的烟气脱硫。

本着节省投资费用和降低运行成本的原则,本方案选择钠碱法脱硫技术作为本工程脱硫工艺。

该工艺与其它脱硫工艺的比较见下表:

钠碱法脱硫工艺用可溶性的碱性溶液作为吸收剂吸收SO2,有很多成熟的工程应用业绩,在小型燃煤锅炉烟气脱硫工程中应用最为广泛。

5.2.2 钠碱法技术特点

该工艺具有如下主要技术特点:

?系统液气比小,运行能耗低,脱硫吸收液为钠碱溶液,脱硫效率高。

?系统无脱硫废水的排放,不产生二次污染。

?系统不易结垢堵塞,系统运行稳定可靠。

?当煤种和锅炉负荷变化时,可适当调节系统pH值、液气比等因子,从而保

证脱硫效率的实现。

5.2.3 钠碱法脱硫反应原理:

该法使用NaOH 溶液在塔内吸收烟气中的SO 2,生成HSO 32-、SO 32-与SO 42-,反应方程式如下:

一、脱硫过程

O H SO Na SO NaOH 23222+?+ (1) 322322NaHSO O H SO SO Na ?++ (2)

其中:式(1)为启动阶段NaOH 溶液吸收SO 2以及再生液pH 值较高时(高于8时),脱硫液吸收SO 2的主反应;式(2)为脱硫液pH 值较低(5~8)时的主反应。

二、氧化过程(副反应)

422322

1

SO Na O SO Na ?+ (3)

4232

1

NaHSO O NaHSO ?+ (4)

系统将考虑备用容量,以保证脱硫系统连续安全稳定运行。 5.3 工艺流程

锅炉烟气沿切向进入脱硫塔,烟气中的微小烟尘被浸湿,经相互碰撞形成颗粒状后在离心力的作用下被甩到塔壁上,在水膜作用下冲落至塔底;烟气沿着塔壁旋转向上又经高效旋流层与雾状的脱硫液高速碰撞,此时气、液、固三相流充分接触,烟气中的SO 2被液体中的碱性成分大量吸收,烟气得到充分净化。净化后的烟气经除雾器脱水后由烟囱达标排放。

脱硫后的废液由塔底排至冲灰沟,经沉淀池沉淀后(烟气中含有少量粉尘)的澄清液由脱硫泵继续送至塔体循环使用,脱硫系统有少量的废水外排;循环池中的沉淀一段时间后人工或机械清理。

钠碱液作为吸收液,脱硫产物亚硫酸钠和硫酸钠,因此可避免了系统结垢堵塞的问题,而钠盐吸收速率比钙盐速率快,脱硫效率高,吸收系统所需要的液气比低,

因此可以大大节省运行能耗。

5.4工艺组成

钠碱法脱硫工艺,系统主要由SO2吸收系统、吸收剂系统等部分组成。

5.4.1 SO2吸收系统

SO2吸收系统由脱硫塔、塔内喷淋系统、旋流器、除雾器以及吸收液循环泵、供给管道等部分组成。

(1)脱硫塔(花岗麻石塔体)

对原有麻石塔体重新勾缝处理和技术改造,在脱硫塔即原有麻石塔内安装脱硫脱硫设备,包括旋流器、喷雾系统、除雾器、反冲洗装置及其它辅助设施。

a)塔体改造原材料质量要求

胶泥的主要原材料包括:环氧树脂、乙二胺、石英粉等,其质量要求必须符合ISO质量管理体系中原材料质量要求。

b)胶泥配合比:按工艺要求配比。

c)每次配料应根据施工实际情况进行配比量;

d)配料混合应均匀;

e)边配料边使用,不得剩余。

塔上安装维修人孔、供液管道及维修平台、爬梯等辅助设施。

改造后的脱硫系统阻力损失控制在1000Pa以下。

(2)喷淋系统

喷淋系统包括管线、喷嘴、支撑、加强件和配件等。浆液喷淋系统的设计使喷淋层的布置达到所要求的喷淋浆液覆盖率,使吸收溶液与烟气充分接触,从而保证在适当的液/气比(L/G)下可靠地实现所要求的脱硫效率。

喷淋组件及喷嘴的布置设计成均匀覆盖吸收塔的横截面。喷嘴为316L高效螺

旋喷嘴。

(3)除雾器

除雾器用于分离烟气携带的液滴,其系统组成:二级除雾器,除雾器系统包括一台安装在下部的一级除雾器和一台安装在上部的二级除雾器。

位于下部的第一级除雾器是一个大液滴分离器,叶片间隙稍大,用来分离上升烟气所携带的较大液滴。上方的第二级除雾器是一个细液滴分离器,叶片距离较小,用来分离上升烟气中的微小浆液液滴。烟气流经除雾器时,液滴由于惯性作用,留在挡板上。

5.4.2 烟气系统

(1)设计原则

当锅炉在30-110%的BMCR工况条件下,脱硫装置的烟气系统都能正常运行,并且在BMCR工况下进烟温度增加10℃裕量条件下仍能安全连续运行。

(2)引风机

锅炉引风机需要考虑脱硫系统阻力为1000Pa。

(3)烟囱

在脱硫塔顶安装直排烟囱,脱硫塔顶部采用现浇混凝土,安装预埋件,预埋件为304不锈钢,烟囱通过焊接及螺栓与脱硫塔连接。

5.4.3脱硫剂制备系统

外购30%的液碱。

5.4.4脱硫系统循环水量要求

脱硫液在脱硫塔内与二氧化硫充分接触反应后,脱硫废液流入沉淀池,上清液(亚硫酸钠溶液)补充一定量的钠碱后由脱硫泵送入脱硫塔循环使用。

当10t/h锅炉设计工况烟气量为30000m3/h时,液气比为L/G=2,根据脱硫工艺

设计要求,脱硫系统循环水量及循环泵配置要求如下:

10t/h锅炉所需循环水量为60m3/h,循环泵配置为流量Q = 60m3/h,扬程H=35m,功率N=15Kw,共2台,运行时启用一台循环泵,其中一台泵为备用泵。

循环泵为防腐耐磨专用脱硫泵,其流量和扬程能确保喷淋系统所需要的流量和压力雾化效果,使脱硫液与烟气充分接触,从而保证在适当的液/气比(L/G)下确保达到所要求的脱硫效率。

5.4.5脱硫渣处理系统

为了有效防止供液管道及脱硫塔内设备结垢堵塞,确保循环脱硫液水质,使脱硫后废液中的脱硫副产物、灰渣烟尘等固体渣质充分沉淀,脱硫废液进入沉淀池有效沉淀,从而保证循环泵入口处的脱硫液成为澄清液体。沉淀后的废渣由机械清理。

5.4.6管道和阀门

管道

(1)设计原则

管道设计符合行业标准的要求,设计内容包括所有管道、管件和管道支吊架。

管道设计时充分考虑工作介质对管道系统的腐蚀与磨损,因脱硫管道工作介质为弱碱性,借鉴以前应用于类似脱硫装置上的成功经验,脱硫浆液管道选用PPR材质,可有效防止管路腐蚀。

根据设计标准,合理确定各管道系统的设计参数(如压力温度、流量、流速,管径等)。

介质流速的选择既考虑避免浆液沉淀,同时又考虑管道的压力损失尽可能小,从而确定合理的管径。

(2)技术要求

管道系统的布置设计(包括合理设置各种支吊架)能承受各种荷载和应力,计

算所有主要管道的热膨胀位移和应力,以确保管道作用在设备上的力和力矩在各个设备厂商规定的范围之内。

无内衬管道用焊接连接,内衬管道用法兰连接。

以下给出了用于不同介质的管道材料,作为供设计选择的基本要求:

—脱硫液PPR

—钠碱液碳钢

—工艺水碳钢

设计时考虑管道支吊架组装及支吊架生根所需的土建埋件的技术要求(包括埋件位置、材料、规格尺寸、荷载及受力方式等)。

上塔体之前的脱硫管道均设置管道过滤器,以防止塔体管道及塔内结垢或堵塞现象的发生。

阀门

所有阀门设计选型适合于介质特性和使用条件。浆液系统的阀门将考虑介质的磨损和腐蚀。

功能相同、运行条件相同的阀门将能够互换,阀门的规格统一,减少了阀门的种类和厂家数量。

所有阀门符合下列要求:定量调节阀及远方操作的阀门采用电动执行机构。

(1)按工艺系统的工艺和控制要求,配置合适阀门。

(2)浆液管道的阀门其阀板为合金钢,阀体为衬胶阀体。

(3)阀门的布置便于操作和维护,阀门的门杆垂直布置。

(4)尽量采用衬胶蝶阀。

5.4.7 钢结构,平台和扶梯

设计全部设备检修和维护平台、使检修和维护工作能够顺利进行。设计时考虑

系统与设备的热膨胀,以及平台、扶梯和栏杆协调性(如型式、色彩)。

所有设备检修和维护平台、扶梯采用钢结构。

5.5 电气控制部分

电气控制部分主要是对脱硫系统中的脱硫液制备系统、反冲洗系统、钠碱液制备装置等设备进行控制,以使整个脱硫工艺在一个具有高可靠性、易操作性的状况下来执行。

根据脱硫系统相对独立以及工艺设备布置较为集中等特点,可根据现场条件,采用集中设置电气配电柜及仪表控制柜,电控设备主要有循环泵配电柜就地按钮箱等。

控制仪表主要有PH测量装置、管道不锈钢压力表等。

所有低压电力及控制电缆选用聚氯乙烯绝缘聚氯乙烯护套铜芯电缆,按现场环境条件采用直埋,电缆沟,桥架等方式。

6. 脱硫系统供货设备清单

7.系统运行经济分析7.1运行经济分析表

7.2效益评估分析

7.2.1经济效益评估

脱硫系统投运前后的SO2排污费变化如下:

按照SO2排污收费129元/吨,年运行时间为7200小时计算:

每年可减少缴纳SO2排污费为:129×1260 =16.2万元

7.2.2环境效益和社会效益

随着工业化的发展,环境污染问题已经严重威胁着人类自身的生存环境,制约了国民经济的可持续发展,因此近年来国家对环保政策和环保投入都在不断地加大力度,国民的环保意识也在不断提高。加强环境保护是21世纪全球化的任务,也是每一个公民应尽的责任与义务。

实施本计划提出的综合防治措施和治理项目后,可实现二氧化硫排放总量减少,酸雨污染有所减轻,大气污染状况得到较好改善。

本项目有着相当的环境、经济价值,对提高居民的生活质量、改善地区的投资环境和促进人民的安定团结都有着积极的意义。

因此,该项目的实施具有良好的环境效益和社会效益。

8. 设计参数及性能指标8.1 系统设计基础数据

8.2 统性能指标

9. 工程投资概算

10t/h锅炉烟气脱硫工程投资概算一览表(单位:万元)

10、安全生产、环境保护、节能

10.1 安全生产

本装置在制作安装过程中,严格遵照职业安全健康管理体系要求,执行安全生产管理制度与安全工程措施:

(1)执行国家有关安全生产和劳动保护的法规,建立安全生产责任制,加强规范化管理,进行安全交底、安全教育和安全宣传,严格执行安全技术方案。

(2)现场铺设施工电缆和电器应遵守全国通用的规则和标准。

(3)采取一切适当预防措施保证所有工作场所安全可靠,在进行施工平面图设计时充分考虑安全、防火、防爆、防污染等因素,做到各种设施布局合理。使整个工作场所不存在可能危及工人安全与健康的危险。

此外,在制作安装期及运行管理期,为了保证安全生产,使职工自觉遵守安全生产中的各项章程,具体内容如下:

(1)根据施工现场编制和执行各种有安全生产管理制度以及安全责任制;

(2)对全体职工进行安全教育培训,事故和偶发事件的分析;

(3)制定安全工作操作规程;

(4)成立项目部安全委员会;

(5)制定应急预案;

(6)定期经常对所有职工作医疗检查;

(7)颁发和使用安全防护用品如安全帽、鞋、工作服等。

10.2 环境保护

烟气脱硫工程本身是治理环境污染的基础设施,但由于污染物相对集中,在处理过程中若不加妥善处理,会对环境产生不良影响。本公司严格遵照环境管理体系要求,在工程中对现场环境因素及施工人员环境保护意识加强管理,确保工程不造成二次污染。本工程环境保护包括两个方面,即在工程建设过程中和建成投产之后。

(1)工程建设中的环境保护

在工程建设过程中,施工机械引发的噪声、输送建材对交通产生的影响、施工过程中产生的污染等,这些影响应采取适当的措施予以解决:

a)合理规划施工活动,以保证对社会最小干扰;

b)选择适当的路线运送材料和设备;

c)设置警告讯号,道路封闭时按需进行交通管理,以保证正常进行和减少交通障碍;

d)尽量减少大面积埋管、开挖沟槽等,并在施工场地设置标志,防止无关人员进入;

e)限制场地施工范围,能满足工程需要即可;

f)所有车辆和设备装设低噪声和消降污染措施,以限制噪声和空气污染。

(1)工程建成投产后的环境保护

a)处理设施运营过程中产生的废渣进行集中堆放处理;

b)脱硫碱水设计闭路循环便用,在雨季控制循环池的水位;

c)相关设备底座加设减震等措施,把噪声控制在最小程度。

10.3 消防

脱硫装置等构筑物的耐火等级、防火间距、采暖通风及电力设备的选型和保护等严格按照国家《建筑设计防火规范》(GRT16-87)进行设计。

脱硫装置为花岗岩结构,脱硫液过渡池为钢筋混凝土结构,根据建筑物的特点和防火等级,可利用原有消防设施。具体采取如下措施:

(1)建(构)筑物间距及道路布置必须满足消防要求,考虑消防车辆出入方便。

(2)使用原有的室外消防栓。

(3)在主要地点设置备用道。

10.4 节能

(1)确定合理的设计参数,避免取值过高,使设备和构筑物过大,浪费能源。

(2)构筑物布置紧凑,在高程布置中,节约水头损失,减少跃高高度,以节约水泵提升高度,节约电耗。

(3)耗电量最大的设备是水泵,工程中尽量选用效率高、能耗少的设备和器材,在运转中使水泵工作点位于效率最高区,以节省电耗。

11、脱硫工程技术规范

11.1 脱硫技术要求

11.1.1脱硫方案:采用钠碱法脱硫

排放标准要求的前11.1.2 保证最大限度的减少三废污染,在保证严格满足当前SO

2

提下,脱硫工艺要有一定的前瞻性,优先选择脱硫能力留有一定的裕量并经简单改造即可提高系统脱硫率的工艺,达到延长脱硫系统的寿命尽可能减少未来的投资的

减排裕量的湿法脱硫目的。故本次脱硫改造优先考虑能防止结垢、并留有一定的SO

2

的排放标准。

工艺,以满足未来日趋严格的SO

2

11.1.3 烟气脱硫工艺和设备应是全新的,并且具有可靠的质量和先进的技术,能够保证高可用率、高脱硫效率、和低运行成本,而且完全符合环境保护要求。系统和设备应成熟,不接受任何带有试验、原始型、示范性质的系统和设备。承包方提供的设备、设计和文件应满足议标书各章节所述的要求。

11.1.4 技术规范和图纸中所叙述的系统和布置是基本要求,承包方应通过详细的工艺设计、实现所有的工程要求,建造一个完整的脱硫装置。

11.1.5 与同锅炉运行模式相协调,脱硫系统的设计必须确保在启动方式上的快速投入率,在负荷调整时有好的适应特性,在运行条件下能可靠和稳定的连续运行。11.1.6 脱硫装置的检修时间间隔应与锅炉的要求一致,不应增加锅炉维护和检修期。

11.1.7 使用钠碱法脱硫。

11.1.8 脱硫塔内采用高效除雾器不得小于两层。脱硫塔出口雾滴深度:≤75mg/m3,液气比(l/m3)≤2。

脱硫装置应设计在引风机后,正压布置。尽可能小的占用空间。同时脱硫设施应尽量减小压力损失,压力损失要小于1000Pa,优化设计和运行程序,并使所有设

备维修方便。

承包方工程范围内的各种管线和沟道,包括架空管线、直埋管线、与系统外沟道管架相接时,应在设计分界线处标明位置、标高、管径和沟道断面尺寸、坡度、坡向管沟名称、引向何处等等。

11.1.9 对烟气排放的要求

排放浓度不超过允许最大排放浓度在燃用设计煤种时,系统应确保脱硫出口SO

2

300mg/ Nm3。

11.1.10 对系统效率的要求

在验收试验完成后,系统的脱硫效率应符合环保部门的要求。

系统根据煤种含硫量、灰份、锅炉负荷变化等具有自动调节功能,保证系统脱硫效率稳定达标。

11.1.11 运行要求

年利用小时数按照7200小时计算,脱硫系统应与锅炉运行方式相匹配。

脱硫系统应能在锅炉最大连续蒸发量负荷及锅炉最低稳燃负荷60%(指锅炉燃用设计煤种或校和煤种)之间连续安全运行。

11.2 电气系统

脱硫系统的电气装置应是完整的,除低压配电装置外,还应具有所有需要的辅助设施,例如照明和检修系统、接地系统、电缆和电缆桥架系统等。所有这些设施应遵循本技术规范的要求。承包方所供的电气设备应满足GB、DL/T等标准,如果标准间相互有矛盾,以较高标准执行。

11.3 电源

电源电压等级为380V,建设方将电源送至承包方的电源柜。

11.4 仪表和控制系统

要求脱硫系统采用盘面仪表监控,同时设备能进行就地手动和远方操作。脱硫系统发生故障时,能通过报警,提示操作。供货范围应包括控制、测试等完整的现场设备。

循环泵应同时具有两种控制方式,即远程和就地启动停止。

11.5 其他要求

11.5.1 防腐:

承包方为管道(包括附件)、吸收塔等提供防腐保护。

11.5.2 通道

脱硫装置的所有设备的设计和布置应使得可以对它们在最少的时间内进行检查、维护和更换。可能在运行期间更换的装置必须安全地封闭起来,更换工作必须以最少的费用实现,无需安装辅助平台或不损坏其他装置。

11.6 包装、运输、验收、保管

(1)设备凡需要油漆的所有部件,在油漆前必须对金属表面按有关技术规定进行清洁处理、喷涂二层底漆、一层面漆,面漆颜色由承包方确认。

(2)设备包装前应涂防腐漆,保证应适合于运输,并应有合适的标志:运输作业标志:包括防潮、防震、放置方向,重心位置,绳索固定部位等。

发货标志:出厂编号、总分编号、发货站、到货站、面积(长×宽×高)、毛重、净重、设备名称、发货单位、收货单位。

(3)设备到达安装现场后,承包方与建设方双方应按商定的开箱检验办法,对照装箱单逐件清点,进行检查和验收。

(4)设备到达安装现场后,应按规定存放和保管,如承包方有特殊要求,应向承包方及早提出。

(5)承包方扩散联营或外包生产的设备(部件)应将可能的厂家告诉承包方,承包方应对厂家质量进度负责。到达安装现场后,仍由承包方会同承包方

进行检查和验收。

11.7 土建、安装、调试、试验、验收

承包方负责提供脱硫系统的土建设计,建设方负责土建施工。

承包方负责脱硫系统所有安装工作,包括安装所须的所有人员和附属设备,比如工具、起重设备、辅助安装人员和工具保管、介质的分配(水、电)、焊接设备等。承包方提供设备安装所需要的所有必要的资料及专用工具。

承包方负责脱硫整套系统的调试、培训等技术服务工作,至少包括,但不限于下列内容:

双碱法烟气脱硫工艺流程设计

第一章绪论 (2) 1.1设计的背景及意义 (2) 1.2国内外研究现状 (3) 1.2.1 烟气脱硫技术现状 (3) 1.2.2 我国烟气脱硫技术研究开发进展 (5) 1.3课程设计任务及采用技术 (8) 1.3.1 设计任务及目的 (8) 1.3.2 脱硫工艺采用的技术 (8) 第二章脱硫工艺 (10) 2.1脱硫过程 (10) 2.2低阻高效喷雾脱硫工艺 (11) 2.3脱硫系统组成 (12) 2.4本技术工艺的主要优点 (15) 2.5物料消耗 (15) 第三章工程计算 (17) 3.1脱硫塔 (17) 3.2物料恒算 (18) 第四章脱硫工程内容 (20) 4.1脱硫剂制备系统 (20) 4.2烟气系统 (20) 4.3SO2吸收系统 (20) 4.4脱硫液循环和脱硫渣处理系统 (22) 4.5消防及给水部分 (23) 第五章流程图 (25) 5.1方框流程图 (25) 5.2管道仪表流程图 (25) 第六章参考文献 (26)

第一章绪论 1.1 设计的背景及意义 中国是燃煤大国,能源结构中约有70%的煤。而又随着近年来中国经济的快速发展,由日益增多的煤炭消耗量所造成的二氧化硫污染和酸雨也日趋严重,给农业生产和人民生活带来极大的危害,因此,采取有效的烟气治理措施,切实削减二氧化硫的排放量,控制大气二氧化硫污染、保护大气环境质量,事关国家可持续发展战略,是目前及未来相当长时间内中国环境保护的重要课题之一。就目前的技术水平和现实能力而言,烟气脱硫((Flue gas desulfurization,缩写FGD)技术是世界上应用最广泛、最经济、最有效的一种控制SO2排放的技术。按照脱硫方式和产物的处理形式划分,烟气脱硫一般可分为湿式脱硫、干式脱硫和半干式脱硫三类。湿法脱硫占世界80%以上的脱硫市场,是目前世界上应用最广的FGD工艺,具有设备简单、投资少、操作技术易掌握、脱硫效率高等特点。而湿式石灰石/石灰法又占湿法的近80%。湿式钙法的优点是效率和脱硫剂的利用率高,缺点是设备易结垢,严重时造成设备、管道堵塞而无法运行,且工程投资大、运行成本高,对于中小型锅炉和窑炉不合适。双碱法正是中小型燃煤锅炉和发电厂应用较广的烟气脱硫技术,为了克服湿法石灰/石灰石-石膏法容易结垢和堵塞的缺点而发展起来的。该法种类较多,有钠钙双碱法、钙钙双碱法、碱性硫酸铝法等,其中最常用的是钠钙双碱法。由于主塔内采用液相吸收,吸收剂在塔外的再生池中进行再生,从而不存在塔内结垢和浆料堵塞问题,从而可以使用高效的板式塔或填料塔代替目前广泛使用的喷淋塔浆液法,减小吸收塔的尺寸及操作液气比,降低成本,再生后的吸收液可循环使用。另外,该工艺有钠碱法中反应速度快的优点,脱硫效率高--可达90%以上,应用较为广泛。因此双碱法脱硫工艺在中小型燃煤锅炉的除尘脱硫上有推广价值,符合国家目前大力提倡的循环经济,具有显著的环境效益和社会效益。 以前我国燃煤电厂烟气脱硫项目的引进大多对硬件比较重视,而对软件的重视程度不够,不少引进项目大多停留在购买设备上,但现在越来越注重烟气脱硫技术的国产化。而国产化的关键在于掌握烟气脱硫的设计技术,只有实现烟气脱硫设计国产化,才能按市场规则选用更多质量优良、价格合理的脱硫设备,才有资格、有能力对脱硫工程实行总承包,承担全部技术责任,推动烟气脱硫设计国

双碱法脱硫技术方案

(一)脱硫系统设计 1、双碱法脱硫技术工艺基本原理 双碱法是采用钠基脱硫剂进行塔内脱硫,由于钠基脱硫剂碱性强,吸收二氧化硫后反应产物溶解度大,不会造成过饱和结晶,造成结垢堵塞问题。另一方面脱硫产物被排入再生池内用氢氧化钙进行还原再生,再生出的钠基脱硫剂再被打回脱硫塔循环使用。双碱法脱硫工艺降低了投资及运行费用,比较适用于中小型锅炉进行脱硫改造。 双碱法烟气脱硫技术是利用氢氧化钠溶液作为启动脱硫剂,配制好的氢氧化钠溶液直接打入脱硫塔洗涤脱除烟气中SO2来达到烟气脱硫的目的,然后脱硫产物经脱硫剂再生池还原成氢氧化钠再打回脱硫塔内循环使用。脱硫工艺主要包括5个部分:(1)吸收剂制备与补充; (2)吸收剂浆液喷淋;(3)塔内雾滴与烟气接触混合;(4)再生池浆液还原钠基碱;(5)石膏脱水处理。 双碱法烟气脱硫工艺同石灰石/石灰等其他湿法脱硫反应机理类似,主要反应为烟气中的SO2先溶解于吸收液中,然后离解成H+和HSO3-;使用Na2CO3或NaOH液吸收烟气中的SO2,生成HSO32-、SO32-与SO42-,反应方程式如下: 一、脱硫反应: Na2CO3 + SO2→ Na2SO3 + CO2↑ (1) 2NaOH + SO2→ Na2SO3 + H2O (2) Na2SO3 + SO2 + H2O → 2NaHSO3(3) 其中:

式(1)为启动阶段Na2CO3溶液吸收SO2的反应; 式(2)为再生液pH值较高时(高于9时),溶液吸收SO2的主反应; 式(3)为溶液pH值较低(5~9)时的主反应。 二、氧化过程(副反应) Na2SO3 + 1/2O2 → Na2SO4 (4) NaHSO3 + 1/2O2 → NaHSO4 (5) 三、再生过程 Ca(OH)2 + Na2SO3→ 2 NaOH + CaSO3(6) Ca(OH)2 + 2NaHSO3→ Na2SO3 + CaSO3?1/2H2O +3/2H2O (7) 四、氧化过程 CaSO3 + 1/2O2 → CaSO4 (8) 式(6)为第一步反应再生反应,式(7)为再生至pH>9以后继续发生的主反应。脱下的硫以亚硫酸钙、硫酸钙的形式析出,然后将其用泵打入石膏脱水处理系统,再生的NaOH可以循环使用。 本钠钙双碱法脱硫工艺,以石灰浆液作为主脱硫剂,钠碱只需少量补充添加。由于在吸收过程中以钠碱为吸收液,脱硫系统不会出现结垢等问题,运行安全可靠。由于钠碱吸收液和二氧化硫反应的速率比钙碱快很多,能在较小的液气比条件下,达到较高的二氧化硫脱除率。 (三)双碱法湿法脱硫的优缺点 与石灰石或石灰湿法脱硫工艺相比,双碱法原则上有以下优点:

双碱法脱硫工艺简介

双碱法脱硫装置技术工艺简介 一、常用脱硫法简介 目前主要用于烟气脱硫工艺按形式可分为干法、半干法和湿法三大类。 1.干法 干法常用的有炉内喷钙(石灰/石灰石),金属吸收等,干法脱硫属传统工艺,脱硫率普遍不高(<50%),工业应用较少。 2.半干法 半干法使用较多的为塔内喷浆法,即将石灰制成石灰浆液,在塔内进行SO2吸收,但由于石灰奖溶解SO2的速度较慢,喷钙反应效率较低,Ca/S比较大,一般在1.5以上(一般温法脱硫Ca/S比较为0.9~1.2)。应用也不是很多。 3.湿法 湿法脱硫为目前使用范围最广的脱硫方法,占脱硫总量的80%。漫法脱硫根据脱硫的原料不同又可分为石灰石/石灰法、氨法、钠碱法、钠钙双碱法、金属氧化物法、碱性硫酸铝法等,其中石灰石/石灰法、氨法、钠碱法、钠钙双碱法以及金属氧化物中的氧化镁法使用较为普遍。 3.1石灰石/石灰法 石灰石法采用将石灰石粉碎成200~300目大小的石灰粉,将其制成石灰浆液,在吸收塔内通过喷淋雾化使其与烟气接触,从而达到脱硫的目的。该工艺需配备石灰石粉碎系统与石灰石粉化浆系统,由于石灰石活性较低,需通过增大吸收液的喷淋量,提高液气比,来保证足够的脱硫效率,因此运行费用较高。石灰法是用石灰粉代替石灰石,石灰活性大大高于石灰石,可提高脱硫效率,石灰法主要存在的问题是塔内容易结垢,引起气液接触器(喷头或塔板)的堵塞。 3.2氨法 氨法采用氨水作为SO2的吸收剂,SO2与NH3反应可产生亚硫酸氨、亚硫酸氢氨与部分因氧化而产生的硫酸氨。根据吸收液再生方法的不同,氨法可分为氨—酸法、氨—亚硫酸氨法和氨——硫酸氨法。 氨法主要优点是脱硫效率高(与钠碱法相同),副产物可作为农业肥料。 由于氨易挥发,使吸收剂消耗量增加,脱硫剂利用率不高;脱硫对氨水的浓度有一定的要求,若氨水浓度太低,不仅影响脱硫效率,而且水循环系统庞大,使运

双碱法脱硫工艺【最新版】

双碱法脱硫工艺 钙钠双碱法脱硫工艺主要是脱除气体中的SO2气体。适用于锅炉烟气、焦炉气、锅炉生产废气等的脱硫。 钙钠双碱法脱硫工艺,简称双碱法。该法主要是脱除气体中的SO2气体。适用于锅炉烟气、焦炉气、锅炉生产废气等的脱硫。 一、工艺特点 钙钠双碱法是先用钠碱性吸收液进行烟气脱硫,然后再用石灰粉再生脱硫液,由于整个反应过程是液气相之间进行,避免了系统结垢问题,而且吸收速率高,液气比低,吸收剂利用率高,投资费用省,运行成本低。 1、以NaOH(Na2CO3)脱硫,脱硫液中主要为NaOH(Na2CO3)水溶液,在循环过程中对水泵、管道、设备缓解腐蚀、冲刷及堵塞,便于设备运行和维护。 2、钠基吸收液对SO2反应速度快,故有较小的液气比,达到较高的脱硫效率,一般≥90%。

3、脱硫剂的再生及脱硫沉淀均发生于塔体避免塔内堵塞和磨损,提高了运行的可靠性,降低了运行成本。 4、以空塔喷淋为脱硫塔结构,运行可靠性高,事故发生率小,塔阻力低,△P≤600Pa。 二、工艺原理 1、反应原理 SO2吸收反应:Na2CO3+SO2→Na2SO3+CO2↑ 吸收剂再生反应:CaO+H2O→Ca(OH) 2 Ca(OH) 2+Na2SO3+H2O→2NaOH+CaSO3+H2O 2、工艺流程 采用锻钢炉的烟气经换热降温至≤200△,经烟道从塔底进入脱硫塔。在脱硫塔内布置若干层数十支喷嘴,喷出细微液滴雾化均布于脱硫塔溶积内,烟气与喷淋脱硫液进行充分

汽液混合接触,使烟气中SO2和灰尘被脱硫液充分吸收、反应,达到脱尘除SO2的目的。经脱硫洗涤后的净烟气经塔顶除雾器脱水,经脱硫塔上部进入烟囱排入大气。脱硫循环液经塔内气液接触除SO2后,经塔底管道流入沉淀池在此将灰尘沉淀下来,清液经上部溢进入反应再生池,在池内与石灰乳液制备槽引来的石灰乳进行再生反应,再生液流入泵前循环槽补入Na2CO3,由泵打入脱硫塔顶脱除SO2循环使用。其中再生产出的CaSO3及烟气中过剩氧生成的CaSO4于沉淀池中沉淀分离。 三、工艺优势

双碱法脱硫的操作

双碱法脱硫的操作 主要工艺过程是:清水池一次性加入氢氧化钠溶剂制成氢氧化钠脱硫液(循环水),用泵打入脱硫除尘器进行脱硫。3种生成物均溶于水。在脱硫过程中,烟气夹杂的烟道灰同时被循环水湿润而捕集进入循环水,从脱硫除尘器排出的循环水变为灰水(稀灰浆)。一起流入沉淀池,烟道灰经沉淀定期清除,回收利用,如制内燃砖等。上清液溢流进入反应池与投加的石灰进行反应,置换出的氢氧化钠溶解在循环水中,同时生成难溶解的亚硫酸钙、硫酸钙和碳酸钙等,可通过沉淀清除;可以回收,是制水泥的良好原料。 因此可做到废物综合利用,降低运行费用。 用NaOH脱硫,循环水基本上是NaOH的水溶液。在循环过程中对水泵、管道、设备均无腐蚀与堵塞现象,便于设备运行与保养。 为保证脱硫除尘器正常运行,烟气排放稳定达标,确保脱硫剂有足够使用量是一个关键问题。脱硫剂用量计算如下: 脱硫反应中,NaOH的消耗量是SO2和CO2与其反应的消耗量。用量需要过量5%以上(按5%计算)。 前面计算的10 t/h锅炉烟气中SO2排放量为42 kg/h,CO2排放是为2 161 kg/h。 SO2和CO2中和反应用氢氧化钠量为: (80×42÷64+80×2 161÷44)×105% =4 180 kg 脱硫过程由于NaOH的转换实际消耗是石灰。折算成生石灰消耗量56×4 180÷80=2 926 kg 生石灰日消耗量为70 224 kg 综上所述,脱硫过程的碱消耗量是很大的。但要保证脱硫效率,就必须要保证碱的用量,通过比较双碱法脱硫可以实现脱硫效率高,运行费用相对比较低,操作方便,无二次污染,废渣可综合利用。所以改进后的双碱法脱硫工艺是值得推荐和推广应用的。 双碱法是采用钠基脱硫剂进行塔内脱硫,由于钠基脱硫剂碱性强,吸收二氧化硫后反应产物溶解度大,不会造成过饱和结晶,造成结垢堵塞问题。另一方面脱硫产物被排入再生池内用氢氧化钙进行还原再生,再生出的钠基脱硫剂再被打回脱硫塔循环使用。双碱法脱硫工艺降低了投资及运行费用,比较适用于中小型锅炉进行脱硫改造。 双碱法烟气脱硫技术是利用氢氧化钠溶液作为启动脱硫剂,配制好的氢氧化钠溶液直接打入脱硫塔洗涤脱除烟气中SO2来达到烟气脱硫的目的,然后脱硫产物经脱硫剂再生池还原成氢氧化钠再打回脱硫塔内循环使用。脱硫工艺主要包括5个部分:(1)吸收剂制备与补充;(2)吸收剂浆液喷淋;(3)塔内雾滴与烟气接触混合;(4)再生池浆液还原钠基碱;(5)石膏脱水处理。 双碱法烟气脱硫工艺同石灰石/石灰等其他湿法脱硫反应机理类似,主要反应为烟气中的SO2先溶解于吸收液中,然后离解成H+和HSO3—; SO2(g)= = = SO2

(完整版)双碱法脱硫

双碱法脱硫技术介绍 碱法 , 脱硫 , 技术 (一)双碱法烟气脱硫技术介绍双碱法烟气脱硫技术是为了克服石灰石—石灰法容易结垢的缺点而发展起来的。传统的石灰石/石灰—石膏法烟气脱硫工艺采用钙基脱硫剂吸收二氧化硫后生成的亚硫酸钙、硫酸钙,由于其溶解度较小,极易在脱硫塔内及管道内形成结垢、堵塞现象。结垢堵塞问题严重影响脱硫系统的正常运行,更甚者严重影响锅炉系统的正常运行。为了尽量避免用钙基脱硫剂的不利因素,钙法脱硫工艺大都需要配备相应的强制氧化系统(曝气系统),从而增加初投资及运行费用,用廉价的脱硫剂而易造成结垢堵塞问题,单纯采用钠基脱硫剂运行费用太高而且脱硫产物不易处理,二者矛盾相互凸现,双碱法烟气脱硫工艺应运而生,该工艺较好的解决了上述矛盾问题。 (二)双碱法脱硫技术工艺基本原理双碱法是采用钠基脱硫剂进行塔内脱硫,由于钠基脱硫剂碱性强,吸收二氧化硫后反应产物溶解度大,不会造成过饱和结晶,造成结垢堵塞问题。另一方面脱硫产物被排入再生池内用氢氧化钙进行还原再生,再生出的钠基脱硫剂再被打回脱硫塔循环使用。 双碱法脱硫工艺降低了投资及运行费用,比较适用于中小型锅炉进行脱硫改造。双碱法烟气脱硫技术是利用氢氧化钠溶液作为启动脱硫剂,配制好的氢氧化钠溶液直接打入脱硫塔洗涤脱除烟气中 SO2 来达到烟气脱硫的目的,然后脱硫产物经脱硫剂再生池还原成氢氧化钠再打回脱硫塔内循环使用。脱硫工艺主要包括 5 个部分:(1)吸收剂制备与补充;(2)吸收剂浆液喷淋;(3)塔内雾滴与烟气接触混合;(4)再生池浆液还原钠基碱;(5)石膏脱水处理。 双碱法烟气脱硫工艺同石灰石 /石灰等其他湿法脱硫反应机理类似,主要反应为烟气中的 SO2 先溶解于吸收液中,然后离解成 H+和 HSO3- ;使用 Na2CO3 或 NaOH 液吸收烟气中的 SO2,生成 HSO32- 、 SO32-与 SO42-,反应方程式如下: 一、脱硫反应: Na2SO3 + SO2 → NaSO3 + CO2 ↑ (1)2NaOH + SO2 → Na2SO3 + H2O ( 2) Na2SO3 + SO2 + H2O → 2NaHSO3 ( 3)其中:式( 1)为启动阶段 Na2CO3 溶液吸收 SO2的反应;式( 2)为再生液pH 值较高时(高于 9 时),溶液吸收 SO2 的主反应;式( 3)为溶液 pH值较低( 5~9)时的主反应。 二、氧化过程(副反应) Na2SO3 + 1/2O2 → Na2SO4 ( 4)NaHSO3 + 1/2O2 → NaHSO4 ( 5) 三、再生过程 Ca(OH)2 + Na2SO3 → 2 NaOH + CaSO3 ( 6) Ca(OH)2 + 2NaHSO3 → Na2SO3 + CaSO3?1/2H2O +3/2H2O ( 7) 四、氧化过程 CaSO3 + 1/2O2 → CaSO4 ( 8) 式( 6)为第一步反应再生反应,式( 7)为再生至 pH>9 以后继续发生的主反应。脱下的硫以亚硫酸钙、硫酸钙的形式析出,然后将其用泵打入石膏脱水处理系统,再生的 NaOH 可以循环使用。 本钠钙双碱法脱硫工艺,以石灰浆液作为主脱硫剂,钠碱只需少量补充添加。由于在吸收过程中以钠碱为吸收液,脱硫系统不会出现结垢等问题,运行安全可靠。由于钠碱吸收液和二氧化硫反应的速率比钙碱快很多,能在较小的液气比条件下,达到较高的二氧化硫脱除率。

双碱法脱硫操作手册

双碱法脱硫操作手册 编制/校核:韩鹏程 编制时间:2018年10月 ****有限公司

目录 一、前言 二、流程说明 三、工艺控制调节系统 四、原始开车 五、系统开停车步骤 六、操作规程 七、安全技术

一、前言 本操作手册适用于采用钠--钙双碱湿法烟气脱硫除尘技术。为了保证烟气中的二氧化硫和烟尘达标排放,确保系统长期稳定运行,特制定本操作手册。 在启动和运转本装置以前,要求操作人员认真地阅读并理解本操作手册,因为不正确的操作将导致装置运行性能低劣或将导致设备损坏。 希望所有操作人员通力合作,共同维护好装置。 二、流程说明 流程概述: 本装置为钠--钙双碱湿法烟气脱硫除尘装置,以稀碱液作为脱硫剂,以石灰乳液作为再生剂,在主塔中脱硫剂与烟气逆向流动,从而吸收烟气中的二氧化硫和烟尘,净化后的烟气由脱硫塔顶部进入副塔,然后通过50米烟囱达标排放。本装置的主要任务是使烟气中的二氧化硫和烟尘达标排放。 1、气路 管式炉的烟气→多管旋风除尘器→增压风机→主脱硫塔(在塔内烟气中的二氧化硫和少量烟尘被脱硫液吸收)→副塔→ 50米烟囱排放。 2、液路

液路由沉淀池、再生池、循环泵、主塔组成。将生石灰粉或片碱加入到搅拌罐内,加水开启搅拌器充分溶解,将清溶液放入再生池,废渣清理干净。 3、主要参数(厂方提供) 1)污染源:管式炉燃煤机及导热油炉的烟气; 2)进入脱硫系统烟气量:45000m3/h; 3)进入脱硫系统烟气温度:160℃; 4、工艺原理 反应原理: 基本化学原理可分为脱硫过程和再生过程两部分。 在塔内吸收SO2: 2NaOH+SO2=Na2SO3+H2O (1) Na2SO3+SO2+H2O=2NaHSO3(2) 脱硫液PH<9时以(1)式为主要反应,降到中性甚至酸性时则按(2)式反应。 用消石灰再生 Ca(OH)2+Na2SO3=2NaOH+CaSO3 Ca(OH)2+2NaHSO3=Na2SO3+CaSO3· H2O↓+ H2O 在石灰浆液(石灰达到过饱和状况)中,NaHSO3很快与Ca(OH)2反应从而释放出[Na+],[SO32-]与[Ca2+]反应,反应生成的CaSO3以半水化合物形式沉淀下来从而使[Na+]得到再生。NaOH只是一种启动

双碱法脱硫

物料就是氢氧化钠和氧化钙(白灰)。 双碱法是采用钠基脱硫剂进行塔内脱硫,由于钠基脱硫剂碱性强,吸收二氧化硫后反应产物溶解度大,不会造成过饱和结晶,造成结垢堵塞问题。另一方面脱硫产物被排入再生池内用氢氧化钙进行还原再生,再生出的钠基脱硫剂再被打回脱硫塔循环使用。双碱法脱硫工艺降低了投资及运行费用,比较适用于中小型锅炉进行脱硫改造。 双碱法烟气脱硫技术是利用氢氧化钠溶液作为启动脱硫剂,配制好的氢氧化钠溶液直接打入脱硫塔洗涤脱除烟气中SO2来达到烟气脱硫的目的,然后脱硫产物经脱硫剂再生池还原成氢氧化钠再打回脱硫塔内循环使用。脱硫工艺主要包括5个部分:(1)吸收剂制备与补充;(2)吸收剂浆液喷淋;(3)塔内雾滴与烟气接触混合;(4)再生池浆液还原钠基碱;(5)石膏脱水处理。 双碱法烟气脱硫工艺同石灰石/石灰等其他湿法脱硫反应机理类似,主要反应为烟气中的SO2先溶解于吸收液中,然后离解成H+和HSO3—; SO2(g)= = = SO2 SO2(aq)+H2O(l) = = =H++HSO3—= = = 2H++SO32-; 式(1)为慢反应,是速度控制过程之一。 然后H+与溶液中的OH—中和反应,生成盐和水,促进SO2不断被吸收溶解。具体反应方程式如下: 2NaOH + SO2 → Na2SO3 + H2O Na2SO3 + SO2 + H2O → 2NaHSO3 脱硫后的反应产物进入再生池内用另一种碱,一般

是Ca(OH)2进行再生,再生反应过程如下: Ca(OH)2 + Na2SO3 → 2 NaOH + CaSO3$ U- Ca(OH)2 + 2NaHSO3 → Na2SO3 + CaSO3·1/2H2O +1/2H2O ( F存在氧气的条件下,还会发生以下反应: Ca(OH)2 + Na2SO3 + 1/2O2 + 2 H2O → 2 NaOH + CaSO4·H2O 脱下的硫以亚硫酸钙、硫酸钙的形式析出,然后将其用泵打入石膏脱水处理系统或直接堆放、抛弃。再生的NaOH可以循环使用。 工艺流程介绍 来自锅炉的烟气先经过除尘器除尘,然后烟气经烟道从塔底进入脱硫塔。在脱硫塔内布置若干层(根据具体情况定)旋流板的方式,旋流板塔具有良好的气液接触条件,从塔顶喷下的碱液在旋流板上进行雾化使得烟气中的SO2与喷淋的碱液充分吸收、反应。经脱硫洗涤后的净烟气经过除雾器脱水后进入换热器,升温后的烟气经引风机通过烟囱排入大气。 双碱法脱硫工艺流程图: 最初的双碱法一般只有一个循环水池,NaOH、石灰和脱硫过程中捕集的飞灰同在一个循环池内混合。在清除循环池内的灰渣时,烟灰、反应生成物亚硫酸钙、硫酸钙及石灰渣和未反应的石灰同时被清除,清出的混合物不易综合利用而成为废渣。为克服传统双碱法的缺点,对其进行了改进。主要工艺过程是,清水池一次性加入氢氧化钠制成脱硫液,用泵打入吸收塔进行脱硫。三种生成物均溶于水,在脱硫过程中,烟气夹杂的飞灰同时被循环液湿润而捕集,从吸收塔排出的循环浆液流入沉

双碱法脱硫

双碱法脱硫技术介绍 碱法, 脱硫, 技术 (一)双碱法烟气脱硫技术介绍 双碱法烟气脱硫技术是为了克服石灰石—石灰法容易结垢的缺点而发展起来的。传统的石灰石/石灰—石膏法烟气脱硫工艺采用钙基脱硫剂吸收二氧化硫后生成的亚硫酸钙、硫酸钙,由于其溶解度较小,极易在脱硫塔内及管道内形成结垢、堵塞现象。结垢堵塞问题严重影响脱硫系统的正常运行,更甚者严重影响锅炉系统的正常运行。为了尽量避免用钙基脱硫剂的不利因素,钙法脱硫工艺大都需要配备相应的强制氧化系统(曝气系统),从而增加初投资及运行费用,用廉价的脱硫剂而易造成结垢堵塞问题,单纯采用钠基脱硫剂运行费用太高而且脱硫产物不易处理,二者矛盾相互凸现,双碱法烟气脱硫工艺应运而生,该工艺较好的解决了上述矛盾问题。 (二)双碱法脱硫技术工艺基本原理 双碱法是采用钠基脱硫剂进行塔内脱硫,由于钠基脱硫剂碱性强,吸收二氧化硫后反应产物溶解度大,不会造成过饱和结晶,造成结垢堵塞问题。另一方面脱硫产物被排入再生池内用氢氧化钙进行还原再生,再生出的钠基脱硫剂再被打回脱硫塔循环使用。双碱法脱硫工艺降低了投资及运行费用,比较适用于中小型锅炉进行脱硫改造。 双碱法烟气脱硫技术是利用氢氧化钠溶液作为启动脱硫剂,配制好的氢氧化钠溶液直接打入脱硫塔洗涤脱除烟气中SO2来达到烟气脱硫的目的,然后脱硫产物经脱硫剂再生池还原成氢氧化钠再打回脱硫塔内循环使用。脱硫工艺主要包括5个部分:(1)吸收剂制备与补充;(2)吸收剂浆液喷淋;(3)塔内雾滴与烟气接触混合;(4)再生池浆液还原钠基碱;(5)石膏脱水处理。 双碱法烟气脱硫工艺同石灰石/石灰等其他湿法脱硫反应机理类似,主要反应为烟气中的SO2先溶解于吸收液中,然后离解成H+和HSO3-;使用Na2CO3或NaOH液吸收烟气中的SO2,生成HSO32-、SO32-与SO42-,反应方程式如下: 一、脱硫反应: Na2SO3 + SO2 →NaSO3 + CO2↑(1) 2NaOH + SO2 →Na2SO3 + H2O (2) Na2SO3 + SO2 + H2O →2NaHSO3 (3) 其中: 式(1)为启动阶段Na2CO3溶液吸收SO2的反应; 式(2)为再生液pH值较高时(高于9时),溶液吸收SO2的主反应; 式(3)为溶液pH值较低(5~9)时的主反应。 二、氧化过程(副反应) Na2SO3 + 1/2O2 →Na2SO4 (4) NaHSO3 + 1/2O2 →NaHSO4 (5) 三、再生过程 Ca(OH)2 + Na2SO3 →2 NaOH + CaSO3 (6) Ca(OH)2 + 2NaHSO3 →Na2SO3 + CaSO3?1/2H2O +3/2H2O (7) 四、氧化过程

双碱法脱硫介绍

一、工艺流程 →→→ ↓↑↑ → 流程说明: 烟气从锅炉排出,烟气进入不锈钢脱硫塔,经水喷淋脱硫后,净化的气体经风机进烟囱高空排放,喷淋后的水进入循环碱池沉渣后经水泵加压再进行喷淋,喷淋水循环使用。在加碱池内加入[NaCO3-Ca(OH)2],使池内变碱性,通过自动加药系统,自动加到大循环水池。 二、双碱法脱硫原理 双碱法又叫钠钙双碱法[NaCO3-Ca(OH)2],采用纯碱启动、钠碱吸收SO2、钙碱再生的方法。较之石灰石法等其它脱硫工艺,它有以下优点: (1)钠碱吸收剂反应活性高、吸收速度快,可降低液气比,从而既可降低运行费用,又可减少水池、水泵和管道的投资; (2)再生和沉淀分离在塔外,可大大降低塔内和管道内的结垢机会; (3)钠碱循环利用,损耗少,运行成本低; (4)正常操作下吸收过程无废水排放; (5)灰水易沉淀分离,可大大降低水池的投资; (6)脱硫渣无毒,溶解度极小,无二次污染,可综合利用; (7)电石渣作再生剂(实际消耗物),以废治废,运行成本低(如有电石渣的话);

(8)操作简便,系统可长期运行稳定。 其基本化学原理可分脱硫过程和再生过程: 脱硫过程: Na2CO3+SO2 →Na2SO3+CO2↑(1) 2NaOH+SO2→ Na2SO3+H2O (2) Na2SO3+SO2+H2O → 2NaHSO3 (3) 以上三式视吸收液酸碱度不同而异:(1)式为吸收启动反应式;碱性较高时(PH>9),(2)式为主要反应;碱性降低到中性甚至酸性时(5<PH<9 时,则按(3)式发生反应。 再生过程: 2NaHSO3+Ca(OH)2 → Na2SO3+CaSO3 ↓+2H2O (4) Na2SO3+Ca(OH)2→ 2 NaOH+CaSO3 ↓ (5) 在Ca(OH)2浆液(Ca(OH)2达到过饱和状况)中,中性(两性)的NaHSO3很快跟Ca(OH)2反应从而释放出[Na+],随后生成的[SO32-]继续跟Ca(OH)2反应,反应生成的亚硫酸钙以半水化合物形式慢慢沉淀下来,从而使[Na+]得到再生,吸收液恢复对SO2的吸收能力,循环使用。

双碱法脱硫物料平衡计算过程

双碱法 计算过程 标态:h Nm Q /4000030= 65℃:h m Q /4952340000273 6527331=?+= 还有约5%的水份 如果在引风机后脱硫,脱硫塔进口压力约800Pa ,出口压力约-200Pa ,如果精度高一点,考虑以上两个因素。 1、脱硫塔 (1)塔径及底面积计算: 塔内流速:取s m v /2.3= D=2r= 即塔径为米。底面积S=∏r 2= 塔径设定为一个整数,如 (2)脱硫塔高度计算: 液气比取L/G= 4 烟气中水气含量设为8% SO2如果1400mg/m3,液气比即可,当SO2在4000mg/m3时,选4 ①循环水泵流量:h m m l HG Q G L Q /1821000)08.01(495324) /(100033=-??=??= 取每台循环泵流量=Q 91m 。选100LZ A -360型渣浆泵,流量94m 3/h ,扬程米, 功率30KW ,2台 ②计算循环浆液区的高度: 取循环泵8min 的流量 H 1=÷= 如此小炉子,不建议采用塔内循环,塔内循环自控要求高,还要测液位等,投资相应大一点。 采用塔外循环,泵的杨程选35m ,管道采用碳钢即可。 ③计算洗涤反应区高度 停留时间取3秒 洗涤反应区高度H 2=×3= ④除雾区高度取6米

H3=6m ⑤脱硫塔总高度H=H1+H2+H3=++6= 塔体直径和高度可综合考虑,直径大一点,高度可矮一点,从施工的方便程度、场地情况,周围建筑物配套情况综合考虑,可适当进行小的修正。如采用塔内循环,底部不考虑持液槽,进口管路中心线高度可设在,塔排出口设为溢流槽,自流到循环水池。塔的高度可设定在16~18m 2、物料恒算 每小时消耗99%的。每小时消耗85%的。石灰浆液浓度:含固量15%,可得石灰浆液密度。按半小时配置一次石灰浆液计算,每次配置石灰浆液的体积是185m3。 浆液区的体积是m3。 石灰浆液按浆液区体积的10% 的流量(即石灰浆液泵的流量为m3/h)不间断往塔内输送浆液。石膏浆液排出泵按浆液区体积的20% 的流量(即石膏浆液排出泵的流量为m3/h)不间断往塔外输出石膏浆液。由计算可得每小时产石膏干重吨。 蒸发水分量m3/h。除雾器及管道冲洗水量约为3 m3/h。补充碱液量按按浆液区体积的10% 的流量(即碱液泵的流量为m3/h)不间断往塔内输送碱液 进塔部分:石灰浆液m3/h + 除雾器及管道冲洗水量3 m3/h + 补充碱液量m3/h 出塔部分:石膏浆液h +蒸发水分量m3/h 若氧化还原池按两塔5小时排出浆液量计算,则容积应为×2×5=36 m3 如果采用塔外循环,循环水池也即再生、沉淀、碱水池可设定容量为250m3,有效容积200m3,池高度≤4m(便于抽沉淀),循环水停留时间设定为1小时。石灰采用人工加料,沉淀用离心渣泵或潜水渣泵抽出,采用卧式离心机脱水。

传统双碱法烟气脱硫工艺存在的问题

传统双碱法烟气脱硫工艺 在实际应用中出现的问题及分析探讨 双碱法脱硫与石灰石/石灰湿法脱硫相比,脱硫反应机理类似,主要是利用钠基脱硫剂碱性强,吸收二氧化硫后反应产物溶解度大,不容易造成结垢堵塞问题的优点来代替石灰石/石灰湿法脱硫的。普遍认为双碱法脱硫液气比小,脱硫效率高,一次投资省,运行成本低,适合在中小锅炉的脱硫工艺中应用。但在实际的应用中,传统双碱法脱硫使用效果并不理想,仍然出现了结垢、运行成本高和烟囱腐蚀等各种难以解决的问题,现分析如下:1结垢严重 结垢是浆液中一种或几种盐在脱硫系统运行状态下过饱和 并在器壁上结晶的过程。双碱法脱硫系统的管壁、塔壁、喷嘴处极易结垢,塔内会形成十几厘米厚的结晶体,导致系统阻力增加流量降低、垢下腐蚀、控制仪表失效和保护层破坏,严重的还会导致系统停运,除雾器的严重结垢有时会导致除雾器局部垮塌。 脱硫系统浆液所吸收的二氧化硫经过各种化学反应后最终 从系统中除去是依靠CaSO3和CaSO4的结晶过程来完成的,这种反应是必然发生的,也是我们脱硫生成石膏所期望的。但我们希望此反应仅发生在系统的循环浆液池中完成结晶过程,但实际情况是双碱法脱硫技术运行在碱性条件下,当pH值大于8时,86%以上的SO2以SO32-的形式存在,导致结垢倾向加重,加之循环浆液

池中的结晶并不能彻底分离吸收液中的Ca2+,必然在系统的其它 部位产生大量结晶,就产生了系统的严重结垢。 2、运行成本较高 理论证明,pH值越高对SO2的吸收效果越好,因此NaOH溶液的吸收效果比Ca(OH)2溶液要好的多,但Ca(OH)2的pH值为12.4,当pH<12.4时,NaOH和Ca(OH)2的吸收效果无法比较,基本可认为是一致的,因为此时添加的NaOH根本未发生作用。如果提高吸收效果,必须使pH>12.4,但此时Ca(OH)2离解受抑制,系统演变为单钠碱脱硫,廉价的Ca(OH)2溶液无法发挥作用。因此,如果想发挥钠碱的吸收快的优势,就必须添加价格较高的NaOH以提高系统pH值,加之Na2SO3氧化后产生Na2SO4的副反应产物较难再生,需不断补充NaOH或Na2CO3,同时钠盐的存在不可避免的使亚硫酸氧化成硫酸,不仅影响石膏的生成和石膏的品质,也使石灰和碱耗增加,大量碱的消耗使双碱法脱硫的运行成本相对石灰石/石灰湿法脱硫要高的多。 3、湿烟囱的腐蚀严重 双碱法脱硫对脱除SO2效率较高,但对造成烟气腐蚀的主要成分SO32-效率只有20%~30%;同时由于除雾器的严重结垢,除雾效果差,导致烟气含水量大,水汽呈饱和状态,以致系统排烟温度低易冷凝成酸露;在正压运行的条件下,容易穿过内衬和钢板裂纹造成烟囱腐蚀,因此脱硫后的烟囱腐蚀非常严重。近几年来新建或改建的脱硫烟囱多数出现腐蚀介质对钢筋混凝土腐蚀,致

4吨锅炉脱硫除尘设计方案-(布袋+双碱法).

4t/h锅炉脱硫除尘 技 术 方 案 环保有限公司

1.概述 1.1项目概况 工厂现有锅炉房现有4燃煤锅炉一台,原有水浴除尘器1台;根据现有环保要求现需要新建配套脱硫设备以使锅炉排放烟气的二氧化硫含量符合GB13271-2014《锅炉大气污染物排放标准》中相关排放标准。 1.2标准要求 执行GB13271-2014《锅炉大气污染物最新排放标准,并考虑未来环保指标在提高上留有余量发展。 2 设计参数及依据 2.1适用情况 本方案设计适用的锅炉为:燃煤、燃烧木梢和二者混合使用的,并使用强制通风的锅炉。产生的烟尘由标准高度和口径的烟囱排放。 2.2抽风量设计 根据锅炉的配套风机的参数选定处理风量: 1吨锅炉: 5000m3/h; 2吨锅炉: 8600m3/h;

4吨锅炉: 12000m 3/h ; 6吨锅炉: 21000m 3/h ; 10吨锅炉: 33000m 3/h 。 3 设计排放标准 3.1本方案设计锅炉的废气排放执行《锅炉大气污染物排放标准》(GWPB3-1999)的二类区II 时段标准。具体指标见表3-2。 表3-2 (GWPB3-1999)《锅炉大气污染物排放标准》相关标准 4 处理工艺 4.1要求达到的废气净化效率 除尘效率达到99%以上,脱硫效率达到90%以上。 区域类别 烟(粉)尘浓度 mg/Nm 3 SO 2 mg/Nm 3 烟气黑度(林格曼级) 烟囱最低允许高度(米) 二 200 900 1 1吨 25 2吨 30 4吨 35 6吨 35 10吨 40

4.2处理工艺 根据大多数锅炉使用企业的现场情况,产用一级气箱脉冲袋式除尘器除尘和一级旋流板吸收塔双碱法脱硫的二级除尘脱硫工艺,治理工艺简图如下: 水泵 4.3 工艺特点 产用一级袋式除尘器除尘,去除烟尘,保证烟尘排放浓度在20mg/m 3以下,使烟气中仅含有二氧化硫和及少量可忽略不计的烟尘,再经过高效的旋流板吸收塔脱硫去除氧化硫,众所周知,旋流板吸收塔的脱硫效率可达到90%以上,并随板塔级数的增加而增加。 4.4 双碱脱硫法技术特点 双碱法烟气脱硫技术是为了克服石灰石—石灰法容易结垢的缺点而发展起来的。传统的石灰石/ 石灰—石膏法烟气脱硫工艺采用钙基脱硫剂吸收二氧化硫后生成的亚硫酸钙、硫酸钙,由于其溶解度较小,极易在脱硫塔内及管道内形成结垢、堵塞现象。结垢堵塞问题严重影响脱硫系统的正常运行, 更甚者严重影响锅炉系统的正常运行。为了尽量避免用钙基脱硫剂 烟囱 排放 旋流板吸收 塔 气箱脉冲袋 式除尘器 锅炉炉 废气 双碱法 循环水池 风机

脱硫工艺计算

相关工艺了解及计算公式 相关工艺了解及计算公式 ↑生成物为气体,↓生成物为固体。 1.钠碱法脱硫工艺: 采用氢氧化钠(NaOH,又名烧碱,片碱)或碳酸钠(Na2CO3又名纯碱,块碱)。 1.1.NaOH 反应方程式: 2NaOH+SO2=Na2SO3(亚硫酸钠)+H2O (PH 值大于 9) Na2SO3+H2O+SO2=2NaHSO3(亚硫酸氢钠) (5

2NaOH+SO2=Na2SO3+H2O 用碳酸钠启动 用氢氧化钠启动 2 种碱和 SO2反应都生成亚硫酸钠 Na2SO3+SO2+H2O=2NaHSO3 (5

双碱法烟气脱硫工艺流程设计

化工设计训练 实验题目:双碱法烟气脱硫工艺流程设计 系别:________ 化学与材料工程系_______________ 专业:________ 化学工程与工艺专业_____________ 目录 第一章概述 (1) 1.1设计依据 (1) 1.2设计参数 (1) 1.3设计指标 (1) 1.4设计原则 (1) 1.5设计范围 (2) 1.6技术标准及规范 (2) 第二章脱硫工艺概述 (4) 2.1脱硫技术现状 (4) 2.2工艺选择 (5) 2.3本技术工艺的主要优点 (9) 2.4物料消耗 (10)

第三章脱硫工程内容 (13) 3.1 脱硫剂制备系统 (12) 3.2烟气系统 (12) 3.3SO吸收系统 (13) 3.4脱硫液循环和脱硫渣处理系统 (15) 3.5消防及给水部分 (17) 3.6浆液管道布置及配管 (17) 3.7电气系统 (17) 3.8工程主要设备投资估算及构筑物 (18) 第四章项目实施及进度安排 (19) 4.1项目实施条件 (19) 4.2项目协作 (19) 4.3项目实施进度安排 (19) 第五章效益评估和投资收益 (20) 5.1运行费用估算统 (21) 5.2经济效益评估 (21) 5.3环境效益及社会效益 (21) 第六章结论 (22) 6.1主要技术经济指标总汇 (22) 6.2结论 (22) 第七章售后服务 (23) 附图1 脱硫系统工艺流程图24

第一章概述 1.1设计依据 根据厂方提供的有关技术资料及要求为参考依据,并严格按照所有相关的设计规范与标准,编制本方案: 《锅炉大气污染物排放标准》GB13271-2001; 厂方提供的招标技术文件; 国家相关标准与规范。 1.2设计参数 本工程的设计参数,主要依据招标文件中的具体参数,其具体参数见表1-1 表1-1 烟气参数 1.3设计指标 设计指标严格按照国家统一标准治理标准和业主的招标文件的要求,设计参数下表1-2。 1.4设计原则 认真贯彻执行国家关于环境保护的方针政策,严格遵守国家有关法规、规范和标 准。 选用先进可靠的脱硫技术工艺,确保脱硫效率高的前提下,强调系统的安全、稳定性能,并减少系统运行费用

双碱法脱硫工艺

2.10脱硫工艺 2.10.1脱硫工艺选择 目前国内外成熟的烟气脱硫工艺主要有:喷雾干燥法、半干法和湿法,由于喷雾干燥法、半干法在脱硫塔后必须同时配置除尘设施,一方面投资大,另一方面现场场地不允许,因此只能采用湿法。大湿法投资大(大于150元/kwh),系统复杂,本厂难以使用;双碱法投资省、占地小、建设周期短,虽然脱硫效率不如大湿法高,但能够满足环保要求,因此本方案推荐使用双碱法工艺。 经过比较目前国内外主要的成熟烟气脱硫技术,根据技术的可靠性、经济性,并结合现场实际,选用空塔喷淋式双碱法是最合适的, 它有以下优点: (1)系统简便,投资省; (2)脱硫效率高; (3)不易结垢; (4)液气比低,电耗省,运行成本低; (5)吸收塔采用高效喷淋塔,阻力小,运行可靠。 通过现场考察和根据厂方提供的技术参数和要求,通过我公司对其进行的技术经济比较认为,选用双碱法高效喷雾脱硫工艺最为合理经济。高效喷淋空塔脱硫装置为主脱硫设备,同时也是除尘设备:以钠碱液为塔内主脱硫剂,以石灰浆液为再生剂,可以达到设备和管道不结垢,以废治废的目的,脱硫效率可达80%以上。该工艺成熟可靠,系统简便、运行稳定。 2.10.2 脱硫工艺说明 脱硫系统的工艺流程图见附图1。 整个工艺由五大部分组成: (1)烟气处理系统; (2)脱硫液循环系统; (3)脱硫渣处理系统; (4)电气、自控系统; (5)加料系统。 1)、烟气处理系统: 根据德谦杭重锻造有限公司的实际情况,由于该项目为新建项目,因此可以在采购引风机时考虑脱硫系统的压降;烟气从底部进入喷雾脱硫塔,与喷淋液逆流接触高效脱硫。大部分的二氧化硫和烟尘经过喷淋塔的处理,其出口烟气的含尘浓度在40mg/Nm3以下,二氧化硫脱除率在80%以上。完成脱硫后的烟气在塔体上段通过高效组合除雾器除去烟气中的雾滴,净化后的烟气经塔后烟道进入烟囱排放。 本工艺采用的是高效低阻喷雾脱硫塔,它具有阻力低、效果好等优点。喷雾塔设置喷淋层和除雾器,脱硫塔内的组合除雾装置主要由:双层除雾器、挡水条等,它们的综合作用可有效的去除烟气中的水分。同时设置除雾器冲洗水,当除雾器压力损失比较大时,对除雾器进行冲洗,减小脱硫塔压力损失。 (2)、脱硫液循环系统:脱硫液循环系统主要包括:石灰浆液箱、反应池、沉淀池、碱液池、循环泵、加药泵及管道、阀门等。整个脱硫液循环系统充分利用水池液位的高差,利用水力学原理,使系统的能耗最省,系统的维护保养也比较简单。

传统双碱法烟气脱硫工艺存在的问题

传统双碱法烟气脱硫工艺存在的问题 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

传统双碱法烟气脱硫工艺 在实际应用中出现的问题及分析探讨双碱法脱硫与石灰石/石灰湿法脱硫相比,脱硫反应机理类似,主要是利用钠基脱硫剂碱性强,吸收二氧化硫后反应产物溶解度大,不容易造成结垢堵塞问题的优点来代替石灰石/石灰湿法脱硫的。普遍认为双碱法脱硫液气比小,脱硫效率高,一次投资省,运行成本低,适合在中小锅炉的脱硫工艺中应用。但在实际的应用中,传统双碱法脱硫使用效果并不理想,仍然出现了结垢、运行成本高和烟囱腐蚀等各种难以解决的问题,现分析如下: 1结垢严重 结垢是浆液中一种或几种盐在脱硫系统运行状态下过饱和并在器壁上结晶的过程。双碱法脱硫系统的管壁、塔壁、喷嘴处极易结垢,塔内会形成十几厘米厚的结晶体,导致系统阻力增加流量降低、垢下腐蚀、控制仪表失效和保护层破坏,严重的还会导致系统停运,除雾器的严重结垢有时会导致除雾器局部垮塌。 脱硫系统浆液所吸收的二氧化硫经过各种化学反应后最终从系统中除去是依靠CaSO3和CaSO4的结晶过程来完成的,这种反应是必然发生的,也是我们脱硫生成石膏所期望的。但我们希望此反应仅发生在系统的循环浆液池中完成结晶过程,但实际情况是双碱法脱硫技术运行在碱性条件下,当pH值大于8时,86%以上的SO2以SO32-的形式存在,导致结垢倾向加重,加之循环浆液池中

的结晶并不能彻底分离吸收液中的Ca2+,必然在系统的其它部位产生大量结晶,就产生了系统的严重结垢。 2、运行成本较高 理论证明,pH值越高对SO2的吸收效果越好,因此NaOH溶液的吸收效果比Ca(OH)2溶液要好的多,但Ca(OH)2的pH值为,当pH<时,NaOH和Ca(OH)2的吸收效果无法比较,基本可认为是一致的,因为此时添加的NaOH根本未发生作用。如果提高吸收效果,必须使pH>,但此时Ca(OH)2离解受抑制,系统演变为单钠碱脱硫,廉价的Ca(OH)2溶液无法发挥作用。因此,如果想发挥钠碱的吸收快的优势,就必须添加价格较高的NaOH以提高系统pH值,加之Na2SO3氧化后产生Na2SO4的副反应产物较难再生,需不断补充NaOH或Na2CO3,同时钠盐的存在不可避免的使亚硫酸氧化成硫酸,不仅影响石膏的生成和石膏的品质,也使石灰和碱耗增加,大量碱的消耗使双碱法脱硫的运行成本相对石灰石/石灰湿法脱硫要高的多。 3、湿烟囱的腐蚀严重 双碱法脱硫对脱除SO2效率较高,但对造成烟气腐蚀的主要成分SO32-效率只有20%~30%;同时由于除雾器的严重结垢,除雾效果差,导致烟气含水量大,水汽呈饱和状态,以致系统排烟温度低易冷凝成酸露;在正压运行的条件下,容易穿过内衬和钢板裂纹造成烟囱腐蚀,因此脱硫后的烟囱腐蚀非常严重。近几年来新

相关主题
文本预览
相关文档 最新文档