当前位置:文档之家› 活动轮廓模型

活动轮廓模型

活动轮廓模型
活动轮廓模型

(完整版)初中几何基本图形归纳(基本图形常考图形)86168

初中几何常见基本图形

C

F E D C B A F E D C B A D C A 几何基本图形 1、如图,正三角形ABC 中,AE=CD ,AD 、BE 交于F : ①△AEB ≌△ADC ②∠BFD=600 ③△AEF ∽△ABE 2、如图,正三角形ABC 中,F 是△ABC 中心,正三角形边长为a : ①AF :DF :AD=2:1:3 ②内切圆半径DF= a 63 ③外接圆半径AF=a 3 3 3、如图Rt △ABC 中,∠C=900,∠B=300,AC=a ,D 是AC 上的点: ①内切圆半径为 a 2 1 3- ②外接圆半径为a 4、如图Rt △ABC 中,∠C=900,AB=AC=a ,D 是AC 上的点: 为 a 2 5; ②当BD 是角平分线时,BD 长为a 224-。 ①当D 是AC 中点时,BD 长 C B A 300

D C A 45 A B C 5、如图,如图Rt △ABC 中,∠BAC=900,AB=AC=a ,E 、D 是BC 、AC 上的点,且∠AED=450: ①△ABE ∽ECD ②设BE=x ,则CD=a x ax 22-。 6、如图AB=AC ,∠A=360,则:BC= 2 1 5-AB 。 7、如图AB=AC ,D 是BC 上一点,AE=AD ,则: 2 1 ∠BAD=∠EDC 。 8、 如图,D 、E 是△ABC 边BC 上两点,AC=CD ,BE=BA ,则当:①∠BAC=1000时,∠DAE=400;②当∠BAC=x 0时,∠DAE=2 180x -0 。 9、如图,△BCA 中,D 是三角形内一点, ①当点D 是外心时,∠BDC= 21 ∠A ;②当点D 是内心时,∠BDC=2 180A ∠+ 10、如图,∠ACB=900,DE 是AB 中垂线,则①AE=BE ,若AC=3,BC=4,设AE=x ,有 ()22234x x =+-; ②△BED ∽△BAC 。 11、如图,E 是正方形ABCD 对角线BD 上一点,AE 交BC 延长线于点F ,H 是FG 中点: ①△ADE ≌△CDE ; ②△EGC ∽ECF ; ③EC ⊥CH ; ④EC 是以BG 为直径的圆的切线。 12、如图,ABCD 、CGFE 是正方形:①△DCG ≌CBCE ; ②BE ⊥DG 。 13、如图,正方形ABCD 对角线交于O ,E 是OB 上一点,EF ∥BC : ①△AOE ≌△BOF ; ②AE ⊥BF 。 14、如图,E 是正方形ABCD 对角线上一点,EF ⊥CD ,EG ⊥BC : ①AE=FG ;②AE ⊥FG 。 15、如图,将矩形ABCD 顶点B 沿某直线翻折可与D 点重合: ①EF 是BD 中垂线; ②BE=DE ,若AB=3,AD=5,设DE=x ,则()2 2 253x x =-+。 16、将矩形ABCD 顶点A 沿BD 翻折,A 落在E 处,如图: ①BD 是AE 中垂线,AB=BE ;②△BEF ≌△DCF ;③BF=DF 。 A B C E A B C E D A B C D A B C D E A B C D E F G H A B C D E F G

目标跟踪相关研究综述

Artificial Intelligence and Robotics Research 人工智能与机器人研究, 2015, 4(3), 17-22 Published Online August 2015 in Hans. https://www.doczj.com/doc/c98539972.html,/journal/airr https://www.doczj.com/doc/c98539972.html,/10.12677/airr.2015.43003 A Survey on Object Tracking Jialong Xu Aviation Military Affairs Deputy Office of PLA Navy in Nanjing Zone, Nanjing Jiangsu Email: pugongying_0532@https://www.doczj.com/doc/c98539972.html, Received: Aug. 1st, 2015; accepted: Aug. 17th, 2015; published: Aug. 20th, 2015 Copyright ? 2015 by author and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.doczj.com/doc/c98539972.html,/licenses/by/4.0/ Abstract Object tracking is a process to locate an interested object in a series of image, so as to reconstruct the moving object’s track. This paper presents a summary of related works and analyzes the cha-racteristics of the algorithm. At last, some future directions are suggested. Keywords Object Tracking, Track Alignment, Object Detection 目标跟踪相关研究综述 徐佳龙 海军驻南京地区航空军事代表室,江苏南京 Email: pugongying_0532@https://www.doczj.com/doc/c98539972.html, 收稿日期:2015年8月1日;录用日期:2015年8月17日;发布日期:2015年8月20日 摘要 目标跟踪就是在视频序列的每幅图像中找到所感兴趣的运动目标的位置,建立起运动目标在各幅图像中的联系。本文分类总结了目标跟踪的相关工作,并进行了分析和展望。

一种改进的贝叶斯切线模型的人脸对齐算法

一种改进的贝叶斯切线模型的人脸对齐算法 李丽娟,石红伟,王爱云 湖南大学计算机与通信学院,长沙(410082) E-mail: momentt@https://www.doczj.com/doc/c98539972.html, 摘要:本文论述了一种新的人脸对齐的算法--改进的贝叶斯切线模型。该算法首先从形状参数中分离出姿态参数和身份属性参数,对这两个参数分别处理,然后通过引入曲率半径作为该特征点搜索的象素个数实现动态搜索。实验表明,该算法可以弥补BTSM不能很好的处理多姿态的人脸图像对齐的缺陷,而且可以提高搜索精度以及减少搜索时间。 关键词:人脸对齐;人脸识别;贝叶斯切线模型 中图分类号: TP 311 文献标识符:A 1 引言 目前,关键点定位是人脸识别中的一个重点也是难点,特别在成像条件中的光照、表情等变化比较大的情况下,关键点定位显得更困难。因为关键点定位偏差较大将会导致“鬼脸”的现象发生,所以人脸的关键点定位非常重要。现有的人脸定位方法比较多,但这些方法只能给出很少的特征点,且不太鲁棒。1991年cootes[1]首先提出了主动形状模型(Active Shape Model,ASM),该方法能够很好的提取正面人脸的轮廓特征,达到很好的效果。 ASM是典型的人脸轮廓特征提取方法,通过对标注好的训练数据进行分析,得到人脸形状模型。然后对新的图像进行轮廓匹配,得到新图像的轮廓特征点[2][3]。但是ASM 模型在采用主分量分析 (Principal Component Analysis.PCA)建立模型时,仅仅采用了较大的特征值和对应的特征向量,残差部分设为零,引起人脸轮廓特征点提取的一些偏差。2003年Leon Gu[4]等在此基础上提出了BTSM(Bayesian Tangent Shape Model)进行人脸轮廓提取,其基本思想是通过对ASM中的残差部分建立模型,可以得到更加准确的轮廓形状,然后根据轮廓特征点,提取传统的几何形状特征如眉毛,眼睛,鼻子,嘴巴以及人脸轮廓等。 1本文在BTSM算法的基础上进行改进, 1本课题得到基于多向量收敛的网络定位算法研究(No.60703096)的资助。 提出了一种改进的人脸形状匹配算法,主要包括两方面的内容,1)修改形状的更新模型,从形状参数中分离出姿态参数和身份属性参数,可以达到多姿态的特征匹配;2)通过引入一种曲率半径,对各个器官进行动态搜索,一方面可以弥补器官在比较集中的地方出现伪收敛的情况,另一方面可以减少搜索时间。实验证明:改进算法对多姿态的人脸图像也可以达到很好的效果,而且估计误差较小,在部分关键点处可以减少搜索次数以及提高搜索的准确度。 2 BTSM的基本思想 ASM模型是Cootes在点分布模型的基础上,结合局部灰度观测模型和启发式搜索,提出一种表述物体形状和轮廓的参数化统计模型。但是传统的ASM 模型在采用PCA 建立模型时,没有考虑重建误差,而BTSM 模型在采用PCA描述模型的基础上,建立了一个基于重构误差的分布模型,比ASM 模型更为精确,BTSM 算法[4][5]的主要思想如下: 2.1 对图像的样本标注和归一化 人脸的特征点一般采用表示人脸的眉毛,眼睛,鼻子,嘴巴以及人脸轮廓等N个特征点构成(1,1,2,2,...,,) s x y x y xN yN =。由于BTSM参数模型是对标定好的人脸轮廓进行统计分析得到的,因此样本应尽量包含各种表情姿态的人脸。最后所有的样本标注点归一化到同一个参考坐标系。

一种自动提取目标的主动轮廓法

第31卷第5期 光 子 学 报 V o l.31No.5 2002年5月 ACTA PHOT ONICA SINICA M ay2002  一种自动提取目标的主动轮廓法 李熙莹 倪国强 (北京理工大学光电工程系,北京100081) 摘 要 提出一种新的广泛应用于数字图象分析和计算机视觉的主动轮廓(Snake)模型,引入作用方向可以自适应变化的外加强制力,使控制点能够不依赖于初始轮廓而快速地收敛 到目标的真实轮廓;初始轮廓自动确定;控制点的数目可以自适应地改变;能够在背景比较 复杂的图象中实现对目标轮廓的提取.用该模型对空中目标的红外图象进行的实验结果表 明其具有很好的鲁棒性和实用性. 关键词 主动轮廓法;Snake;红外图象;轮廓提取 0 引言 主动轮廓模型又称为Snake模型,是由Kass 于1987年提出的1,它融合了分割过程的三个阶段,使得检测得到的目标边界就是一光滑连接的曲线.其主要思想是定义一个能量函数,在Snake由初始位置向真实轮廓逐渐靠近时,寻找此能量函数的局部极小值,即通过对能量函数的动态优化来逼近目标的真实轮廓.此能量函数主要由内部能量函数及外部能量函数组成.内部能量函数考虑包络本身的连续性和各点曲率的大小;外部能量函数则主要涉及到图象的一些具体情况,如图象灰度变化的梯度等因素. Kass的Snake模型中,用参量表示轮廓线v(s)=(x(s),y(s))(s为轮廓弧长),其能量函数定义为  E*snake=∫10E snake(v(s))d s  =∫10[E int(v(s))+E image(v(s))+E con(v(s))](1)式中,E int表示主动轮廓线的内部能量,也叫内部力;E image表示图象作用力产生的能量,也叫图象力;E con表示外部限制作用力产生的能量,叫约束力.后两项和称为外部能量E ext=E image+ E con.内部力起到平滑轮廓、保持轮廓连续性的作用;图象力表示轮廓点与图象局部特征吻合的情况;约束力是各种人为定义的约束条件. Kass的算法存在要求外力可微、不稳定、控制参量无法确定、计算量大和时间开销大等缺点. Amini2、William s3等人改进了Kass的算法,引入硬强制力,且大大提高了运行速度(Amini的算法运算量为O(m3n)Williams的Gr eedy算法运算为O(mn),m为迭代的领域大小,n为Snake控制点的数目).不过,它们仍存在一些问题,如迭代效果依赖于初始轮廓点的选取;控制点在迭代中向高曲率边缘堆积;控制点数目固定不变,不能随目标大小变化调节等.有许多研究者针对原始Snake的缺点进行了模型改进或算法改进,如对角点判定的阈值选取方法加以改进、按照一定的规则调节控制点间距、采用不同的图象特征能量模型4,5等,不过对于初始轮廓点依然敏感或运算比较复杂。 本文以William的Greedy算法为参考,提出了一种自动的主动轮廓法(Auto-Snake),引入作用方向可自适应变化的外加强制力,从而使控制点能快速地收敛到目标的真实轮廓,不依赖于初始轮廓;初始轮廓自动确定,无需人工干预;控制点的数目可以自适应地改变;明确了各个参量的选择.该算法不仅继承前人算法的优点,而且保证算法快速收敛,适用于多种场合,在背景比较复杂的图象中也可以实现对目标轮廓的提取. 1 K ass的主动轮廓法能量模型 Kass和Snake模型中,内部能量可表示为轮廓对弧长的一阶导数项v s(s)和二阶导数项v ss(s)

初中几何基本图形归纳(基本图形+常考图形)

初中几何基本图形归纳(基本图形+常考图形) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

初中几何常见基本图形

F E D C B A F E D B A D C A 几何基本图形 1、如图,正三角形ABC 中,AE=CD ,AD 、BE 交于F : ①△AEB ≌△ADC ②∠BFD=600 ③△AEF ∽△ABE 2、如图,正三角形ABC 中,F 是△ABC 中心,正三角形边长为a : ①AF :DF :AD=2:1:3 ②内切圆半径DF= a 63 ③外接圆半径AF=a 3 3 3、如图Rt △ABC 中,∠C=900,∠B=300,AC=a ,D 是AC 上的点: ①内切圆半径为 a 2 1 3- ②外接圆半径为a 4、如图Rt △ABC 中,∠C=900,AB=AC=a ,D 是AC 上的点: BD 长为 a 2 5 ; ②当BD 是角平分线时,BD 长为①当D 是AC 中点时, a 224-。 5、如图,如图Rt △ABC 中,∠BAC=900,AB=AC=a ,E 、D 是BC 、AC 上的 点,且∠AED=450 :①△ABE ∽ECD ②设BE=x ,则CD=a x ax 2 2-。 C B A 300

E D C B A 45 A B C 6、如图AB=AC ,∠A=360,则:BC= 2 1 5-AB 。 7、如图AB=AC ,D 是BC 上一点,AE=AD ,则:2 1 ∠BAD=∠EDC 。 8、 如图,D 、E 是△ABC 边BC 上两点,AC=CD ,BE=BA ,则当:①∠ 时,∠ DAE=400; ②当∠ BAC=1000 BAC=x 0 时, ∠ DAE= 2 180x -0 。 9、如图,△BCA 中,D 是三角形内一点, ①当点D 是外心时,∠BDC= 21 ∠A ;②当点D 是内心时,∠BDC=2 180A ∠+ 10、如图,∠ACB=900,DE 是AB 中垂线,则①AE=BE ,若AC=3,BC=4,设AE=x ,有()222 34x x =+-; ②△BED ∽△BAC 。 11、如图,E 是正方形ABCD 对角线BD 上一点,AE 交BC 延长线于点F ,H 是FG 中点:①△ADE ≌△CDE ; ②△EGC ∽ECF ; ③EC ⊥CH ; ④EC 是以BG 为直径的圆的切线。 12、如图,ABCD 、CGFE 是正方形:①△DCG ≌CBCE ; ②BE ⊥DG 。 13、如图,正方形ABCD 对角线交于O ,E 是OB 上一点,EF ∥BC : A B C E A B C E D A B C D A B C D E A B C D E F G H A B C D E F G

一种适用于血管图像分割的活动轮廓模型

第27卷 第5期2010年 10月 生物医学工程学杂志 Journal of Biomedical E ngineering V ol.27 N o.5 October 2010 一种适用于血管图像分割的活动轮廓模型3 田 飞 杨 丰Δ 刘国庆 (南方医科大学生物医学工程学院,广州510515) 摘 要:本文提出了一种适用于血管图像分割的活动轮廓模型。根据局部轮廓曲线与血管边界的吻合状况,该模型能够自适应地调节能量方程中全局强度信息和局部强度信息的比重。实验结果表明,此模型能够有效地应用于非均匀、含噪声血管造影图像的分割。与其它方法相比,该方法对轮廓曲线的初始位置不敏感,且无需对引入参数进行人工调节。 关键词:Chan2Vese模型;图像分割;灰度非均匀;LBF模型 中图分类号 TP391.41 文献标识码 A 文章编号 100125515(2010)0520968206 An Active Contour Model Applied to V ascular Image Segmentation Tian Fei Yang Feng Liu G uoqing (Depart ment of B iomedical Engineeri ng,S out hern Medical Universit y,Guangz hou510515,China) Abstract:In this paper is presented an active contour model applied to vascular image segmentation.This model can adaptively adjust the proportion of global and local intensity information in accord with the anastomosis status be2 tween local contour and boundaries.Our method is able to work effectively on segmentation of angiographic image with intensity inhomogeneity and https://www.doczj.com/doc/c98539972.html,pared with other methods,our method is not sensitive to initialization and it eliminates the need for manual adjustment of new parameter. K ey w ords:Chan2Vese model;Image segmentation;Intensity inhomogeneity;LBF model 引言 血管图像分割是循环系统血管分析的一个重要组成部分,也是血管三维重建、定量分析的基础。由于血管中造影剂的分布不均往往造成血管在血管造影图像中亮度非均匀,加上图像噪声的影响,使得血管很难从造影图像中分割出来。在众多的图像分割方法/算法中,基于曲线演化的活动轮廓模型因其演化过程与处理结果是一条清晰、完整的目标轮廓曲线,而成为当前研究热点对象,大量的活动轮廓模型被提出并应用于图像分割和计算机视觉处理。目前存在的活动轮廓模型主要被分成两类:基于边界的活动轮廓模型[123]和基于区域的活动轮廓模型[429]。基于边界的活动轮廓模型依靠目标边界的图像梯度终止轮廓曲线的演化。因此基于边界的活动轮廓模型容易跨过弱边界发生“泄漏”现象。与基于边界的活动轮廓模型相比,基于区域的活动轮廓模型不依 3国家自然科学基金资助项目(60672115) Δ通讯作者。E2mail:yangf@https://www.doczj.com/doc/c98539972.html, 赖目标边界的梯度信息,因此对弱目标边界的图像具有较好的分割效果。在众多基于区域的活动轮廓模型中,C2V模型[5]得到较为广泛的应用。C2V模型又被称为分段常量(PC)模型,该模型基于假设图像由一系列的灰度均匀区域构成。但是,对于一些含有非均匀特性的血管造影图像,C2V模型往往很难把非均匀血管准确地从背景中分割出来。 为克服灰度非均匀给医学图像分割带来的困难,Li等[8]提出了一种局部二元拟合(local binary fitting,LBF)能量模型。LB F模型使用了局部图像灰度信息,能够解决灰度非均匀性给图像分割带来的问题。但是,LB F模型的局部特性使得该模型对初始轮廓曲线的位置较为敏感。为了克服这种现象,Wang等[9]提出了一种利用全局和局部强度拟合信息的活动轮廓模型。在该模型中,能量泛函是由一个局部强度拟合能量项和一个辅助的全局强度拟合能量项组成。由于含有全局强度拟合能量,该模型能够在一定程度上降低活动轮廓曲线对初始位置的敏感性,同时增大了活动轮廓曲线收敛到非均

基于主动轮廓模型的图像分割算法

2007年第4期 漳州师范学院学报(自然科学版) No. 4. 2007年 (总第58期) Journal of Zhangzhou Normal University (Nat. Sci.) General No. 58 文章编号:1008-7826(2007)04-0041-06 基于主动轮廓模型的图像分割算法 高 梅1 , 余 轮2 (1. 福建行政学院, 福建 福州 350002; 2. 福州大学 物理与信息工程学院, 福建 福州 350002) 摘 要: 主动轮廓模型算法是目前流行的图像分割算法, 其主要优点是无论图像的质量如何, 总可以抽取得 到光滑、封闭的边界. 本文综述了主动轮廓模型算法的发展概况, 并分类介绍了各算法的特点. 此外, 本文还给出 了算法发展的方向, 以及今后研究所面临的关键问题. 关键词: 图像分割 ; 主动轮廓模型 ; 水平集方法 ; 纹理分割 中图分类号: TP391.41 文献标识码: A 1 引言 图像分割的任务是把图像分成互不交叠的有意义的区域,每个区域内部的像素都具相似性,而在边界处具有非连续性. 它是图像分析和理解的首要一步,分割结果的好坏直接影响对图像的理解. 由于尚无通用的分割模型,现有的分割算法都是针对具体问题的,因此,图像分割的研究多年来仍然受到人们的高度重视[1]. 基于变分的方法是近年来研究颇为活跃的一个分支,它将图像分割问题表达为能量函数的最小化,并由变分原理将其转化为偏微分方程的求解[2]. 相比于传统的区域分割方法,变分方法可以通过定义能量函数,综合考虑几何约束、与图像内容有关的约束条件,获得更加自然的分割效果. 主动轮廓模型是目前流行的基于变分的图像分割算法[3]. 其主要优点是无论图像的质量如何,总可以抽取得到光滑、封闭的边界. 它的基本思想是在图像上定义一个初始轮廓线,通过最小化能量函数,驱使轮廓线形变运动至目标边界. 早期的主动轮廓模型存在一定的限制,它对初始值比较敏感,尤其是不具备自动拓扑变化能力;水平集方法则通过将轮廓线看作演化曲线,能够对其拓扑变化进行很自然地处理,同时也降低对初值的敏感性[4]. 结合水平集方法的主动轮廓模型因而被广泛地应用于图像处理与计算机视觉领域. 2 主动轮廓模型方法概述 上世纪八十年代后期,Kass 等人突破了传统的分层视觉模型,提出称为Snake 的主动轮廓模型,开创了基于形变模型的图像处理的先河[5]. 近二十年来,相关改进和扩展研究已经不仅仅局限于最初的图像分割领域,而被越来越多的研究者成功地运用于计算机视觉的其它领域,如图像复原、运动跟踪、3D 重建等等[6]. Snake 是一条闭合的参数曲线))(),(()(s y s x s =C ,参数]1,0[∈s ,它能主动地调整其形状和位置,使能量函数达到最小[3]: ()∫++=1 0 ))(( ))(( ))(( )(ds s E γs E βs E C E con img int C C C α 其中,Snake 的移动由三项共同控制:内部能量int E 确保曲线的光滑度和规则性;图像能量img E 吸引Snake 移至期望的图像特征,比如边缘;约束能量con E 指定一些求解约束. 式中的内部能量常用曲线弧长和曲率 收稿日期: 2007-06-22 作者简介: 高 梅(1964-), 女, 河北省南和县人, 讲师.

初中几何基本图形归纳基本图形常考图形资料全

初中几何常见基本图形 AOC=BOD AOD=BOC OD OE ①BAD= C CAD= B ②AD2=BD·CD ③AB2=BD·BC ④AC2=CD·BC P=A+B+C A+B=C+D B=D P=90+A/2 P=A/2

P=90-A/2 AP平分BAC PB=PC

几何基本图形 1、如图,正三角形ABC 中,AE=CD ,AD 、BE 交于F : ①△AEB ≌△ADC ②∠BFD=600 ③△AEF ∽△ABE 2、如图,正三角形ABC 中,F 是△ABC 中心,正三角形边长为a : ①AF :DF :AD=2:1:3 ②内切圆半径DF= a 63 ③外接圆半径AF=a 3 3 3、如图Rt △ABC 中,∠C=900,∠B=300,AC=a ,D 是AC 上的点:

①内切圆半径为 a 2 1 3- ②外接圆半径为a 4、如图Rt △ABC 中,∠C=900,AB=AC=a ,D 是AC 上的点: ①当D 是AC 中点时,BD 长为 a 2 5 ; ②当BD 是角平分线时,BD 长为a 224-。 5、如图,如图Rt △ABC 中,∠BAC=900,AB=AC=a ,E 、D 是BC 、AC 上的点,且∠ AED=450:①△ABE ∽ECD ②设BE=x ,则CD=a x ax 2 2-。 6、如图AB=AC ,∠A=360,则:BC= 2 1 5-AB 。 7、如图AB=AC ,D 是BC 上一点,AE=AD ,则: 2 1 ∠BAD=∠EDC 。 8、 如图,D 、E 是△ABC 边BC 上两点,AC=CD ,BE=BA ,则当:①∠BAC=1000时,∠DAE=400;②当∠BAC=x 0时,∠DAE= 2 180x -0 。 9、如图,△BCA 中,D 是三角形内一点, ①当点D 是外心时,∠BDC= 21 ∠A ;②当点D 是内心时,∠BDC=2 180A ∠+ 10、如图,∠ACB=900,DE 是AB 中垂线,则①AE=BE ,若AC=3,BC=4,设AE=x , 有()2 22 34x x =+-; ②△BED ∽△BAC 。 11、如图,E 是正方形ABCD 对角线BD 上一点,AE 交BC 延长线于点F ,H 是FG 中点:①△ADE ≌△CDE ; ②△EGC ∽ECF ; ③EC ⊥CH ; ④EC 是以BG 为直径的圆的切线。 12、如图,ABCD 、CGFE 是正方形:①△DCG ≌CBCE ; ②BE ⊥DG 。 13、如图,正方形ABCD 对角线交于O ,E 是OB 上一点,EF ∥BC : ①△AOE ≌△BOF ; ②AE ⊥BF 。

图像分割文献综述

文献综述 图像分割就是把图像分成各具特色的区域提取感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤,是一种基本的计算机视觉技术。 图像分割起源于电影行业。伴随着近代科技的发展,图像分割在实际中得3到了广泛应用,如在工业自动化、在线产品检验、生产过程控制、文档图像处理、遥感和生物医学图像分析、以及军事、体育、农业工程等方面。总之,只要是涉及对对象目标进行特征提取和测量,几乎都离不开图像分割。所以,对图像分割的研究一直是图像工程中的重点和热点。 自图像分割的提出至今,已经提出了上千种各种类型的分割算法。由于分割算法非常多,所以对它们的分类方法也不尽相同。我们依据使用知识的特点与层次,将其分为基于数据和基于模型两大类。前者是直接对当前图像的数据进行操作,虽然可以利用相关的先验信息,但是不依赖于知识;后者则是直接建立在先验知识的基础上,这类分割更符合当前图像分割的技术要点,也是当今图像分割的主流。 基于数据的图像分割算法多数为传统算法,常见的包括,基于边缘检测,基于区域以及边缘与区域相结合的分割方法等等。这类分割方法具有以下缺点,○1易受噪声和伪边缘影响导致得到的边界不连续,需要用特定的方法进行连接;○2只能提取图像局部特征,缺乏有效约束机制,难以获得图像的全局信息;○3只利用图像的底层视觉特征,难以将图像的先验信息融合到高层的理解机制中。这是因为传统的图像处理算法都是基于MIT人工智能实验室Marr提出的各层相互独立、严格由低到高的分层视觉框架下进行的。由于各层之间不存在反馈,数据自底向上单向流动,高层的信息无法指导底层特征的提取,从而导致底层的误差

不断积累,且无法修正。 基于模型的分割方法则可以克服以上缺陷。基于模型的分割方法可以将分割目标的先验知识等有用信息融合到高层的理解机制之中,并通过对图像中的特定目标对象建模来完成分割任务。这是一种自上而下的处理过程,可以将图像的底层视觉特征与高层信息有机结合起来,因此更接近人类的视觉处理。基于模型的图像分割方法主要包括:○1基于统计模型的分割方法;○2基于神经网络的分割方法;○3基于形变模型的分割方法。 主动轮廓模型(Active Conlour Model, ACM)(又称活动轮廓模型,变形曲线模型)的研究背景及发展状况。 即Snake模型,最初由Kass等人于1998年提出,并成功应用于图像分割方面。这种模型通过建立与参数化曲线C相关的能量函数,然后优化该能量函数,使轮廓向目标边界演化,并在目标边界处达到最优值。 1987年Kass、Witkin和Terzopoulos首次提出主动轮廓模型,并成功应用于图像分割、视频跟踪等相关应用。这种模型对Marr提出的各自独立分层图像处理模型提出了挑战,它将图像本身的底层视觉属性(如边缘、纹理、灰度、色彩等)与待分割目标的先验信息(如形状、亮度、色彩等)以一种有机的方式——能量函数的形势结合起来,最终得到待分割目标的完整表达。能量函数一般由两部分构成:内部能量函数和外部能量函数。一般说来,内部能量函数嵌入了对目标特征约束的先验性假设,以及保持轮廓本身特性(如光滑性和刚性)的约束条件;而外部能量函数则根据图像的数据特性(如边缘特性、区域特性等)构造

人脸识别发展史——

人脸识别的研究历史比较悠久。高尔顿(Galton)早在 1888 年和 1910 年就分别在《Nature》杂志发表了两篇关于利用人脸进行身份识别的文章,对人类自身的人脸识别能力进行了分析。但当时还不可能涉及到人脸的自动识别问题。最早的AFR1的研究论文见于 1965 年陈(Chan)和布莱索(Bledsoe)在Panoramic Research Inc.发表的技术报告,至今已有四十年的历史。近年来,人脸识别研究得到了诸多研究人员的青睐,涌现出了诸多技术方法。尤其是 1990 年以来,人脸识别更得到了长足的发展。几乎所有知名的理工科大学和主要IT产业公司都有研究组在从事相关研究。 表 1 人脸识别发展历史简表 人脸识别是一个被广泛研究着的热门问题,大量的研究论文层出不穷,在一定程度上有泛滥成“灾”之嫌。为了更好地对人脸识别研究的历史和现状进行介绍,本文将 AFR 的研究历史按照研究内容、技术方法等方面的特点大体划分为三个时间阶段,如表1 所示。该表格概括了人脸识别研究的发展简史及其每个历史 阶段代表性的研究工作及其技术特点。下面对三个阶段的研究进展情况作简单介绍。 第一阶段(1964 年~1990年) 这一阶段人脸识别通常只是作为一个一般性的模式识别问题来研究,所采用的主

要技术方案是基于人脸几何结构特征(Geometric feature based)的方法。这集中体现在人们对于剪影(Profile)的研究上,人们对面部剪影曲线的结构特征提取与分析方面进行了大量研究。人工神经网络也一度曾经被研究人员用于人脸识别问题中。较早从事 AFR 研究的研究人员除了布莱索(Bledsoe)外还有戈登斯泰因(Goldstein)、哈蒙(Harmon)以及金出武雄(Kanade Takeo)等。金出武雄于 1973 年在京都大学完成了第一篇 AFR 方面的博士论文,直到现在,作为卡内基-梅隆大学(CMU)机器人研究院的一名教授,仍然是人脸识别领域的活跃人物之一。他所在的研究组也是人脸识别领域的一支重要力量。总体而言,这一阶段是人脸识别研究的初级阶段,非常重要的成果不是很多,也基本没有获得实际应用。 第二阶段(1991 年~1997年) 这一阶段尽管时间相对短暂,但却是人脸识别研究的高潮期,可谓硕果累累:不但诞生了若干代表性的人脸识别算法,美国军方还组织了著名的FERET 人脸识别算法测试,并出现了若干商业化运作的人脸识别系统,比如最为著名的 Visionics(现为 Identix)的 FaceIt 系统。美国麻省理工学院(MIT)媒体实验室的特克(Turk)和潘特(Pentland)提出的“特征脸”方法无疑是这一时期内最负盛名的人脸识别方法。其后的很多人脸识别技术都或多或少与特征脸有关系,现在特征脸已经与归一化的协相关量(Normalized Correlation)方法一道成为人脸识别的性能测试基准算法。这一时期的另一个重要工作是麻省理工学院人工智能实验室的布鲁内里(Brunelli)和波基奥 Poggio)于 1992 年左右做的一个对比实验,他们对比了基于结构特征的方法与基于模板匹配的方法的识别性能,并给出了一个比较确定的结论:模板匹配的方法优于基于特征的方法。这一导向性的结论与特征脸共同作用,基本中止了纯粹的基于结构特征的人脸识别方法研究,并在很大程度上促进了基于表观(Appearance- based)的线性子空间建模和基于统计模式识别技术的人脸识别方法的发展,使其逐渐成为主流的人脸识别技术。 贝尔胡米尔(Belhumeur)等提出的 Fisherface 人脸识别方法是这一时期的另一重要成果。该方法首先采用主成分分析(Principal Component Analysis,PCA,亦即特征脸)对图像表观特征进行降维。在此基础上,采用线性判别分析(Linear Discriminant Analysis, LDA)的方法变换降维后的主成分以期获得“尽量大的类间散度和尽量小的类内散度”。该方法目前仍然是主流的人脸识别方法之一,产生了很多不同的变种,比如零空间法、子空间判别模型、增强判别模型、直接的 LDA 判别方法以及近期的一些基于核学习的改进策略。麻省理工学院的马哈丹(Moghaddam)则在特征脸的基础上,提出了基于双子空间进行贝叶斯概率估计的人脸识别方法。该方法通过“作差法”,人脸图像对的相似度计算问题转换为一个两类(类内差和类间差)分类问题,类内差和类间差数据都要首先通过主成分分析(PCA)技术进行降维,计算两个类别的类条件概率密度,最后通过贝叶斯决策(最大似然或者最大后验概率)的方法来进行人脸识别。 脸识别中的另一种重要方法——弹性图匹配技术(Elastic Graph Matching,EGM) 也是在这一阶段提出的。其基本思想是用一个属性图来描述人脸:属性图的顶点代表面部关键特征点,其属性为相应特征点处的多分辨率、多方向局部特征—— Gabor变换12特征,称为Jet;边的属性则为不同特征点之间的几何关系。对任意输入人脸图像,弹性图匹配通过一种优化搜索策略来定位

初中几何基本图形归纳(基本图形+常考图形)

初中几何常见基本图形 AOC=BOD AOD=BOC OD OE ①BAD=C CAD= B ②AD2=BD·CD ③AB2=BD·BC ④AC2=CD·BC P=A+B+C A+B=C+D B=D P=90+A/2 P=A/2

P=90-A/2 ①AC平分BAD ②AB=CB ③BC∥AD AP平分BAC PB=PC ①AB=AC ②BD=CD ③AD BC

几何基本图形 1、如图,正三角形ABC 中,AE=CD ,AD 、B E交于F : ①△AE B≌△A DC ②∠B FD =600 ③△AEF ∽△ABE 2、如图,正三角形ABC 中,F 是△ABC 中心,正三角形边长为a: ①AF :DF:AD =2:1:3 ②内切圆半径DF= a 63 ③外接圆半径AF =a 3 3 3、如图Rt △ABC 中,∠C =900 ,∠B=300 ,AC=a,D 是AC 上的点: ①内切圆半径为 a 2 1 3 ②外接圆半径为a 4、如图Rt △ABC 中,∠C=900 ,AB=AC =a ,D 是AC 上的点:

F E D B A F E D C B A D C B A D C A 45 A B C a 2 5 ; ②当BD 是角平分线时,BD 长为a 224-。 ①当D 是AC 中点时,BD 长为 5、如图,如图R t△ABC 中,∠B AC=900,A B=A C=a ,E、D是BC 、AC上的点,且∠ AE D=450:①△ABE ∽ECD ②设BE=x,则C D=a x ax 2 2-。 6、如图A B=AC,∠A =360 ,则:BC = 2 1 5-AB 。 7、如图AB=A C,D 是BC 上一点,AE=AD,则: 2 1 ∠BAD=∠ED C。 8、 如图,D 、E 是△ABC 边BC 上两点,AC=CD,B E=BA,则当:①∠BA C=1000时,∠DAE =400;②当∠BAC=x 0时,∠D AE=2 180x -0 。 9、如图,△BC A中,D是三角形内一点, ①当点D 是外心时,∠B DC= 21 ∠A;②当点D 是内心时,∠BDC=2 180A ∠+ 10、如图,∠AC B=900 ,DE 是AB 中垂线,则①AE=B E,若AC=3,BC=4,设AE=x, 有()2 22 34x x =+-; ②△BED ∽△BAC 。 11、如图,E是正方形A BCD 对角线BD 上一点,AE 交BC 延长线于点F ,H是FG 中点:①△ADE ≌△CDE ; ②△EGC ∽EC F; ③EC ⊥C H; ④EC 是以BG 为直径的圆的切线。 12、如图,AB CD 、CGFE 是正方形:①△DCG ≌CBCE; ②BE ⊥DG 。 ? C B A 300 A B C E A B C E D A B C D A B C D E A B C D E F G H A B C D E F G

人脸识别技术及研究关键问题

人脸识别技术及研究关键问题 基本概念: 人脸识别就是对于输入的人脸图像或者视频,首先判断其中是否存在人脸,如果存在人脸,则进一步的给出每个人脸的位置、大小和各个主要面部器官的位置信息,并依据这些信息,进一步提取每个人脸中所蕴含的身份特征,并将其与已知人脸库中的人脸进行对比,从而识别每个人脸的身份。 人脸识别的过程可以分为以下三个部分: 1、人脸检测:判断输入图像中是否存在人脸,如果有,给出每个人脸的位置,大小; 2、面部特征定位:对找到的每个人脸,检测其主要器官的位置和形状等信息; 3、人脸比对:根据面部特征定位的结果,与库中人脸对比,判断该人脸的身份信息; 从应用的角度,人脸识别包括两大类: 1、人脸身份识别:即根据人脸图像识别出人物的身份,解决是谁的问题; 2、人脸身份确认/验证:判断图像中的人脸是否是指定的人,即解决是不是某人的问题; 人脸识别技术具有广泛的应用前景,在国家安全、军事安全和公共安全领域,智能门禁、智能视频监控、公安布控、海关身份验证、司机驾照验证等是典型的应用;在民事和经济领域,各类银行卡、金融卡、信用卡、储蓄卡的持卡人的身份验证,社会保险人的身份验证等具有重要的应用价值;在家庭娱乐等领域,人脸识别也具有一些有趣有益的应用,比如能够识别主人身份的智能玩具、家政机器人,具有真实面像的虚拟游戏玩家等等。 研究方向: 1、人脸检测与跟踪技术 显然,要识别图像中出现的人脸,首要的一点就是要找到人脸。人脸检测与跟踪研究的就是如何从静态图片或者视频序列中找出人脸,如果存在人脸,则输出人脸的数目、每个人脸的位置及其大小。人脸跟踪就是要在检测到人脸的基础上,在后续的人脸图像中继续捕获人脸的位置及其大小等性质。人脸检测是人脸身份识别的前期工作。同时,人脸检测作为完整的单独功能模块,在智能视频监控、视频检索和视频内容组织等方面有直接的应用。 我们课题组提出并实现了一个复杂背景下的多级结构的人脸检测与跟踪系统,其中采用了模板匹配、特征子脸、彩色信息等人脸检测技术,能够检测平面内旋转的人脸,并可以跟踪任意姿态的运动的人脸。简述如下:这种检测方法是一个两级结构的算法,对于扫描窗口,首先和人脸模板进行匹配,如果匹配,那么将其投影到人脸子空间,由特征子脸技术判断是否为人脸。模板匹配的方法是:按照人脸特征,将人脸图像划分成14个不同区域,用每个区域的灰度统计值表示该区域,用整个样本的灰度平均值归一化,从而得到用特征向量表示的人脸模板。通过非监督学习的方法对训练样本聚类,得到参考模板族。将测试图像的模板与参考模板在某种距离测度下匹配,通过阈值判断匹配程度。特征子脸技术的基本思想是:从统计的观点,寻找人脸图像分布的基本元素,即人脸图像样本集协方差矩阵的特征向量,以此近似地表征人脸图像。这些特征向量称为特征脸(Eigenface)。实际上,特征脸反映了隐

初中几何基本图形归纳(基本图形+常考图形)

9 2 初 中 几 何 常 见 基 本 图 形 序号 1 基 本 图 形 A C D B 基 本 结 论 2 3 子母型 ① ② 2· C B 4 ③ 2· ④ 2· 5 C C A 6 D B D 7 D 8 90 + 2 A P B C D

16()/2 ∥∥18 AD D E ∥ 20AD AE DE == AB AC BC 1090-2 11①平分 ② ③∥ “二推一” ⊕⊕→⊕ 12 13为中线 1:3:2 平分 14 A 12 B D C A ① “二推二” ② ③⊕⊕→⊕⊕ ④1= 15D E D、E为中点2 ∥ B C A D E、F为中点E F 17 B H D C E、F、G、H A为中点 G E B F C 四边形为平行四边形 A型A AE AD AE DE === BD CD AB AC BC 19 B C X型E D A ∥AD AE AD AE DE === BD CD AB AC BC B C 假A型 A E D B C

d B ④ O∠90° 25 AD P A PD == BC PC PB O 26 P A PD AD PC PB BC P 29 ∠∠ ∠∠180°假子母型A 21D2· B B C 221:1:2 A C C ①过圆心二推三 23 A O R E a/2 ②垂直于弦 ③平分弦 平分弦所对的优弧 ⑤平分弦所对的劣弧 ⊕⊕→⊕⊕⊕ R22+(2)2 24A D C为直径 B 蝶型 D A P B C 规型 A B == O D C 27A型 A O B D P · PB PD BD == PC P A AC C A 28O D B AB BC AC == BD AB AD 2· C D A O 30 B C E ①过圆心“二推一” O②过切点 ③垂直于切线 A C B

活动轮廓模型之Snake模型简介

图像分割之(五)活动轮廓模型之Snake模型简介 在“图像分割之(一)概述”中咱们简单了解了目前主流的图像分割法。下面咱们主要学习下基于能量泛函的分割法。这里学习下Snake模型简单的知识,Level Set(水平集)模型会在后面的博文中说到。 基于能量泛函的分割法: 该类法主要指的是活动轮廓模型(active contour model)以及在其基础上发展出来的算法,其基本思想是使用连续曲线来表达目标边缘,并定义一个能量泛函使得其自变量包括边缘曲线,因此分割过程就转变为求解能量泛函的最小值的过程,一般可通过求解函数对应的欧拉(Euler.Lagrange)程来实现,能量达到最小时的曲线位置就是目标的轮廓所在。 主动轮廓线模型是一个自顶向下定位图像特征的机制,用户或其他自动处理过程通过事先在感兴趣目标附近放置一个初始轮 廓线,在部能量(力)和外部能量(外力)的作用下变形外部能量吸引活动轮廓朝物体边缘运动,而部能量保持活动轮廓的光滑性和拓扑性,当能量达到最小时,活动轮廓收敛到所要检测的物体边缘。

一、曲线演化理论 曲线演化理论在水平集中运用到,但我感觉在主动轮廓线模型的分割法中,这个知识是公用的,所以这里我们简单了解下。 曲线可以简单的分为几种: 曲线存在曲率,曲率有正有负,于是在法向曲率力的推动下,曲线的运动向之间有所不同:有些部分朝外扩展,而有些部分则朝运动。这种情形如下图所示。图中蓝色箭头处的曲率为负,而绿色箭头处的曲率为正。 简单曲线在曲率力(也就是曲线的二次导数)的驱动下演化所具有的一种非常特殊的数学性质是:一切简单曲线,无论被扭曲得多么重,只要还是一种简单曲线,那么在曲率力的推动下最终将退化成一个圆,然后消逝(可以想象下,圆的所有点的曲率力都向着圆心,所以它将慢慢缩小,以致最后消逝)。

相关主题
文本预览
相关文档 最新文档