当前位置:文档之家› 原子核壳模型

原子核壳模型

原子核壳模型
原子核壳模型

原子核壳模型

在核物理与核化学中,核壳层模型是一个利用泡利不相容原理的结构来描述的原子核的能量级别的一个模型。

类似的壳层模型最早于1932年,由Dmitry Ivanenko与E. Gapon一起提出,而后在1949年核壳层模型由几个物理学家研究及提出,最主要的几个人是尤金·维格纳、玛丽亚·格佩特-梅耶和约翰内斯·延森,由于发现核壳层模型理论和对称性原理,因此于1963年颁发诺贝尔物理学奖。

核壳层模型部分是类似于原子的电子壳层描述原子中的电子的安排,当壳层填满时特别稳定,核壳层模型描述原子中次原子粒子的排布,当质子与中子填满某个核壳层,该核素更稳定。当在一个稳定的原子核加入核子(质子或中子)时,也有一定的结合能,但其量值明显小于前一个核子。发现幻数:2,8,20,28,50,82,126当质子或中子为幻数时有较高的结合能,这就是核壳层模型的起源。

质子和中子的核壳层是相互独立的。因此,质子或中子可以只有其中一个为幻数,此时称为幻核,也可以两者皆是幻数,则为双幻核。由于在核轨域填充有一些变化,目前最大的幻数是126,并推测有184个中子,但只有114个质子,这在搜索所谓的稳定岛中扮演了一个重要的角色。目前已发现一些半幻数,特别是Z = 40时,核壳填充的各种元素,此外,16也可能是一个幻数。

核壳层模型基本信息

原子核-内部结构模型表

原子核壳层模型表

在核物理与核化学中,核壳层模型是一个利用泡利不相容原理的结构来描述的原子核的能量级别的一个模型。

通过分析实验资料发现,原子核具有类似元素周期性的情况,含中子数或质子数为2、8、20、28、50、82以及中子数为126的原子核特别稳定,在自然界中的含量也比相邻的核素丰富。原子核的某些性质随中子(或质子)数的增加呈现的变化也在经过上述那些值后发生突变。上述这些数值,人们称之为幻数。幻数的存在表明,平均场的概念对原子核也是有意义的,可以把原子核里的核子看作是在由其他核子共同产生的某个单粒子平均场中作近乎独立的运动,并认为平均场所不能概括的核子之间的剩余相互作用是比较弱的,可以当作微扰来处理,这就是壳层模型的基本思想。

核壳层模型其他信息

壳层模型强调了核子运动的独立性,它的一种简化近似是:完全忽略核子之间的剩余相互作用,认为核子在单粒子平均场中作完全独立的运动,这被称为极端单粒子模型。

起初人们假设平均场是简单的中心力场,如谐振子场,所得的能级一般如在附图中左方所示,不能给出正确的壳层。后来,M.G.迈尔和J.H.D.延森独立地指出,原子核的单粒子平均场堸含有强的自旋-轨道耦合项

核壳层模型

原子核(中子,质子)-内部结构模型图

原子核(中子,质子)-内部结构模型图

其中()是球对称的位势,和分别为核的自旋角动量和轨道角动量,()是自旋轨道耦合势的形状因子。按照量子力学,对于这个平均场,存在一系列不连续的能级。图中示意地给出了它的单粒子能级图。图中左端表示的是由振子量子数【=2(-1)+】和的奇、偶性所标记的谐振子势的能级;接着画出的由主量子数和轨道角动量量子数标记的能级(),表示了谐振子简并能级的劈裂,它是由更为现实一点的球形对称势得到的;包含自旋轨道耦合项后的能级画在图的中间位置上,它由()标记,是总角动量量子数,可以取

核壳层模型

核壳层模型

;右边圆括号里的数值是该能级的简并度2+1(总角动量的投影量子数还可以取-,-+1,…,共2+1个值),紧挨着它的方括号里的值是它下面所有较低能级的简并度的和。由图看出,

这个单粒子能级序是组合成一个个“壳层”的,壳层内各能级之间的距离比起相邻两个壳层的上、下能级之间的距离要小得多。由于核子是自旋为

核壳层模型

的费密子,按照泡利不相容原理,由()标记的每个单粒子态最多只能填充一个质子和一个中子。原子核处于基态时,其质子和中子在服从泡利原理的前提下依次由低到高地填充各单粒子能级。当正好把某个主“壳层”填满时,这个原子核的质子(中子)总数就是图上右端所列的数值,它恰好是实验发现的原子核的幻数。例如,嬆He核基态的两个质子和两个中子正好填满了ls壳层,峓O核基态的八个质子和八个中子正好填满了ls和lp壳层。从独立粒子模型的观点来看,原子核的幻数就是刚好填满主“壳层”时核的质子(中子)总数,幻数核是闭合壳层原子核(又称满壳核)。当壳层闭合时,核子不易对外作用,幻数核的结合能较其相邻核的结合能大得多,所以这些核特别稳定。而上面提到的嬆He,峓O,这种核质子数中子数都为幻数,因此特别稳定,称为双幻核或双满壳核。

核壳层模型

核壳层模型

在极端单粒子模型的基础上,如果再假定剩余相互作用中存在一个对偶力(或称对力),使填充在()能级上的每一对质子(中子)的角动量都耦合成零,这样便自然地解释了质子数和中子数均为偶数的所有原子核基态都有零角动量这一事实,而且由此预言的质量数为奇数的原子核基态的总角动量在大多数情况下与最后一个不成对的奇核子的总角动量相同,这个事实也与实验相符。这种将奇数原子核的性质视为仅由最后一个不成对的奇核子决定的简化模型被称为单粒子壳层模型,它在解释原子核基态和低激发态的某些性质上取得了一定成功。但许多事实表明,核子之间的剩余相互作用一般不能忽略,计及了核子之间首先是闭合壳层外那些束缚得不太紧的核子(这些核子称为价核子)之间的,剩余相互作用的壳层模型,被称为多粒子壳层模型。

核壳模型是对核子在原子核内的运动提出的解释和设想。由于核力及核多体问题的复杂性,对原子核的结构还不能做到完全的、精确的理论描述,因而只能根据相当数量的实验事实,归纳出几条解释某些核现象的局部规律。

核壳模型科学研究

实验发现,在原子核中,当质子数或中子数为某些特定的数目(2、8、20、28、50、82、126等)时,原子核的性质有明显的突变,原子核显得特别稳定。2、8、20、28、50、82、126就叫做幻数幻数的存在表明原子核像原子一样,具有壳层结构的特征。1948年M.G.迈尔和J.H.D.延森总结了已有的实验,提出了原子核的壳层结构理论,也称核壳层模型。它是核结构理论的一个重大进展。

核壳模型说明

核壳层模型的基本思想是:原子核内的核子在其余的核子产生的平均势场作用下独立地运动着,核子所受到的作用势只与它自己的坐标有关。求解这一平均势场下的薛定谔方程,可以得到这一核子的能级及相应的波函数。核子的能级往往是简并的,有些能级虽然不是简并的,但它们有相近的能量。这些具有相等或相近能量的状态构成一个壳层。一个壳层与下一个壳层有较大的能量差别核子按泡利不相容原理逐一填充这些状态,填满一个壳层后,就开始填充能量较高的另一个壳层,这时原子核的能量显得突然增加。所以,恰巧填满一个壳层的那些核显得特别稳定。

壳层模型相当成功地描述了幻数,很好地解释了原子核基态的自旋和宇称(见核性质),解释了长寿命同质异能态的分布随核子数变化的规律,给出了核磁矩变化的趋势等等。

核壳模型模型分析

集体模型实验表明,原子核的运动形式,除了独立粒子运动以外,还有振动和转动等集体运动的形式。1952年丹麦物理学家A.玻尔和B.R.莫特森提出了一种新的核模型──集体模型(或叫做综合模型)。

集体模型认为,原子核中的核子在平均场中独立地运动并形成壳层结构,而原子核又可以发生形变,并产生转动和振动等集体运动。这两种集体运动的引入是集体模型对壳层模型的重要发展。在原子核处于满壳时,原子核趋于球形。当满壳以外存在核子时,满壳外的核子对于核心部分会产生极化作用,使之产生形变。满壳层内的核子的运动又有保持球对称的趋势,对于极化作用有一种恢复力。在一定的条件下,这两种作用达到平衡。

集体模型很好地解释了远离幻数的原子核磁矩以及壳层模型无法给出的大的电四极矩。它很好地给出了变形核中转动和振动等低激发态的位置,以及这些态具有的大的跃迁几率。这一理论在裂变现象的研究方面是有用的。

液滴模型这个模型是丹麦物理学家N.玻尔1936年首先提出并在1939年被玻尔和美国物理学家J.A.惠勒用于解释核裂变现象。它是早期的一种原子核模型,它将原子核比作一种带电的不可压缩的液滴,核子比作液滴中的分子。

液滴模型很好地解释了原子核的比结合能基本上是一个常数,核子间的相互作用具有饱和性这一事实。这个模型再现了原子核的不可压缩性,即核物质的密度几乎是一个常数的事实。它是目前计算原子核的结合能以及核裂变的最好的理论基础。(见裂变机理)相互作用玻色子模型这是70年代起逐步发展起来的一个模型,它是为了解释满壳与大变形核中间大量的过渡区原子核的性质而提出的。

核壳模型关联

由于核子之间的关联,核内的核子倾向两两耦合在一起,形成总角动量量子数为0或2的核子对。该模型把耦合成总角动量量子数为0的核子对叫s玻色子,把总角动量量子数为2的核子对叫d玻色子(自旋量子数为整数的粒子叫玻色子,自旋量子数为半整数的粒子叫费密子),模型的原子核是由这些相互作用的玻色子组成。

这个模型在统一的框架下,既可以给出振动核的特征,又可以给出转动核的极限,还能解释大量的过渡区原子核的能级特征及其跃迁。

参考书目

M.G.Mayer and J.H.D.Jensen,John Wiley & Sons,New York,1955.

A.De Shalit and I.Talmi,Academic Press,New York,1963.

原子核形状及动力学

原子核的形状及动力学 Liaoning Normal University (2012届) 本科生毕业论文 题目:原子核的形状及动力学 学院:物理与电子技术学院 专业:物理学 班级序号:2班27号 学号:20081125020082 学生姓名:孙丽丽 指导教师:张宇 2012年5月

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 一引言 (2) 二理论模型简介 (2) (一)费米气体模型 (2) (二)液滴模型 (2) (三)壳层模型 (3) (四)集体运动模型 (3) (五)玻色子模型 (3) 三原子核的形状 (4) 四原子核的运动 (4) (一)原子核的单粒子运动 (4) (二)原子核的集体运动 (5) 五原子核的相变 (5) (一) IBM理论及原子核的相变 (6) (二)角动量及原子核的相变 (6) 六小结 (7) 参考文献 (8) 致谢 (9)

原子核的形状及动力学 原子核的形状及动力学 摘要:简要介绍原子核的基本性质,在掌握研究原子核物理学的理论方法基础上,介绍了原子核的单粒子运动和集体运动下原子核的形状,并且总结了原子核的基态相变和角动量引起的相变。 关键词:原子核形状相变;角动量;球形;扁椭球形;长椭球形。 Abstract:The basic properties of nucleus are briefly introduced. And nuclear shape under sing-particle and collective moment are further introduced in detail, and the nuclear ground state phase transition and the phase transition caused by spin are also concluded. Key words:Shape phase transition in nuclei; Angular momentum; Spherical; Oblate; Prolate.

原子核式结构模型

《2 原子的核式结构模型》教学设计 一、教材分析: 这一节是本章的重点,高考的热点,尤其是α粒子散射实验及其现象。让学生认识到实验对理论发展的重要作用,知道物理模型建立的意义及其局限性。从汤姆孙的原子结构模型到卢瑟福的原子的核式结构模型的建立,既渗透科学探究的因素教学,又进行了模型法的教学,并将卢瑟福的原子的核式结构模型与行星结构相类比,使学生有更清晰的直观形象、生动的认识,指出大自然的和谐统一的美,渗透哲学教育。通过学生对α粒子散射实验现象的讨论与交流,顺理成章地否定了枣糕模型,并建立新的模型。 原子的结构非常紧密,用一般的方法是无法探测它的内部结构的,要认识原子的结构,需要用高速粒子对它进行轰击,用高速的α粒子穿过原子的散射情况,是研究原子结构的有效手段。二、教学目标: (一)知识与技能 1.了解原子结构模型建立的历史过程及各种模型建立的依据。 2.知道α粒子散射实验的实验方法和实验现象,及原子核式结构模型的主要内容。 (二)过程与方法 1.通过对α粒子散射实验结果的讨论与交流,培养学生对现象的分析中归纳中得出结论的逻辑推理能力。 2.通过核式结构模型的建立,体会建立模型研究物理问题的方法,理解物理模型的演化及其在物理学发展过程中的作用。 3.了解研究微观现象。 (三)情感、态度与价值观 1.通过对原子模型演变的历史的学习,感受科学家们细致、敏锐的科学态度和不畏权威、尊重事实、尊重科学的科学精神。 2.通过对原子结构的认识的不断深入,使学生认识到人类对微观世界的认识是不断扩大和加深的,领悟和感受科学研究方法的正确使用对科学发展的重要意义。 3、让学生参与问题的解决,参与科学研究的良好学习习惯,逐步积蓄探究热情,培养学生勇于探究的精神,探究能力和合作精神。 三、教学重点难点: 重点:1.引导学生小组自主思考讨论在于对α粒子散射实验的结果分析从而否定汤姆孙的枣糕模型,得出原子的核式结构; 2.在教学中渗透和让学生体会物理学研究方法,渗透三个物理学方法:模型方法,黑箱方法和微观粒子的碰撞方法; 难点:引导学生小组自主思考讨论在于对ɑ粒子散射实验的结果分析从而否定葡萄干布丁模型,得出原子的核式结构 四、学情分析: 根据学生的具体情况设计教案、设计难度梯度,努力保证课堂时效性。学生观察ɑ粒子散射实验现象进行讨论和通过观察实验现象推理出卢瑟福的原子的结构模型会有一定的困难,因此对提出的3个问题,前二个问题放手让学生进行小组讨论,对于问题3采用先让学生猜想,师生共同分析

高中物理选修3-5玻尔的原子模型教案课程设计

第十八章原子结构 新课标要求 1.内容标准 (1)了解人类探索原子结构的历史以及有关经典实验。 例1 用录像片或计算机模拟,演示α粒子散射实验。 (2)通过对氢原子光谱的分析,了解原子的能级结构。 例2 了解光谱分析在科学技术中的应用。 2.活动建议 观看有关原子结构的科普影片。 新课程学习 18.4 玻尔的原子模型 ★新课标要求 (一)知识与技能 1.了解玻尔原子理论的主要内容。 2.了解能级、能量量子化以及基态、激发态的概念。 (二)过程与方法 通过玻尔理论的学习,进一步了解氢光谱的产生。 (三)情感、态度与价值观 培养我们对科学的探究精神,养成独立自主、勇于创新的精神。 ★教学重点 玻尔原子理论的基本假设。 ★教学难点 玻尔理论对氢光谱的解释。 ★教学方法

教师启发、引导,学生讨论、交流。 ★教学用具: 投影片,多媒体辅助教学设备 ★课时安排 1 课时 ★教学过程 (一)引入新课 复习提问: 1.α粒子散射实验的现象是什么? 2.原子核式结构学说的内容是什么? 3.卢瑟福原子核式结构学说与经典电磁理论的矛盾 教师:为了解决上述矛盾,丹麦物理学家玻尔,在1913年提出了自己的原子结构假说。 (二)进行新课 1.玻尔的原子理论 (1)能级(定态)假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。这些状态叫定态。(本假设是针对原子稳定性提出的)(2)跃迁假设:原子从一种定态(设能量为E n )跃迁到另一种定态(设能量为E m )时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即 n m E E h -=ν(h 为普朗克恒量) (本假设针对线状谱提出) (3)轨道量子化假设:原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应。原子的定态是不连续的,因此电子的可能轨道的分布也是不连续的。(针对原子核式模型提出,是能级假设的补充)2.玻尔根据经典电磁理论和牛顿力学计算出氢原子的电子的各条可

原子核总复习

总复习 一基本概念 1、核自旋,镜像核,核衰变,核反应,放射系 2 、半衰期,平均寿命,衰变常量,放射性活度 3、质量亏损,质量过剩,原子核的结合能,比结合能,最后一个核子的结合能 4、级联 辐射的角关联穆斯堡尔效应 5、原子核的液滴模型,壳层结构模型(单粒子模型),集体结构模型浸渐近似 5、核反应能,核反应阈能 6、微分截面,分截面,总截面 7、内转换,同核异能态,同核异能素,同核异能跃迁 8、核反应产额,透射率 第一章 1、莫塞莱公式 2、质谱仪测核质量 3、核的半径公式 4、核自旋及其计算

5、核磁共振法测核磁矩 6、电四极矩与形变参量的关系 第二章 1、放射性衰变的基本规律 2、放射性活度 3、T1/2、λ、τ三者之间的关系式 4、连续衰变规律,放射性平衡的条件及应用 5、人工放射性的生长 6、14C 鉴年法公式 7、比结合能曲线 8、质量亏损定义式 9、质量过剩(盈余) 10、核的液滴模型与核的结合能计算式(用质量、质量过剩)、比结合能 11、结合能半经验公式 12、最后一个质子、中子的结合能计算 13、β稳定线经验公式

第五章 1、α衰变能的计算 2、α衰变能、α粒子动能及核反冲能的关系 3、α衰变的基本理论与实验规律 4 α磁谱仪基本原理 第六章 1、β衰变三种类型及其衰变能计算 2、β能谱的特点及其解释 3、β磁谱仪基本原理 4、费米理论的基本思想 5、泡利中微子假说及中微子的性质 6、衰变纲图 7、β衰变的跃迁分类和选择定则 (比较半衰期、库里厄图) 10、β衰变的宇称不守恒 第七章 1、γ衰变的跃迁分类和选择定则及其应用 2、内转换系数及其应用

原子结构模型发展史及其影响

一、原子结构模型发展史及其影响 原子最初被认为没有质的区别,只有大小、形态和位置的区别,经过后期哲学家的发展,认识到各种原子也有质的区别。古代的这种原子观是在缺乏实验佐证的情况下产生的。 18世纪末,英国化学家道尔顿(Dalion,1766—1844年)通过大量实验与分析,认识到原子是真实存在的,并确信物质是由原子结合而成的。他于1808年出版了《化学哲学新体系》一书,提出了原子学说,认为每种单质均由很小的原子组成。不同的单质由不同质量的原子组成。并认为原子是一个坚硬的小球,在一切化学变化中保持基本性质不变。此后近一百年,关于原子的结构的认识没有大的变化。 在19世纪末,放射性元素逐一被发现,它们裂变的事实冲破原子不能再分的传统观念。1897年英国科学家汤姆孙(1856—1940)发现原子里有带负电荷的电子。这一切激励着科学家们去探索原子的内在结构。 1904年,英国科学家汤姆孙首先提出葡萄干面包原子模型。他认为既然电子那么小,又那么轻,因此原子带正电部分充斥整个原子,而很小很轻的电子浸泡在正电的气氛中,这正像葡萄干嵌在面包中那样。电子带的负电荷被原子内带正电荷部分抵消,因此原子是电中性的。汤姆森的原子模型能解释原子是电中性的,还能估计原子半径约为100pm(10-10m),因此它风行10多年,以后意外地被汤姆孙的学生卢瑟福推翻。 1911年,卢瑟福(1897—1937)和盖革(1882—1945)用α粒子轰击金属箔,并用荧光屏记录粒子散射现象的情况。他发现大部分α粒子按直线透过金属箔,只有极少一部分α粒子被反弹回来或偏转很大角度。这个实验充分说明原子内有很大空间,而正电荷部分集中在原子中心极小的球体内,这里占原子质量的99%以上。因此,他断定汤姆孙的葡萄干面包的原子模型不符实际,同时他果断地提出新的原子模型。 1912年,卢瑟福联系太阳系中行星绕太阳旋转情况提出新的原子模型是带正电的原子核在原子正中,占原子质量的绝大部分,正像太阳系中太阳那样;带负电的电子环绕原子核作高速运动。按这个模型可估计原子直径是100pm,电子直径是1fm,原子核直径是10~0.1fm,原子内部有很大空间。 虽然这个模型能成功地解释一些现象,但是它立即遭到全世界大多数科学家反对。因为据经典物理理论,任何作加速运动的电荷都要辐射电磁波,这必然引起两种后果:第一,不断辐射能量,电子将沿螺旋线渐渐趋近原子核,最后落到核上而毁灭。第二,电子不停地、连续地辐射电磁波,电磁波的波长会发生连续的变化,因此,所有的原子都应发射连续光谱。然而事实决非如此,首先,从未发生过原子毁灭的现象。说明电子不会落到原子核上去。其次,原子在正常情况下不辐射电磁波。即使气体或蒸汽被火焰,或其他方法灼热时有电磁波辐射,但这种辐射通过三棱镜后得到的是线光谱,而不是连续光谱。这些事实使卢瑟福也不知怎样来解释。 正当卢瑟福无计可施时,刚巧来了一位年轻丹麦化学家玻尔(1885—1962),他坚决支持卢瑟福的新模型,并且引进崭新的量子学说,为原子结构理论谱写出光辉的一页。玻尔理论的要点是:

1 从独立粒子核壳层到原子核集体模型

1.从独立粒子核壳层模型到原子核集体模型 一个亘古不变、极具魅力的话题:自从人类有了思维,人们就开始不停地追问“我们的世界究竟由什么组成?”古希腊哲学家泰勒斯提出:水是万物的始基;赫拉克利特认为:火是万物的本原;德谟克利特则宣称:世界万物都是由不可分割的颗粒(原子)和虚空所组成。我国古代的“五行说”认为,宇宙万物皆由金、木、水、火、土构成;“元气说”则认为,客观的元气是构成宇宙万物的本原。 粒子物理学中的“标准模型”理论,经受了相当成功的实验检验,被认为是迄今为止最有效的一个唯象理论,但是这个理论仍然存在着许多基本的疑难问题有待解决。诸如希格斯粒子的存在和本质,粒子质量的来源,夸克和轻子更深层次的特征标度,标准模型更深层次上的基本规律等,都是今后主要的研究领域。寻找超出标准模型的新理论,将成为高能物理近期探索的一个重要任务核物理研究一开始,就面临着一个重要的问题,这就是核子间相互作用的性质。人们注意到,大多数原子核是稳定的,而通过对不稳定原子核的γ衰变、β衰变和α衰变的研究发现,原子核的核子之间必然存在着比电磁作用强得多的短程、且具有饱和性的吸引力。此外,大量实验还证明,质子-质子、质子-中子、中子-中子之间的相互作用,除了电磁力不同外,其它完全相同,这就是核力的电荷无关性。1935年,汤川秀树(YukawaHideki1907~1981)提出,核子间相互作用是通过交换一种没有质量的介子实现的。1947年,π介子被发现,其性质恰好符合汤川的理论预言。 介子交换理论认为,单个π介子交换产生核子间的长程吸引作用(≥3×10-13cm),双π介子交换产生饱和中程吸引作用(1~3×10-13cm),而ρ、ω分子交换产生短程排斥作用(<1×10-13cm),π介子的自旋为零,称为标量介子,ρ、ω介子的自旋为1,称为矢量介子,它们的静止质量不为零,这确保了核力的短程性,而矢量介子的非标量性又保证了核力的自旋相关性。核力性质及核组成成分的研究,为进一步揭示原子核的结构创造了条件。 在早期的原子核模型中,较有影响的有玻尔的液滴模型、费密气体模型、巴特勒特和埃尔萨斯的独立粒子模型以及迈耶和詹森的独立粒子核壳层模型。其中最成功的是独立粒子核壳层模型。 在1948~1949年间,迈耶(Mayer,MariaGoeppert1906~1972)通过分析各种实验数据,重新确定了一组幻数,即2、8、20、28、50和82。确定这些幻数的根据是:①原子核是这些幻数的化学元素相对丰度较大;②幻核的快中子和热中子的截面特别小;③幻核的电四极矩特别小;④裂变产物主要是幻核附近的原子核;⑤原子的结合能在幻核附近发生突变;⑥幻核相对α衰变特别稳定; ⑦β衰变所释放的能量在幻核附近发生突变。在费密的启发下,迈耶在平均场中引入强的自旋-轨道耦合力,利用该力引起的能级分裂成功地解释了全部幻数的存在。接着,詹森(Jensen,Johannes Hans Daniel1907~1973)也独立地得到了相同的结果。在迈耶与詹森合著的《原子核壳层基本原理》一书中,他们利用核壳层模型成功地解释了原子核的幻数、自旋、宇称、磁矩、β衰变和同质异能素岛等实验事实。由于原子核壳层结构模型所获得的成功,及其在核物理研究中的重要作用,迈耶和詹森共同获得1963年诺贝尔物理学奖。 核壳层模型是在大量的关于核性质、核谱以及核反应实验数据综合分析的基础上提出的,它对原

原子核模型理论

原子核模型理论 原子核模型的建立是原子核物理学史的重要组成部分。模型是人类认识自然的必要途径,也是理论思维的一种方式。在物理学的研究中,往往是先提出恰当的模型,然后才能得出简明的运动规律,建立适宜的理论体系。恰当的模型,可以概括已知的事实,这些事实经一定的理论联系在一起,得到统一的解释,而建立在可靠事实基础上的理论进一步又能预言新的事实,指导人们做出新的发现。 然而,原子核模型的研究,比起原子模型来,经历了漫长得多的过程,至今仍在发展之中。几十年来,先后有好几种核模型被提出,它们从不同侧面反映了原子核的某些现象和某些性质,每种模型都只能解释一定范围内的实验事实,难以用同一种模型概括和解释全部实验事实。这反映原子核的复杂性,也反映了人们对原子核的认识还不很充分。下面介绍几种最著名的核模型。 1、气体模型 气体模型是费米在1932年提出的,他把核子(中子和质子)看成是几乎没有相互作用的气体分子,把原子核简化为一个球体,核子在其中运动,遵守泡利不相容原理。每个核子受到其余核子形成的总势场作用,就好像是在一个势阱中。由于核子是费米子,原子核就可看成是费米气体。所以,对核内核子运动起约束作用的主要因素就是泡利不相容原理。但由于中子和质子有电荷差异,它们的核势阱的形状和深度都各不相同。气体模型成功之处在于,它可以证明质子数和中子数相等的原子核最稳定;这一结论与事实相符。再则,用气体模型计算出的核势阱深度与其它方法得到的结果接近。不过这一模型没有考虑核子之间的强相互作用,难以解释后来发现的许多新事实。 2、液滴模型 液滴模型是N.玻尔和弗伦克尔在1935年提出的。其事实根据为:(1)是原子核每个核子的平均结合能几乎是一常数,即总结合能正比于核子数,显示了核力的饱和性。(2)是原子核的体积正比于核子数,即核物质的密度也近似于一常数,显示了原子核的不可压缩性。这些性质都与液滴相似,所以把原子核看成是带电荷的理想液滴,提出液滴模型。1936年玻尔用这个模型计算核反应截面,由此说明了一些核现象。1939年玻尔和惠勒在解释重核裂变时,又用上了液滴模型。但是早期的液滴模型没有考虑核子运动,所以不能说明核的自旋等重要性质。后来加进某些新的自由度,液滴模型又有新的发展。 3、壳层模型 壳层模型是美籍德国出生的物理学家迈耶(Goeppert-Mayer Maria,1906~1972)夫人和延森(Jensen Johannes Hans Daniel,1907~)在1949年各自独立提出的。在这之前,当有关原子核的实验事实不断积累时,1930年后不久,就有人想到,原子核的结构可以借鉴于原子壳层的结构,因为自然界中存在一系列幻数核,即当质子数Z和中子数N分别等于下列数(称作幻数)之一:2、8、20、28、50、82、126时,原子核特别稳定。这跟元素的周期性非常相似,而原子的壳层结构理论正是建立在周期性这一事实基础之上的。不过,最初的尝试却是失败的,人们从核子的运动中得不到与实验相等的幻数。后来支持幻数核存在的实验事实不断增加,而不论是气体模型还是液滴模型,都无法对这些事实做出解释。直到1949年,迈耶和延森由于在势阱中加入了自旋-轨道耦合项,终于成功地解释了幻数,并且计算出了与实验正好相符的结果。壳层模型可以相当好地解释大多数核基态的自旋和宇

传统的原子核模型

传统的原子核模型 正如原子模型的建立是原子物理学史的重要组成部分一样,原子核模型的建立也是原子核物理学史的重要组成部分。模型是人类认识自然的必要途径,也是理论思维的一种方式。在物理学的研究中,往往是先提出恰当的模型,然后才能得出简明的运动规律,建立适宜的理论体系。恰当的模型,可以概括已知的事实,这些事实经一定的理论联系在一起,得到统一的解释,而建立在可靠事实基础上的理论进一步又能预言新的事实,指导人们作出新的发现。 然而,原子核模型的研究,比起原子模型来,经历了漫长得多的过程,至今仍在发展之中。几十年来,先后有好几种核模型被提出,它们从不同侧面反映了原子核的某些现象和某些性质,每种模型都只能解释一定范围内的实验事实,难以用同一种模型概括和解释全部实验事实。这反映原子核的复杂性,也反映了人们对原子核的认识还不很充分。下面略举几种最著名的核模型。 1.气体模型,是费米在1932年提出的,他把核子(中子和质子)看成是几乎没有相互作用的气体分子,把原子核简化为一个球体,核子在其中运动,遵守泡利不相容原理。每个核子受其余核子形成的总势场作用,就好象是在一势阱中。由于核子是费米子,原子核就可看成是费米气体,所以,对核内核子运动起约束作用的主要因素就是泡利不相容原理。但由于中子和质子有电荷差异,它们的核势阱的形状和深度都各不相同。 气体模型成功之处,在于它可以证明质子数和中子数相等的原子核最稳定。这一结论与事实相符。再有,用气体模型计算出的核势阱深度约为-50meV,与其它方法得到的结果接近。不过这一模型没有考虑核子之间的强相互作用,过于简单,难以解释后来发现的许多新事实。 2.液滴模型,是N.玻尔和弗伦克尔(Я.И.френке∧)在1935年提出的。其事实根据有二,一是原子核每个核子的平均结合能几乎是一常数,即总结合能正比于核子数,显示了核力的饱和性,另一是原子核的体积正比于核子数,即核物质的密度也近似于一常数,显示了原子核的不可压缩性。这些性质都与液滴相似,所以把原子核看成是带电荷的理想液滴,提出液滴模型。 1936年玻尔用这个模型计算核反应截面,由此说明了一些核现象。1939年玻尔和惠勒在解释重核裂变时,又用上了液滴模型。 但是早期的液滴模型没有考虑核子运动,所以不能说明核的自旋等重要性质。后来加进某些新的自由度,液滴模型又有新的发展。 3.壳层模型,是迈耶(M.G.Mayer)夫人和简森(J.H.D.Jensen)在1949年各自独立提出的。在这之前,当有关原子核的实验事实不断积累时,1930年后不久,就有人想到,原子核的结构可以借鉴于原子壳层的结构,因为自然界中存在一系列幻数核,即当质子数Z 和中子数N分别等于下列数(称作幻数)之一: 2、8、20、28、50、82、126时,原子核特别稳定。这跟元素的周期性非常相似,而原子的壳层结构理论正是建立在周期性这一事实基础之上的。 然而,最初的尝试却是失败的,人们从核子的运动,求解薛定谔方程,却得不到与实验相等的幻数。再加上观念与壳层模型截然相反的液滴模型已取得相当成功,使得人们很自然地对壳层模型采取否定态度。 后来,支持幻数核存在的实验事实不断增加,而不论是气体模型还是液滴模型,都无法对这一事实作出解释。直到1949年,迈耶和简森由于在势阱中加入了自旋-轨道耦合项,终于成功地解释了幻数,并且计算出了与实验正好相符的结果。

原子核的初期模型与质子的发现

原子核的初期模型与质子的发现1914年前后,人们已经知道原子核是所有放射性过程活动的处所,核的种类由原子量A和核电荷数Z来决定,并认为α粒子和核之间的相互作用纯粹是电磁作用。达尔文(Darwin Charles Galton,1887~1962)从已知数据得出结论:“除了反平方力外,正比于距离的其他幂次的力,都不能够给出卢瑟福散射截面依赖于初始速度υ的关系式。”根据α粒子逼近核的最小距离,卢瑟福在1911年已认识到核半径很小:r≤3×10-12厘米。达尔文在1914年已注意到:“氢和氦的[核]半径肯定小于10-13厘米。”氢原子核在那些日子常被称作“H 粒子”,“质子”的名字是以后才有的。 范登布鲁克第一个提出α粒子和电子是原子核的组分。电子对于核质量的贡献十分小,但电子的主要作用是将电荷补偿到正确的数值。并不是所有的原子核都只由α粒子和电子组成,否则核的质量Α就只能近似地是4的倍数,不过H粒子的存在会有助于克服这个困难。1914年2月,卢瑟福认为α粒子可能是有4个H粒子和2个负电子构成。1914年3月19日在一次皇家学会讨论会上,卢瑟福对核结构作了进一步的论述:“一般的证据表明,初级β粒子产生于核的扰动。因此原子核必须被考虑成一个由正粒子和电子组成的非常复杂的结构,但现在讨论原子核本身的可能的结构还为时过早。”对于卢瑟福,以及对于所有那时的物理学家来说,把电子说成是原子核的建筑部件的说法是合乎情理。实际上原子核的H粒子-电子图像这个想法是受简单性的原则支配下的必然想法。 由于原子核内存在H粒子,人们自然会去寻找原子核的“自发的H衰变”。1915年,实验显示了“一个极强烈的可能性,即H粒子是从放射性的原子中发射出来的”。但随即这一可能又消失了,这就是人类在核中寻找亚结构的开始。1914年卢瑟福就已经写道:“氦核是个非常稳定的构造,当它从放射性原子里以高速被逐出时,它在这种强烈的扰动下仍然能够保持不变;氦核可能是组成大多数原子的基本单位之一。”“原子核线度虽然非常小,但它是由正负带电体形成的非常复杂的系统,并由非常强的电力把它们紧紧地束缚在一起。”当时的情况就像1921年卢瑟福给博特伍德(Boltwood Bertram Borden,1870~1927)的信中所说:“写出这些东西极其容 易,但是要得到实验证据以形成一个正确的决定却是极其困 难。” 1916年,马斯敦观察到过一种奇特现象,当他用α粒 子轰击空气的时候。出现一些粒子具有长得不寻常的射程。 一种可能的解释是,这些粒子是氢核,因为如此长距离的反 冲在用α位于轰击氢时是常常出现的。但卢瑟福却怀疑它是 某种别的极其重要的东西。为此,他主要利用履行公职多余的时间,做了长期而耐心的研究,决心搞清楚这种出射粒子的性质。在1917年11月的一篇论文中卢瑟福自问道,那些粒子到底是氮原子、氦原子、氢原子呢,还是锂原子? 卢瑟福大约花了三年的时间做了每一个可能的对照性实验。他想要使结果绝对地可靠,他使用如图所示的实验装置,并亲自用显微镜观察。图1表示出可充入气体(氮)的一个密封容器,并在D中装有一α粒子源.因为距离DS大于α粒子的射程,人们就可以断定,在荧光屏F上产生闪烁的粒子,是在被α粒子轰击的氮核的蜕变过程中发射的。1919年6月,卢瑟福发表了一篇题为“α粒于与轻原子的碰撞”的论文。论文共分四个部分,第四部分的小标题为“氮图11-4为卢瑟福观察首次核蜕变用的装置 图11-6为布拉凯特在威尔逊云室拍摄到的 照片

原子的核式结构模型教案

普通高中课程标准实验教科书—物理(选修3-5) 第十八章原子结构 新课标要求 1.内容标准 (1)了解人类探索原子结构的历史以及有关经典实验。 例1 用录像片或计算机模拟,演示α粒子散射实验. (2)通过对氢原子光谱的分析,了解原子的能级结构。 例2 了解光谱分析在科学技术中的应用。 2.活动建议 观看有关原子结构的科普影片。 新课程学习 ★新课标要求 (一)知识与技能 1.了解原子结构模型建立的历史过程及各种模型建立的依据. 2.知道α粒子散射实验的实验方法和实验现象,及原子核式结构模型的主要内容。 (二)过程与方法 1.通过对α粒子散射实验结果的讨论与交流,培养学生对现象的分析中归纳中得出结论的逻辑推理能力。 2.通过核式结构模型的建立,体会建立模型研究物理问题的方法,理解物理模型的演化及其在物理学发展过程中的作用。 3.了解研究微观现象。 (三)情感、态度与价值观 1.通过对原子模型演变的历史的学习,感受科学家们细致、敏锐的科学态度和不畏权威、尊重事实、尊重科学的科学精神。 2.通过对原子结构的认识的不断深入,使学生认识到人类对微观世界的认识是不断扩大和加深的,领悟和感受科学研究方法的正确使用对科学发展的重要意义. ★教学重点 1.引导学生小组自主思考讨论在于对α粒子散射实验的结果分析从而否定”枣糕模

型”,得出原子的核式结构; 2.在教学中渗透和让学生体会物理学研究方法,渗透三个物理学方法:模型方法,黑箱方法和微观粒子的碰撞方法; ★教学难点 引导学生小组自主思考讨论在于对ɑ粒子散射实验的结果分析从而否定”枣糕模型”,得 出原子的核式结构 ★教学方法 教师启发、引导,学生讨论、交流。 ★教学用具: 投影片,多媒体辅助教学设备 ★课时安排 1 课时? ★教学过程 (一)引入新课 讲述:汤姆生发现电子,根据原子呈电中性,提出了原子的"枣糕模型"。 学生活动:师生共同得出汤姆生的原子“枣糕模型"。 点评:用动画展示原子”枣糕模型”。 (二)进行新课 1.α粒子散射实验原理、装置 (1)α粒子散射实验原理: 汤姆生提出的枣糕原子模型是否对呢? 原子的结构非常紧密,用一般的方法是无法探测它的内部结构的,要认识原子的结构,需要用高速粒子对它进行轰击。而α粒子具有足够的能量,可以接近原子中心。它还可以使荧光屏物质发光。如果α粒子与其他粒子发生相互作用,改变了运动方向,荧光屏就能够显示出它的方向变化。研究高速的α粒子穿过原子的散射情况,是研究原子结构的有效手段。 学生:体会α粒子散射实验中用到科学方法;渗透科学精神(勇于攀登科学高峰,不怕苦、不怕累的精神)的教育. 教师指出:研究原子内部结构要用到的方法:黑箱法、微观粒子碰撞方法。 (2)α粒子散射实验装置 α粒子散射实验的装置,主要由放射源、金箔、荧光屏、望远镜和转动圆盘几部分组成。 α粒子散射实验在课堂上无法直接演示,希望借助多媒体系统,利用动画向学生模拟实验的装置、过程和现象,使学生获得直观的切身体验,留下深刻的印象。通过多媒体重点指出,荧光屏和望远镜能够围绕金箔在一个圆周上运动,从而可以观察到穿透金箔后偏转角度不同的α粒子.并且要让学生了解,这种观察是非常艰苦细致的工作,所用的时间也是相当长的。 动画展示α粒子散射实验装置动画展示实验中,通过显微镜观察到的现象

王为民核子(质子或中子)壳层模型概述

王为民核子(质子和中子)壳层模型概述 王为民(四川南充龙门中学) 王为民核子(质子和中子)壳层模型类似原子的能级结构,类似原子核平均场的壳层模型。 这就是要考虑仅仅由质量差不多的三个夸克,类似经典天体物理三体的绕转问题。 核子的力场是胶子场,它形成了一个势阱,因为考虑到质子带电,中子不带电,所以质子的势阱要加一个小小的势垒,而质子势阱底部却比中子高一些。 虽然核子没有一个质量特别大的结构作为质量中心,但是,其约化平均质量的中心却是存在的。于是核子中的夸克可以围绕这个约化质量中心旋转形成能级结构。在核子直径方向形成一维势阱。或考虑三维立体坐标形成三维势阱。但是,由于三维势阱第一能级(基态)和一维势阱一样,只有一个能级,是s态(基态),第二能级有三个简并势阱比一维多两个。但是,考虑到核子中的夸克仅仅只有三个进行填充,所以,不影响最低能级的填充情况。势阱中的能量表达式为 E n=n2h2/8md2,n=1,2,3, (1) 其中,m为上夸克或下夸克的质量,d为势阱宽度。 自旋-轨道相互作用的附加能量为 △E j=C L?s=C?[j(j+1)-L(L+1)-3/4]/2 =CL/2或-C(L+1)/2 前者对于j=L+1/2,后者对于j=L-1/2 (2)其中的常数C由实验确定。两个能级的间隔为 △E=△E L-1/2-△E L+1/2=-(2L+1)C/2 (3)其中,L越大,能级分裂越厉害。在核子内,夸克受自旋-轨道相互作用势影响特别强,和原子中的电子情况不一样,不是微扰势,仅产生能级的精细结构。 按照能量最低原理和泡利不相容原理将夸克在核子的势阱中进行填充。 质子(p)的填充情况为:第一能级填一个上夸克(u)和一个下夸克(d),让其自旋方向相反,因为上夸克带正2/3单位电荷,而下夸克带负1/3单位电荷,可以做到正负电荷相吸,能量最低,同时,自旋方向相反,结果磁矩方向相同,对于磁场来说,磁矩方向相同能量最低,降低磁场能,这是磁铁形成原理。第二能级的就只能填上夸克(u)了,为了减小能量,第二级的上夸克的自旋方向应该和第一能级的上夸克方向相同,以便形成相同的磁矩方向,降低磁场能。 所以,质子的总自旋是三个夸克自旋之和,等于1/2,按照这样的质子壳层结构,计算质子的磁矩和实验值相等的情况下可以配合中子磁矩的计算,求出上夸克和下夸克的精确静质量。 中子(n)的填充情况为:第一能级(基态)同样填一个上夸克(u)和一个下夸克(d),和质子填充情况一样。只是第二能级填的是下夸克,为了降低磁场能,下夸克(d)的自旋方向和第一能级的下夸克自旋方向相同,所以,中子的自旋仍然是1/2,是三个夸克自旋之和。但是,磁矩方向却和下夸克的自旋方向相反,而与上夸克自旋方向和磁矩方向相同,这就是中子为什么整体不带电却有磁矩,而磁矩方向与中子自旋方向相反的原因。同样,根据中子的这个能级结构计算中子的磁矩,在等于实验测定值的情况下,和质子磁矩计算等式相配合,可以精确计算出自由上夸克和下夸克的静质量。 由此可见,质子和中子为两个球壳结构,第一能态(基态)为质子和中子的硬芯。 经过实验精确测定质子的磁矩为

高中物理 玻尔的原子模型精品教案

玻尔的原子模型 (一)知识与技能 1.了解玻尔原子理论的主要内容。 2.了解能级、能量量子化以及基态、激发态的概念。 (二)过程与方法 通过玻尔理论的学习,进一步了解氢光谱的产生。 (三)情感、态度与价值观 培养我们对科学的探究精神,养成独立自主、勇于创新的精神。★教学重点 玻尔原子理论的基本假设。 ★教学难点 玻尔理论对氢光谱的解释。 ★教学方法 教师启发、引导,学生讨论、交流。 ★教学用具: 投影片,多媒体辅助教学设备 ★课时安排 1 课时 ★教学过程 (一)引入新课 复习提问: 1.α粒子散射实验的现象是什么? 2.原子核式结构学说的内容是什么? 3.卢瑟福原子核式结构学说与经典电磁理论的矛盾

教师:为了解决上述矛盾,丹麦物理学家玻尔,在1913年提出了自己的原子结构假说。 (二)进行新课 1.玻尔的原子理论 (1)能级(定态)假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。这些状态叫定态。(本假设是针对原子稳定性提出的)(2)跃迁假设:原子从一种定态(设能量为E n )跃迁到另一种定态(设能量为E m )时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即 n m E E h -=ν(h 为普朗克恒量) (本假设针对线状谱提出) (3)轨道量子化假设:原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应。原子的定态是不连续的,因此电子的可能轨道的分布也是不连续的。(针对原子核式模型提出,是能级假设的补充)2.玻尔根据经典电磁理论和牛顿力学计算出氢原子的电子的各条可能轨道半径和电子在各条轨道上运动时的能量(包括动能和势能)公式:轨道半径:12r n r n = n=1,2,3……能 量: 121 E n E n = n=1,2,3……式中r 1、E 1、分别代表第一条(即离核最近的)可能轨道的半径和电子在这条轨道上运动时的能量,r n 、E n 分别代表第n 条可能轨道的半径和电子在第n 条轨道上运动时的能量,n 是正整数,叫量子数。3.氢原子的能级图 从玻尔的基本假设出发,运用经典电磁学和经典力学的理论,可以计算氢原子中电子的可能轨道半径和相应的能量。 (1)氢原子的大小:氢原子的电子的各条可能轨道的半径r n : r n =n 2r 1, r 1代表第一条(离核最近的一条)可能轨道的半径 r 1=0.53×10-10 m 例:n=2, r 2=2.12×10-10 m (2)氢原子的能级:①原子在各个定态时的能量值E n 称为原子的能级。它对应电子在各条可能轨道上运动时的能量E n (包括动能和势能) E n =E 1/n 2 n=1,2,3,······ E 1代表电子在第一条可能轨道上运动时的能量 E 1=-13.6eV 注意:计算能量时取离核无限远处的电势能为零,电子带负电,在正电荷

原子核壳模型

原子核壳模型 在核物理与核化学中,核壳层模型是一个利用泡利不相容原理的结构来描述的原子核的能量级别的一个模型。 类似的壳层模型最早于1932年,由Dmitry Ivanenko与E. Gapon一起提出,而后在1949年核壳层模型由几个物理学家研究及提出,最主要的几个人是尤金·维格纳、玛丽亚·格佩特-梅耶和约翰内斯·延森,由于发现核壳层模型理论和对称性原理,因此于1963年颁发诺贝尔物理学奖。 核壳层模型部分是类似于原子的电子壳层描述原子中的电子的安排,当壳层填满时特别稳定,核壳层模型描述原子中次原子粒子的排布,当质子与中子填满某个核壳层,该核素更稳定。当在一个稳定的原子核加入核子(质子或中子)时,也有一定的结合能,但其量值明显小于前一个核子。发现幻数:2,8,20,28,50,82,126当质子或中子为幻数时有较高的结合能,这就是核壳层模型的起源。 质子和中子的核壳层是相互独立的。因此,质子或中子可以只有其中一个为幻数,此时称为幻核,也可以两者皆是幻数,则为双幻核。由于在核轨域填充有一些变化,目前最大的幻数是126,并推测有184个中子,但只有114个质子,这在搜索所谓的稳定岛中扮演了一个重要的角色。目前已发现一些半幻数,特别是Z = 40时,核壳填充的各种元素,此外,16也可能是一个幻数。 核壳层模型基本信息 原子核-内部结构模型表 原子核壳层模型表 在核物理与核化学中,核壳层模型是一个利用泡利不相容原理的结构来描述的原子核的能量级别的一个模型。

通过分析实验资料发现,原子核具有类似元素周期性的情况,含中子数或质子数为2、8、20、28、50、82以及中子数为126的原子核特别稳定,在自然界中的含量也比相邻的核素丰富。原子核的某些性质随中子(或质子)数的增加呈现的变化也在经过上述那些值后发生突变。上述这些数值,人们称之为幻数。幻数的存在表明,平均场的概念对原子核也是有意义的,可以把原子核里的核子看作是在由其他核子共同产生的某个单粒子平均场中作近乎独立的运动,并认为平均场所不能概括的核子之间的剩余相互作用是比较弱的,可以当作微扰来处理,这就是壳层模型的基本思想。 核壳层模型其他信息 壳层模型强调了核子运动的独立性,它的一种简化近似是:完全忽略核子之间的剩余相互作用,认为核子在单粒子平均场中作完全独立的运动,这被称为极端单粒子模型。 起初人们假设平均场是简单的中心力场,如谐振子场,所得的能级一般如在附图中左方所示,不能给出正确的壳层。后来,M.G.迈尔和J.H.D.延森独立地指出,原子核的单粒子平均场堸含有强的自旋-轨道耦合项 , 核壳层模型 原子核(中子,质子)-内部结构模型图 原子核(中子,质子)-内部结构模型图 其中()是球对称的位势,和分别为核的自旋角动量和轨道角动量,()是自旋轨道耦合势的形状因子。按照量子力学,对于这个平均场,存在一系列不连续的能级。图中示意地给出了它的单粒子能级图。图中左端表示的是由振子量子数【=2(-1)+】和的奇、偶性所标记的谐振子势的能级;接着画出的由主量子数和轨道角动量量子数标记的能级(),表示了谐振子简并能级的劈裂,它是由更为现实一点的球形对称势得到的;包含自旋轨道耦合项后的能级画在图的中间位置上,它由()标记,是总角动量量子数,可以取 核壳层模型 和

原子的核式结构模型教案1

2.2 原子的核式结构模型教案1 三维教学目标 1、知识与技能 (1)了解原子结构模型建立的历史过程及各种模型建立的依据;(2)知道α粒子散射实验的实验方法和实验现象,及原子核式结构模型的主要内容。 2、过程与方法 (1)通过对α粒子散射实验结果的讨论与交流,培养学生对现象的分析中归纳中得出结论的逻辑推理能力; (2)通过核式结构模型的建立,体会建立模型研究物理问题的方法,理解物理模型的演化及其在物理学发展过程中的作用; (3)了解研究微观现象。 3、情感、态度与价值观 (1)通过对原子模型演变的历史的学习,感受科学家们细致、敏锐的科学态度和不畏权威、尊重事实、尊重科学的科学精神; (2)通过对原子结构的认识的不断深入,使学生认识到人类对微观世界的认识是不断扩大和加深的,领悟和感受科学研究方法的正确使用对科学发展的重要意义。 教学重点: (1)引导学生自主思考讨论在于对α粒子散射实验的结果分析从而否定葡萄干布丁模型,得出原子的核式结构; (2)在教学中渗透和让学生体会物理学研究方法,渗透三个物理学方法:模型方法,黑箱方法和微观粒子的碰撞方法。

教学难点:引导学生小组自主思考讨论在于对α粒子散射实验的结果分析从而否定葡萄干布丁模型,得出原子的核式结构 教学方法:教师启发、引导,学生讨论、交流。 教学用具:投影片,多媒体辅助教学设备。 (一)引入新课 汤姆生发现电子,根据原子呈电中性,提出了原子的葡萄干布丁模型。用动画展示原子葡萄干布丁模型。 (二)进行新课 1、α粒子散射实验原理、装置 (1)α粒子散射实验原理: 问题:汤姆生提出的葡萄干布丁原子模型是否对呢? 原子的结构非常紧密,用一般的方法是无法探测它的内部结构的,要认识原子的结构,需要用高速粒子对它进行轰击。而α粒子具有足够的能量,可以接近原子中心。它还可以使荧光屏物质发光。如果α粒子与其他粒子发生相互作用,改变了运动方向,荧光屏就能够显示出它的方向变化。研究高速的α粒子穿过原子的散射情况,是研究原子结构的有效手段。 指出:研究原子内部结构要用到的方法:黑箱法、微观粒子碰撞方法。(2)α粒子散射实验装置 α粒子散射实验的装置,主要由放射源、金箔、荧光屏、望远镜和转动圆盘几部分组成。α粒子散射实验在课堂上无法直接演示,希

(完整版)练习及答案原子的核式结构模型

18.2 原子的核式结构模型 一、选择题 2.在卢瑟福进行的α粒子散射实验中,少数α粒子发生大角度偏转的原因是() A. 正电荷在原子中是均匀分布的 B. 原子的正电荷以及绝大部分质量都集中在一个很小的核上 C. 原子中存在带负电的电子 D. 原子核中有中子存在 3.下列能揭示原子具有核式结构的实验是 A. 光电效应实验 B. 电子的发现 C. α粒子散射实验 D. 氢原子光谱的发现 4.如图所示为卢瑟福α粒子散射实验装置的示意图,图中的显微镜可在圆周轨道上转动,通过显微镜前相连的荧光屏可观察α粒子在各个角度的散射情况.下列说法中正确的是() A. 在图中的A、B两位置分别进行观察,相同时间内观察到屏上的闪光次数一样多 B. 在图中的B位置进行观察,屏上观察不到任何闪光 C. 卢瑟福选用不同金属箔片作为α粒子散射的靶,观察到的实验结果基本相似 D. α粒子发生散射的主要原因是α粒子撞击到金原子后产生的反弹 5.卢瑟福的α粒子散射实验的结果显示了下列哪些情况() 10-m A. 原子内存在电子 B. 原子的大小为10 C. 原子的正电荷和几乎全部质量都集中在原子核里 D. 原子的正电荷均匀分布在它的全部体积上 6.根据卢瑟福的原子核式结构理论,在原子核外绕核运动的是() A. 夸克 B. 中子 C. 质子 D. 电子 7.下列对原子结构的认识中,正确 ..的是( ) A. 原子中绝大部分是空的,原子核很小 B. 电子在核外绕核旋转,向心力为库仑力 C. 原子的全部正电荷都集中在原子核里 D. 原子核的直径大约为10-10m 8.关于α粒子散射实验,下列说法正确的是 A. 在实验中观察到的现象是:绝大多数α粒子穿过金箔后仍沿原来方向前进,少数发生了较大偏转,极少数偏转角度超过90°,有的甚至被弹回 B. 使α粒子发生明显偏转的力是来自带正电的核及核外电子,当α粒子接近核时是核的斥力使α粒子偏转,当α粒子接近电子时是电子的吸引力使之偏转 C. 实验表明:原子中心有一个极小的核,它占有原子体积的极小部分 D. 实验表明:原子中心的核带有原子的全部正电荷和原子的全部质量 参考答案 1、A; 2、B; 3、C; 4、C; 5、C; 6、D; 7、ABC; 8、AC; 1

高中物理必备知识点原子的核式结构模型总结

1. 电子的发现 2. 原子的核式结构 3. 氢原子光谱 4. 玻尔的原子模型 二. 知识归纳、总结: (一)电子的发现 1、阴极射线 (1)产生:在研究气体导电的玻璃管内有阴、阳两极,当两极间加一定电压时,阴极便发出一种射线,这种射线为阴极射线。(2)阴极射线的特点:碰到荧光物质能使其发光。 2、汤姆孙的发现 (1)阴极射线电性的发现[来源:ZXXK] 为了研究阴极射线的带电性质,他设计了如图18-1-2所示装置,从阴极发出的阴极射线,经过与阳极相连的小孔,射到管壁上,产生荧光斑点;用磁铁使射线偏转,进入集电圆筒;用静电计检测的结果表明,收集到的是负电荷。 (2)测定阴极射线粒子的比荷。 图18-1-3 如图18-1-3所示,从阴极K发出的阴极射线通过一对平行金属板P、P'间的匀强电场,发生 偏转,偏转角θ与电场强度E、极板长度L以及带电粒子的速度v的关系: =①θtan 然后再加一垂直于电场方向的匀强磁场,使粒子所受到的电场力与磁场力平衡,不发生偏转,由 此可得: ② 将②式代入①式,并代入实验数据,求得这种粒子的比荷为

说明:①汤姆孙通过进一步的实验,发现当改变阴极材料时,测得的比荷都相同,表明这种粒子是各种材料的共有成分,1898年,汤姆孙测出这种粒子所带电荷与氢离子的电荷数值接近,从 而证明这种粒子的质量约是氢离子的千分之一,至此,这种粒子的“身份”已经明确;它是一种带负电的质量很小的粒子,物理学家把这种粒子叫做电子。 11C/kg. ×10②现在测得电子的比荷为e/m=1.7588119-C, 1.60219×10电子的电荷量为e=31-kg. 10=9.10953×从而计算出电子的质量为m③电子的质量约为氢原子质量的 (二)原子的核式结构、汤姆孙的枣糕式模型1 图18-2-1 J·J·汤姆孙于1904年提出来的模型,汤姆孙在发现电子后,便投入了对原子内部结构的探索,他运用丰富的想象,提出了原子枣糕模型(图18-2-1),在这个模型里,汤姆孙把原子看作一个球体,正电荷均匀地分布在整个球内,电子像枣糕上的枣子一样嵌在球中,被正电荷吸引着,原子内正、负电荷相等,因此原子的整体呈中性,汤姆孙的模型是第一个有一定科学依据的原子结构模型,而不是哲学思辨的产物。 2、粒子散射实验 1909~1911年卢瑟福和他的助手做了用α粒子轰击金箔的实验,获得了重要的发现。 (1)实验装置(如图18-2-2所示) 图18-2-2 (2)实验结果 绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但是有少数α粒子发生了较大的偏转,极少数粒子被反向弹回。 3、原子的核式结构 卢瑟福依据α粒子散射实验的结果,提出了原子的核式结构:在原子中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋

相关主题
文本预览
相关文档 最新文档