当前位置:文档之家› 电抗器铁心设计问题

电抗器铁心设计问题

电抗器铁心设计问题

问:在电抗器铁心设计时如何划分叠片式与辐射式的界限,即是以铁心直径为界限来选择还是以其它参数为界限来选择。是否可以使用无取向硅钢片进行设计。并联电抗器设计磁密一般在1.0左右,其原因是不是只是为了降低噪声。对于干式并连电抗器,采用大理石作为气隙,如果用其他材料,比如环氧树脂,是否可行。另外,气隙块尺寸大了是否更好些。

答:界限一般并联电抗器基本上都用辐射铁心,而串联电抗器等产品一般都用叠片式铁心;

降低磁密到1.0左右主要是考虑到降低电抗器的噪音,同时,还要加防振的胶垫,即便这样,电抗器的噪音还是非常大,气隙如果采用环氧树脂,由于环氧树脂的弹性模量小,当铁心振动使环氧树脂产生较大幅度的伸缩,使产品的噪声增加。大理石作为石块,其硬度高,弹性模量大,在受到压力时不容易变形,可以减少铁心产生的噪音。油浸电抗器有些产品由于焊接质量不好,在长期运行过程中,由于振动式焊缝产生疲劳,发生渗油。

电抗器最大的问题还有局部过热,这是因为电抗器线圈产生的漏磁通较大,因此应当尽量避免靠近线圈的结构件环流的存在。(一个环路中,如果某个连接点电阻较大,则这个地方就很容易产生局部过热,影响电抗器的使用,但是如果在设计过程中,对于没有办法避免的环路,可以采取改善该处的散热条件,使产生的热量能有效的散发开去,同样也可以保证电抗器的正常使用。

使用较大的气隙块主要要看生产厂家的生产能力。如果达到接触平整也不容易。应当在铁饼加工等方面加大力度,尽量达到小气隙饼都能够接触到铁饼。

铁心气隙的大小一般对于油浸产品最大30-40mm左右(对于高压电抗器),一般情况下线圈距离铁心的尺寸应当大于气隙尺寸2倍以上,这样气隙产生的磁通基本不会影响线圈。相对来说,干式产品由于线圈距离铁心较远,气隙产生的磁通对线圈影响较小,可以取值较大一些。

铁芯串联电抗器

高倍不饱合铁芯串联电抗器 工频铁芯串联电抗器用于高低压电容补偿的限流,电动机起动限流,低通滤波等。 传统铁芯串联电抗器由于不饱合电流比较小,对常用的几种电抗器做了实际测试,不饱合电流一般在额定电流的1.1-1.35之间,最大的可达1.8倍。2倍额定电流就全饱合了,饱合后变成了非线性负载并产生大量电流谐波。电容器的串联电抗器主要是限制合闸涌流,因为在合闸时电容电压为0,合闸瞬间由于电容电压不能突变相当于短路,也就是电抗器的瞬时压降等于电源相电压。流过电抗器的电流可能达到额定电流8-10倍,对于传统电抗器合闸瞬间是完全饱合的,相当于一个空心电抗器。所以对合闸涌流限制作用很小。为了解决这个问题,我们研发出来大于8倍不饱合电流的串联电抗器。它可以在合闸时工作在不饱合状态,很好限制了合闸涌流。 一:在正常工作时传统电抗器端电压比较高,所以消耗的无功也比较多。比如电抗器是14%,正常工作时压降是35v,配30kvar电容器(线电压525v),电抗器消耗的无功是2.86kvar。电容器实际端电压=380*(1+14%)=433v,电容器实际发的的无功功率 =27.2A*1.732*433=20.4Kvar。向系统实际补偿无功 =20.4-2.86=17.54kvar,只有电容标称容量58.5%,所以电容利用率很低,并且由于选用14%电抗器使得所选电容器耐压也升高了,

增加电容器成本。 采用高倍不饱合串联工频电抗器,同样容量的电抗器正常运行的端电压2.2v,消耗的无功0.215Kvar。配30kvar电容器(线电压450v),电容器实际端电压=383v,电容器实际发的的无功功率 =33A*1.732*383=21.89Kvar。向系统实际补偿无功=21.67kvar,是电容标称容量72.2%,所以电容利用率高多了,并且由于电抗器的端电压低了,使得所选电容器耐压也低了,减少电容器成本。二:传统电抗器由于饱合电流小,在系统电压比较高的场合,电容电流增大使得电感电流超过饱合电流并大量产生电流谐波,电抗器变成谐波源。同时磁密很大,铁芯噪声温升都增大,严重时电抗器无法工作。 采用高饱合串联工频电抗器,正常工作磁密很小,只有0.18T,铁芯即使在最大谐波电压下无噪音温升很低。 三:如果系统电压畸变也就是电压谐波比较大时,传统电抗器电感值对谐波增加比较多,电容补偿回路对母线呈感性增大。这样就对补偿系统谐波无功的作用降低,也无法降低电压畸变。采用高倍不饱合串联工频电抗器,对主要谐波都呈容性。因此可以补偿系统谐波无功降低系统电压畸变。也就是具有一定的滤波功能。 高倍不饱和串联工频铁芯电抗器适用小于1Khz以下的工频和中 频系统,工作电压110KV及以下各个电压等级。。

kV干式铁心并联电抗器技术规范书

招标编号:xxxxxxx-xx-xx 江苏省电力公司工程 35kV铁芯并联电抗器 招标文件 第二卷技术规范书 江苏省电力公司 200x年x月

目录 1. 总则 2. 工作范围 2.1 供货范围 2.2 服务范围 2.3 技术文件 3. 技术要求 3.1 标准 3.2 使用环境条件 3.3 技术要求 4. 质量保证 5. 试验 6. 包装、运输和储存 7. 制造厂应提供的数据及资料 8. 卖方应填写的主要部件来源、规范一览表 附表1: 35kV铁心并联电抗器供货表 附表2: 投标差异表(格式)

1. 总则 1.1 本设备技术规范书适用于 35kV铁心并联电抗器, 它提出了该电抗器本体及附属设备的功能设计、结构、性能、安装和试验等方面的技术要求。 1.2 本设备技术规范提出的是最低限度的技术要求。凡本技术规范中未规定,但在相关设备的国家标准或IEC标准中有规定的规范条文,卖方应按相应标准的条文进行设备设计、制造、试验和安装。对国家有关安全、环保等强制性标准,必须满足其要求(如压力容器、高电压设备等)。 1.3 如果卖方没有以书面形式对本规范书的条文提出异议, 则意味着卖方提供的设备完全符合本规范书的要求。如有异议, 不管是多么微小, 都应在报价书中以“对规范书的意见和同规范书的差异”为标题的专门章节中加以详细描述。 1.4 本设备技术规范书所使用的标准如遇与卖方所执行的标准不一致时, 按较高标准执行。 1.5 本设备技术规范书经买、卖双方确认后作为订货合同的技术附件, 与合同正文具有同等的法律效力。 1.6 本设备技术规范书未尽事宜, 由买、卖双方协商确定。 1.7 卖方在应标技术规范中应如实反映应标产品与本技术规范的技术差异。如果卖方没有提出技术差异,而在执行合同的过程中,买方发现卖方提供的产品与其应标技术规范的条文存在差异,买方有权利要求退货,并将对下一年度的评标工作有不同程度的影响。 1.8 卖方应充分理解本技术规范并按本技术规范的具体条款、格式要求填写应标的技术文件,如发现应标的技术文件条款、格式不符合本技术规范的要求,则认为应标不严肃,在评标时将有不同程度的扣分。

铁心电抗器设计

电磁装置设计原理课程设计(二) 铁心电抗器设计 班级:

主要参数 B(mm)一、 技术要求: 1、 额定容量KVA S N 360= 2、 线两端电压KV U l 10= 3、 额定电压V U N 381= 4、 相数3=m 5、 额定电流A I N 315= 6、 损耗W P P k 40000≤+ 7、 线圈温升K T K 09< 二、 铁芯参数选择 铁芯直径m m S K D D 189.03/36057.0/44=?==,选择m D 3 10190-?= 采用30133-DQ 硅钢片,查表(5-1)得: 铁芯叠压系数:95.0=dp K 心柱有效截面面积:2 4 105.238m A z -?= 轭有效截面面积:24104.258m A e -?= 角重:kg G 0.62=?

铁芯最大片宽:m B M 185.0= 铁芯总叠厚:m M 16.0=? 铁轭片高:m b em 17.0= 三、 设计线圈时电压、电流的选择 每段电抗值Ω===210.1315/381/1N N k I U X , 设计线圈时的电压和电流分别是V U N 381=,A I N 315= 四、 线圈匝数 初选48.0,89.0'==m k T B , 匝7.8610 5.23889.0502381 48.0'24 =?????== -ππZ m A fB V k W ,取整得:匝86=W 五、 主电抗计算 1、 初选单个气隙长度m 3105.7-?=δ,初选铁芯饼高度m H B 3 1008-?= 2、 气隙磁通衍射宽度:m H B 3 31065.55700.008.05700.0ln 105.7)ln(--?=?? ? ??+?=+=πδδπδε 3、 气隙磁通衍射面积: 23621003.410)16018565.52(65.52)2(2mm b A M M --?=?++??=?++=εεδ 4、 气隙等效导磁面积: 221029.01000/30.495 .002385 .0mm A K A A dp Z =+=+= δδ 5、 主电抗,取n=7,Ω=??????=?=-160.110 105.770292 .0865081087 322722πδπδn A fW X m 6、 主电抗压降V X I U m N m 2.203160.1315=?== 7、 磁密T V fWA U B Z m 0.8902385 .0865022.20321=???= = ππ 六、 线圈设计 1、 线圈高度估计值: m H n H n H A B l 224.011.05700.0708.0)17()1(=-?+?-=-+-=δ 2、初选导线:23363.29,108.51055.3mm S mm b mm a L =?=?=--,

电抗器设计

07

《电磁装置设计原理——电抗器的设计》
设 计 报 告
姓 学
名 号
专业班号
指导教师 日 期

1
480KV/10KV 电 抗 器 设 计
一.电抗器的额定值和技术要求:
1、 额定容量 S N = 480 KVA 2、 额定电压 U N = 10 KV 3、 阻抗压降 U 1 = 381V 4、 相数 m = 3 5、 额定电流 I N = 419 A 6、 损耗 PCU + PFe ≤ 7000W 7、 线圈温升 TK < 125K 电抗器的主要参数选择结果
二.电抗器的参数计算选择
1. 铁芯参数设计选择
1.1 铁芯直径选择
D = K D 4 S / m = 0.06 × 4 480 / 3 = 0.206m ,
选择 D = 210 × 10 ?3 m ,采用 DQ133 ? 30 硅钢片,查表(5-1)得: 铁芯叠压系数: K dp = 0.95

2
铁芯柱有效截面面积: Az = 291.8 × 10 ?4 m 2 轭有效截面面积: Ae = 321.3 × 10 ?4 m 2 角重: G? = 84.8kg 铁芯最大片宽: BM = 0.2m 铁芯总叠厚: ? M = 0.178m 铁轭片高: bem = 0.19m 1.2 矩形铁芯长宽确定 举行铁芯的面积由上面查表得到的数据确定,又要求 a/b 为 3, 则可选取长 a=300mm,宽 b=100mm。 有效铁芯截面积等于铁芯面积 X 叠压系数: A S =0.95*300*100=28500 mm 2
2. 线圈参数设计选择
电抗额定值
X1 =
VN
IN
= 381
419
= 0.909
设计后,要满足电抗器的电抗的标幺值为 1~1.025 线圈匝数 初选 B ' = 0.81T , k m = 0.81 ,
W=
k mV 2πfB' AZ
=
0.81× 381 = 60匝 ,取整得: W = 60匝 2π × 50 × 0.87 × 300 × 10 ?4
主电抗计算
初选单个气隙长度 δ = 6.5 × 10 ?3 m ,铁芯饼高度 H B = 50 × 10 ?3 m

电抗器的基本结构

电抗器的基本结构 一、铁心式电抗器的结构 铁心式电抗器的结构与变压器的结构相似,但只有一个线圈——激磁线圈;其铁心由若干个铁心饼叠置而成,铁心饼之间用绝缘板(或纸板、酚醛纸板、环氧玻璃布板)隔开,形成间隙;其铁轭结构与变压器相同,铁心饼与铁轭由压缩装置通过螺杆拉紧,形成一个整体,铁轭和所有的铁心饼均应接地。铁心结构,铁心饼由硅钢片叠成,叠片方式有以下几种: (a)单相电抗器铁心;(b)三相电抗器铁心 (1)平行叠片 其叠片方式,与一般变压器相同,每片中间冲孔,用螺杆、压板夹紧成整体,适用于较小容量的电抗器。 (2)渐开线状叠片 其叠片方式,与渐开线变压器的叠片方式相同,中间形成一个内孔,外圆与内孔直径之比约为4:1至5:1,适用于中等容量的电抗器。 (3)辐射状叠片 其叠片方式,硅钢片由中心孔向外辐射排列,适用于大容量电抗器。 (a)平行叠片;(b)渐开线状叠片;(c)辐射状叠片 在平行叠片铁心中,由于气隙附近的边缘效应,使铁心中向外扩散的磁通的一部分在进入相邻的铁心饼叠片时,与硅钢片平面垂直,这样会引起很大的涡流损耗,可能形成严重的局部过热,故只有小容量电抗器才采用这种叠片方式。在辐射形铁心中,其向外扩散的磁通在进入相邻的铁心饼叠片时,与硅钢片平面平行,因而涡流损耗减少,故大容量电抗器采用这种叠片方式。 铁心式电抗器的铁轭结构与变压器相似,一般都是平行叠片,中小型电抗器经常将两端的铁心柱与铁轭叠片交错地叠在一起,为压紧方便,铁轭截面总是做成矩形或丁形。 二、空心式电抗嚣的结构 空心式电抗器就是一个电感线圈,其结构与变压器线圈相同。空心电抗器的特点是直径大、高度低,而且由于没有铁心柱,对地电容小,线圈内串联电容较大,因此冲击电压的初始电位分布良好,即使采用连续式线圈也是十分安全的。空心

铁芯电抗器设计

电气与电子工程学院《电磁装置设计原理》 课 程 设 计 设计题目铁芯电抗器设计 指导老师孙剑波 班级电气1212 姓名曹鹏举 学号U201212040 完成日期2015年 6 月19 日

目录 480KVA/10kV 铁芯电抗器参数列表 (3) 1.电抗器的额定值与技术要求 (4) 2.铁芯参数选择 (4) 3.线圈电压电流及电抗值 (5) 4.线圈匝数 (5) 5.主电抗计算 (5) 6.线圈设计 (6) 7.绝缘设计 (8) 8.绝缘半径计算 (8) 9.线圈漏电抗 (9) 10总电抗 (9) 11.线圈导线每相总长 (10) 12.线圈损耗 (10) 13.线圈导线重量 (10) 14.铁芯窗高 (11) 15.铁芯损耗 (11) 16.总损耗 (11) 17.线圈温升计算 (12) 18.成本核算 (12) 附1:480KVA/10kV 铁芯电抗器设计表格 (13) 附2:铁芯电抗器尺寸图 (17)

480KVA/10kV 铁芯电抗器参数列表

1.电抗器的额定值与技术要求 (1)额定容量Sc=480KV A (2)所接电网电压 10kV (3)频率50Hz (4)相数 3 (5)相电压381V (6)相电流419A (7)绝缘材料耐热等级H级(145℃) (8)总损耗≤7000W(附加损耗系数1.2) (9)铁芯材料DQ133-30 (10)导线材料铜导线ρ145℃=0.02616Ω*mm2/m (11)绕组温升≤95K(附加损耗系数1.35) (12)铁芯饼高度HB=50mm;叠压系数Kdp=0.95 2.铁芯参数选择 (1)铁芯直径 由直径估算公式 ' = D K 其中经验系数 K为经验系数,对于冷轧钢片、铜导线取值为0.054~0.058。 D 取值为0.058进行计算得: '0.2063 == D K 选择D=0.21m查表5-11得: 芯柱有效截面面积 A=0.02918m2 Z 铁轭有效截面面积 A=0.03213m2 e G=84.8kg 角重 A B=0.2m 铁芯最大片宽 M ?=0.178m 铁芯总叠厚 M b=0.19m 铁轭片高 em

铁芯电抗器设计程序

铁芯电抗器设计程序 一.已知参数 1. 电抗器总容量 Q LZ 2. 电压等级 额定电压 U H 额定电流 I H 电抗率 K=%C L X X 二.确定铁芯直径、截面积 S D=4 K L Q K —系数 50~60 一般取中 Q L —电抗器每柱容量 Q LZ ÷3 D —铁芯直径 S=4D 2π S —铁芯截面 拼圆形铁芯查铁芯表 三.求匝电势 e t =45BS ? B —磁通密度 S —铁芯截面 45—系数044.41 f =45 四.计标匝数 N=t e N U = 取态数 N —匝数 N U —端电压 e t —匝电势 五.选导线 S ≈g N A I D S —导线截面 铜1.5~2.5(不浇注) N I —额定电流 铝0.8~2(不浇注) g A —电流密度 铜线1.1~1.2(浇注) 铝线0.7~0.8(浇注)

六.查线规表 b ×a b —线厚度 a —线宽度 当线截面小于12mm 2时选用丝包圆线 七.线圈计标 线圈层数N ∕N 层=层数 向小的方向圆整数:省料、噪音大、发热大 向大的方向圆整数:费料、噪声小、发热小 然后重新计算总匝数N 根据总匝数回算磁通密度B 线圈单面出线选奇数层 线圈双面出线选偶数层 八.线圈尺寸 轴向高度:导线高度×N 层+1, 有换位时加一个导线宽度 再加0~1%余度, 有时可加到3% 幅向尺度:导线厚度×层数+层间绝缘+余度(1~5%)取整 九.绝缘半径 线圈幅向尺寸+(内4+外5) 浇注时:轴向尺寸+40=A 窗高:轴向尺寸 A +90 窗宽:线圈外径+相间绝缘距 线圈外径: {铁芯半径+装配间隙(2.5~4)+绝缘筒(3)+风道(20)+线圈内绝缘+线圈厚+5}×2 十.线长 线圈平均直径D=(内径+外径)÷2 线长 D π×N=线长L N 匝数 十一.导线电阻 R =S L ρ ρ—电阻率 L —导线长 S —导线截面 十二.导线发热 Q =0.24I 2Rt 杂散损耗Q ×1.05 十三.气隙 单柱气隙长度L =cm B IN 8.02 气隙个数 1cm 一个 往大方向取整 铁饼个数为:气隙个数-1 (窗高-气隙)∕饼数=饼高 或令饼高为60cm 窗高-60×(气隙数-1)-气隙数∕2=轭腿高

电抗器基本知识介绍及应用

电抗器基本知识介绍应用 一、干式电抗器的种类与用途 电抗器是重要的的电力设备,在电力系统中起补偿杂散容性电流、限制合闸涌流、限制短路电流、滤波、平波、启动、防雷、阻波等作用。根据电抗器的结构型式可分为空心电抗器、铁心电抗器与半心电抗器。 补偿杂散容性电流的电抗器主要有并联电抗器与消弧线圈。并联电抗器的作用是限制电力传输系统的工频电压升高现象,工频电压升高的原因在于空载长线的电容效应、不对称对地短路故障与突然甩负荷。消弧线圈通常应用在配电系统,它的作用是使得单相对地短路电流不能持续燃烧,导致电弧熄灭。消弧线圈通常具有调谐功能,可根据电力系统的杂散电容与脱谐度改变其电感值。 串联电抗器或称阻尼电抗器的作用是限制合闸涌流。串联电抗器与电力电容器串联使用,用于限制对电容器组合闸时的浪涌电流,通常选取电容器组容量的6%。 限流电抗器是串联于电力系统之中,多用于发电机出线端或配电系统的出线端,起限制短路电流的作用。为了与其他电力设备配合,其实际阻抗不能小于额定值。 滤波电抗器与电容器配合使用,构成LC谐振支路。针对特定次数的谐波达到谐振,滤除电力系统中的有害次谐波。 平波电抗器应用在直流系统中,起限制直流电流的脉动幅值作用。在设计平波电抗器时须注意线圈中的电流是按电阻分布的,设计时最好采用微分方程组计算。若按交流阻抗设计可能造成线圈出现过热现象,且阻抗值未必准确。

启动电抗器用于交流电动机启动时刻,限制电动机的启动电流,保护电动机正常运行。 防雷线圈通常用于变电站进出线 阻波器与防雷线圈的应用场合相 户外空心干式电抗器是20世纪 年代出现的新一代电抗器产品,如图1.1所示。它是利用环氧绕包技术将绕组完全密封,导线相互粘接大大的增加了绕组的机械强度。同时利用新的耐候材料喷吐于包封的表面,使得产品能够满足在户外的苛刻条件下运行。包封间由撑条形成气道,包封间与包封内绕组多采用并联连接以便满足容量与散热的要求。为了满足各个并联支路电流合理分配的需要,采用分数匝来减少支路间的环流问题。为了能够形成分数匝,采用星形架作为绕组的出线连接端。绕组的上下星架通过拉纱方式固定,固化后整个产品成为一个整体。这种结构的电抗器与传统方式的电抗器相比较具有可以直接用于户外、电感为线性、噪音小、防爆、使用维护方便等特点,因而对于某些此产品有可能正逐步取代其他形式的电抗器。 由于受到绕组结构的限制,户外空芯干式电抗器通常不适合电感量(>700mH)较大或电感较小(<0.08mH)但电流较大的场合,否则就

平波电抗器

平波电抗器 1 引言 高压直流(High Voltage DirectCurrent,HVDC)换流站采用半控型的晶闸管器件,利用相控进行交—直和直—交两种变换,将产生大量的高次谐波。目前HVDC换流装置一般采用12脉动换流桥,在换流站的交流侧将产生12n±1次电流特征谐波,n为自然数;在直流侧则产生12n次电压特征谐波。各种各样的不对称(如不等间隔的触发脉冲、母线电压不对称、相间换相电抗的不对称及变压器励磁电流)将产生少量额外的非特征谐波。换流站交流侧的谐波电流进入交流系统后,将使系统电压波形发生畸变并造成不良影响和危害。换流站直流侧的谐波电压将在直流线路上分布谐波电压和电流,使邻近的通信线路受到干扰。 滤波装置可抑制上述谐波。HVDC采用的滤波装置数量多、电压等级高、等效容量大,且一般为户外式。滤波装置在换流站的投资和占地面积中均占有相当大的比重。其中,滤波装置费用大约占HVDC总体投资的10%~15%[1]。典型的HVDC拓扑结构如图1所示。 整流站与逆变站一般具有对称结构。在HVDC系统直流侧首先采用平波电抗器减小直流线路中电压和电流的谐波分量;但仅靠平波电抗器的作用还不能满足谐波治理的要求,还需另外装设滤波器。传统HVDC主要装设的是针对特征谐波的无源滤波器(Passive Filter,PF)。 2 直流侧滤波装置性能评估标准 HVDC采用架空输电线时,通信干扰是很严重的问题。由于电力线路和通信线路的相对传输功率水平相差悬殊,且HVDC特征谐波频带与普通线路通话频带重合,因此对通话清晰度有明显干扰。谐波对换流站其他装置的安全运行也有严重危害。 现在各国HVDC输电工程主要根据通信干扰程度评估线路谐波水平,常采用等效干扰电流I eq指标。I eq是与直流输电线上的各次谐波电流等效的单一频率(800Hz或1000Hz)电流,其产生的干扰可等效为各次谐波电流所产生的干扰,它由整流站和逆变站谐波电流共同产生,在整流站和逆变站出站处取得最大值,其定义式为 式中 m为考虑的最高次谐波次数,对于HVDC系统通常取值为100;I n为第n次谐波电流的有效值; h n为第n 次谐波的耦合系数;P n为频率的加权系数。h n、P n与频率的对应关系见文 [2]。 在直流系统处于双极、平衡运行情况下,I eq的允许值分为:高标准(I eq为100~300mA);中等标准(I eq为300~1000mA);低标准(I eq超过1000mA)。对于单极运行的直流系统,该标准可增大2~3倍。近年来,随着光纤通信的普及,以上标准也有逐渐放宽的趋势。 3 直流侧滤波装置 3.1 平波电抗器 平波电抗器的设计需要满足以下几方面的要求[3]: (1)平波电抗器在直流线路小电流情况下能保持电流的连续性,触发延迟角10.1°<a<169.9° 时,此时其电感量为

高压铁芯电抗器

高压铁芯电抗器 本产品串联连接在6-63KV输变电系统中,在系统发生故障时,用以限制短路电流,使短路电流降至其后设备的允许值。以下是环氧浇注干式铁心电抗器的安装和使用。 干式电抗器分类: 1. 串联电抗器:安装在并联补偿电容器装置中,与并联电容器串联连接用以抑制谐波电流,减少系统电压波形畸变和限制电容器回路投入时的冲击电流; 2. 限流电抗器:串联连接在系统上,在系统发生故障时,用于限制短路电流,使短路电流降低至其后接设备的允许值; 3. 并联电抗器:在超高压远距离输电系统中,并联连接变电站低压绕组侧,用于长距离轻负荷输电线路的无功功率补偿; 4. 滤波电抗器:与串联电容器组串联使用,组成谐振回路,滤除指定高次谐波; 5. 电动机起动电抗器:与交流电动机串联连接,用于限制电动机的起动电流,电动机起动完成后电抗器即被切除。 一、用途 产品用于0-63KV以下电力系统中,与系统串联连接,用以抑制电网电压波形畸变,从而改变电网电压质量和保证电力系统安全运行;限制系统发生故障时的短路电流。适用于电力系统,电气化铁道,冶金,化工,石油等防火要求较高,有电磁干扰要求和安装场地有限的城网变电站。 二、技术特点 1. 线圈经环氧树脂浇注而成,具有阻燃、自熄、免维护、机械强度高、抗短路冲击能力强、绝缘强度好、局部放电量小、使用寿命长等优点; 2. 铁芯制造采用了干式电抗器的制造技术、振动小、噪音低、漏磁小,对环境的电磁干扰小; 3. 产品的整体结构紧凑,安装尺寸小,占用空间小; 4. 产品的技术条件符合国际标准IEC288-88和部颁标准JB5346-98等要求,其技术性能达到当代国际同类产品的水平。 三、XKSC系列树脂干式铁芯限流电抗器执行标准 IEC289-88《电抗器》 GB10229-88《电抗器》 JB5346-98《串联电抗器》 DL-462-92《高压并联电容器用串联电抗器订货技术条件》

电抗器设计

07 级 《电磁装置设计原理——电抗器的设计》 设计报告 姓名 学号 专业班号 指导教师 日期

480KV/10KV 电抗器设计 一.电抗器的额定值和技术要求: 1、 额定容量KVA S N 480= 2、 额定电压KV U N 10= 3、 阻抗压降V U 3811= 4、 相数3=m 5、 额定电流A I N 419= 6、 损耗W P P Fe CU 7000≤+ 7、 线圈温升K T K 125< 电抗器的主要参数选择结果 二.电抗器的参数计算选择 1. 铁芯参数设计选择 铁芯直径选择 m m S K D D 206.03/48006.0/44=?==, 选择m D 310210-?=,采用30133-DQ 硅钢片,查表(5-1)得: 铁芯叠压系数:95.0=dp K

铁芯柱有效截面面积:24108.291m A z -?= 轭有效截面面积:24103.321m A e -?= 角重:kg G 8.84=? 铁芯最大片宽:m B M 2.0= 铁芯总叠厚:m M 178.0=? 铁轭片高:m b em 19.0= 矩形铁芯长宽确定 举行铁芯的面积由上面查表得到的数据确定,又要求a/b 为3, 则可选取长a=300mm ,宽b=100mm 。 有效铁芯截面积等于铁芯面积X 叠压系数:S A =*300*100=285002mm 2. 线圈参数设计选择 电抗额定值 1381X 0.909419N N V I === 设计后,要满足电抗器的电抗的标幺值为1~ 线圈匝数 初选81.0,18.0'==m k T B , 匝6010 30087.050238181.0'24=?????==-ππZ m A fB V k W ,取整得:匝06=W 主电抗计算 初选单个气隙长度m 3105.6-?=δ,铁芯饼高度m H B 31005-?=

电抗器铁心设计问题

问:在电抗器铁心设计时如何划分叠片式与辐射式的界限,即是以铁心直径为界限来选择还是以其它参数为界限来选择。是否可以使用无取向硅钢片进行设计。并联电抗器设计磁密一般在1.0左右,其原因是不是只是为了降低噪声。对于干式并连电抗器,采用大理石作为气隙,如果用其他材料,比如环氧树脂,是否可行。另外,气隙块尺寸大了是否更好些。 答:界限一般并联电抗器基本上都用辐射铁心,而串联电抗器等产品一般都用叠片式铁心; 降低磁密到1.0左右主要是考虑到降低电抗器的噪音,同时,还要加防振的胶垫,即便这样,电抗器的噪音还是非常大,气隙如果采用环氧树脂,由于环氧树脂的弹性模量小,当铁心振动使环氧树脂产生较大幅度的伸缩,使产品的噪声增加。大理石作为石块,其硬度高,弹性模量大,在受到压力时不容易变形,可以减少铁心产生的噪音。油浸电抗器有些产品由于焊接质量不好,在长期运行过程中,由于振动式焊缝产生疲劳,发生渗油。 电抗器最大的问题还有局部过热,这是因为电抗器线圈产生的漏磁通较大,因此应当尽量避免靠近线圈的结构件环流的存在。(一个环路中,如果某个连接点电阻较大,则这个地方就很容易产生局部过热,影响电抗器的使用,但是如果在设计过程中,对于没有办法避免的环路,可以采取改善该处的散热条件,使产生的热量能有效的散发开去,同样也可以保证电抗器的正常使用。 使用较大的气隙块主要要看生产厂家的生产能力。如果达到接触平整也不容易。应当在铁饼加工等方面加大力度,尽量达到小气隙饼都能够接触到铁饼。 铁心气隙的大小一般对于油浸产品最大30-40mm左右(对于高压电抗器),一般情况下线圈距离铁心的尺寸应当大于气隙尺寸2倍以上,这样气隙产生的磁通基本不会影响线圈。相对来说,干式产品由于线圈距离铁心较远,气隙产生的磁通对线圈影响较小,可以取值较大一些。

电抗器的分类:

电抗器的分类: 按结构及冷却介质、按接法、按功能、按用途进行分类。 1 按结构及冷却介质:分为空心式、铁心式、干式、油浸式等,例如干式空心电抗器、干式铁心电抗器、油浸铁心电抗器、油浸空心电抗器、夹持式干式空心电抗器、绕包式干式空心电抗器、水泥电抗器等。 2 按接法:分为并联电抗器和串联电抗器。 3 按功能:分为限流和补偿。 4 按用途:按具体用途细分,例如限流电抗器、滤波电抗器、平波电抗器、功率因数补偿电抗器、串联电抗器、平衡电抗器、接地电抗器、消弧线圈、进线电抗器、出线电抗器、饱和电抗器、自饱和电抗器、可变电抗器(可调电抗器、可控电抗器)、轭流电抗器、串联谐振电抗器、并联谐振电抗器等。 电抗器作为无功补偿手段,在电力系统中是不可缺少的。 并联电抗器:发电机满负载试验用的电抗器是并联电抗器的雏型。铁心式电抗器由于分段铁心饼之间存在着交变磁场的吸引力,因此噪音一般要比同容量变压器高出10dB左右。 限流电抗器:限流电抗器一般用于配电线路。从同一母线引出的分支馈线上往往串有限流电抗器,以限制馈线的短路电流,并维持母线电压,不致因馈线短路而致过低。 阻尼电抗器(通常也称串联电抗器)与电容器组或密集型电容器相串联,用以限制电容器的合闸涌流。这一点,作用与限流电抗器相类似

滤波电抗器滤波电抗器与滤波电容器串联组成谐振滤波器,一般用于3次至17次的谐振滤波或更高次的高通滤波。直流输电线路的换流站、相控型静止补偿装置、中大型整流装置、电气化铁道,以至于所有大功率晶闸管控制的电力电子电路都是谐波电流源,必须加以滤除,不让其进入系统。电力部门对于电力系统中的谐波有具体规定。 消弧线圈:消弧线圈广泛用于lOkV-6kV级的谐振接地系统。由于变电所的无油化倾向,因此35kV以下的消弧线圈现很多是干式浇注型。平波电抗器:平波电抗器用于整流以后的直流回路中。整流电路的脉波数总是有限的,在输出的整直电压中总是有纹波的。这种纹波往往是有害的,需要由平波电抗器加以抑制。直流输电的换流站都装有平波电抗器,使输出的直流接近于理想直流。直流供电的晶闸管电气传动中,平波电抗器也是不可少的。 直流控制的饱和电抗器:串在电路中的扼流式或自饱和饱和电抗器,在电压正弦波的周期内,饱和电抗器在饱和前吸收了一定的伏-秒,达到饱和,以后就呈全开放状态。因此其输出电压是非正弦的,这种饱和电抗器的作用与晶闸管相似。 电气回路的主要组成部分有电阻、电容和电感.电感具有抑制电流变化的作用,并能使交流电移相.把具有电感作用的绕线式的静止感应装置称为电抗器。

10kV干式铁心并联电抗器技术规范书

10kV干式铁心并联电抗器技术规范书

招标编号:xxxxxxx-xx-xx 江苏省电力公司工程 10kV铁芯并联电抗器 招标文件 第二卷技术规范书 江苏省电力公司 200x年x月

目录 1. 总则 2. 工作范围 2.1 供货范围 2.2 服务范围 2.3 技术文件 3. 技术要求 3.1 标准 3.2 使用环境条件 3.3 技术要求 4. 质量保证 5. 试验 6. 包装、运输和储存 7. 制造厂应提供的数据及资料 8. 卖方应填写的主要部件来源、规范一览表 附表1: 10kV铁心并联电抗器供货表 附表2: 投标差异表(格式)

1. 总则 1.1 本设备技术规范书适用于 10kV铁心并联电抗器, 它提出了该电抗器本体及附属设备的功能设计、结构、性能、安装和试验等方面的技术要求。 1.2 本设备技术规范提出的是最低限度的技术要求。凡本技术规范中未规定,但在相关设备的国家标准或IEC标准中有规定的规范条文,卖方应按相应标准的条文进行设备设计、制造、试验和安装。对国家有关安全、环保等强制性标准,必须满足其要求(如压力容器、高电压设备等)。 1.3 如果卖方没有以书面形式对本规范书的条文提出异议, 则意味着卖方提供的设备完全符合本规范书的要求。如有异议, 不论是多么微小, 都应在报价书中以“对规范书的意见和同规范书的差异”为标题的专门章节中加以详细描述。 1.4 本设备技术规范书所使用的标准如遇与卖方所执行的标准不一致时, 按较高标准执行。 1.5 本设备技术规范书经买、卖双方确认后作为订货合同的技术附件, 与合同正文具有同等的法律效力。 1.6本设备技术规范书未尽事宜, 由买、卖双方协商确定。 1.7 卖方在应标技术规范中应如实反映应标产品与本技术规范的技术差异。如果卖方没有提出技术差异,而在执行合同的过程中,买方发现卖方提供的产品与其应标技术规范的条文存在差异,买方

电抗器设计选型简明手册

电抗器设计选型简明手册 作者:编委会 出版社:中国科技文化出版社 出版日期:2009年5月 开本:16开 册数:4册 光盘数:0 定价:960元 优惠价:480元 进入20世纪,书籍已成为传播知识、科学技术和保存文化的主要工具。随着科学技术日新月异地发展,传播知识信息手段,除了书籍、报刊外,其他工具也逐渐产生和发展起来。但书籍的作用,是其他传播工具或手段所不能代替的。在当代, 无论是中国,还是其他国家,书籍仍然是促进社会政治、经济、文化发展必不可少的重要传播工具。 详细介绍: 第一篇电抗器概论 第一章电抗器概论 第二章电抗器的过滤过程 第三章电力系统中的过电压及电压调节

第二篇铁心电抗器的电抗计算 第一章主电抗计算 第二章漏电抗计算 第三章漏磁场分析与漏电计算 第三篇空心电抗器的电感计算 第一章自感计算 第二章绝缘修正值计算 第三章磁场与自感计算 第四章互感计算 第五章带磁屏蔽的空心电抗器的磁场 第四篇电抗器的电动力 第一章铁心电抗器 第二章空心电抗器 第六篇可控饱和电抗器设计计算 第一章饱和电抗器的原理与分析 第二章含可控电抗器长线暂态过程的高阶算法 第三章可控电抗器工作原理及所产生的谐波 第四章磁阀式可控电抗器的数学模型及特性 第五章磁阀式可控电抗器简化模型和漏电抗 第六章可控电抗器暂态过程及参数 第七章裂芯式可控电抗器的数学模型及特性分析 第八章可控电抗器限制操作过电压 第九章可控电抗器接入长线的非对称运行 第十章配网自动调谐消弧线圈及控制 第十一章磁阀式可控电抗器调压控制系统 第十二章电气化铁道运态无功补偿系统 第十三章提高可控电抗器响应速度的措施 第七篇干式电抗器设计计算 第一章干式电抗器的分类、用途及基本特征 第二章干式铁心电抗器 第三章干式空心电抗器 第四章中性点接地装置 第八篇 110(66)KV~500KV油浸式电抗器管理制度 第一章概述 第二章 110(66)KV~500KV油浸式电抗器技术标准 第三章 110(66)KV~500KV油浸式电抗器运行规范 第四章 110(66)KV~500KV油浸式电抗器检修规范 第五章 110(66)KV~500KV油浸式电抗器技术监督规定 第六章 110(66)KV~500KV油浸式电抗器事故措施 第七章 110(66)KV~500KV油浸式电抗器评价标准 第八章 110(66)KV~500KV油浸式电抗器技术改造指导意见第九篇 10KV~66KV干式电抗器管理制度 第一章概述 第二章 10KV~66KV干式电抗器技术标准

一种干式铁芯电抗器线圈设计

一种干式铁芯电抗器线圈设计 发表时间:2019-09-05T10:55:03.207Z 来源:《中国电业》2019年第09期作者:袁永团 [导读] 本文介绍高电压大电流电抗器线圈设计采用矩形分段箔绕法结构,解决以上问题。 夸普电气(上海)有限公司,上海 201404 摘要:随着供电需求量增加,10kV电网系统中电流也会增加,国家对电能质量提出更高要求。干式铁芯电抗器在改善电能质量中占据重要地位,在10kV电网中电抗器一般采用多根电磁线并绕圆筒层式结构的线圈,但很难解决大电流引起的温升高问题以及高电压引出线绝缘问题。本文介绍高电压大电流电抗器线圈设计采用矩形分段箔绕法结构,解决以上问题。 关键词:干式铁芯电抗器、高电压大电流、矩形线圈、分段箔绕式结构 1. 概述 干式铁芯电抗器在10kV电网系统中,用于限制短路电流,能够有效的抑制和吸收高次谐波,改善系统的电压波形,提高电网功率因数,有效的改善电能质量发挥重量作用。市场对满足高电压大电流干式铁芯电抗器需求量逐渐增大,要求也越来越高。高电压大电流电抗器线圈一般采用圆筒层式结构,生产制造时会存在以下缺点: 1.1.大电流线圈采用多股电磁线并绕,导线截面大应力较大,线圈很难绕制成型,机械强度差,线圈内外径尺寸偏大,很难控制为图纸要求尺寸,浪费材料并增加线圈损耗;线圈每层都需要导线换位,增加绕制工时,换位处增加线圈损耗,若换位处绝缘处理不当会存在短路隐患;多根电磁线引出线与外部铜(铝)排焊接较为困难,会存在虚焊隐患等。 1.2. 电抗器线圈采用圆筒线圈结构(如图1),铁芯柱是由气隙间隔的多个铁饼垒成多级圆形结构,要求每个铁饼必须同心对称。多级圆形铁饼制作工艺较为复杂,需要不同片宽铁芯片一级一级堆积而成,生产中很难保证每级不同片宽铁芯片同心对称,很难保证所有铁饼垒成铁芯柱同心对称。如果不能保证同心对称,电抗器漏磁通增加,电抗器损耗增加。 1.3高电压线圈采用层式线圈结构,绕制原理图如图2所示,线圈起头A在第一层由内向外穿层引出,在10kV高压电网系统中,起头A 与各层均存在电压差的关系,如果起头A与各层端部距离较近,存在穿层放电隐患;如果起头A与端绝缘距离较近,而与铁芯下轭绝缘绝缘距离不够,那么产品出厂做工频耐压试验时候,可能会起头A对铁芯放电隐患;因此为了保证起头A安全从内部引出,必须增加起头A与端部绝缘距离,并且加强起头A引线绝缘厚度,从而增加电抗器工艺难度和制造成本。 1.4电抗器线圈采用圆筒结构,为适应不同电抗器容量,只能增加线圈内径大小,电抗器长度和深度尺寸同时增加,总体积变大,空间浪费较大。多数铁芯电抗器安装在室内控制柜中,对电抗器外形尺寸要求很高,圆筒结构线圈很难满足要求。 2. 新结构设计 为了克服以上因电抗器高电压和大电流而产生线圈制造问题,本文设计采用矩形分段箔绕线圈,成功解决以上问题,具体设计如下: 2.1大电流线圈采用箔绕线圈如图3所示。箔绕线圈多用于大电流低压产品上,本文采用箔绕线圈用于10kV高压电抗器产品上。箔绕线圈一般采用铜(铝)箔作为导线,每层为一匝,辐向上有多少层就有多少匝。层间绝缘和端绝缘采用DMD复合绝缘纸,具有良好的机械强

电抗器设计计算

第一章电抗器概述 电抗器是一种电感元件,当在具有电感值L的电抗器线圈器两端产生电抗压降I L X L。在一般情况下,电抗器的电感值L与其结构尺寸有如下关系: L=W2Λ= W2μAc/Lc 式中W———线圈的匝数; Λ———磁路的磁导〔H〕。Λ=μH=μAc/Lc H----磁场强度 μ———磁路的磁导率〔H/m〕,对于空气μ≈μ0=4πx10-7 H/m Ac———磁路的等效导磁面积(㎡); Lc———磁路的等效长度(m)。 电抗器就其磁路结构而言,有空气式电抗器和带间隙的铁心式电抗器两种。空气式电抗器无铁心,磁路主要由非铁磁材料(例如空气、变压器油等)构成,其磁导率μ≈μ0,是常数,不随负载电流变化而变化。带间隙的铁心式电抗器(以下简称铁心式电抗器)的磁路由带气隙(或油隙)的铁心柱构成,假若铁心柱中不设置一定长度的气隙,则其磁导将呈非线性,当负载电流超过一定数值时,铁心就会饱和,其磁导率会急剧下降,从而电感、电抗也就急剧下降,会影响电抗器所接系统的正常工作。电抗器按用途来分类主要有并联电抗器、消弧线圈、限流电抗器、饱和电抗器等。 第一节电抗器的基本结构 一、铁心式电抗器的结构 铁心式电抗器的结构与变压器的结构相似,但只有一个线圈———激磁线圈;其铁心由若干个铁心饼叠置而成,铁心饼之间用绝缘板(或纸板、酚醛纸板、环氧玻璃布板)隔开,形成间隙;其铁轭结构与变压器相同,铁心饼与铁轭由压缩装置通过螺杆拉紧,形成一个整体,铁轭和所有的铁心饼均应接地。铁心结构如图1-1所

示,铁心饼由硅钢片叠成,叠片方式有以下几种: 图1-1铁心电抗器的铁心结构 (a)单相电抗器铁心;(b)三相电抗器铁心 (1)平行叠片 其叠片方式如图1-2(a)所示,与一般变压器相同,每片中间冲孔,用螺杆、压板夹紧成整体,适用于较小容量的电抗器。 (2)渐开线状叠片 其叠片方式如图1-2(b)所示,与渐开线变压器的叠片方式相同,中间形成一个内孔,外圆与内孔直径之比约为4:1至5:1,适用于中等容量的电抗器。 (3)辐射状叠片 其叠片方式如图1-2(b)所示,硅钢片由中心孔向外辐射排列,适用于大容量电抗器。 图1-2铁心饼的叠片方式 (a)平行叠片;(b)渐开线状叠片;(c)辐射状叠片

电抗器

第1.0.1条并联电容器用串联电抗器(以下简称电抗器)的设计选择必须执行国家的技术经济政策,并应根据安装地点的电网条件、谐波水平、自然环境等,合理地选择其技术参数,做到安全可靠、经济合理。 第1.0.2条本标准适用于变电所和配电所中新建或扩建的6~63KV并联电容器装置中电抗器的设计选择。 第1.0.3条本标准所指电抗器是串联于高压并联电容器回路中的电抗器,该电抗器用于限制合闸涌流,减轻电网电压波形畸变和防止发生系统谐波谐振。 第1.0.4条电抗器的设计选择,除应符合本标准的规定外,尚应符合国家现行有关标准的规定。 第二章环境条件 第2.0.1条电抗器的基本使用条件: 一、安装场所:户外或户内; 二、环境温度:-40℃~+40℃; -25℃~+45℃; 三、海拔:不超过1000m; 四、相对湿度:对于户内电抗器月平均相对湿度不超过90%,日平均不超过95%; 五、地震裂度:设计地震基本裂度为8度;即水平加速度0.3g,垂直加速度0.15g; 六、户外式最大风速为35m/s; 七、电抗器的外绝缘泄漏比距不应小于2.5cm/KV。对于重污秽地区可以取3.5cm/KV。 第2.0.2条选用电抗器时,应按当地环境条件校核,当环境条件超出其基本使用条件时,应通过技术经济比较分别采取下列措施: 一、向制造厂提出补充要求,制造符合当地环境条件的产品; 二、在设计中采取相应的防护措施,如采用户内布置、水冲洗、减震装置等。 第三章技术参数选择 第一节电抗率的选择 第3.1.1条电抗率的选择,应使装置接入处n次谐波电压含量和电容器上n次谐波电压值均不超过有关标准规定的限值。

第3.1.2条当仅需要限制合闸涌流时,宜选用电抗率为4.5%~6%的电抗器。 第3.1.3条为抑制5次及以上谐波电压放大,宜选用电抗率为4.5%~6%的电抗器;抑制3次及以上谐波电压放大,宜选用电抗率为12%~13%的电抗器。 第3.1.4条在电力系统谐波电压较大时,应由非线性用电设备所属单位负责采取限制谐波的措施,在采用交流滤波电容器装置时,电抗器应按滤波电抗器的要求选择。 第二节额定值 第3.2.1条电抗器的基本额定参数,应选择下列规定值: 一、额定频率:50Hz; 二、相数:1Φ或3Φ; 三、系统额定电压:6KV,10KV,35KV,63KV; 四、额定电抗率(K):0.1%~1%,4.5%~6%,12%~13%。 第3.2.2条电抗器的额定电流应和与其串联组合的电容器或电容器组的额定电流相等。 第3.2.3条电抗器的额定端电压应等于与其串联组合的一相电容器额定电压的K倍,其值见表3.2.3。 第3.2.4条电抗器的额定容量,应等于与其串联组合的电容器或电容器组额定容量的K倍。 第三节主要技术性能 第3.3.1条电抗器在额定电流下的电抗值偏差,应在下列范围之内: 0%~+5%(K≥4.5%); 0%~+10%(K<4.5%)。 对于每相电抗值的偏差,不应超过三相平均电抗值的±2%。 铁芯电抗器在工频1.8倍额定电流下,其电抗值偏差不得超过额定电抗值的-5%。 第3.3.2条电抗器应能承受下列最大短时电流而不得出现任何热的和机械的损伤。 一、铁芯电抗器应能承受25倍额定电流持续2s;

相关主题
文本预览
相关文档 最新文档