当前位置:文档之家› 变压器油中溶解气在线监测综述解读

变压器油中溶解气在线监测综述解读

变压器油中溶解气在线监测综述解读
变压器油中溶解气在线监测综述解读

变压器油中溶解气体在线监测综述

(长沙理工大学化学与生物工程学院应用化学专业)

摘要变压器油中溶解气体的分析是获取变压器运行状态信息的重要手段之一。本文综述了国内外变压器油中溶解气体在线监测技术的现状,提出了目前存在的问题及今后的发展趋势。

关键词电力变压器变压器油溶解气体分析在线监测发展趋势

电力变压器在电力系统中属于最重要和最昂贵的设备之列,同时也是导致电力系统事故最多的设备之一。其运行状态的好坏直接关系着电力系统的安全,稳定运行,因而如何及时,准确地检测出电力变压器的早期潜伏性故障就显得十分重要。

为确保变压器的安全运行,许多国家研究了多种技术来监测和诊断变压器故障。其中变压器油中溶解气离线色谱分析法因其能够在变压器运行过程中进行,不受外界电场和磁场的影响,而且可以发现设备中一些用局部放电法所不能发现的缺陷(如局部性过热等,故得到了广泛认可。

但近几年,因离线监测试验环节较多,操作手续较繁,检测周期较长,而且难以发现类似匝间绝缘缺陷等故障。因而国内外都已致力于在线色谱监测装置的研制,以实现连续监测,及时发现故障。下面从在线监测方法类别及其典型的监测仪器作介绍。

一、研究现状

1、在线监测技术方法类别

在线监测技术主要根据脱气原理不同,检测的气体不同可分为两类,单组份气体在线检测技术和多组分气体在线检测技术。

1.1单组份气体在线检测技术

最主要的特征是在线监测变压器油中如:H2、C2H2、微水等某一特征气体组分含量或以它为主的混合气体浓度,不进行气体组分分离而直接测量气体体积分数。又可细分为:

(1测量可燃性气体总量

可燃性气体总量指H2、CO和各种气态烃类含量的总和。这类装置以日本三菱电力公司TCG检测装置为代表,只给出可燃性气体的总量,不能给出某一组分的单独含量。

大连地区220kV及以上变压器安装的加拿大HYDRAN 201i早期故障在线装置,监测4种主要故障气体(H2、CO、C2H4、C2H2)的总和,当气体数值偏离基线值,设备提示不同程度的报警,从而采取适当维护措施,这一点正符合状态维修的原则。

(2测量单一H2组分

当设备内部存在局部过热或局部放电时,所产生的分解气体大多都含有氢气,它是电力变压器内部气体各组成中最早发生变化的气体。目前国内现场已安装的此类装置以加拿大SYPROTEC公司的HYDRAN产品为主,通过燃料电池传感器采集信号输出。这种仪器结构简单,适合在现场作故障的初步诊断,需进一步作色谱分析才能确定故障。

1.2 多组分气体在线检测技术

最主要的特征是先对电力变压器油中溶解气体进行油气分离,再对利于诊断电力变压器故障的多种气体进行组分分离和检测。

国外美国AVO公司的TrueGas变压器油中气体在线监测设备可监测多达八种气体,是目前检测气体种类较多的装置。澳大利亚的DRMCC变压器在线监测系统可持续、在线、多方位监测变压器的工作状态,主要监测对象包括溶解在油中的氢气、水、绕组温度、调压抽头位置等参数。国内研制的同类产品有宁波理工监测设备有限公司推出的TRAN—B型变压器故障在线监测设备,重庆大学研制的在线变压器故障预测系统能够在线监测油中H2、CO、CH4、C2H2、C2H4、C2H6等6种气体的浓度,并采用灰色聚类、糊模式多层聚类、核可能性聚类等多种算法预测油中溶解气体在未来时刻的浓度并诊断变压器在未来时刻的绝缘状况。这一类仪器相当于在现场建立了色谱工作站,但原理和流程由于现场的特定条件同试验室的色谱试验存在一定差别。

2、变压器油中溶解气在线监测的关键技术

2.1 变压器油中溶解气在线监测的基本原理

变压器油中溶解气体在线监测装置的原理如图1所示。

变压器本体油经循环进入脱气装置,经过油气分离装置分离出油中的溶解气体,分离后的油流回变压器油箱或者被收集到废油箱内。油气分离后,根据气体检测单元的需要进行气体分离,处理后的气体由检测器检测并转换为与气体浓度成正比的电信号,经模数转换后将气体的组分与浓度信息存储在控制主机的存储器内,供就地分析或远程调用。

这其中的关键技术就是油气分离及气体检测。

2.2 现场油气分离技术

变压器油中溶解气体在线监测装置常用的油气分离技术是薄膜渗透法、抽真空取气法和顶空分离法。(1薄膜渗透法

该方法利用某些高分子薄膜(如聚酰亚胺、聚四氟乙烯、聚六氟乙烯、氟硅橡胶等)的透气性,让油中所溶解的气体经薄膜透析到气室里,当渗透时间相当长后,透析到气室的气体浓度将达到动态平衡,分析气相组分的含量,根据道尔顿—亨利定律就可计算出油中气体的浓度。

此方法比固定型色谱仪的脱气方法简单,但要注意塑料薄膜与变压器油长期接触后的老化问题,特别是安装在变压器油箱底部的半透性薄膜,它还要长期地承受很大的油压,因此要求高分子薄膜必须要具有一定的机械强度以及耐油、耐高温的特性。国外有的在薄膜外侧覆盖以打有细孔的约0.5mm厚的金属层予以补强。

上海交通大学肖登明等研制了带微孔的聚四氟乙烯膜,大大提高膜对特征气体的渗透性能。采用聚四氟乙烯高分子薄膜一般的透气平衡时间为72h,若采用带微孔的高分子薄膜平衡时间可提高到24h。

加拿大Morgan Schaffer公司研制的GPl00采用了聚四氟乙烯尼龙管束,尼龙管束由聚四氟乙烯多层缠绕尼龙管束褶皱,很小面积内油接触面积大大增加,使透气性能大大改善。

(2抽真空取气法

根据产生真空的方式不同,抽真空取气又可以分为两种形式:波纹管法和真空泵法。前者使用利用小型电机带动波纹管反复压缩,多次抽真空,将油中溶解气体抽出来。后者使用真空泵抽真空来抽取油中溶解气体,废油仍回到变压器油箱。上海思源电气股份有限公司的TROM--600变压器油色谱在线监测系统就是采用了真空泵法。

另外还有真空鼓泡式分离技术,其基本做法是在恒温状态下,将油气分离装置抽为真空,然后将油样导入脱气装置,从油中析出气体在气泵的作用下对油样进行鼓泡,待液相油中气体浓度与气相浓度达到溶解平衡时,停止鼓泡。该方法的优点是脱气率高、重复性好,不污染变压器油,油气分离速度快,可实现连续脱气。

(3顶空分离法

根据顶空的方式不同,又可分为静态顶空式和动态顶空式。

静态顶空式主要原理是利用波纹管的不断往复运动,将变压器油中的气体快速的脱出,具有效率高、莺复性好的优点。并且采用循环取油方式,油样具有代表性。但由于顶空方式的油样与气样之间没有隔离,脱出的气样中会含有少量的油蒸汽,从而造成对色谱柱的污染,降低色谱柱的使用寿命。且波纹管的寿命有限,同时由于波纹管的磨损,对变压器油存在一定程度的污染。

动态顶空式主要原理是以载气在色谱柱之前往油中通气,将油中溶解气体置换出来,送入检测器检测,根据油中各组分气体的排出率调整气体的响应系数来定量。这种方式脱气速度较快,但由于要不断通入载气,不能使用循环油样,以免载气进入变压器本体油箱,因此油样代表性差。另外,在脱气完毕后,必须把油样放掉,这样每次检测必然消耗少量的变压器油。

2.3 混合油气分离和检测技术

混合气体的分离和检测主要有单组分气体检测和多组分气体的分离和检测。单组分气体的检测主要是对氢气和可燃总烃进行的检测,利用渗透膜进行油气分离,常用的氢气检测器主要有钯栅极场效应管、催化燃烧型传感器和燃料电池。多组分

气体检测器主要有热导检测器、阵列式气敏传感器法、半导体气敏传感器、红外光谱技术和光谱声谱技术。

2.3.1单组份气体的检测

(1钯栅场效应管检测器

钯栅场效应管利用钯栅场效应管作为传感器的仪器,首先是由北京供电局等七省市有关部门联合研制,北京电子管厂生产的BGY型变压器氢气在线监测仪。

钯栅场效应管对氢具有独特的选择性,基本不受其它气体组分的干扰。但实际运行发现,这种把栅场效应管存在严重缺点:一是寿命不够长,一般为一年多;二是零漂严重,要经常调整,而且多次出现误报警。

(2催化燃烧型检测器

催化燃烧型传感器的基本原理是在一根铂丝上涂上燃烧型催化剂,在另一根铂丝上涂上惰性气体层,组成阻值相等的一对元件,由这一对元件和加外两个固定电阻组成桥式检测回路。在一定的桥流(温度下,当它与可燃气体接触时,一个铂丝发生无烟燃烧反应,发热,其阻值发生变化,另一铂丝不燃烧,阻值不变,使原来平衡的电桥失去平衡,输出一个电信号,该信号与可燃气体浓度成线性关系。中国电力科学研究院利用这种传感器研制了变压器油中溶解氢气在线监测仪。它的特点是:选择性好、反应准确、稳定性好、能够定量检测、不易产生误报、控制可靠、寿命三年左右。

(3燃料电池型传感器

燃料电池是一种将贮存在燃料和氧化剂中的化学能直接转化为电能的一种发电装置。这种传感器己批量生产了携带式103B型和在线式ZOIR型两种类型的氢气检测仪,加拿大Syprotec公司生产的HYDRAN H201R/201i电力变压器早期故障在线监测装置,是一种将变压器油中的溶解气体经可选择性的渗透膜一聚四氟乙

烯膜进入燃料电池型传感器内,并在传感器内将油中析出的H2、CO、C2H2、

C2H4等气体与空气中的O2进行化学反应,从而产生一个与反应量成比例的电信号,能够实时在线测量气体浓度变化数值的装置。主要监测油中小分子气体氢气及少量一氧化碳、乙炔、微量乙烯等气体的综合体积分数及其时、日变化趋势,以判断变压器的运行状态。

2.3.2多组分气体的分离和检测技术

气体组分的检测主要由气敏传感器和检测室组成。目前用于变压器故障特征气体组分检测的传感器主要有热导检测器(TCD、阵列式气敏传感器法、半导体气敏传感器、红外光谱技术和光谱声谱技术。

(1 热导检测器(TCD

TCD 的原理是基于不同物质具有不同的热导系数,通过发热电阻丝时热量

(每小时的发热量)损失的比率,即可用来量度气体的组分和质量。TCD 最大的不足就是检出限不够,根据GB /T7252—2001《变压器油中溶解气体分析和判断

导则》对乙炔的最低检出限为0.1 X10-6,即使采用高纯的氦气做载气,TCD 也达

不到这个要求。因此通常的做法是对故障气体采用了富集技术。

河南中分的中分3000系统采用N 2作载气,样品组分经过载气的反复萃取,被浓缩在捕集器中,浓缩到一定的程度再进行分析。

(2阵列式气敏传感器法(电子鼻法

该方法基于多传感器信息融合技术,利用气体传感复杂的交叉敏感特性,有选择地将数个气体传感器组合在一起形成传感器阵列,结合模式识别技术如:BP 神经网络、灰色理论等,形成气体辨识系统,即电子嗅觉系统(又称“电子鼻”。该方法一般运用于环保、化工、家用报警、食品保鲜及航空航天等领域,当它用来实现要求精确定性和定量分析的电力变压器油中气体在线监测时,须先解决好气体的测量灵敏度、准确度和数据重复性等问题。

(3半导体气敏传感器

半导体传感器又称为阻性传感器或金属氧化物传感器,是研究开发较早的一种传感器,普遍用于可燃气报警。半导体气敏传感器中的金属氧化物最具代表性的是SnO2,SnO2载流子是电子,遇到还原性气体(包括H2、CO 、CH4、C2H6、C2H4,C2H2等可燃性气体时,由于还原性气体容易给出电子,使得半导体中电子数目增大,载流子增加,电阻降低;当它遇到氧化性气体(如O2时,由于氧化性气体容易夺取电子,使得N 型半导体中电子数目减少,载流子减少,电阻增大。

宁波理工在线监测MGA2000系统、上海思源电气股份有限公司的TROM —600系统和重庆海吉科技有限公司HG —DZJ 型变压器油监测系统均采用了这类传感器。这类传感器的主要特点为需要在氧化氛围里工作,否则其恢复时间要达到30 s 以上,使各峰出现严重拖尾现象。使用空气做载气可以解决这个问题,但这样对组分分离有一定影响。

(4傅里叶红外光谱技术

傅里叶红外光谱技术的原理图如图l 所示。

待测气体池置于迈克尔逊干涉光路中,动镜移动时探测器上将得到强度不断变化的干涉波,该干涉波包含有全部光谱的信息。对探测器测得的干涉强度进行傅里叶变换,可以得到各频率对应的光强。将样品干涉图和背景干涉图分别进行傅里叶变换并进行除法运算,可以得到样品透射光谱;将样品透射光谱经过对数运算得到样品吸收光谱。根据吸收光谱可判断气体成分和含量。

加拿大Syprotec公司的TNU在线监测装置使用了傅里叶红外光谱技术检测特征气体,可以检测出C2H2、C2H4、CH4、C2H6、CO、CO2和H2O 7种气体,其中对C2H2、C2H4、CH4、C2H6 4种气体的检测限分别为1 X 10-6、3×10-6、l×10-6、20×10-6。但是氢气不具有红外特性,TNU中使用HYDRAN传感器对其进行检测。

(5光谱声谱技术

光声光谱是基于光声效应的一种光谱技术,其原理图

如图2所示。

气体分子吸收特定波长的入射光后由基态跃迁至激发态,一部分处于激发态的分子与处于基态的分子相碰撞,吸收的光能通过无辐射弛豫过程转变为碰撞分子之间的平移动能(即气体的V—T传能过程,它表现为气体温度的升高。在气体体积一定的条件下,温度升高,气体压力会增大。如果对光源进行频率调制,气体温度便会呈现出与调制频率相同的周期性变化,进而导致压强周期性变化,微音器感应这一变化并将其转变为电信号,供外电路检测分析。气体V—T传能过程所需时

间,取决于气体各组分的物理化学特性。一般情况下,处于激发态的气体分子的振动动能经无辐射弛豫转变为碰撞分子之间的平动动能的时间非常短暂,远低于光的调制周期,因此可近似认为V—T传能过程是瞬时完成的。此时,光声信号的相位与光的调制相位相同,而光声信号的强度与气体的体积分数及光的强度成正比。光的强度一定时,根据光声信号强度就可以定量分析出气体的体积分数。

目前英国Kelman公司推出了基于光声光谱的在线和便携式监测装置。TRANSFIX在线监测装置可以检测H2、CO、CO2、CH4、C2H2、C2H6、C2H4、H2O、O2、N2。其中C2H2、C2H4、C2H6的可测范围分别为0.5~50000、2~50 000×10-6、2~50 000。

3、典型的在线监测仪

3.1 国内成果

(1MGA2000系统

宁波理工监测科技股份有限公司的MGA2000系统中气体组分分离装置采用复合色谱柱,PID双回路恒温控制,气体经色谱柱分离后进入半导体传感器进行检

测,能检测出H2、CO、CH4、C2H4、C2H2、C2H6 6种特征气体,采用24位A/D转换器对检测器信号进行采集。

其中MGA2000-7H色谱在线监测系统是宁波理工的第三代在线监测系统,采用纳米晶半导体材料添加稀有金属,广谱型纳米晶半导体气体检测器,由于纳米晶材料具有松散的颗粒结构,利于气体的迅速扩散,从而提高了响应速度和检测灵敏度。

(2中分3000在线监测仪

河南中分的中分3000色谱在线监测系统,采用色谱分析原理,应用动态顶空(吹扫一捕集脱气技术和高灵敏度微桥式(TCD检测器,实现对变压器油

中H2、CO、CH4、C2H4、C2H2、C2H6、CO27种组分检测。支持无线和有线两种通信方式,无线通信采用GPRS无线通信技术。

(3TROM—600在线监测仪

上海思源电气股份有限公司的TROM--600变压器油色谱在线监测系统,采用复式循环泵进行变压器油取样。采用真空脱气,可在15 min中将油中95%以上的气体分离出来。采用复合固定相色谱柱进行气体组分的分离,分离后的气体用气敏传感器进行检测。

(4HG-DZJ在线监测系统

重庆海吉科技有限公司依托重庆大学高电压与电工新技术国家级重点实验室的技术实力,研制了HG—DZJ型变压器油监测系统。该系统油气分离由自行设计的

四氟乙烯一六氟乙烯混合膜(F46膜进行渗透分离,H2、CO、CH4、C2H4、C2H2和

C2H6 6种气体经F46膜渗透过后,没有经过色谱柱,而是直接进入了MQ系列传感

器,MQ系列传感器是利用2种金属粉末按一定的重量比例混合均匀,在900℃-1100℃熔化,调制成浆料,高温均匀地涂抹在传感器的绝缘基片上。不同的配比

对气体的灵敏度响应不同,用不同的传感器对同一气体进行检测,由于传感器对气体存在交叉敏感,采用了信息融合技术对6种气体进行定量分析。

(5BSZ系列大型变压器油色谱在线监测装置

BSZ系列大型变压器油色谱在线监测装置是由东北电力试验研究院和本溪供电局联合研制的。它由油样引入系统、检测部分和在线遥控器3部分组成。采用自动全脱气进样、色谱仪分析、定期向遥控显示器发送检测结果。检测的气体是甲烷、乙炔、乙烯、乙烷。BSZ一1型装置于1993年3月研制成功,在试运行期间,装置获得了良好的效果。随后又相继推出了BSZ一2、BSZ一3型,并不断的提高改善监测的稳定性、抗干扰能力、报警功能、油循环系统、工艺水平等。

(6TRAN变压器早期故障监测仪

TRAN型变压器早期故障监测仪系北京电子管厂生产,其前身为BGY—l型变压器在线监测装置。BGY—l型氢气监测仪,其性能不稳定,容量出现误报,需经常调整、标定、维护,显得麻烦。因此,虽然当时大力在各省推广,但后来基本上全部退出使用。TRAN型监测仪在BGY—l型装置的基础上,改单通道为双通道,增加了判别油中产气速率的功能,提高了装置的可靠性。TRAN仪器采用高分子薄膜透氢,以钯栅场效应管作为检测器,通过温度补偿来测量气室中气体浓度,从而换算出油中氢气浓度。如果超过警戒值,则发生声光报警。

(7DDG—1000氢气在线监测仪

DDG—1000变压器油中溶解氢气在线监测仪是中国电科院研制的产品。该装置采用特制的聚芳杂环高分子膜透氢和载体催化敏感元件作为检测器。该仪器结构简单,安装方便,能自动定时检测并显示测试结果,己在变电站和电厂投运6台,最小检测浓度可达lυL/L。

3.2国外成果

(1Hydran 201i型在线监测仪

加拿大Syprotec公司研制的Hydran 201i型在线监测仪,是早期故障气体在线监测装置,该装置利用聚四氟乙烯薄膜的透气特性,用燃料电池型传感器作为检

测器,主要监测油中小分子气体H2及少量CO、C2H2、微量C2H4 等气体的综合体积分数及其时、日变化趋势,以判断电力变压器的运行状态。具有实时显示气体浓度及其变化率、故障报警、历史记录;周期性传感器测试、校验、设置和自检;远程软件升级等功能。采用RS485总线将现场监测获得的数据传输到本地监测诊断中心,也可通过可选的MODEM与远程计算机通讯。对不同气体组分的响应能力分别

为:H2为100%、CO 为18 士3%、C2H4为1.5 士0.5%、C2H2 为8 士2%,是一种

以检测H2为主,检测CO 为辅,对油中其它烃类气体几乎没有反应的在线检测装置,它在电力系统变压器在线监测中有着较重要的应用

(2美国斯维隆(Serveron公司研制的TM8在线监测仪

美国斯维隆(Serveron公司研制的TM8在线监测仪能检测变压器油中8种关键的故障气体:H2、CO、CO2、CH4、C2H4、C2H6、C2H2、O2。能通过8种故障气体、

油中水分、油温、环境温度对变压器运行状态进行分析。支持IEEE和IEC诊断工具,能达到快速报警和对故障的演示进行分析。TM8在线监测仪采用高纯氦气作为载气,通过两根色谱柱porapak N和分子筛来分离气体组分,分离出的气体组分进入热导池(TCD进行定量检测。

(3Transfix变压器油中溶解气体及微水在线监测系统

Transfix变压器油中溶解气体及微水在线监测系统是英国凯尔曼公司的产品。该产品突破性地采用了英国凯尔曼公司专利的光声光谱(PAS检测技术,采用稳定可靠的光声光谱检测模块,是新一代的油中溶解气体及微水在线监测装置,可提供油中八种溶解气体及水分含量,但其检测精度不高、高透过率的滤光片难以制造以及对油蒸汽污染敏感,环境适应能力较差。

(4DRMCC变压器在线监测系统

DRMCC变压器在线监测系统是澳大利亚wilson变压器公司推出的产品。该系统同时通过油色谱分析法、微水分析法和热比模式法来综合判断变压器的绝缘状况。该系统已经在澳大利亚、美国和日本等发达国家相继使用,用户给予了相当高的评价。

二、发展中的问题

目前大多数在线监测系统,其需要净化空气、N2和氦气等做载气,载气的消耗通常在l年左右,这就需要维护人员定期更换载气;

使用色谱柱作为气体组分的分离装置,随着固定相的流失等一系列原因,色谱柱的柱效会降低甚至失效,这时候就需要更换色谱柱;

半导体气敏传感器和热导检测器(TCD在长期使用中,其性能会逐渐发生变化,需要定期校准或更换。

采用傅里叶红外光谱和光声光谱技术的传感器都具有寿命长、稳定性好,从原理上讲不需要现场校准,不需要消耗载气并且不消耗所测气体等特点,但傅立叶红

外光谱不能检测H2而且光声光谱在检测灵敏度方面性能更优于采用傅里叶红外光谱,可以预期,基于光身光谱技术的在线监测装置有望成为理想的换代产品。

三、以后的发展方向

目前国内变压器故障油色谱在线监测设备普遍存在监测气体成分单一、故障判据过于简单化等缺陷。其监测软件系统往往功能简单,故障信息未采用网络化数据库保存而是以文件的形式存在,不利于数据信息的共享和保密。国外在线监测产品的分析软件往往都是非中文界面,存在操作过于繁琐、复杂等问题。

目前国内外对电气设备油中气体在线监测和故障分析技术的研究主要呈现以下几种方向:

(1)多种气体的在线监测。

单种气体的在线监测只能反映油中溶解的单一气体的实时状况,故障判定片

面,难以分析变压器的具体故障类型;而多种气体的在线监测则不然,能够真实地反映油中各种溶解气体的实时状况变化,为诊断故障类型提供了强有力的保障。

(2)故障诊断方法智能化。

现有的特征气体法、三比值法和无编码比值法等故障诊断方法,虽在一定范围内具有较好的性能,但都太绝对化,既不能对故障进行定位分析,又不能够有效地处理不精确性、不完全性和不确定性信息。因此,近几年来,人们相继引人模糊数学引、神经网络、灰色理论和小波分析等数学方法,积极探索能够快速、准确判定具体的潜伏性故障的智能化诊断方法。

(3)数据库大型化。

数据库足存放历史数据的仓库,所保存数据种类及特征量越多、越全面,时间越长,则对分析机组的故障越有利。历史数据库应包括定时采集动态数据、报警动态数据、异常动态数据、人工采集动态数据、工艺量、开关量、特征参数及其他测量数据。数据库的发展方向是大型、高速、实时。

(4)通信方式便利化。

在线监测的一项关键技术就是实现主控设备和远程终端设备的有效实时通信。随着计算机网络和无线通信技术的发展,使得通信方式有了更大的选择空间,通信的距离和准确都大大提高。

参考文献

[1] 张深波,刘晓峰,章连众等. 变压器油中溶解气体在线监测综述[J].化工时

刊,2011(25:52-55.

[2] 左新宇,付强. 变压器油中溶解气体在线监测方法及故障判断综述[J].广东电

力,2011(24:10-14.

[3] 陈茂辉. 浅谈电力变压器油中溶解气体在线监测技术[J].城市建设理论研

究,2011(31.

[4] 杜铁军. 浅谈电力变压器的在线监测技术[J].中国科技财富,2011(6:64.

[5] 陈庆祺. 基于变压器油中溶解气体在线监测技术的220kV主变故障分析及处理[J].变压器,2011(48:74-75.

[6] 张仲实. 在线监测技术应用情况分析[J].科技信息,2011(24:365-367.

[7] 刘添天,祁炯,苏镇西.变压器油中溶解气体在线监测装置应用中的若干问题--电力行业电力用油、气应用技术研讨会论文[C].西安,2011.

[8] 刘韬.浅析变压器油中溶解气体在线监测及故障诊断[J].城市建设理论研究, 2012(13.

[9] 李侯明.变压器油中溶解气体在线监测发展现状[J].电气开关,

2012,50(1:14-16.

[10] 袁帅,阎春雨,毕建刚等.变压器油中溶解气体在线监测装置技术要求与检验方法研究[J].电测与仪表,2012,49(11:35-38.

[11] 善学雷. 变压器油中溶解气体在线监测技术进展[J].电气开关,

2010,48(6:1-4,7.

[12] 李勇琦. 变压器在线监测技术的应用[J].科技资讯,2010(18:101-102,104.

变压器油色谱分析报告

运行中变压器油色谱分析 异常与解决对策 王海军 (河北大唐国际王滩发电有限责任公司) 摘要:对运行变压器油中氢气含量超标出现的原因进行了详细分析,并提出了氢气含量超标的滤油工艺及防止二次污染的源头控制、过程控制及关键点控制。 关键词:变压器油;色谱分析;热油循环;二次污染 1前言 运行中的变压器油气相色谱分析,以检测变压器油中气体的组成和含量,是早期发现变压器内部故障征兆和掌握故障发展情况的一种科学方法。特征气体的出现与变压器运行中的实际状况及在处理中的工艺有关,处理工艺粗糙可能造成变压器油的二次污染。 本文根据实际运行变压器中出现氢气含量超标的具体情况,分析了产生气体的原因并提出了变压器热油循环的处理工艺,防止变压器油二次污染的要点。 2变压器油中氢气含量超标、二次污染实例 我公司#1高压厂用公用变压器(以下简称#1高公变)于2005年10月1日并网运行,在运行中,根据预防性试验规程对各变压器进行了油色谱跟踪分析,发现#1高公变的氢气值出现过含量超过注意值:H2≤150μL/ L ,具体测量数值见表一: 对#1高公变进行热油循环后的色谱分析中,虽然氢气含量达到标准但在油中又检测到痕量乙炔,见表二

再次热油循环后氢气、乙炔均在标准之内。 3#1高公变油中氢气超标及二次污染原因分析 当变压器油中氢气含量超过注意时,人们根据多年的运行经验及文献[1]中指出: (1)当变压器出现局部过热时,随着温度的升高,氢气(H2)和总烃气体明显增加,但乙炔(C2H2)含量极少。 (2)变压器内部出现放电故障也会出现氢气(H2)。局部放电(能量密度一般很低),产生的特征气体主要是氢气氢气(H2),其次是甲烷(CH4),并有少量乙炔(C2H2),但总烃值并不高;火花放电(是一种间歇性放电,其能量密度一般比局部放电高些,属低能量放电)时,乙炔(C2H2)明显增加,气体主要成分时氢气(H2)、乙炔(C2H2);电弧放电(高能放电)时,氢气(H2)大量产生,乙炔(C2H2)亦显著增多,其次是大量的乙烯、甲烷和乙烷。 对于文献[1]中的阐述具有很强的理论性,变压器油是由烷烃、环烷烃和芳香烃等组成[3]的结构复杂的液态烃类混合物。当变压器内发生放电现象,油中的烷烃、环烷烃和芳香烃等烃类混合物发生分解,不同能量的放电产生的特征气体并伴有其他气体产生,根据产生的特征气体可以判断变压器内部发生的具体故障。 三比值法[1]是利用气象色谱分析结果中五种特征气体的三个比值(C2H2/C2H4、CH4/H2、C2H4/C2H6)来判断变压器内部故障性质。根据三比值法的编码规则,三比值法计算结果见表三 从表中特征值0、1、0判定氢气超标的原因为高湿度引起孔穴中的放电,而引起高湿度的原因在变压器生产过程中绝缘材料干燥彻底的情况下只有变压器运行中水分的进入。 所以根据我厂#1高公变在安装、运行过程中的具体情况对变压器油中氢气含量超标、乙炔二次污染分析如下: (1)#1高公变在电建安装过程中曾出现过气体继电器伸缩节法栏处渗油情况,于2005年10月10日更换新伸缩节后,渗油情况解决。在气体继电器伸缩节渗油期间水分、空气从渗油处进入变压器内,导致高公变在运行过程中油中氢气含量超出注意值。2006年2月5日对高公变进行热油循环48小时后,再检测氢气含量为9.99μL/ L,氢气含量超标问题解决。 (2)而乙炔的产生是由于使用的滤油机在滤油之前未对滤油机内部用合格变压器油进行冲洗,而且之前滤油机滤过其他油质。带内部残油进行滤油后的色谱分析里又出现3.23μL/ L的乙炔。重新滤油后再次做色谱分析,油内氢气、乙炔含量合格:氢气4.57μL/ L,乙炔0.00μL/ L。

变压器油中溶解气体在线监测概要

变压器油中溶解气体在线监测方法研究

摘要 (3) 1. 导言 (4) 2. 国内外发展现状及发展趋势 (6) 3. 变压器油中溶解气体在线监测方法的基本原理 (9) 3.1.变压器常见故障类型 (9) 3.2.变压器内部故障类型与油中溶解特征气体含量的关系 (10) 4. 基于油中特征气体组分的故障诊断方法 (14) 4.1.特征气体法 (14) 4.2.三比值法 (15) 4.3.与三比值法配合使用的其它方法 (17)

摘要 电力变压器是电力系统中最主要的设备,同时也是电力系统中发生事故最多的设备之一,对其运行状况实时监测,保证其安全可靠运行,具有十分重要的意义。变压器油中溶解气体的组分和含量在一定程度上反映出变压器绝缘老化或故障的程度,可以作为反映设备异常的特征量。如何以变压器油中溶解气体在线监测为手段,实现对运行变压器潜伏性故障的诊断和预测,是本文的出发点。 本文的目标是研究基于油中溶解气体分析(DGA)的电力变压器状态监测与故障分析方法,通过气体色谱分析方法实现对变压器油中溶解的七种特征气体(氢气H2、甲烷CH4、乙炔C2H2、乙烯C2H4、乙烷C2H6、一氧化碳CO、二氧化碳CO2)组分含量在线实时监测,从而达到对电力变压器工作状态的诊断分析。

1.导言 现代社会对能源的巨大需求促进了电力工业的飞速发展。一方面是单台电力的容量越来越大;另一方面是电力网向着超高压的方向发展,并正组织成庞大的区域性甚至跨区域的大电网。然而,随着电力设备容量的增大和电力网规模的扩大,电力设备故障给人们的生产和现代生活所带来的影响也就越来越大。这就要求供电部门在不断提高供电质量的同时,要切实采取措施来保证电力设备的正常运行,以此来提高供电的可靠性。长期以来形成的定期检修已不能满足供电企业生产目标。激烈的市场竞争迫使电力企业面临着多种棘手的问题,例如如何提高设备运行可靠性、如何有效控制检修成本、合理延长设备使用寿命等。因此,状态检修已成为必然。而状态检修的实现,必须建立在对主要电气设备有效地进行在线监测的基础上,通过实时监测高压设备的实际运行情况,提高电气设备的诊断水平,做到有针对性的检修维护,才能达到早期预报故障、避免恶性事故发生的目的。由此可见,以变压器状态监测为手段,随时对其潜伏性故障进行诊断和预测以及跟踪发展趋势是十分必要的。 对于大型电力变压器,目前几乎大多是用油来绝缘和散热,变压器油与油中的固体有机绝缘材料在运行电压下因电、热、氧化和局部电弧等多种因素作用会逐渐变质,裂解成低分子气体;变压器内部存在的潜伏性过热或放电故障又会加快产气的速率。随着故障的缓慢发展,裂解出来的气体形成气泡在油中经过对流、扩散作用,就会不断地溶解在油中。同一类性质的故障,其产生的气体量随故障的严重程度而异。由此可见,油中溶解气体的组分和含量在一定程度上反映出变压器绝缘老化或故障的程度,可以作为反映电气设备电气异常的特征量。 溶解气体分析(Dissolved Gas Analysis简称DGA)是诊断变压器内部故障的最主要技术手段之一。根据GB/T7252-2001《变压器油中溶解气体分析和判断导则》,可以通过分析油中7种分析组分H2、C2H2、C2H4、C2H6、CH4、CO和CO2的含量来判断并分析故障。通过从油样中分离出这些溶解气体,并利用色谱技术对其进行定量分析。变压器油中溶解的各种气体成分的相对数量和形成速度主要取决于故障点能量的释放形式及故障的严重程度,所以根据色谱分析结果可以进

变压器油中气体分析

变压器油中气体分析 通过培训掌握绝缘油中气体含量分析,气相色谱技术是近年来兴起的一项新技术,能够对运行中的变压器进行实时监测,通过采集变压器箱体内的少量油样,分析油中气体的组分及其含量,就可以判断变压器是否存在故障、故障的性质以及故障的大致部位。 油浸式变压器一旦出现故障,将造成影响现场生产,甚至造成机组停机,损失巨大。及时了解油浸变压器内部运行情况并发现故障苗头,对保证变压器安全、可靠、优质运行有十分重要的意义。 一、气相色谱法的原理和意义 色谱法它是一种物理分离技术。它的分离原理是使混合物中各组分在两相间进行分配,其中一相是不动的,叫做固定相,另一相则是推动混合物流过此固定相的流体,叫做流动相。当流动相中所含的混合物经过固定相时,就会与固定相发生相互作用。由于各组分在性质与结构上的不同,相互作用的大小强弱也有差异。因此在同一推动力作用下,不同组分在固定相中的滞留时间有长有短,从而按先后秩序从固定相中流出,这种借在两相分配原理而使混合物中各组分获得分离的技术,称为色谱法。当用液体作为流动相时,称为液相色谱,当用气体作为流动相时,称为气相色谱。 气相色谱法的一般流程主要包括三部分:载气系统、色谱柱和检测器。 当载气携带着不同物质的混合样品通过色谱柱时,气相中的物质一部分就要溶解或吸附到固定相内,随着固定相中物质分子的增加,从固定相挥发到气相中的试样物质分子也逐渐增加,也就是说,试样中各物质分子在两相中进行分

配,最后达到平衡。这种物质在两相之间发生的溶解和挥发的过程,称分配过程。分配达到平衡时,物质在两相中的浓度比称分配系数,也叫平衡常数,以K表示,K=物质在固定相中的浓度/物质在流动相中的浓度,在恒定的温度下,分配系数K是个常数。 由此可见,气相色谱的分离原理是利用不同物质在两相间具有不同的分配系数,当两相作相对运动时,试样的各组分就在两相中经反复多次地分配,使得原来分配系数只有微小差别的各组分产生很大的分离效果,从而将各组分分离开来。然后再进入检测器对各组分进行鉴定。 不同的故障会产生不同的主要特征气体和次要特征气体,这些故障气体的组成和含量与故障类型及严重程度有密切关系。分析溶解于油中的气体,就能尽早发现设备内部存在的潜伏性故障,并可随时监视故障的发展状况。因此,国家规程对于变压器油中各种气体的含量有着明确而严格的要求。特别是对于乙炔,它是反映故障放电的主要指标,一旦出现,就可能是变压器内部严重故障的反应。因此对于变压器油中乙炔的含量应严格要求和追踪。对于出现含乙炔的变压器油的变压器,应严格按规定进行追踪分析判断,并结合电气试验,对变压器内部运行做出正确的分析判断。当变压器油中的油气组分超标时,我们可以认为其设备内部就可能存在故障。气相色谱技术的运用充分解决了这一难题。变压器油气的色谱分析及色谱追踪试验,能够真实有效的反映设备的运行情况,对于尽早发现设备内部过热或放电性故障,及早预防保证设备的正常运行,有着重要的作用。 二、绝缘油气体在线装置工作原理 变压器在发生故障前,在电、热效应的作用下,其内部会析出以H2为主的

变压器油中溶解气体分析与诊断

变压器油中溶解气体分析与诊断 摘要 变压器在线监测及故障诊断技术,对提高电力系统的安全稳定性具有十分重要的意义。其中基于油中溶解气体分析的在线监测技术是变压器在线监测中最普遍,也是最重要的技术。目前己投入使用的油中溶解气体在线监测系统普遍存在一些不足,如检测气体种类少、准确度及精确度不高、体积大、成本高等。 本文对变压器油色谱在线监测及故障诊断系统进行了研究,分析了其它色谱在线监测方法的种种不足,对其进行了改进,设计了一套变压器油在线监测系统,能够及时、准确地监测变压器油中溶解的各种特征气体,实时地反映设备的运行状态,并对故障诊断算法进行了仿真。在获得真实可靠的监测数据的基础上,建立了一个诊断模型,并对该模型进行了仿真,仿真结果表明三比值法、四比值法等故障诊断方法有一定的优越性,能够比较准确地定性和定量地对故障做出判断,为电力运营部门提供有用的决策依据。 分析了变压器油中溶解气体的发展变化规律,研究了变压器油中溶解气体和故障类型之间的关系。对常用的三比值模型进行深入研究,总结了各种模型的特点和适用范围。论述了用三比值进行变压器油中溶解气体分析,诊断和预测变压器故障的有效性和可行性。 关键词:变压器油中溶解气体在线监测故障诊断

目录 第一章绪论 (4) 1.1变压器 (4) 1.1.1变压器的分类 (4) 1.1.2电力变压器的选型原则 (6) 1.1.3变压器的作用及其意义 (13) 1.2变压器油 (14) 1.2.1变压器油简介 (14) 1.2.2变压器油国内外发展现状 (15) 第二章.变压器油中溶解气体分析与诊断 (17) 2.1.利用CO、CO2浓度及CO2/CO比值诊断固体绝缘老化 (17) 2.2.利用mL(CO2+CO)/g(纸)诊断变压器绝缘寿命 (19) 2.3利用油中糠醛分析诊断变压器绝缘老化 (20) 2.3.1概述 (20) 2.3.2.油中糠醛含量测试方法 (21) 2.3.4利用油中糠醛诊断变压器绝缘寿命 (23) 2.4固体绝缘老化的综合诊断 (29) 3 变压器油的运行维护 (30) 3.1变压器油的选择 (30) 3.1.1变压器油的质量标准 (30) 3.1.2变压器油在低温下的特性 (31) 3.2 混油、补油和换油 (33) 3.2.1 混油和补油 (33) 3.2.2换油 (34) 3.3 运行变压器油的防劣措施 (36) 3.3.1 隔膜密封装置 (36) 3.3.2 净油器 (37) 3.4 变压器油的金属减活(钝化)剂 (42)

变压器油分析报告

洛阳阳光热电有限公司变压器油检验报告 样品状态运行油采样日 期 2009年08月18 日 样品名称#25变压器油分析日 期 2009年08月19 日 分析项目水分、介质损耗因数、击穿电压、 色谱 报告日 期 2009年08月21 日 采样地点#1主变依据标准 外状 水溶性酸(pH值) 酸值,mgKOH/g 闪点(闭口),℃ 水分,mg/L 10.5 GB/T7600 界面张力(25℃),mN/m 介质损耗因数(90℃)0.093 击穿电压,kV 52 体积电阻率(90℃) Ω·cm 油中溶解气体组分含量 色谱分析 如下 破乳化时间 备注 色谱:甲烷:17.90 乙烯:1.65 乙烷:2.58 乙炔:0.00 氢 气:174.32 一氧化碳:1437.09 二氧化碳:5178.93 总烃:22.13 分析意见:氢含量超过注意值! 建议缩短周期,跟踪分析! 其他结果合格。 审核试验张颖、罗燕贞、王静

洛阳阳光热电有限公司变压器油检验报告 样品状态运行油采样日期2009年08月18 日 样品名称#25变压器油分析日期2009年08月19 日 分析项目介质损耗因数、击穿电压、 色谱 报告日期 2009年08月21 日 采样地点#1高厂变依据标准外状 水溶性酸(pH 值) 酸值, mgKOH/g 闪点(闭 口),℃ 水分,mg/L 界面张力 (25℃), mN/m 介质损耗因 数(90℃) 0.069 击穿电压,kV 54 体积电阻率 (90℃) Ω·cm 油中溶解气 体组分含量 色谱分析 如下 破乳化时间 备注色谱:甲烷:10.88 乙烯:1.71 乙烷:2.32 乙炔:0.00 氢气:62.79 一氧化碳:811.07 二氧化碳:2915.03 总烃:14.91 分析意见:含量未发现异常! 其他结果合格。 审核试验张颖、罗燕贞、王静

变压器油气相色谱分析

变压器油气相色谱分析 一、基本原理 正常情况下充油电气设备内的绝缘油及有机绝缘材料,在热和电的作用下,会逐渐老化和分解,产生少量的各种低分子烃类及二氧化碳、一氧化碳等。这些气体大部分溶解在油中。当存在潜伏性过热或放电故障时,就会加快这些气体的产生速度。随着故障发展,分解出的气体形成的气泡在油里经对流、扩散,不断溶解在油中。例如在变压器里,当产气量大于溶解量时,变有一部分气体进入气体继电器。 故障气体的组成和含量与故障的类型和故障的严重程度有密切关系。 因此,在设备运行过程中定期分析溶解与由衷的气体就能尽早发现设备内部存在的潜伏性故障并随时掌握故障的发展情况。 当变压器的气体继电器内出现气体时,分析其中的气体,同样有助于对设备的情况做出判断。 二、用气相色谱仪进行气体分析的对象 氢(H2)、甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)、一氧化碳(CO)、二氧化碳(CO2)、氧(O2)、氮(N2)九种气体作为分析对象。 三、试验结果的判断

1、变压器等充油电气中绝缘材料主要是绝缘油和绝缘纸。设备在 故障下产生的气体主要也是来源于油和纸的热裂解。 2、变压器内产生的气体: 变压器内的油纸绝缘材料会在电和热的作用下分解,产生各种气体。其中对判断故障有价值的气体有甲烷、乙烷、乙烯、乙炔、氢、一氧化碳、二氧化碳。在正常运行温度下油和固体绝缘正常老化过程中,产生的气体主要是一氧化碳和二氧化碳。在油纸绝缘中存在局部放电时,油裂解产生的气体主要是氢和甲烷。在故障温度高于正常运行温度不多时,油裂解的产物主要是甲烷。随着故障温度的升高,乙烯和乙烷的产生逐渐成为主要特征。在温度高于1000℃时,例如在电弧弧道温度(3000℃)的作用下,油分解产物中含有较多的乙炔。如果故障涉及到固体绝缘材料时,会产生较多的一氧化碳和二氧化碳。 有时变压器内并不存在故障,而由于其它原因,在油中也会出现上述气体,要注意这些可能引起误判断的气体来源。例如:有载调压变压器中分解开关灭弧室的有向变压器本体的渗漏;设备曾经有过故障,而故障排除后绝缘油未经彻底脱气,部分残余气体仍留在油中;设备油箱曾作过带油补焊;原注入的油就含有某些气体等。还应注意油冷却系统附属设备(如潜油泵,油流继电器等)的故障也会反映到变压器本体的油中。 3、正常设备油中气体含量 4、《导则》推荐的油中溶解气体的注意值

变压器油的色谱分析

浅谈变压器油的色谱分析 时间:2011-04-27 15:04来源:《电气世界》 朱莉莉,朱明明摘要:从技术和专业管理的角度叙述变电站变压器、互感器内油的气相色谱分析,以分析溶解于变压器油中气体来诊断设备内部存在的故障。油气相色谱分析在检验充油设备试验中占有十分重要的地位。文章详细介绍了绝缘油、纸热解产气的理化过程。 摘要:从技术和专业管理的角度叙述变电站变压器、互感器内油的气相色谱分析,以分析溶解于变压器油中气体来诊断设备内部存在的故障。油气相色谱分析在检验充油设备试验中占有十分重要的地位。文章详细介绍了绝缘油、纸热解产气的理化过程。并对油样的提取要点进行了论述。最后根据本地区的电网等实际情况,举例说明故障后设备油中气体成份的分析判断。在研究、分析的基础上,论证了色谱分析与电气试验的关系。 关键词:变压器色谱油分析 0引言 随着地方经济迅速发展,及电气设备的不断更新换代的需要,给我们供电部门不论是从设备上还是技术上提出了更高的要求。为保证供给足够的优质电能,减少停电时间在采取原有的状态检修基础上,进一步实行在线监测。变压器类设备是变电站最关键的设备,它不仅是因为价值昂贵,最重要的是它发生事故后,影响面广,给工农业生产造成巨大的损失。目前对此类设备的安全运行给予高度的重视,而对变压器、互感器等用油的电气设备类最好的监测手段之一,就是对设备内的油进行气相色谱分析,以分析溶解于变压器油中气体来诊断设备内部存在的故障。所以油气相色谱分析在检验充油设备试验中占有十分重要的地位。我们公司从上世纪80年代中期就对220kV、110kV及35kV8000kVA及以上的主变压器、电流互感器、电压互感器、充油套管进行色谱分析,并发现了部分设备存在缺陷,及时处理保证了设备安全正常运行。 1绝缘油、纸热解产气的理化过程 变压器的绝缘材料主要是油、纸组合绝缘,变压器内部潜伏性故障产生的气体主要是来源于油和纸的热裂解。热解产气特征与材料的化学结构有着密切的关系,矿物质绝缘油的化学组成是石油烃类;绝缘纸的化学成分是纤维素。在它们的分子结构上有不同类型的化学键,键能越高,分子越稳定,由于具有不同化学键结构的碳氢化合物分子在高温下的不同稳定性,因此需要了解一下绝缘油热裂解产气的一般规律,即产生的烃类气体的不饱和度是随裂解能量密度(温度)的增加而增加的。随着热裂解温度增高的过程裂解的顺序是:烷烃—烯烃—炔烃—焦炭。 不同性质的故障,产生气体组份的特征不一样,例如局部放电时产生氢;较高温度过热时产生甲烷与乙烯,当严重过热时也会产生少量的乙炔;电弧故障时产生乙炔和氢气。另外,不同性质和不同能源大小的故障,产气量和产气速度也不一样。初始阶段的潜伏性故障产气少,产气速度慢;故障源温度高、面积大的故障产气多、产气速度快。要明白这个道理,必须对绝缘油、纸在故障下热裂解产气的化学原理有一个基本了解,这对我们分析和判断变压器类设备的故障有所帮助。 绝缘油、纸热裂解产气过程所涉及的化学原理主要有:绝缘油、纸的化学结构,热解产气过程的化学反应及其热力动力学。当然还涉及到其他理、化机理如气体的析气、溶解和扩散作用等问题。 2简述

变压器油中气体分析

变压器 TRANSFORMER 2000 变压器油中溶解气体的成分和含量 与充油电力设备绝缘故障诊断的关系 张利刚 摘要:介绍了通过分析变压器油中溶解气体的成分和含量以判断充油电力设备故障的机理和方法。 关键词:变压器;变压器油;气相色谱法;比值法 中图分类号:TM411;TM406 文献标识码:B 文章编号:1001-8425(2000)03-0039-04 Relation between the Composition & Contents of Dissolved Gases in Transformer Oil and Insulation Fault Diagnosis of Oil-Filled Power Equipment ZHANG Li-gang Abstract:The mechanism and method of estimating the oil-filled power equipment fault through analyzing the composition & contents of dissolved gases in transformer oil are introduced.

Key words:Transformer; Transformer oil; Gas Chromatography; Ratio method 1 前言 气相色谱法一直是国内外许多电力设备制造厂作为检验质量、开发新产品的有力工具。实践证明,用气相色谱法能有效地发现充油电力设备内部的潜伏性故障及其发展程度,而利用其他电气试验方法很难发现某些局部发热和局部放电等缺陷。故在1999年颁布执行的电力设备预防性试验规程中,把油中气体色谱分析放在“电力变压器及电抗器”试验的首位。某些变压器厂家在其产品中还装设了DGA(dissolved gas analysis,即溶解气体分析)自动检测报警系统。 2 故障分析的机理 充油的电力设备(如变压器、电抗器、电流互感器、充油套管和充油电缆等)的绝缘主要是由矿物绝缘油和浸在油中的有机绝缘材料(如电缆纸、绝缘纸板等)所组成。其中矿物绝缘油即变压器油,是石油的一种分 镏产物,其主要成分是烷烃(C n H 2n+2 )、环烷族饱和烃(C n H 2n )、芳香族不饱 和烃(C n H 2n-2 )等化合物。有机绝缘材料主要是由纤维素(C 6 H 10 O 5 ) n 构成。在 正常运行状态下,由于油和固体绝缘会逐渐老化、变质,会分解出极少 量的气体(主要有氢H 2、甲烷CH 4 、乙烷C 2 H 6 、乙烯C 2 H 4 、乙炔C 2 H 2 、一氧 化碳CO、二氧化碳CO 2 等7种)。当电力设备内部发生过热性故障、放电性故障或受潮情况时,这些气体的产量会迅速增加。表1列出气体的种类与外施能量的关系。 这些气体大部分溶解在绝缘油中,少部分上升在绝缘油的面上,例如变压器有一部分气体从油中逸出进入气体继电器(瓦斯继电器)。经验

变压器油色谱异常分析及处理_图文(精)

变压器油色谱异常分析及处理 (陕西延安) 摘要:介绍了延安发电厂3#主变压器油色谱分析数据超标后的检查、试验、分析判断及处理。 关键词:变压器;色谱;分析;处理 延安发电厂3#主变压器(型号SFSb-20000/110,额定容量20MW),在8月13日的油样色普分析结果中,发现乙炔含量为6.51ppm,超过注意值5.0ppm,引 起注意,及时汇报加强监督,为了进一步判断分析,在8月17日,又取油样送检,分析结果仍然是油样不合格,且乙炔含量增长较快,由6.5 1ppm 增长到7.26 ppm,在8月18日,再次送检油样,分析结果仍然是油样不合格,且乙炔含量增长较快,增长到11.76 ppm,根据三比值计算编码为102,判断设备内部存在裸金属放电故障,及时汇报,立即退出运行安排检查。 1 设备修前测量试验情况 1.1变压器油气相色谱分析报告 采样时间气体组分 (uL/L) H 2 CO CO 2 CH4 C 2H6 C 2H4 C 3H8 C 2H2 C 3H6 C 1+C2 86.95 16281514 6 5

.13 6.32 7.95 .77 .77 1.31 .51 5.36 8 .17 13.35 22 1.87 275 5.66 5 .66 2 .22 4 2.82 7 .26 5 7.96 8 .18 60.6 22 5.75 341 6.01 1 1.57 1 .82 5 4.3 1 1.76 7 9.45 8 .20 64.82 21 7.14 359 1.95 1 4.34 2 .31 6 5.67 1 4.15 9 6.47 结论根据三比值计算 编码为102,判断设 备内部存在裸金属放 电故障,建议立即停 运检修。 以8月20日的数据为依据,利用三比值法对其故障进行判断: (1)C2H2/ C2H4=14.15/65.67=0.27,比值范围的编码为:1; (2)CH4/ H2=14.34/64.28=0.22,比值范围的编码为:0; (3)C2H4/C C2H6=65.67/2.31=28.42,比值范围的编码为:2; 通过三比值计算编码为102,初步判断其故障性质为高能量放电。 1.2在西北电研院专家的指导下,对变压器进行了修前检测、试验。绕组绝缘测试合 格;绕组直流泄漏电流测试合格;各绕组介质损耗测试合格;高压侧110kv套管介质

(完整word版)变压器探究实验报告

西安交通大学高级物理实验报告 课程名称:高级物理实验实验名称:变压器与线圈组合探究第 1 页共18页 系别:实验日期:2014年11月25日 姓名:班级:学号: 实验名称:变压器与线圈组合探究 一、实验目的 1、验证变压器原理; 2、探究山形电压器电压分布及其变化规律。 二、实验器材 1、CI-6552A POWER AMPLIFIER II 电源适配器; 2、Science Wor kshop? 750 Interface 接线器; 3、匝数为400、800、1600、3200的线圈若干; 4、方形铁芯与山形铁芯若干; 5、计算机及数据处理软件Data Studio; 6、导线若干。 三、实验原理 1、变压器简介 变压器(Transformer)利用互感原理工作。变压器是利用电磁感应的原理来改变交流电压的装置,主要构件是初级线圈、次级线圈和铁芯(磁芯)。其主要功能有:电压变换、电流变换、阻抗变换、隔离、稳压(磁饱和变压器)等。按用途可以分为:配电变压器、电力变压器、全密封变压器、组合式变压器、干式变压器、油浸式变压器、单相变压器、电炉变压器、整流变压器等。 变压器在电器设备和无线电路中常被用来升降电压、匹配阻抗,安全隔离等。在发电机中,不管是线圈运动通过磁场或磁场运动通过固定线圈,均能在线圈中感应电势,此两种情况,磁通的值均不变,但与线圈相交链的磁通数量却有变动,这是互感应的原理。变压器就是一种利用电磁互感应,变换电压,电流和阻抗的器件。变压器的最基本形式,包括两组绕有导线之线圈,并且彼此以电感方式称合一起。当一交流电流(具有某一已知频率)流于其中之一组线圈时,于另一组线圈中将感应出具有相同频率的交流电压,而感应的电压大小取决于两线圈耦合及磁交链之程度。一般指连接交流电源的线圈称之为一次线圈;而跨于此线圈的电压称之为一次电压。在二次线圈的感应电压可能大于或小于一次电压,是由一次线圈与二次线圈间的匝数比所决定的。因此,变压器区分为升压与降压变压器两种。 2、变压器相关计算原理

变压器油中溶解气体分析的原理方法

变压器油中溶解气体分析的原理及方法 充油电力变压器在正常运行过程中受到热、电和机械方面力的作用下逐渐老化,产生某些可燃性气体,当变压器存在潜伏性故障时,其气体产生量和气体产生速率将逐渐明显,人们取变压器油样使用气相色谱方法获得油中溶解的特征气体浓度后,就可以对变压器的故障情况进行分析。由于大型充油电力变压器是一个非常复杂的电气设备,变压器存在潜伏性故障时与多种因素存在耦合,特征气体形成涉及的机理十分复杂,这些机理及由这些机理导出的诊断方法对智能诊断方法有很好的借鉴意义。 1 变压器油及固体绝缘的成份及气体产生机理分析 虽然SF6 气体绝缘、蒸发冷却式气体绝缘变压器和干式变压器、交联聚乙烯绕组变压器等有着良好的发展前景,但是变压器油优良的绝缘和散热能力是它们所不能替代的,目前高电压、大容量的电力变压器仍然普遍采用充油式。充油电力变压器内部的主要绝缘材料是变压器油、绝缘纸和纸板等A 级绝缘材料,当运行年限为20年左右时,最高允许的温度为105C左右。变 压器油中特征气体是由变压器油及固体绝缘产生的,与它们的性能存在着密切的关系。 1 变压器油的成份及气体产生机理 变压器油是由天然石油经过蒸馏、精炼而获得的一种矿物油。它是由各 种碳氢化合物所组成的混合物,其中碳、氢两元素占全部重量的95%?99%。主要的碳氢化合物有环烷烃(50%以上)、烷烃(10%?40%)和芳香烃(5%?15%)组成[9]。不同变压器油各种成份的含量有些不同。 变压器油中不同烃类气体的性能是不同的。环烷烃具有较好的化学稳定性和介电稳定性,黏度随温度的变化很小。芳香烃化学稳定性和介电稳定性也较好,在电场作用下不析出气体,而且能吸收气体;但芳香烃易燃、黏度大、凝固点高,且在电弧的作用下生成的碳粒较多,会降低油的电气性能。环烷烃中的石蜡烃具有较好的化学稳定性和易使油凝固,但在电场的作用下易发生电离而析出气体,并形成树枝状的X 蜡,影响油的导热性。 变压器油在运行中受到温度、电场、氧气及水分和铜、铁等材料的催化作用会形成某些氧化物及其油泥、氢、低分子烃类气体和固体X 蜡等,这就是绝缘油的老化和劣化作用。正常的老化和劣化情况下,变压器油中仅能产生少量的气体,通常它们的含量在临界值之下。 但存在潜伏性故障时情况就不同了,当变压器油受到高电场的作用时,即使温度较低也会分解产生气体。 变压器油是由许多不同分子量的碳烃化合物分子组成的混合物,分子中存在着CH3*、CH2*和CH*等化学基团,含有C-C键和C-H键。在电或热的作用下使某些C-C键和C-H键断裂,形成了不稳定的氢原子和碳氢化合物的自由基,这些氢原子、自由基迅速重新化合生成氢气和低

变压器油中溶解气体的分析与故障判断

变压器油中溶解气体的分析与故障判断 随着变压器运行时间的延长,变压器可能产生初期故障,油中某些可燃性气体则是内部故障的先兆,这些可燃气体可降低变压器油的闪点,从而引起早期故障。 变压器油和纤维绝缘材料在运行中受到水分、氧气、热量以及铜和铁等材料催化作用的影响而老化和分解,产生的气体大部分溶于油中,但产生气体的速率是相当缓慢的。当变压器内部存在初期故障或形成新的故障条件时,其产气速率和产气量则十分明显,绝大多数的初期缺陷都会出现早期迹象,因此,对变压器产生气体进行适当分析即能检测出故障。 1、变压器油中的气体类别 气相色谱法正是对变压器油中可燃性气体进行分析的最切实可行的方法,该方法包括从油中脱气和测量两个过程。矿物油是由大约2871种液态碳氢化合物组成的,通常只鉴别绝缘油中的氢气(H2卜氧气(02)、氮气 (N2)、甲烷(CH4)、一氧化碳(C0)、乙烷(C2H6)、二氧化碳(C02)、乙烯(C2H4)、乙炔(C2H2)9种气体,将这些气体从油中脱出并经分析,证明它们的存在及含量,即可反映出产生这些气体的故障类型和严重程度。油在正常老化过程产生的气体主要是一氧化碳(C0)和二氧化碳(C02),油绝缘中存在局部放电时(如油中气泡击穿),油裂解 产生的气体主要是氢气(H2)和甲烷(CH4)。在故障温度高于正常运行温度不多时,产生的气体主要是甲烷 (CH4), 随故障温度的升高,乙烯(C2H2)和乙烷(C2H6)逐渐成为主要物征气体;当温度高于1000 C时(如在电弧弧道温度300 C以上),油裂解产生的气体中含有较多的乙炔(C2H2),如果故障涉及到固体绝缘材料时,会产生较多的一 氧化碳(CO)和二氧化碳(C02)。 2、如何判断电气设备的故障性质 运用五种特征气体的三对比值判断电气设备的故障性质: (1) C2H2/C2H4 < 0.1 0.1 v CH4/H2V 1 C2H4/C2H6 v 1时,属变压器已正常老化。 (2) C2H2/C2H4 < 0.1 CH4/H2 v 0.1 0.1v C2H4/C2H6v1 时,属低能量密度的局部放电,是含气空腔中的放电,这种空腔是由于不完全浸渍、气体饱和或高湿度等原因造成的。 (3) 0.1 v C2H2/C2H4v 1 CH4/H2v 0.1 0.1v C2H4/C2H6v1 时,属高能量密度的局部放电(除含气空腔的放电),导致固体绝缘的放电痕迹。 (4) 1 v C2H2/C2H4v 3 0.1 v CH4/H2v 1 C2H4/C2H6>3时,有工频续流的放电、线圈、线饼、线匝之间或线圈对地之间油的电弧击穿。

变压器油中溶解气体分析的原理及方法

武汉华能阳光电气有限公司 油中变压器溶解气体分析原理说明 1 变压器油及固体绝缘的成份及气体产生机理分析 虽然SF6气体绝缘、蒸发冷却式气体绝缘变压器和干式变压器、交联聚乙烯绕组变压器等有着良好的发展前景,但是变压器油优良的绝缘和散热能力是它们所不能替代的,目前高电压、大容量的电力变压器仍然普遍采用充油式。充油电力变压器内部的主要绝缘材料是变压器油、绝缘纸和纸板等A级绝缘材料,当运行年限为20年左右时,最高允许的温度为105℃左右。变压器油中特征气体是由变压器油及固体绝缘产生的,与它们的性能存在着密切的关系。 1 变压器油的成份及气体产生机理 变压器油中不同烃类气体的性能是不同的。环烷烃具有较好的化学稳定性和介电稳定性,黏度随温度的变化很小。芳香烃化学稳定性和介电稳定性也较好,在电场作用下不析出气体,而且能吸收气体;但芳香烃易燃、黏度大、凝固点高,且在电弧的作用下生成的碳粒较多,会降低油的电气性能。环烷烃中的石蜡烃具有较好的化学稳定性和易使油凝固,但在电场的作用下易发生电离而析出气体,并形成树枝状的X蜡,影响油的导热性。 变压器油是由天然石油经过蒸馏、精炼而获得的一种矿物油。它是由各种碳氢化合物所组成的混合物,其中碳、氢两元素占全部重量的95%~99%。主要的碳氢化合物有环烷烃(50%以上)、烷烃(10%~40%)和芳香烃(5%~15%)组成[9]。不同变压器油各种成份的含量有些不同。 变压器油在运行中受到温度、电场、氧气及水分和铜、铁等材料的催化作用会形成某些氧化物及其油泥、氢、低分子烃类气体和固体X蜡等,这就是绝缘油的老化和劣化作用。正常的老化和劣化情况下,变压器油中仅能产生少量的气体,通

变压器油检测技术标准

变压器油检测技术标准 Prepared on 24 November 2020

变压器油检测技术标准 变压器油检测项目 (1)凝固点;(2)含水量;(3)界面张力;(4)酸值;(5)水溶性酸碱度; (6)击穿电压;(7)闪点;(8)体积电阻率;(9)介损(10)色谱分析(11)绝缘油中糠醛含量分析 变压器油的检测项目及试验意义 1、外观:检查运行油的外观,可以发现油中不溶性油泥、纤维和脏物存在。在常规试验中,应有此项目的记载。 2、颜色:新变压器油一般是无色或淡黄色,运行中颜色会逐渐加深,但正常情况下这种变化趋势比较缓慢。若油品颜色急剧加深,则应调查是否设备有过负荷现象或过热情况出现。如其他有关特性试验项目均符合要求,可以继续运行,但应加强监视。 3、水分:水分是影响变压器设备绝缘老化的重要原因之一。变压器油和绝缘材料中含水量增加,直接导致绝缘性能下降并会促使油老化,影响设备运行的可靠性和使用寿命。对水分进行严格的监督,是保证设备安全运行必不可少的一个试验项目。 4、酸值:油中所含酸性产物会使油的导电性增高,降低油的绝缘性能,在运行温度较高时(如80℃以上)还会促使固体纤维质绝缘材料老化和造成腐蚀,缩短设备使用寿命。由于油中酸值可反映出油质的老化情况,所以加强酸值的监督,对于采取正确的维护措施是很重要的。 5、氧化安定性:变压器油的氧化安定性试验是评价其使用寿命的一种重要手

段。由于国产油氧化安定性较好,且又添加了抗氧化剂,所以通常只对新油进行此项目试验,但对于进口油,特别是不含抗氧化剂的油,除对新油进行试验外,在运行若干年后也应进行此项试验,以便采取适当的维护措施,延长使用寿命。 6、击穿电压:变压器油的击穿电压是检验变压器油耐受极限电应力情况,是一项非常重要的监督手段,通常情况下,它主要取决于被污染的程度,但当油中水分较高或含有杂质颗粒时,对击穿电压影响较大。 7、介质损耗因数:介质损耗因数对判断变压器油的老化与污染程度是很敏感的。新油中所含极性杂质少,所以介质损耗因数也甚微小,一般仅有%~%数量级;但由于氧化或过热而引起油质老化时,或混入其他杂质时,所生成的极性杂质和带电胶体物质逐渐增多,介质损耗因数也就会随之增加,在油的老化产物甚微,用化学方法尚不能察觉时,介质损耗因数就已能明显的分辨出来。因此介质损耗因数的测定是变压器油检验监督的常用手段,具有特殊的意义。 8、界面张力:油水之间界面张力的测定是检查油中含有因老化而产生的可溶性极性杂质的一种间接有效的方法。油在初期老化阶段,界面张力的变化是相当迅速的,到老化中期,其变化速度也就降低。而油泥生成则明显增加,因此,此方法也可对生成油泥的趋势做出可靠的判断。 9、油泥:此法是检查运行油中尚处于溶解或胶体状态下在加入正庚烷时,可以从油中沉析出来的油泥沉积物。由于油泥在新油和老化油中的溶解度不同,当老化油中渗入新油时,油泥便会沉析出来,油泥的沉积将会影响设备的散热性能,同时还对固体绝缘材料和金属造成严重的腐蚀,导致绝缘性能下降,危害性较大,因此,以大于5%的比例混油时,必须进行油泥析出试验。

变压器油中溶解气在线监测综述

变压器油中溶解气体在线监测综述 (长沙理工大学化学与生物工程学院应用化学专业) 摘要变压器油中溶解气体的分析是获取变压器运行状态信息的重要手段之一。本文综述了国内外变压器油中溶解气体在线监测技术的现状,提出了目前存在的问题及今后的发展趋势。 关键词电力变压器变压器油溶解气体分析在线监测发展趋势 电力变压器在电力系统中属于最重要和最昂贵的设备之列,同时也是导致电力系统事故最多的设备之一。其运行状态的好坏直接关系着电力系统的安全,稳定运行,因而如何及时,准确地检测出电力变压器的早期潜伏性故障就显得十分重要。 为确保变压器的安全运行,许多国家研究了多种技术来监测和诊断变压器故障。其中变压器油中溶解气离线色谱分析法因其能够在变压器运行过程中进行,不受外界电场和磁场的影响,而且可以发现设备中一些用局部放电法所不能发现的缺陷(如局部性过热等),故得到了广泛认可。 但近几年,因离线监测试验环节较多,操作手续较繁,检测周期较长,而且难以发现类似匝间绝缘缺陷等故障。因而国内外都已致力于在线色谱监测装置的研制,以实现连续监测,及时发现故障。下面从在线监测方法类别及其典型的监测仪器作介绍。 一、研究现状 1、在线监测技术方法类别 在线监测技术主要根据脱气原理不同,检测的气体不同可分为两类,单组份气体在线检测技术和多组分气体在线检测技术。 1.1单组份气体在线检测技术 最主要的特征是在线监测变压器油中如:H2、C2H2、微水等某一特征气体组分含量或以它为主的混合气体浓度,不进行气体组分分离而直接测量气体体积分数。又可细分为: (1)测量可燃性气体总量 可燃性气体总量指H2、CO和各种气态烃类含量的总和。这类装置以日本三菱电力公司TCG检测装置为代表,只给出可燃性气体的总量,不能给出某一组分的单独含量。 大连地区220kV及以上变压器安装的加拿大HYDRAN201i早期故障在线装置,监测4种主要故障气体(H2、CO、C2H4、C2H2)的总和,当气体数值偏离基线值,设备提示不同程度的报警,从而采取适当维护措施,这一点正符合状态维修的原则。 (2)测量单一H2组分 当设备内部存在局部过热或局部放电时,所产生的分解气体大多都含有氢气,

变压器油实验报告

绝缘油质试验报告 试验单位郝滩变试验原因送检委托日期2015年10月30日 名称项目330kV主变(#3主变) 杂质无 游离碳无 水份mg/L 9.2 酸价KOH毫克/克油0.008 水溶性酸PH 5.4 闪点℃148 介损tg?20℃ 90℃ 1.22% 击穿电压(kV) I 69 II 68 III 70 IV 69 V 68 VI 69 平均68.8 结论合格 审核:秦勤试验:江涛

充油电器设备油中溶解气体色谱分析报告 委托单位郝滩变分析原因送检取样日期2015年10月30日样品说明分析日期2015年10月30日 项目 分析结果ul/l 设备名称330kV主变(#3主变) 氢H20 氧O2/ 一氧化碳CO 2 二氧化碳CO2141 甲烷CH40.56 乙烷C2H60 乙烯C2H40 丙烷C3H8/ 乙炔C2H20 丙烯C3H6/ 总烃(C1+C2) 0.56 结论正常 备注 审核:秦勤试验:江涛

绝缘油质试验报告 试验单位郝滩变试验原因送检委托日期2015年12月19日 名称项目330kV主变 (#2主变试验后) 330kV主变 (#3主变试验后) 杂质无无 游离碳无无 水份mg/L 9.1 9.2 酸价KOH毫克/克油0.008 0.008 水溶性酸PH 5.4 5.4 闪点℃148 147 介损tg?20℃ 90℃ 1.21% 1.20% 击穿电压(kV) I 70 68 II 67 69 III 70 70 IV 69 68 V 71 70 VI 69 69 平均69.3 69 结论合格合格 审核:秦勤试验:江涛

充油电器设备油中溶解气体色谱分析报告 委托单位郝滩变分析原因送检取样日期2015年12月18日样品说明分析日期2015年12月18日 项目 分析结果ul/l 设备名称 330kV主变 (#2主变试验后) 330kV主变 (#3主变试验后) 氢H20 0 氧O2/ / 一氧化碳CO 2 2 二氧化碳CO2139 142 甲烷CH40.54 0.56 乙烷C2H60 0 乙烯C2H40 0 丙烷C3H8/ / 乙炔C2H20 0 丙烯C3H6/ / 总烃(C1+C2) 0.54 0.56 结论正常正常 备注 审核:秦勤试验:江涛

变压器油中溶解气体及微水在线监测系统技术方案

大型油浸式电力变压器 油中溶解气体及微水在线监测系统 技术方案

前言: 在现代电力工业的设备运行和维护中,要求在电厂或电站运行的关键变压器特别是发现有异常的变压器上经常进行故障气体,微水含量,局部放电,绕组变形等多种项目的测量。从这些结果中得到的科学信息是电力部门预计并控制安全服务和运行成本的诸多因素。 随着现代科技的快速发展以及微处理器的引入,在线检测仪器的发展速度正在稳步提高。在线检测仪器的功能不断改善而价格在逐步下降,使智能化在线检测仪器的广泛应用成为可能。由于通讯技术的发展使得在线检测的结果能够快速传递到远距的分析和控制中心,在出现故障时不但能及时自动报警并可从多气体比值判断故障性质及类型,采取必要措施,更显示出了他的重要作用。近年来在国外各大电力部门的应用已经证明,在线检测技术对电力设备的充分利用,提高效益,延长使用寿命以及降低运行维护费用方面都有极大的作用。 自1960年以来,世界电力工业广泛使用变压器油中多种故障气体的色谱分析及多比值,TD图等判断方法为电力部门的安全高效运行提供重要依据。但其测量周期较长,脱气误差较大以及耗时较多等问题,尚难满足安全生产和状态检修的要求。因此,变压器油中多种故障气体的在线检测就成为迫切的需要。 由国家质量监督局颁布的最新国家标准“变压器油中溶解气体分析和判断导则”中指出了变压器绝缘油的产气原理是由于绝缘油和固体绝缘材料在电及热作用下的分解。低能量放电故障促使最弱的C-H键断裂,主要重新化合成氢气,乙烯在高于甲烷和乙烷的温度下生成。大量的乙炔是在电弧的弧道中产生。 标准定义了“对判断充油电器设备内部故障有价值的特征气体:即氢气(H 2 ), 甲烷(CH 4),乙烷(C 2 H 6 ),乙烯(C 2 H 4 ),一氧化碳(CO),二氧化碳(CO 2 )”,并说 明氧气(O 2)和氮气(N 2 ),可作为辅助判断指标。因此对包含氧气(O 2 )在内的8 种故障气体进行在线检测才能符合中国国家标准的要求,进一步检测氮气(N 2 )是国际新发展方向。

相关主题
文本预览
相关文档 最新文档