当前位置:文档之家› ANSYS热辐射

ANSYS热辐射

ANSYS热辐射
ANSYS热辐射

第六章热辐射分析

6.1热辐射的定义

热辐射是一种通过电磁波传递热能的方式。电磁波以光的速度进行传递,而能量传递与辐射物体之间的介质无关。热辐射只在电磁波的频谱中占小部分的带宽。由于辐射产生的热流与物体表面的绝对温度的四次方成正比,因此热辐射有限元分析是高度非线性的。物体表面的辐射遵循Stefan-Boltzmann定律:

式中:—物体表面的绝对温度;

—Stefan-Boltzmann常数,英制为0.119×10-10 BTU/hr-in-R,公制为5.67×10-8 6.2基本概念

下面是对辐射分析中用到的一些术语的定义:

黑体

黑体被定义为在任意温度下,吸收并发射最大的辐射能的物体;

通常的物体为―灰体‖,即ε< 1;

在某些情况下,辐射率(黑度)随温度变化;

辐射率(黑度)

物体表面的辐射率(黑度)定义为物体表面辐射的热量与黑体在同一表面辐射热量之比。

式中:-辐射率(黑度)

-物体表面辐射热量

-黑体在同一表面辐射热量

形状系数

形状系数用于计算两个面之间的辐射热交换,在ANSYS中,可以用隐藏/非隐藏的方法计算2维和三维问题,或者用半立方的方法来计算3维问题。

表面I与表面J之间的形状系数为:

形状系数是关于表面面积、面的取向及面间距离的函数;

由于能量守恒,所以:

根据相互原理:

由辐射矩阵计算的形状系数为:

式中:-单元法向与单元I,J连线的角度

-单元I,J重心的距离

有限单元模型的表面被处理为单元面积dA I及dA J,然后进行数字积分。

辐射对

在辐射问题中,辐射对由一些相互之间存在辐射的面组成,可以是开放的或是闭合的。在ANSYS中,可以定义多个辐射对,它们相互之间也可以存在辐射ANSYS使用辐射对来计算一个辐射对中各面间的形状系数;每一个开放的辐射对都可以定义自己的环境温度,或是向周围环境辐射的空间节点。

Radiosity 求解器

当所有面上的温度已知时,Radiosity 求解器方法通过计算每一个面上的辐射热流来得到辐射体之间的热交换。而面上的热流为接下来的热传导分析提供了有限元模型的边界条件。重复上面的过程,就会由于新的时间步或者新的迭代循环会得到新的热流边界条件,从而计算出新的温度分布。在计算中使用的每个表面的温度必须是均匀的,这样才能满足辐射模型的条件。

6.3分析热辐射问题

针对不同的情况ANSYS为热辐射分析提供了四种方法。

热辐射线单元(LINK31),模拟两节点间(或多对节点)间辐射;

表面效应单元(SURF151及SURF152),模拟点对面(线)的辐射;

利用AUX12生成辐射矩阵,模拟更一般的面与面(或线与线)的辐射(只有ANSYS/Multiphysics

ANSYS/Mechanical和ANSYS/Professional这些产品提供辐射矩阵生成器);

Radiosity求解器方法,求解二维、三维面与面之间的热辐射,该方法对所有含温度自由度的二维和三维单元都适用。(只有ANSYS/Multiphysics,

ANSYS/Mechanical和ANSYS/Professional这些产品提供Radiosity求解器) 可以将上面四种辐射方法中的任何一种用于稳态或瞬态热分析中。辐射是一种非线性现象,因此需要进行平衡迭代来得到收敛解。

6.4节点间的热辐射

非线性线单元LINK31用于计算两节点间或多对节点间的简单辐射热传递,节点的位置是任意的,可作为其它单元的节点。LINK31需要定义如下数据:材料属性:EMIS辐射率(可以随温度变化)

实常数:AREA(Ai)(有效辐射面积)

FORMF(Fij)(形状系数)

SBCONST(Stefan-Boltzman常数)

有关LINK31的使用实例,请参考《ANSYS 校验手册》:

VM106Radiant energy emission

VM107Thermocouple radiation

6.5点与面间的热辐射

应用表面效应单元可以方便地计算点与面间的辐射,包括2D的SURF151及3D的SURF152单元:

首先在实体单元的辐射表面覆盖一层表面效应单元;

单元关键选项KEYOPT(9)激活这些单元的热辐射分析功能;

如果设置KEYOPT(9)=1(缺省值),则可在单元实常数中定义形状系数;

如果设置KEYOPT(9)=2或3,则程序基于单元表面的法向与附加节点的位置关系、考虑余弦效应,计算形状系数。

使用表面单元进行热辐射分析的实例,请参考《ANSYS 校验手册》:

VM192Cooling of a billet by radiation

6.6AUX12―辐射矩阵生成器

只有ANSYS/Multiphysics,ANSYS/Mechanical,ANSYS/Thermal等产品提供AUX12,用于计算多个辐射面之间的辐射热传递。AUX12生成辐射面间的形状系数矩阵,并将此矩阵作为超单元用于热分析。分析模型可包含隐藏面或部分隐藏面,以及能吸收辐射能量的―空间节点‖。使用AUX12计算面与面之间的辐射可分为以下三个步骤:

定义辐射面

生成辐射矩阵

将辐射矩阵用于热分析

6.6.1定义辐射面分析类型

在2D有限元模型的辐射边上覆盖一层LINK32单元,或在3D有限元模型的辐射面上覆盖一层SHELL57单元,步骤如下:

在前处理中创建热分析模型。由于辐射表面不支持对称条件,包含辐射的模型就无法利用几何上的对称性,因此必须建立完整的分析模型。二维和三维的辐射面示意图6-1如下:

在辐射面上覆盖一层SHELL57(3D)或LINK32(2D)单元,如图6-2所示。最好的方法是先选择辐射面的节点,然后用下面的方法创建面上的单元:命令:ESURF

GUI:Main Menu>Preprocessor>Create>Elements>Surf Effect>Extra Node

Main Menu>Preprocessor>Create>Elements>Surf Effect>No extra Node

在执行上述命令之前,要确定首先激活了相应的单元类型及材料属性,如果不同辐射面的辐射率不同,建议用材料编号来区分这些面。还要注意SHELL57

或LINK32的节点一定要与相应实体单元对应节点编号重合。否则计算结果将是错误的。

所覆盖的SHELL57或LINK32单元的方向是非常重要的。AUX12假设辐射方向是SHELL57单元坐标系的正Z向或LINK32单元坐标系的正Y向,因此必须正确地划分覆盖层的网格以使辐射面相对。单元的方向是由节点的排列顺序决定的,如下图所示:

图6-3 覆盖单元的方向

显示单元辐射方向的方法如下:

命令:/PSYMB,ESYS,1

GUI: Utility Menu>PlotCtrls>Symbols, 将ESYS Element Coordinate设置为ON。

定义一个空间节点,用于吸收没有被模型中其它辐射面吸收的辐射能量。这个节点的位置是任意的,对于一个开放系统通常需要空间节点,而对于封闭系统则不得设置空间节点

6.6.2生成辐射矩阵

计算辐射矩阵可按如下的步骤完成:

1.进入Aux12

命令:/AUX12

GUI:Main Menu>Radiation

2. 选择构成辐射面的节点和单元。较简便的方法是根据单元属性选择(如单元类型)选择单元,然后选择所有Attached to单元的节点(同时应注意将空间节点也选择进来):

命令:ESEL,S,TYPE和NSEL

GII:Utility Menu>Select>Entities

3. 确定所分析的模型是3D还是2D

命令:GEOM

GUI:Main Menu>Radiation Matrix>Other Settings

AUX12采用不同的算法分别计算2D和3D模型的形状系数,AUX12默认为3D。2D可以是平面的(NDIV=0),也可以是轴对称的(NDIV >0),缺省为平面的。轴对称模型在内部展成3D,NDIV是圆周方向分割数量。例如NDIV=10,则每段为36度。

4.确定辐射率(缺省为1.0):

命令:EMIS

GUI:Main Menu>Radiation Matrix>Emmisivities

5. 定义Stefan-Baltzmann常数(缺省情况下,英制单位为0.119×10-10 Btu/hr-in2-R4,国际单位制为5.67×10-8W/m2K4)。

命令:STEF

GUI:Main Menu>Radiation Matrix>Other Settings

6. 确定计算形状系数的方法。

命令:VTYPE

GUI:Main Menu>Radiation Matrix>Write Matrix

可选择非隐藏或隐藏两种方法之一,非隐藏方法计算每个单元对其它单元的形状系数,无论两单元之间是否有阻碍;隐藏方法(默认)首先用―隐藏线‖算法确定两单元之间是否―可见‖,如果目标单元与辐射单元的辐射方向指向对方,而且设有其它单元阻碍,则它们是―可见‖的,形状系数按如下方法计算:每一个辐射单元被封闭成一个半径为单位值的半球(3D)或半圆(2D);

所有的目标单元向这个半球或半圆投影;

一定数量(默认为20)的射线由辐射单元面投向半球或半圆。这样,形状系数就是投到投影面上的射线数量与辐射面发出的射线的数量之比,通常设定的射线数量越多,形状系数的精度越高。可以通过设定VTYPE命令的变量NZONE或上述的菜单来设定射线数量

7.如果有必要(例如开放系统),应指定空间节点:

命令:SPACE

GUI:Main menu>Radition>Matrix>Other Settings

8.将辐射矩阵写到文件jobname.sub中,如果想要写更多的辐射矩阵,为不同的矩阵指定不同的文件名:

命令:WRITE

GUI: Main Menu>Radiation Matrix>Write Matrix

如果需要打印出辐射矩阵,应在执行Write命令之前执行命令:mprint,1。

9.选择所有节点及单元

命令:ALLSEL

GUI:Utility Menu>Select>Everything

现在就已经将辐射矩阵作为一个超单元写入到一个文件中了。

6.6.3 使用辐射矩阵进行热分析

生成了辐射矩阵之后,重新进入前处理器,定义作为超单元的辐射矩阵。步骤如下:

1.重新进入前处理器,选择单元MATRIX50(超单元),并设置单元Keyoption 为热辐射分析。

命令:/PREP7

GUI:Main Menu>Preprocessor

2.设置缺省单元类型为超单元

命令:TYPE

GUI:Main Menu>Preprocessor>Create>Element>Elem Attributes

3.读入辐射超单元矩阵

命令:SE

GUI:Main Menu>Reprocessor>Create>Elements–Super elements-From .SUB

4.不选择或删除用于生成辐射矩阵的SHELL57或LINK32单元,因为在热分析中已经不再需要了。

命令:EDELE

GUI:Main Menu>Preproccssor>Modeling>Delete>Elements

5.进入求解器,定义空间节点的热边界条件,空间节点的典型热边界为温度(环境温度),也可能是热流率。边界条件应能够反映被模拟的环境的真实情况。

命令:D,F

GUI:Main Menu>Solution>Loads-Apply…

6.其它步骤与普通热分析相同

6.7使用空间节点的几点建议

尽管模拟热辐射并不总是需要定义空间节点,但使用或不使用空间节点可能会明显影响计算精度,分析中请注意有关空间节点的如下几点:

6.7.1对于非隐藏方法

用非隐藏方法计算形状系数,不对空间节点做特别的考虑,也可以得到系统足够精确的解。通常对于封闭系统不应定义空间节点;而对于开放系统应当定义。只有当开放系统中含有灰体(辐射率小于1)时,才必须定义一个空间节点,以保证计算精度。

6.7.1对于隐藏方法

AUX12中形状系数计算的精度会影响到空间节点的辐射计算,由于计算的误差在空间节点上累积,在封闭或接近封闭系统中空间节点形状系数的相对误差会过大。

使用隐藏方法时,可能会需要增大计算形状系数时的射线数量,并细化网格,以便得到更精确的形状系数。如果上述方法不能实施,可考虑如下建议:对于封闭系统,即所有的辐射面形成一个封闭空间,不向外界辐射,不要使用空间节点。

如果问题的实质允许只模拟辐射面间辐射(忽略向空间的辐射),那就不要定义空间节点。这种情况仅对黑体(辐射率为1)有效。

对于一个接近封闭的系统,如果必须考虑向空间的辐射,可以在开口处划分网格,并将开口处节点的温度自由度约束为空间温度。这样,空间形状系数的计算更精确。

对于有明显空间损失的开放系统,可以使用空间节点(需要定义节点的热边界条件)来计算辐射损失,这样中等的网格密度及射线数量会得到足够精度的结果。

6.8使用AUX12的几点注意事项

只有所有的辐射面之间可以完全地看到对方时,才能使用非隐藏方法。否则形状系数的计算是错误的,热分析的结果不正确甚至不会收敛。

隐藏方法需要明显更长的计算时间,所以只有辐射面间有障碍存在或无法分组计算时才选用。

对于有些情况可以对辐射面分组,各组之间在辐射传热上是完全独立的。由于在一个组中的辐射面之间没有阻碍,可以用非隐藏方法计算形状系数,分别写入辐射矩阵文件。这样可以节省大量CPU时间。要对辐射面进行分组,在写矩阵之前选择的需要的辐射面组。

对于隐藏方法,增大射线数量会提高形状系数的计算精度。

无论是隐藏的方法还是非隐藏的方法,通常辐射表面的网格越细,越规则,形状系数计算精度越高。但是,对于隐藏法而言,如果要得到相同精度的形状系

数,其对网格的要求比非隐藏法更高。如果网格太差,即使将射线的数量增加到其最大值,也无法获得所需的求解精度。

对于轴对称情况,NDIV设为20,可以得到足够精度的形状系数。单元在拓展到3D时应有合理的形状(长细比应在合理的范围内)。

用于生成2D辐射矩阵的LINK32单元,并不直接支持轴对称选项。因此,对于轴对称模型,确认在运行热分析以前删除或不选择此单元。

理论上讲,对于封闭系统,由任意一个辐射表面到所有其它辐射面的形状系数的和为1;对于开放系统则应小于1。可以通过执行MPRINT,1命令将形状系数如下打印出来―***FORM FACTORS *** TOTAL = Value‖,由此可检查每一个辐射面形状系数的计算是否正确。如果超过1则肯定错误。尤其在两辐射面间有障碍时,不留意地使用了非隐藏方法计算,就会出现这种情况。

6.9Radiosity求解器方法

只有ANSYS/Multiphysics,ANSYS/Mechanical,ANSYS/Thermal等产品提供Radiosity 求解器。该方法可以求解多个面间的常规热辐射问题,适用于所有含温度自由度的二维和三维单元。

定义辐射面;

定义求解选项;

定义形状系数(View Factor)选项;

计算并查询形状系数。

定义载荷选项

6.9.1定义辐射面

在PREP7中创建三维几何模型并划分实体网格。需要注意的是这种方法不支持对称条件,因此所有参与热辐射的表面必须全部建模。辐射表面为3D模型中的面或2D模型中的边。该方法允许有多达10个独立的辐射对,辐射对含有相互间有辐射换热的面。

用SF、SFA、SFE或SFL命令定义每一个辐射面的辐射率及辐射对编号。对于所有相互之间有热辐射作用的辐射面,使用同一个辐射对编号。如果辐射率与温度有关,可在上述命令中定义VALUE=-N,此时,对于材料N,其辐射率的值由EMIS性质表确定。

验证是否为已定义的表面指定了正确的辐射率、辐射对编号及辐射方向。

命令:/PSF

GUI:Utility Menu>PlotCtrls>Symbols

在SHELL57或SHELL157号单元上施加辐射载荷时,必须为其内外表面的方向指定合适的编号。可使用SF,SFA,SFE命令来施加这些载荷。SF和SFA命令仅将辐射表面载荷施加在壳单元的1号面上,如果要在2号面或两个面上都施加辐射表面载荷,请适用SFE命令。有关这两种单元的表面方向和编号请参见《ANSYS Element Reference》。

6.9.2设定分析选项

对于辐射分析,必须要设定相应单位制下的Stefan-Boltzmann常数:

命令:STEF

GUI:Main Menu>Preprocessor>Loads>Solution Option

Main Menu>Radiation>Solution Option

Main Menu>Solution>Solution Option

如果当前使用的温度制为摄氏或华氏,应定义一个温度偏移量将其转化到绝对温度:

命令:TOFFST

GUI:Main Menu>Preprocessor>Loads>Solution Option

Main Menu>Radiation>Solution Option

Main Menu>Solution>Solution Option

设定求解器,选择直接求解器或迭代求解器(默认)。同时也可以设定热流密度的松弛系数和收敛精度:

命令:RADOPT

GUI:Main Menu>Preprocessor>Loads>Solution Option

Main Menu>Radiation>Solution Option

Main Menu>Solution>Solution Option

如果分析的是一个开放系统,必须定义环境温度(空间温度)或为每个辐射对定义环境节点,设定环境辐射空间温度的方式如下:

命令:SPCTEMP

GUI:Main Menu>Preprocessor>Loads>Solution Option

Main Menu>Radiation>Solution Option

Main Menu>Solution>Solution Option

SPCTEMP命令定义每个辐射对的空间温度,同时,也可用该命令显示或删除所有已定义的空间温度。为每个辐射对设定空间节点的方式如下:命令:SPCNOD

GUI:Main Menu>Preprocessor>Loads>Solution Option

Main Menu>Radiation>Solution Option

Main Menu>Solution>Solution Option

如果前面提到的―环境‖是分析模型中的另外一个实体,则必须对每个辐射对用SPCNOD命令为环境辐射定义空间节点。Radiosity求解器将在空间节点上指定的温度作为环境温度。可用该命令显示或删除所有已定义的空间节点。

6.9.3定义形状系数选项

对于三维或二维模型,要计算新的形状系数,可用如下方式定义各种选项:命令:HEMIOPT

GUI:Main Menu>Preprocessor>Loads>View Factor Option

Main Menu>Radiation>View Factor Option

Main Menu>Solution>View Factor Option

该命令设置采用半立方(Hemicube)法计算形状系数时的―分辨率‖,默认值为10,此值越高,形状系数的计算精度越高。

选择计算2D模型的形状系数的选项:可将2D模型定义为2D平面或轴对称(缺省为平面)、可设定轴对称模型的划分区间数(默认为20)、可选择隐藏和非隐藏选项(缺省为隐藏)、可设定形状系数计算的区域数(缺省为200)。

命令:V2DOPT

GUI:Main Menu>Preprocessor>Loads>View Factor Option

Main Menu>Raduiation>View Factor Option

Main Menu>Solution>View Factor Option

设定是否需要重新计算形状

命令:VFOPT

GUI:Main Menu>Preprocessor>Loads>View Factor Option

Main Menu>Radiation>View Factor Option

Main Menu>Solution>View Factor Option

VFOPT,opt设置为NEW时,则程序重新计算形状系数并将其保存在一个文件中。如果数据库中已经有了形状系数,则该命令可以关闭对形状系数的计算(opt=OFF)。在第二次(或多次)执行SOLVE命令时,OFF是默认值,即不重新计算形状系数而直接读取第一次求解的形状系数。如果第一次求解后形状系数发生较大改变,需要重新计算形状系数(如大变形),则应在第二次(或多次)求解前,将此值设定为NEW,重新计算形状系数。

6.9.4计算并验证形状系数选项

然后可以计算形状系数,并验证和得到平均值。

计算并存储形状系数:

命令:VFCALC

GUI:Main Menu>Radiation>Compute

可用如下命令列出所选择单元对的形状系数并计算平均系数:

命令:VFQUERY

GUI:Main Menu>Radiation>Query

用如下命令可将平均系数提取出来:

*GET,Par,RAD,VFAVG

6.9.5设定载荷选项

如果模型有均匀的温度,本步将设定初始温度。还需要定义载荷步并将边界条件的变化形式设定为渐变。

对所有节点设定初始的均匀温度

命令:TUNIF

GUI:Main Menu>Solution>Settings>Uniform Temp

设定载荷步数量或时间步

命令:SUBST或DELTIM

GUI:Main Menu>Preprocessor>Loads>-Load Step Opts-Time/Frequenc>Freq and Substps or Time and Substps

Main Menu>Preprocessor>Loads>-Load Step Opts-Time/Frequenc>Time-Time Step

由于热辐射是高度非线性的,应设定渐变的边界条件

命令:KBC

GUI:Main Menu>Preprocessor>Loads>-Load Step Opts-Time/Frequency>Time-Time Step 6.10静态热辐射分析的几点建议

对于只有热流密度(HFLUX)或热流率(HEAT)边界条件的热辐射问题,或热辐射作为热传递主导方式的问题(即低导热系数),应采用―伪瞬态‖求解方法来求解静态问题。主要有如下三个步骤:

1.在定义材料属性时,定义材料的密度和比热为常值。设定这两个材料值的大小并不重要,因为最终是求解稳态问题;

2.将求解类型设定为瞬态问题

命令:ANTYPT

GUI:Main Menu>Solution>New Analysis

3.将准静态辐射分析求解为稳态问题

命令:QSOPT

GUI:Main Menu>Preprocessor>-Load Step Options->Time/Frequency>Quasi-Static

只有当SOLCONTROL,ON时,QSOPT命令才有效。可用OPNCONTROL 命令设定稳态温度的误差。

与物体材料属性(密度、比热、导热系数等)相关,在瞬态变化刚开始时,物体温度的变化量可能很小。开始时将QSOPT设置为ON,将结束时间设为默认值(TIME=1),可得到非静态的结果,按以下方法可得到纯静态结果值: 用命令OPNCONTROL减小静态温度误差范围,这样可能会使计算时间延长;

增大最终时间值和时间步长值以便在后面获得大的温度改变。

6.11热辐射分析实例1

6.11.1问题描述

在第五章实例1中考虑热辐射,冷却栅表面黑度为0.9,求解温度分布及与空气间的热流率。

使用隐藏方法

首先按第五章例1的命令流或菜单,求解未考虑热辐射时的温度分布。注意到表面单元可以转换为LINK32,使用隐藏方法生成一个辐射矩阵。然后再回到原来的分析,将此辐射矩阵作为超单元加入,求解温度分布。

6.11.2菜单操作过程(接第五章实例1)

6.11.2.1将单元类型2更换为LINK32

选择―Main Menu>Preprocessor>Element Type>Add/Edit/Delete‖,点击Add,单元编号中输入2,选择LINK32,点击OK。

6.11.2.2创建空间节点,用于计算辐射到空气中的热流率

选择―Main Menu>Preprocessor>Create>Node>On Active CS‖,节点编号为NN+2, X 坐标为6.5*fspc/2, Y坐标为hgt+0.2。

6.11.2.3选择所有单元为2的单元及节点

1、选择―Utility Menu>Select>Entities>Element>By Attributes>Element Type, 2, From Full‖,点击Apply。

2、选择―Utility Menu>Select>Entities>Nodes>Attached to>Elements, From Full‖,点击OK。

6.11.2.4将所选单元的第三节点修改为NN+2

选择―Main Menu>Preprocessor>Move/Modify>Modify Nodes‖,点击Pick all,在Starting Location N 中输入3,New node number at location n中输入NN+2。

6.11.2.5定义辐射相关选项

1、定义黑度:选择―Main Menu>Radiation Matrix>Emissivities‖,将材料2,3,4,5的黑度都设定为0.9,点击OK。

2、设定定义斯蒂芬—波尔兹曼常数、2D/3D、空间节点:选择―Main

Menu>Radiation Matrix>Oth er Setting‖,输入斯蒂芬—波尔兹曼常数为0.119e-10(英制),选择2D,空间节点为NN+2。

3、选择隐藏方式并生产辐射矩阵文件:选择―Main Menu>Radiation Matrix>Write Matrix‖,选择Hidden, 输入文件名bays,点击OK。

6.11.2.6再次进入前处理,恢复单元类型2为SURF151

选择―Main Menu>Preprocessor>Element Type>Add/Edit/Delete‖,注意修改单元选项如第五章例1。

6.11.2.7选择所有节点,并将SURF19单元的第三节点恢复为NN+1

1、选择―Utility Menu>Select>Entities>Nodes>Select all‖,

2、选择―Main Menu>Preprocessor>Move/Modify>Modify Nodes‖,点击Pick all, 在Starting Location N 中输入3, 在New node number at location n中输入NN+1。

3、选择―Utility Menu:>Select>Select Everything‖。

6.11.2.8定义热分析的超单元

1、选择―Main Menu:>Preprocessor>Element Type>Add/Edit/Delete‖,选择SuperElement 50,在单元属性中设置element behavior 为Ration Substr。

2、选择―Main Menu>Preprocessor>Create>Element>Elements Attribute‖ 设置单元类型为3,材料为1。

3、选择―Main Menu>Preprocessor>Create>Element>From .sub file‖,输入bays。6.11.2.9求解

1、设定英制华氏度与英制绝对温度差值:选择―Main Menu>Preprocessor>Element Type>

Add/Edit/Delete‖,输入460。

2、约束空间节点NN+2的温度:选择―Main Menu>Solution>Apply>Temperature>On node‖,输入90。

3、求解:选择―Main Menu>Solution>solve current CS‖。

6.11.2.10后处理

1、打印冷却栅与空气的热流率:选择―Main Menu>General Postproc>List Resust>Reaction Solu‖。

2、显示冷却栅温度分布:选择―Utility Menu>Select>Entities>Nodes>By Num/Pick, Unselect‖,点击OK,输入NN+1,NN+2,输入OK。

3、选择―Main Menu>General Postproc>Plot Resust>Nodal Solution>Temperature‖。

6.11.3等效的命令流方法

/prep7!重新进入前处理

et,2,link32!将单元2定义为LINK32

n,nn+2,6.5*fspc/2,hgt+.2!创建计算辐射到空气中热量的空间节点

esel,s,type,,2!选择所有单元类型为2的单元

nsle,s!选择单元上节点

emod,all,3,nn+2!修改单元,将空间节点作为第三节点

eplot

finish

/aux12!进入辐射矩阵生成器

emis,2,.9!定义黑度

emis,3,.9

emis,4,.9

emis,5,.9

stef,0.119e-10!定义斯蒂芬—波尔兹曼常数

geom,1!两维

vtype,0!隐藏方法

space,nn+2!空间节点为NN+2

write,bays!将辐射矩阵写入bays.sub文件

finish!退出辐射矩阵生成器

/prep7!再次进入前处理

et,2,surf19,1,,,1,1!将单元类型2重新定义为SURF19

keyopt,2,8,2

nsel,all

emod,all,3,nn+1!修改单元,将孤立节点NN+1作为第三节点

allsel

et,3,matrix50,1!定义单元类型3为超单元

type,3

mat,1

real,1

se,bays!读入bay3.sub中的辐射矩阵

finish

/solu

toffst,460!设置英制绝对零度

d,nn+2,temp,90!定义空间节点NN+2的温度

solve!求解

finish

! 后处理

/post1

prrsol!求解冷却栅与空气的热流率

nsel,u,node,,nn+1,nn+2

plns,temp!显示温度分布

finish

使用非隐藏方法

6.11.4等效的命令流方法

/prep7

et,2,link32

n,nn+2,6.5*fspc/2,hgt+.2

esel,s,type,,2

nsle,s

emod,all,3,nn+2

eplot

finish!以上与隐藏方法相同

/aux12

x=0

lsel,s,line,,5+x,6+x!生成第一个辐射矩阵文件bay1.sub lsel,a,line,,10+x,20+x,10

lsel,a,line,,15+x,16+x,1

nsll,s,1

esln,s,1

/dist,1,1.21

/focus,1,1.1,0.6

eplot

emis,2,.9

emis,3,.9

emis,4,.9

emis,5,.9

stef,0.119e-10

geom,1

vtype,1! 非隐藏方法

space,nn+2

write,bay1

allsel

x=19! 生成第二个辐射矩阵bay2.sub lsel,s,line,,5+x,6+x

lsel,a,line,,10+x,19+x,9

lsel,a,line,,15+x,16+x,1

nsll,s,1

esln,s,1

eplot

emis,2,.9

emis,3,.9

emis,4,.9

emis,5,.9

stef,0.119e-10

geom,1

vtype,1

space,nn+2

write,bay2

allsel

x=38! 生成第三个辐射矩阵bay3.sub lsel,s,line,,5+x,6+x

lsel,a,line,,10+x,19+x,9

lsel,a,line,,15+x,16+x,1

nsll,s,1

esln,s,1

eplot

emis,2,.9

emis,3,.9

emis,4,.9

emis,5,.9

stef,0.119e-10

geom,1

vtype,1

space,nn+2

write,bay3

allsel

x=57!生成第四个辐射矩阵文件bay4.sub

lsel,s,line,,5+x,6+x

lsel,a,line,,10+x,19+x,9

lsel,a,line,,15+x,16+x,1

nsll,s,1

esln,s,1

eplot

emis,2,.9

emis,3,.9

emis,4,.9

emis,5,.9

stef,0.19e-10

geom,1

vtype,1

space,nn+2

write,bay4

allsel

x=76 !生成第五个辐射矩阵文件bay5.sub

lsel,s,line,,5+x,6+x

lsel,a,line,,10+x,19+x,9

lsel,a,line,,15+x,16+x,1

nsll,s,1

esln,s,1

eplot

emis,2,.9

emis,3,.9

emis,4,.9

emis,5,.9

stef,0.119e-10

geom,1

vtype,1

space,nn+2

write,bay5

allsel

lsel,s,line,,61,64,3 ! 生成第六个辐射矩阵文件bay6.sub lsel,a,line,,97

nsll,s,1

esln,s,1

eplot

/dist,1,auto

/focus,1,auto

emis,2,.9

emis,3,.9

emis,4,.9

emis,5,.9

stef,0.119e-10

geom,1

vtype,1

space,nn+2

write,bay6

allsel

/prep7!再次进入前处理

esel,s,type,,2!作与隐藏方法类似的修改et,2,surf19,1,,,1,1

keyopt,2,8,2

nsel,all

emod,all,3,nn+1

allsel

et,3,matrix50,1

type,3

mat,1

real,1

se,bay1!依次读入矩阵文件

se,bay2

se,bay3

se,bay4

se,bay5

se,bay6

finish

/solu

toffst,460

d,nn+2,temp,90

solve!求解

finish

/post1

prrsol!得到冷却栅与空气的热流率

nsel,u,node,,nn+1,nn+2

plns,temp!得到温度分布

finish

6.12热辐射分析实例2

6.12.1问题描述

如图所示,考虑两个圆环之间的相互辐射。内环的外表面的辐射率为0.9,内环的内表面保持温度为1500F。外环面的内表面的辐射率为0.7,其外表面温度为100F。外界空间温度为70F。

图6-4 辐射圆环

6.12.2等效的命令流方法

/TITLE,RADIATION BETWEEN CIRCULAR ANNULUS

! Example for2D radiation analysis using the radiosity method

/PREP7

CYL4,0,0,.5,0,.25,180!定义内环参数

CYL4,0.2,0,1,0,.75,180! 定义外环参数

ET,1,PLANE55! 定义2D 热分析单元

LSEL,S,LINE,,1

SFL,ALL,RDSF,.9, ,1,! 内环辐射边界条件

LSEL,S,LINE,,7

SFL,ALL,RDSF,.7, ,1,! 外环辐射边界条件

LSEL,S,LINE,,3

DL,ALL, ,TEMP,1500,1! 内环温度

LSEL,S,LINE,,5

DL,ALL, ,TEMP,100,1 ! 外环温度

ALLSEL

STEF,0.119E-10! 定义Stefan-Boltzman 常数

TOFFST,460! 温度偏移

RADOPT,0.5,0.01,0, ! 设置Radiosity 求解器参数

SPCTEMP,1,70! 封闭体的空间温度

V2DOPT,0.0,0,0, ! 2D 形状系数

ESIZE,0.05,

AMESH,ALL

MP,KXX,1,.1! 导热率

FINISH

/SOLU

TIME,1

DELTIM,.5,.1,1

NEQIT,1000

SOLVE

FINISH

/POST1

ASEL,S,AREA,,1

NSLA,S,1

PRNSOL,TEMP

FINISH

6.13热辐射分析实例3

6.13.1问题描述

如图所示圆锥台的一个底面温度为100℃,圆台的表面暴露在温度为25℃的空气中,对流系数为1W/m2℃。锥台表面的辐射率为0.5,锥台材料的导热系数为10W/m℃。锥台的高0.5m,底半径为0.2m和0.1m。求解圆台的温度分布。

6.13.2等效的命令流方法

/TITLE,Thermal Analysis of Fin using Radiosity Method

/PREP7

ET,1,SOLID70! 选择8节点三维六面体热实体单元

MP,KXX,1,10.0! 导热系数为10.0 W/m°K

ESIZE,0.05,0! 单元尺寸

CONE,0.2,0.1,0,0.5,0,90,! 创建实体几何模型

CONE,0.2,0.1,0,0.5,90,180,

CONE,0.2,0.1,0,0.5,180,270,

CONE,0.2,0.1,0,0.5,270,360,

VGLUE,ALL! 布尔操作

MSHAPE,0,3D! 设定为3-D六面体单元

MSHKEY,1

VMESH,ALL! 网格划分

ASEL,S,AREA,,3

ASEL,A,AREA,,23

ASEL,A,AREA,,31

ASEL,A,AREA,,27

NSLA,S,1

SF,ALL,RDSF,.5,1! 辐射边界条件

SF,ALL,CONV,1.0,25.0! 对流边界条件

ALLSEL

ASEL,S,AREA,,1

ASEL,A,AREA,,25

ASEL,A,AREA,,29

ASEL,A,AREA,,21

NSLA,S,1

D,ALL,TEMP,100.0! 一底面温度约束为100℃

ALLSEL

SPCTEMP,1,25.0! 设定空间温度

HEMIOPT,100! 设定形状系数求解精度

RADOPT,.1,.1,1,1000,.1,.1! 设定radiosity 求解器选项

TOFFST,273.0! 设定绝对零度

STEF,5.67E-8! 设定Stefan-Boltzmann常数

FINISH

/SOLU

DELTIM,.01,.0001,.1! 设定载荷步增量

TIME,1.0! 设定载荷步结束的时间值

NEQIT,100! 设定迭代次数

SOLVE

FINISH

/POST1

PLNSOL,TEMP! 显示温度云图

FINISH

/EXIT,ALL

6.14《ANSYS Verification Manual》中与热辐射分析相关的实例

热辐射计算公式

传热学课程自学辅导资料 (热动专业) 二○○八年十月

传热学课程自学进度表 教材:《传热学》教材编者:杨世铭陶文铨出版社:高教出版时间:2006 1

注:期中(第10周左右)将前半部分测验作业寄给班主任,期末面授时将后半部分测验作业直接交给任课教师。总成绩中,作业占15分。 2

传热学课程自学指导书 第一章绪论 一、本章的核心、重点及前后联系 (一)本章的核心 1、导热、对流、辐射的基本概念。 2、传热过程传热量的计算。 (二)本章重点 1、导热、对流、辐射的基本概念。 2、传热过程传热量的计算。 (三)本章前后联系 简要介绍了热量传递的三种基本方式和传热过程 二、本章的基本概念、难点及学习方法指导 (一)本章的基本概念 1、热传导 导热(Heat Conduction):物体各部分之间不发生相对位移时,依靠分子、原子及自由电子等微观粒子的热运动而产生的热量传递称为导热。 特点:从宏观的现象看,是因物体直接接触,能量从高温部分传递到低温部分,中间没有明显的物质迁移。 从微观角度分析物体的导热机理: 气体:气体分子不规则运动时相互碰撞的结果。 导电固体:自由电子不规则运动相互碰撞的结果,自由电子的运动对其导热起主导作用。 非导电固体:通过晶格结构振动所产生的弹性波来实现热量传递,即院子、分子在其平衡位置振动。 液体:第一种观点类似于气体,只是复杂些,因液体分子的间距较近,分子间的作用力对碰撞的影响比气体大;第二种观点类似于非导电固体,主要依靠弹性波(晶格的振动,原子、分子在其平衡位置附近的振动产生的)的作用。 热流量:单位时间传递的热量称为热流量,用Ф表示,单位为W。 3

常用材料热辐射系数

热分析材料导热系数汇总 材料导热系数 Metal Material Conductivity Density W/m-C kg/m 3 Aluminum, 2024, Temper-T3 121 2.80E+03 Aluminum, 2024, Temper-T351 143 2.80E+03 Aluminum, 2024, Temper-T4 121 2.80E+03 Aluminum, 5052, Temper-H32 138 2.68E+03 Aluminum, 5052, Temper-O 144 2.69E+03 Aluminum, 6061, Temper-O 180 2.71E+03 Aluminum, 6061, Temper-T4 154 2.71E+03 Aluminum, 6061, Temper-T6 167 2.71E+03 Aluminum, 7075, Temper-O 130 2.80E+03 Aluminum, 7075, Temper-T6 130 2.80E+03 Aluminum, A356, Temper-T6 128 2.76E+03 Aluminum, Al-Cu, Duralumin, 95%Al-5%Cu 164 2.79E+03 Aluminum, Al-Mg-Si, 97%Al-1%Mg-1%Si-1%Mn 177 2.71E+03 Aluminum, Al-Si, Alusil, 80%Al-20%Si 161 2.63E+03 Aluminum, Al-Si, Silumim, 86.5%Al-1%Cu 137 2.66E+03 Aluminum, Pure 220 2.71E+03 Beryllium, Pure 175 1.85E+03 Brass, Red, 85%Cu-15%Zn 151 8.80E+03 Brass, Yellow, 65%Cu-35%Zn 119 8.80E+03 Copper, Alloy, 11000 388 8.93E+03 Copper, Aluminum bronze, 95%Cu-5%Al 83 8.67E+03 Copper, Brass, 70%Cu-30%Zn 111 8.52E+03 Copper, Bronze, 75%Cu-25%Sn 26 8.67E+03 Copper, Constantan, 60%Cu-40%Ni 22.7 8.92E+03 Copper, Drawn Wire 287 8.80E+03 Copper, German silver, 62%Cu-15%Ni-22%Zn 24.9 8.62E+03 Copper, Pure 386 8.95E+03 Copper, Red brass, 85%Cu-9%Sn-6%Zn 61 8.71E+03

热辐射基本定律

热辐射的基本定律 ? ?smyt_1983 ?2位粉丝 ? 1楼 在工程技术中,在日常生活中,辐射换热现象是屡见不鲜的。太阳对大地的照射是最常见的辐射现象。高炉中灼热的火焰会烘烤得人们难以忍受…太阳对人造卫星的辐射,会使卫星的朝阳面的温度明显地高于卫星背阳面的温度;高温发动机部件与飞机机体之间的辐射换热严重地影响着飞机的结构与强度设计,等等。特别是近年来,人类对太阳能的利用,都大大地促进了人们对辐射换热的研究。 本章首先介绍辐射的基本特性和基本规律;然后重点讨论物体之间的辐射换热规律;最后对气体辐射换热的特点作扼要的介绍。 第一节基本概念 1-1 热辐射的本质和特征 由于不同的原因,物体能够向其所在的空间发射各种不同波长的电磁波;不同波长的电磁波具有不同的效应,人们可以利用不同波长的电磁波效应达到一定的目的。比如,人们可以利用无线电波传送信息,利用x射线穿透物质的能力进行零件探伤,利用热射线传递热能,等等。人们根据电磁波不同效应把电磁波分成若干波段。波长λ=0.38一0.76μm的电磁波段称为可见光波段λ=0. 76—1000 μm的电磁波段称为红外波段(一般将红外波段范围又分为近红外波段和远红外波段,近红外波段为λ=0.7—25μm,远红外波段为λ=25—1000μm);波长大于1000μm的电磁波段称为无线电波段(根据其波长的不同又可分为雷达、视频和广播三个波段);波长小于0.4μm的电磁波依次分为紫外线、x射线和Y射线等。可见光和红外线以及紫外线的一部分被物体吸收后产生热效应,即波长λ=0.1—1000 μm范围内的电磁技能被物体吸收变为热能,因此,这一波长范围的电磁波称为热射线。因为在一般常见的工业温度条件下,其辐射波长均在这一范围,所以本课程所感兴趣的将是热射线,下面将专门讨论这一波长范围内电磁波的发射、传播和吸收的规律。 一、热辐射的本质和特点

第8章 热辐射基本定律和辐射特性(杨世铭,陶文栓,传热学,第四版,答案)

第8章 热辐射基本定律和辐射特性 课堂讲解 课后作业 【8-10】一等温空腔的内表面为漫射体,并维持在均匀的温度。其上有一个面积为0.022 m 的小孔,小孔面积相对于空腔内表面积可以忽略。今测得小孔向外界辐射的能量为70W ,试确定空腔内表面的温度。如果把空腔内表面全部抛光,而温度保持不变,问这一小孔向外的辐射有何影响? 【解】小孔可以当做黑体来处理,4T A Φσ= 498.4496K 02 .01067.570 484 b =??==-A E T σ 小孔的黑体特性与空腔的内表面的性质无关,故不影响小孔向外的辐射。 【8-18】暖房的升温作用可以从玻璃的光谱穿透比变化特性解释。有一块厚为3mm 的玻璃,经测定,其对波长为0.3~2.5μm 的辐射能的穿透比为0.9,而对其他波长的辐射能可以认为完全不穿透。试据此计算温度为5800K 的黑体辐射及温度为300K 的黑体辐射投射到该玻璃上时各自的总穿透比。 【解】 ()()()()()()()() [] 12212 1 2 1 2 1 2 2 1 1 ~0b ~0b ~b b b b b b b b b b b b b b 0 b 9.09.0d 9 .0d 9.0d d d d d λλλλλλ λλλλλλ λλ λλλλλλλλ λ λλτλ λτλ λτλλτλλττF F F E E E E E E E E E E E E E E -==== = + + ==???????∞ ∞ T 1=5800K ,K m 174058003.011?=?=μλT ,K m 1450058005.212?=?=μλT ()0.032854 1~0b =λF ,()0.9660652~0b =λF ()()[][]0.8398899032854 .0966065.09.09.01 2 ~0b ~0b =-=-=λλτF F T 2=300K ,K m 903003.011?=?=μλT ,K m 0573005.212?=?=μλT ()0.0000288 1~0b =λF ,()0.000242~0b =λF ()()[][]0.000190080.0000288 0.000249.09.01 2 ~0b ~0b =-=-=λλτF F 【8-21】温度为310K 的4个表面置于太阳光的照射下,设此时各表面的光谱吸收比随波 长的变化如附图所示。试分析,在计算与太阳能的交换时,哪些表面可以作为灰体处理?为什么? 【解】太阳辐射能的绝大部分集中在2μm 以下的区域,温度为310K 的物体辐射能则绝大部分在6μm 以上的红外辐射,由图可见,第一种情形与第三种情形,上述波段范围内单色吸收率相同,因而可以作为灰色处理。

ansys二次开发及实例

ansys二次开发教程+实例 第3章ANSYS基于VC++6.0的二次开发与相互作用分析在ANSYS中的实现 3.1 概述 ANSYS是一套功能十分强大的有限元分析软件,能实现多场及多场耦合分析;是实现前后处理、求解及多场分析统一数据库的 一体化大型FEA软件;支持异种、异构平台的网络浮动,在异种、异构平台上用户界面统一、数据文件全部兼容,强大的并行计算功能 支持分布式并行及共享内存式并行。该软件具有如下特点: (1) 完备的前处理功能 ANSYS不仅提供了强大的实体建模及网格划分工具,可以方便地构造数学模型,而且还专门设有用户所熟悉的一些大型通用有 限元软件的数据接口(如MSC/NSSTRAN,ALGOR,ABAQUS等),并允许从这些程序中读取有限元模型数据,甚至材料特性和边 界条件,完成ANSYS中的初步建模工作。此外,ANSYS还具有近200种单元类型,这些丰富的单元特性能使用户方便而准确地构建出 反映实际结构的仿真计算模型。 (2) 强大的求解器 ANSYS提供了对各种物理场量的分析,是目前唯一能融结构、热、电磁、流体、声学等为一体的有限元软件。除了常规的线性、 非线性结构静力、动力分析外,还可以解决高度非线性结构的动力分析、结构非线性及非线性屈曲分析。提供的多种求解器分别适用于 不同的问题及不同的硬件配置。 (3) 方便的后处理器 ANSYS的后处理分为通用后处理模块(POST1)和时间历程后处理模块(POST26)两部分。后处理结果可能包括位移、温度、应力、应变、速度以及热流等,输出形式可以有图形显示和数据列表两种。 (4) 多种实用的二次开发工具 ANSYS除了具有较为完善的分析功能外,同时还为用户进行二次开发提供了多种实用工具。如宏(Marco)、参数设计语言(APDL)、用户界面设计语言(UIDL)及用户编程特性(UPFs),其中APDL(ANSYS Parametric Design Language)是一种非常类似于Fortran77的参数化设计解释性语言,其核心内容为宏、参数、循环命令和条件语句,可以通过建立参数化模型来自动完成一些通用性强的任务;UIDL(User Interf ace Design Language)是ANSYS为用户提供专门进行程序界面设计的语言,允许用户改变ANSYS的图形用户界面(GUI)中的一些组项,提供了一种允许用户灵活使用、按个人喜好来组织设计ANSYS图形用户界面的强有力工具;UPFs(User Programmable Features)提供了一套Fortran77函数和例程以扩展或修改程序的功能,该项技术充分显示了ANSYS的开放体系,用户 不仅可以采用它将ANSYS程序剪裁成符合自己所需的任何组织形式(如可以定义一种新的材料,一个新的单元或者给出一种新的屈服 准则),而且还可以编写自己的优化算法,通过将整个ANSYS作为一个子程序调用的方式实现。 鉴于上述特点,近几年来,ANSYS软件在国内外工程建设和科学研究中得到了广泛的应用。但这些应用大多局限于直接运用ANSYS软件进行实际工程分析,对利用ANSYS提供的二次开发工具进行有限元软件设计却很少涉及。本文首次利用ANSYS软件的二次开发功能,以VC++6.0为工具,运用APDL语言,对ANSYS进行二次开发,编制框筒结构-桩筏基础-土相互作用体系与地震反应分析程序。 3.2 程序设计目标 针对某一实际工程问题,ANSYS所提供的APDL语言可对ANSYS软件进行封装。APDL语言即ANSYS软件提供的参数化设计 语言,它的全称是ANSYS Parametric Design Language。使用APD L语言可以更加有效地进行分析计算,可以轻松地进行自动化工作(循环、分支、宏等结构),而且,它是一种高效的参数化建模手段。使用APDL语言进行封装的系统可以只要求操作人员输入前处理 参数,然后自动运行ANSYS进行求解。但完全用APDL编写的宏还存在弱点。比如用APDL语言较难控制程序的进程,虽然它提供了 循环语句和条件判断语句,但总的来说还是难以用来编写结构清晰的程序。它虽然提供了参数的界面输入,但功能还不是太强,交互性 不够流畅。针对这种情况,本文用VC++6.0开发框筒结构-桩筏基础-土相互作用有限元分析程序(简称LW S程序)。

EFD仿真材料热辐射系数表

Emissivity Coefficients of some common Materials The radiation heat transfer emissivity coefficient of some common materials as aluminum, brass, glass and many more Sponsored Links The emissivity coefficient - - indicates the radiation of heat from a 'grey body' according the Stefan-Boltzmann Law, compared with the radiation of heat from a ideal 'black body' with the emissivity coefficient = 1. The emissivity coefficient - - for some common materials can be found in the table below. Note that the emissivity coefficients for some products varies with the temperature. As a guideline the emmisivities below are based on temperature 300 K. Surface Material Emissivity Coefficient - - Alloy 24ST Polished 0.9 Alumina, Flame sprayed 0.8 Aluminum Commercial sheet 0.09 Aluminum Foil 0.04 Aluminum Commercial Sheet 0.09 Aluminum Heavily Oxidized 0.2 - 0.31 Aluminum Highly Polished 0.039 - 0.057 Aluminum Anodized 0.77 Aluminum Rough 0.07 Antimony, polished 0.28 - 0.31 Asbestos board and paper 0.94 Asphalt 0.93 Basalt 0.72 Beryllium 0.18 Beryllium, Anodized 0.9 Bismuth, bright 0.34 Black Body Matt 1.00 Black Parson Optical 0.95 Black Silicone Paint 0.93 Resources, Tools and Basic Information for Engineering and Design of Technical Applications! Web The Engineering ToolBox Search

补充3-ANSYS热辐射分析

第六章 热辐射分析 6.1热辐射的定义 热辐射是一种通过电磁波传递热能的方式。电磁波以光的速度进行传递,而能量传递与辐射物体之间的介质无关。热辐射只在电磁波的频谱中占小部分的带宽。由于辐射产生的热流与物体表面的绝对温度的四次方成正比,因此热辐射有限元分析是高度非线性的。物体表面的辐射遵循Stefan-Boltzmann定律: 式中:—物体表面的绝对温度; —Stefan-Boltzmann常数,英制为0.119×10-10 BTU/hr-in-R,公制为 5.67×10-8 6.2基本概念 下面是对辐射分析中用到的一些术语的定义: 黑体 黑体被定义为在任意温度下,吸收并发射最大的辐射能的物体; 通常的物体为“灰体”,即ε< 1; 在某些情况下,辐射率(黑度)随温度变化; 辐射率(黑度) 物体表面的辐射率(黑度)定义为物体表面辐射的热量与黑体在同一表面辐射热量之比。 式中:-辐射率(黑度) -物体表面辐射热量 -黑体在同一表面辐射热量 形状系数 形状系数用于计算两个面之间的辐射热交换,在ANSYS中,可以用隐藏/非隐藏的方法计算2维和三维问题,或者用半立方的方法来计算3维问题。 表面I与表面J之间的形状系数为: 形状系数是关于表面面积、面的取向及面间距离的函数; 由于能量守恒,所以:

根据相互原理: 由辐射矩阵计算的形状系数为: 式中:-单元法向与单元I,J连线的角度 -单元I,J重心的距离 有限单元模型的表面被处理为单元面积dA I 及dA J ,然后进行数字积分。 辐射对 在辐射问题中,辐射对由一些相互之间存在辐射的面组成,可以是开放的或是闭合的。在ANSYS中,可以定义多个辐射对,它们相互之间也可以存在辐射ANSYS使用辐射对来计算一个辐射对中各面间的形状系数;每一个开放的辐射对都可以定义自己的环境温度,或是向周围环境辐射的空间节点。 Radiosity 求解器 当所有面上的温度已知时,Radiosity 求解器方法通过计算每一个面上的辐射热流来得到辐射体之间的热交换。而面上的热流为接下来的热传导分析提供了有限元模型的边界条件。重复上面的过程,就会由于新的时间步或者新的迭代循环会得到新的热流边界条件,从而计算出新的温度分布。在计算中使用的每个表面的温度必须是均匀的,这样才能满足辐射模型的条件。 6.3分析热辐射问题 针对不同的情况ANSYS为热辐射分析提供了四种方法。 热辐射线单元(LINK31),模拟两节点间(或多对节点)间辐射; 表面效应单元(SURF151及SURF152),模拟点对面(线)的辐射; 利用AUX12生成辐射矩阵,模拟更一般的面与面(或线与线)的辐射(只有ANSYS/Multiphysics ANSYS/Mechanical和ANSYS/Professional这些产品提供辐射矩阵生成器); Radiosity求解器方法,求解二维、三维面与面之间的热辐射,该方法对所有含温度自由度的 二维和三维单元都适用。(只有ANSYS/Multiphysics,ANSYS/Mechanical 和ANSYS/Professio- nal这些产品提供Radiosity求解器)

热辐射实验

1.实验题目:热辐射与红外扫描成像系列实验 2.实验目的 1) 学习热辐射的背景知识及相关定律,理解科学家们创造性的思维方法和相关实验技术。 2) 学习用虚拟仪器研究热辐射基本定律,测量Planck 常数。 3) 了解红外扫描成像的基本原理,掌握扫描成像的实验方法和技术。 4) 培养学生运用热辐射的基本原理和相关技术进行基础研究和应用设计的能力。 3.实验内容 1) 验证热辐射基本定律,用黑体辐射公式测量Planck 常数 2) 研究和测定物体不同表面状态的辐射发射量 3) 研究辐射发射量与距离的关系 4) 红外扫描成像实验研究 5) 红外无损探伤实验研究 6) 红外温度计的设计与材料热性质的研究 7) 运用热辐射基本定律和本实验装置进行自主应用设计性实验 4.实验原理 1. 了解热辐射的基本概念和定律 当物体的温度高于绝对零度时,均有红外光向周围空间辐射出来,红外辐射的物理本质是热辐射。其微观机理是物体内部带电粒子不停的运动导致热辐射效应。热辐射的波长和频率在0.76?100μ之间,与电磁波一样具有反射、透射和吸收等性质。设辐射到物体上的能量为Q ,被物体吸收的能量为Q α,透过物体的能量为Q τ,被反射的能量为Q ρ。 由能量守恒定律可得: Q=Q α+Q τ+Q ρ归一化后可得: +1Q Q Q Q Q Q βαταβτ+=++= (1) 式中α为吸收率,τ为透射率,ρ为反射率。 1.1 基尔霍夫定律 基尔霍夫指出:物体的辐射发射量M 和吸收率α的比值M/α与物体的性质无关,都等同于在同一温度下的绝对黑体的辐射发射量M B ,这就是著名的基尔霍夫定律。

1 212()B M M M f t αα====L (2) 基尔霍夫定律不仅对所有波长的全辐射(或称总辐射)而言是正确的,而且对任意单色波长λ也是正确的。 1.2 绝对黑体 能完全吸收入射辐射,并具有最大辐射率的物体叫做绝对黑体。实验室中人工制作绝对黑体的条件是:1)腔壁近似等温,2)开孔面积<<腔体。 本实验中我们利用红外传感器测量辐射方盒表面的总辐射发射量M 。M 是所有波长的电磁波的光谱辐射发射量的总和,数学表达式为: M M d λλ∞ =∫ (3) 上式被称为斯蒂芬-玻尔兹曼定律。不同的物体,处于不同的温度,辐射发射量都不同,但有一定的规律。 比辐射率ε的定义:物体的辐射发射量与黑体的辐射发射量之比,即 00d =d B B T B M M M M λλλελελ ∞∞??==????∫∫物体辐射发射量黑体辐射发射量 (4) 由基尔霍夫定律可知,辐射发射量M与吸收率α的关系:B M M α= 由能量守恒定律和基尔霍夫定律,即公式(1)和(2)联立求解 1B M M αβτα++=??=? 可得: ()1B M M τρ=?? (5) 由上述知识可知,若我们测出物体的辐射发射量和黑体的辐射发射量,便可求出物体的吸收率,还可以获得物体反射率和透射率的有关信息。 2. 空气中热辐射的传播规律研究 我们知道,许多物理量都与距离 r 的反平方成正比。现代物理学认为,这很大程度上是由空间的几何结构决定的。以天体辐射为例,如果距离 r 的指数比 2 大或者比 2 小,就会影响太阳的辐射场,使地球温度过低或者过高,从而不适合碳基生命形式的存在。那么热源的辐射量与距离的关系是否也遵循这一规律呢?对于球形均值热源和各种不同形状和不同材料构成的热源的辐射量在空气中的衰减规律及其分布是否都遵循反平方定律呢? 我们首先引进几个概念。辐射功率 P :单位时间内传递的辐射能 W ,即

2.1.2 热辐射的基本定律

2.1.2 热辐射的基本定律 第七章 光的量子性 本章主要介绍历史上在研究黑体辐射,光电效应和康普顿效应时,怎样打破经典理论成见,逐渐认识到光的波粒二象性,并阐述波粒二象性的含义。 §7—1 热辐射、基尔霍夫定律 一、几种不同形式的辐射 物体向外辐射将消耗本射的能量。要长期维持这种辐射,就必须不断从外面补偿能量,否则辐射就会引起物质内部的变化。在辐射过程中物质内部发生化学变化的,叫做化学发光。用外来的光或任何其它辐射不断地或预先地照射物质而使之发光的过程叫做光致发光。由场的作用引起的辐射叫场致发光。另一种辐射叫做热辐射,这种辐射在量值方面和按波长分布方面都取决全辐射体的温度。 任何温度的物体都发出一定的热辐射。 一物体 500℃左右,暗红色。随温度不断上升,辉光逐渐亮起来,而且波长较短的辐射越来越多。1500℃变成明亮的白炽光。同一物体在一定温度下所辐射的能量,在不同光谱区域的分布是不均匀的,而且温度越高,光谱中与能量最大的辐射相对应的频率也越高。在一定温度下,不同物体所辐射的光谱成份有显著的不同。 二、辐射出射度和吸收比 从上面知道:在单位时间内从物体单位面积向各个方向所发射的,频率在νννd +→范围内的辐射能量Φd 与ν和T 有关,而且νd 足够小时,可认为与νd 成正比 ν ννd E d T T =Φ, T E ,ν是ν和T 的函数,叫做该物体在温度T 时发射频率为ν的单色辐射出射度(单色 辐出度)。它的物理意义是从物体表面单位面积发出的,频率在ν附近的单位频率间隔内的辐射功率。它反映了在不同温度下,辐射能量按频率分布的情况。单位为 s m J m W ?=22// 从特体表面单位面积上所发出的各种频率的总辐射功率,称为物体的辐射出射度。用 )(0T Φ表示: νννd E d T T T ,0 ,0 0)(??∞ ∞ =Φ=Φ )(0T Φ只是温度的函数。T E ,ν和)(0T Φ同表面情况有关。 另一方面,当辐射照射到某一不透明物体表面时,其中一部分能量将被物体散射或反射,另一部分能量则被物体所吸收。用T d ,νΦ表示频率在ν和ννd +范围内照射到温度为 T 的物体的单位面积上的辐射能量;T d ,ν Φ'表示物体单位面积上所吸收的辐射能量,则

银河系热辐射和非热辐射成分分离原理

银河系热辐射和非热辐射成分分离原理 摘要银河系内射电源的辐射机制主要有两种:热的自由—自由辐射和非热的同步辐射。分别来自于带电粒子的相互作用和相对论电子在磁场中的螺旋运动,与之相对应的强射电源是电离氢区和超新星遗迹,而且银河系的大尺度结构的背景辐射也是来自于同步辐射。将这两种辐射成分进行分离是研究银河系星际介质的重要手段。本文利用多波段的射电连续谱观测数据,建立了一种新的辐射成分分离方法,通过对观测数据每一个像素点对应的银河系辐射的谱指数进行分析,以达到热辐射和非热辐射成分分离的目的,并求出同步辐射成分谱指数在银河系内的分布情况。 关键词射电连续谱;超新星遗迹;电离氢区 0引言 由于在光学波段观测银道面会有消光效应的存在,所以射电波段的观测数据成为了研究银河系结构的主要工具。在射电波段,银河系辐射主要有两种辐射机制:热的轫致辐射(自由—自由辐射)和非热的同步辐射。自由—自由辐射源于带电粒子相互碰撞,同步辐射是由相对论电子在磁场中的螺旋运动产生的。在厘米和分米波段的射电连续谱中,观测到的两种强射电源——超新星遗迹和电离氢区(HII区)的辐射机制分别是同步辐射和自由—自由辐射。将这两种辐射成分分离,对于研究银河系的意义是重大的。利用分离后的结果,可以描述银河系内不同种类电子的分布,可以发现未知的射电源以及新的超新星遗迹和HII区,也可以对已知的超新星遗迹和HII区进行验证。利用超新星遗迹,又可以研究大质量恒星的晚期演化,了解其对星际介质的加热作用、超新星爆发时的构成元素,也可以研究星际介质的磁场结构。结合复合线数据,可以求得HII区的光度,这对确定银河系的哈勃类型有着重要的作用。同时由得到的非热辐射成分的谱指数分布,也可以更准确的对丢失大尺度结构的观测数据,进行大尺度结构辐射的补偿。 分离热辐射和非热辐射成分的方法,前人已经建立了几种模型(如Hinshaw et al. (2007),Marta I. R. Alves et al. (2011),Paladini et al. (2005)),但是这些模型或者存在着很大的不确定度,或者有诸多的局限。本文中,我们将设计一种新的方法,利用多波段的射电连续谱数据,通过对谱指数的分析,来实现热辐射成分和非热辐射成分的分离,并且求得观测数据每一个像素点所对应的非热辐射成分的谱指数。 1 分离方法 1.1数据的选取 现已完成的银河系全天巡天和银道面巡天观测有很多,但是一些早期的数据灵敏度很低,分辨率也非常差,而且没有电子版的数据,这样的数据并不适合做

辐射换热的计算

电磁波波长从几万分之一米到数千米

τ ρQ Q ++1 //=+Q Q Q Q τρ

单位面积辐射体在单位时间内向半球空间发射的波长为λ(+dλ区间)的能量。 黑体辐射的理论是建立在如下几个基本定律基础上的,即: 学理论得出) 1884热力学理论)

式中 Eb λ-- 光谱辐射力,W/m3 ; λ -- 波长,m ; T -- 黑体热力学温度,K ; e -- 自然对数的底; c1 --- 第一辐射常量, 3.742×10-16 W ·m2; c2 --- 第二辐射常量, 1.438× 10-2m ·K 。 Planck 认为黑体以hv 为能量单位,不断发射和吸收频率为 v 的辐射, hv 称为能量子 2. 维恩位移定律 由Planck 定律知 E λ=f(λ,T )如图, E λ有最大值; 随着T max 向左移动 1893热力学理论得出,由Plank ’s Law 求导,并令 )(01c const c 512=??? ???-==-T T b e d d d dE λλλλλ 光谱辐射力曲线下的面积是该温度下黑体 的辐射力 例题8-1 试分别计算温度为2000K 和5800K 的黑体的最大单色辐射力所对应的波长。 解: 应用Wien 位移定律 T=2000K 时 max=2.910-3/2000=1.45 m T=5800K 时 max=2.910-3/5800=0.50 m 常见物体最大辐射力对应的波长在红外线区 太阳辐射最大辐射力对应的波长在可见光区 如不是黑体,则不完全遵守这个定律,但其变化方向是相同的,例如金属(钢锭): 当T<500oC 时,没有可见光,颜色不变;T 增大,其颜色分别为暗红、鲜红、桔黄和白色。(P365) 3. 斯忒藩-玻耳兹曼定律 1879年Stefan 实验,1884年 Boltzman 热力学理论将Plank ’s Law 积分即得: 2 40 m /W T d E E b b σλλ==?∞ 为黑体辐射常数,其值为5.67 10-8W/( m2·K4)。为计算高温辐射的方便,可 改写为: 2 4 0W/m 100C ? ?? ??=T E b s J 10626.634??=-h

太阳能辐射计算公式

一、中国太阳能直接辐射的计算方法 ()1bS a Q S +='(1) () 211111S c S b a Q S ++='(2)⊙ ()n c S b a Q S 2122++='(3) S ′为直接辐射平均月(年)总量;Q 为计算直接辐射的起始数据,可采用天文总辐射S 0,理想大气总辐射,Q i ,晴天总辐射Q 0来表示。a ,b ,a 1,b 1,c 1,a 2,b 2,c 2为系数。n 为云量。S 1为日照百分率。 相关系数的计算公式: ()() ()() ()()∑∑∑∑∑∑∑∑∑=========?? ? ??-?? ? ??--= ----= n i n i i i n i n i i i n i n i n i i i i i n i i i n i i i y y n x x n y x y x n y y x x y y x x r 12 12 12 121 1 1 1 2 21 考虑到大气透明度,则有 ()()n c S b a P P P Q n c S b a P P P Q S i m i 2122cos cos sin sin 1 2122++=++='+海 年海 年δ ?δ?(4) 其中m 为大气质量: δ ?δ?cos cos sin sin 1 sinh 1+== Θm 其中,φ为测站的纬度;δ为赤纬角,取每月15日的赤纬值作为月平均值;时角ω统一取中午12时,则ω=0,cosω=1;年P 为测站的年平均气压,P 海为海平面气压,P 海=1013.25mp ,海年P P 为对大气质量进行的高度订正。 对于a 2的计算: 当测站的海拔H≥3000m 时,a 2=0.456; 当H≤3000m 是,若年平均绝对湿度E ≤10.0mb ,则 F a ?-=00284.0688.02 否则F a ?-=01826.07023.02,其中F 为测站沙尘暴日数与浮尘日数之和。 对于(4)式中,系数之间的关系式为 { 011.1039.02222=+-=+b a c a

热辐射的研究

热辐射的研究 热辐射是19世纪发展起来的一门新学科,它的研究得到了热力学和光 谱学的支持,同时用到了电磁学和光学的新兴技术,因此发展很快。到19世纪末,这个领域已经达到这样的高峰,以致于量子论这个婴儿注定要从这里诞生。 热辐射实际上就是红外辐射。1800年,赫谢尔(W.Herschel)在观察太阳光谱的热效应时首先发现了红外辐射,并且证明红外辐射也遵守折射定律和反射定律,只是比可见光更易于被空气和其他介质吸收。1821年,塞贝克(T.J. Seebeck)发现温差电现象并用之于测量温度。1830年,诺比利(L. Nobili)发明了热辐射测量仪。他用温差电堆接收包括红外辐射在内的热辐射能量,再用不同材料置于其间,比较它们的折射和吸收作用。他发现岩盐对热辐射几乎是完全透明的,后来就用岩盐一类的材料做成了各种适用于热辐射的“光学”器件。 与此同时,别的国家也有人对热辐射进行研究。例如:德国的夫琅和费在观测太阳光谱的同时也对光谱的能量分布作了定性观测;英国的丁铎尔(J. Tyndall)、美国的克罗瓦(A.P.P. Crova)等人都测量了热辐射的能量分布曲线。 其实,热辐射的能量分布问题很早就在人们的生活和生产中有所触及。例如:炉温的高低可以根据炉火的颜色判断;明亮得发青的灼热物体比暗红的温度高;在冶炼金属中,人们往往根据观察凭经验判断火候。因此,很早就对热辐射的能量分布问题发生了兴趣。 美国人兰利(https://www.doczj.com/doc/c74103576.html,ngley)对热辐射做过很多工作。1881年,他发明了热辐射计,可以很灵敏地测量辐射能量。图19.13就是兰利的热辐射计。他用四个铂电阻丝组成电桥,从检流计测出电阻的温度变化。为了测量热辐射的能量分布,他设计了很精巧的实验装置,用岩盐作成棱镜和透镜,仿照分光计的原理,把不同波长的热辐射投射到热辐射计中,测出能量随波长变化的曲线,从曲线可以明显地看到最大能量值随温度增高向短波方向转移的趋势(图19.14)。1886年,他用罗兰凹面光栅作色散元件,测到了相当精确的热辐射能量分布曲线。 兰利的工作大大激励了同时代的物理学家从事热辐射的研究。随后,普林舍姆(E. Pringsheim)改进了热辐射计;波伊斯(C. V. Boys)创制了微量辐射计;帕邢(F. Paschen)又将微量辐射计的灵敏度提高了多倍。这些设备为热辐射的实验研究提供了极为有力的武器。 与此同时,理论物理学家也对热辐射展开了广泛研究。1859年,基尔霍夫证明热辐射的发射本领和吸收本领的比值与辐射物体的性质无关,并提出了黑体

有限元分析基础教程(ANSYS算例)(曾攀)

有限元分析基础教程Fundamentals of Finite Element Analysis (ANSYS算例) 曾攀 清华大学 2008-12

有限元分析基础教程曾攀 有限元分析基础教程 Fundamentals of Finite Element Analysis 曾攀 (清华大学) 内容简介 全教程包括两大部分,共分9章;第一部分为有限元分析基本原理,包括第1章至第5章,内容有:绪论、有限元分析过程的概要、杆梁结构分析的有限元方法、连续体结构分析的有限元方法、有限元分析中的若干问题讨论;第二部分为有限元分析的典型应用领域,包括第6章至第9章,内容有:静力结构的有限元分析、结构振动的有限元分析、传热过程的有限元分析、弹塑性材料的有限元分析。本书以基本变量、基本方程、求解原理、单元构建、典型例题、MATLAB程序及算例、ANSYS算例等一系列规范性方式来描述有限元分析的力学原理、程序编制以及实例应用;给出的典型实例都详细提供有完整的数学推演过程以及ANSYS实现过程。本教程的基本理论阐述简明扼要,重点突出,实例丰富,教程中的二部分内容相互衔接,也可独立使用,适合于具有大学高年级学生程度的人员作为培训教材,也适合于不同程度的读者进行自学;对于希望在MATLAB程序以及ANSYS平台进行建模分析的读者,本教程更值得参考。 本基础教程的读者对象:机械、力学、土木、水利、航空航天等专业的工程技术人员、科研工作者。

目录 [[[[[[\\\\\\ 【ANSYS算例】3.3.7(3) 三梁平面框架结构的有限元分析 1 【ANSYS算例】4.3.2(4) 三角形单元与矩形单元的精细网格的计算比较 3 【ANSYS算例】5.3(8) 平面问题斜支座的处理 6 【ANSYS算例】6.2(2) 受均匀载荷方形板的有限元分析9 【ANSYS算例】6.4.2(1) 8万吨模锻液压机主牌坊的分析(GUI) 15 【ANSYS算例】6.4.2(2) 8万吨模锻液压机主牌坊的参数化建模与分析(命令流) 17 【ANSYS算例】7.2(1) 汽车悬挂系统的振动模态分析(GUI) 20 【ANSYS算例】7.2(2) 汽车悬挂系统的振动模态分析(命令流) 23 【ANSYS算例】7.3(1) 带有张拉的绳索的振动模态分析(GUI) 24 【ANSYS算例】7.3(2) 带有张拉的绳索的振动模态分析(命令流) 27 【ANSYS算例】7.4(1) 机翼模型的振动模态分析(GUI) 28 【ANSYS算例】7.4(2) 机翼模型的振动模态分析(命令流) 30 【ANSYS算例】8.2(1) 2D矩形板的稳态热对流的自适应分析(GUI) 31 【ANSYS算例】8.2(2) 2D矩形板的稳态热对流的自适应分析(命令流) 33 【ANSYS算例】8.3(1) 金属材料凝固过程的瞬态传热分析(GUI) 34 【ANSYS算例】8.3(2) 金属材料凝固过程的瞬态传热分析(命令流) 38 【ANSYS算例】8.4(1) 升温条件下杆件支撑结构的热应力分析(GUI) 39 【ANSYS算例】8.4(2) 升温条件下杆件支撑结构的热应力分析(命令流) 42 【ANSYS算例】9.2(2) 三杆结构塑性卸载后的残余应力计算(命令流) 45 【ANSYS算例】9.3(1) 悬臂梁在循环加载作用下的弹塑性计算(GUI) 46 【ANSYS算例】9.3(2) 悬臂梁在循环加载作用下的弹塑性计算(命令流) 49 附录 B ANSYS软件的基本操作52 B.1 基于图形界面(GUI)的交互式操作(step by step) 53 B.2 log命令流文件的调入操作(可由GUI环境下生成log文件) 56 B.3 完全的直接命令输入方式操作56 B.4 APDL参数化编程的初步操作57

最新热辐射率整理

石墨及其他材料的热辐射率 材料热辐射率 石墨(石油焦基)0.70~0.90 石墨(炭黑基)0.85~0.95 模压石墨0.60~0.80 炭黑0.90~0.99 银0.04 氧化镍0.87 磨光钨0.15 辐射传热: 黑体:能吸收全部热射线的物体(A=1)成为绝对黑体,简称黑体。 谱郎克辐射定律:单位时间内从物体单位表面上向半球空间所辐射出去的总能量称为物体的全 辐射能力,用“E”,单位为W/m2 斯蒂芬-波尔茨曼定律(四次方定律) Eo=CO(T/100)4 CO—黑体的辐射系数,数值为 5.67[W/(m2.K4)] 在实际工程中,将辐射能力小于黑体的物体称为灰体。实际物体的辐射能力与同温度下黑体的辐射能力的比值称为该物体的黑度。 ε=E/EO E=εEO=εCO(T/100)4=C(T/100)4 式中ε—回体的黑度,ε=0–1 C—灰体的辐射系数,[W/m2.K4.℃]C=εCO

常用工程材料的黑度ε 材料名称温度 (℃) ε值材料名称温度(℃)ε值 精密磨光的纯铜80–1150.018-0.023高铝砖、镁 砖 ——0.8 无光泽的黄铜23-3500.22炭化硅板1300-14000.9-0.94磨光的钢件770-10400.52-0.56硅藻土粉-0.25 新轧制的钢200.24水泥板10000.63 钢板表层氧化200.82水泥-0.54 表面氧化钢件940-11000.80水(> 0.1mm) 0-1000.95-0.96氧化后的铁125-5250.78-0.82石膏200.8-0.9铸铁500-12000.85-0.95石棉水泥 板 200.96 玻璃22-900.94石棉粉-0.4-0.6红砖200.93煤100-1600.81-0.79耐火黏土砖200.85雪00.8 耐火黏土砖10000.75木材200.8-0.92耐火的砖体12000.59硬橡皮200.95 抹灰的砖体200.94

第7章-热辐射的基本定律

第七章热辐射的基本定律 在工程技术中,在日常生活中,辐射换热现象是屡见不鲜的。太阳对大地的照射是最常见的辐射现象。高炉中灼热的火焰会烘烤得人们难以忍受‘太阳对人造卫星的辐射,会使卫星的朝阳面的温度明显地高于卫星背阳面的温度;高温发动机部件与飞机机体之间的辐射换热严重地影响着飞机的结构与强度设计,等等。特别是近年来,人类对太阳能的利用,都大大地促进了人们对辐射换热的研究。 本章首先介绍辐射的基本特性和基本规律;然后重点讨论物体之间的辐射换热规律;最后对气体辐射换热的特点作扼要的介绍。 第一节基本概念 1-1 热辐射的本质和特征 由于不同的原因,物体能够向其所在的空间发射各种不同波长的电磁波;不同波长的电磁波具有不同的效应,人们可以利用不同波长的电磁波效应达到一定的目的。比如,人们可以利用无线电波传送信息,利用x射线穿透物质的能力进行零件探伤,利用热射线传递热能,等等。人们根据电磁波不同效应把电磁波分成若干波段。波长λ=0.38一0.76μm的电磁波段称为可见光波段λ=0.76—1000 μm的电磁波段称为红外波段(一般将红外波段范围又分为近红外波段和远红外波段,近红外波段为λ=0.7—25μm,远红外波段为λ=25—1000μm);波长大于1000μm的电磁波段称为无线电波段(根据其波长的不同又可分为雷达、视频和广播三个波段);波长小于0.4μm的电磁波依次分为紫外线、x射线和Y射线等。可见光和红外线以及紫外线的一部分被物体吸收后产生热效应,即波长λ=0.1—1000 μm范围内的电磁技能被物体吸收变为热能,因此,这一波长范围的电磁波称为热射线。因为在一般常见的工业温度条件下,其辐射波长均在这一范围,所以本课程所感兴趣的将是热射线,下面将专门讨论这一波长范围内电磁波的发射、传播和吸收的规律。 一、热辐射的本质和特点 1、发射辐射能是各类物质的固有特性。当原子内部的电子受温和振动时,产生交替变化的电场和磁场,发出电磁波向空间传播,这就是辐射。由于自身温度或热运动的原因面激发产生的电磁波传播,就称热辐射。显然,热辐射是电磁波,电磁波的波长范围可从几万分之一微米到数千米,它们的名称和分类如图所示。通常把λ=0.1—100μm范围的电磁波称热射线,其中包括可见光线、部分紫外线和红外线具有波动和量子特性。 2、特点 热辐射的本质决定了热辐射过程有如下三个特点:

相关主题
文本预览
相关文档 最新文档