当前位置:文档之家› 光纤光栅在线监测系统

光纤光栅在线监测系统

光纤光栅在线监测系统
光纤光栅在线监测系统

光纤光栅在线监测系统

FBG-9900光纤光栅在线监测系统

引言

光纤传感技术是20世纪70年代伴随光纤通信技术的发展而迅速发展起来的,以光波为载体,光纤为媒介,感知和传输外界被测量信号的新型传感技术。作为被测量信号载体的光波和作为光波传播媒介的光纤,具有一系列独特的,其它载体和媒介难以相比的有点。具有本身不带电,体积小,质量轻,易弯曲,可靠性好,测量精密度高,抗电磁干扰、抗雷击等优点。能实现对温度、湿度、压力、应变、振动,位移及加速度等参数的精确测量。特别适合于易燃、易爆、空间受严格限制,环境恶劣等场合下使用。因此,光纤传感技术一问世就受到极大重视,几乎各个领域都在进行研究和应用,产业得到蓬勃发展。

系统介绍

北京金石智信科技有限公司研发的光纤光栅在线监测系统QTSD-CF01,采用光放大器(OA)和波分复用(WDM)技术以增加传输距离和比特率,并结合公司独特的光栅切趾技术,使解调仪和光纤光栅传感器的精度和可靠性处于国际领先水平。另外本公司研发的光纤光栅在线监测系统,已通过国家消防认证和ISO9001质量管理认证。

系统原理

光纤光栅传感技术隶属光纤传感技术的一种,它是通过紫外激光照射位于光纤上方的相位掩模板后,在光纤内部形成的一段长为10-15mm的栅状结构,因而被称为“光纤光栅”(Fiber Bragg Grating,FBG)。

光纤光栅是利用光纤材料的光敏性:即外界入射光子和纤芯相互作用而引起后者折射率的永久性变化,用紫外激光直接写入法在单模光纤(直径为0.125 mm~0.25 mm)的纤芯内形成的空间相位光栅,其实质是在纤芯内形成一个窄带的滤光器或反射镜,制作完成后的光纤光栅相当于在普通光纤中形成了一段长度为10 mm左右的敏感区,该区域波长在温度、应变等作用下发生偏移,通过测量中心波长的偏移,可以准确感测温度、压力、应变及位移的变化。

光纤光栅传感系统主要由光纤光栅解调仪、光纤光栅传感器、传输光缆等组成。光纤光栅解调仪主要为传感器提供光源激励,并将光纤光栅传感器经光缆远程反射回来的光信号进行光电转换,数字量识别并以温度、应变、压力、位移等物理量的方式,在本机终端显示,存储和分析,根据要求进行数据上传或信息上报。或由计算机系统实施故障诊断、报警及控制。

1、光纤光栅解调仪

功能:同时对测量的温度、湿度、压力、应变、振动,位移及加速度等多种传感器采集的信号进行处理,可以实时观测各个监测点的数据。

2、光栅传感器

功能:实时采集数据。目前包括温度、湿度、压力、应变、振动,位移及加速度等多种传感器。根据不同结构特点,监测范围以及安装要求的不同,又分为多种子分类的传感器。

3、传输光缆

功能:现场敏感元件及数据媒介

4、组态软件

功能:显示实时数据、报警信息、历史数据、分析报表等。

5、分析软件

功能:采集光信号,并将其转换为数字信号,并对采集的数据进行分析,通过图表的方式实时显示出来。

●布点容量大

系统组网灵活,可多只传感器公用一根传输光纤。光感器采用波分复合技术,只要各个传感器的中心波长区分开,就可在一根光纤上同时混合接入,同时测量多个点的温度、湿度、压力、应变、振动,位移及加速度等多种物理变量。从而实现工程的分布式测量。

●抗电磁干扰,电绝缘性能好

无电监测,本质防爆,非常适合用于电力测温、石化消防等项目。传感器安

装现场不需要供电,不会引起雷击、短路等安全性问题。

●可靠性好,传输距离远

传感器采用光信号探测和传输,对环境干扰不敏感,系统稳定性好,解调仪探测距离能达到30km。

●能够实现高速动态在线监测

解调仪的数据采集频率能达到1~200MHz,多个传感器数据同步实时采集。

●测量精度高

以光波长表征被测量,不受光源功率的波动、光纤微弯效应和耦合损耗等因素影响;精确的透射和反射特征,使其更加准确的反映了物理量的变化。

●传感器结构简单、尺寸小、便于安装

传感器体积小、质量轻、对结构影响小,尤其适合于埋入材料内部,构成智能材

料或结构。

●抗腐蚀性

能够在高水压、潮湿、高温等恶劣施工环境下工作,传感器寿命长。

●个性定制

针对不同结构特点,实施个性化解决方案。系统以电子地图或虚拟空间位置的方

式实时显示各监测点的编号或位置,可对光纤传输线路的位置准确定位,方便管

理人员操作和维护,能提供历史数据查询。

●维护费用低、安装方便

产品质量好,尺寸小,易于安装,减少了安装及维护费用。

●程序界面友好,简单易学

本系统分析软件,采用通用界面,所需信息可以定制的显示在程序界面上,简单

易学,操作简单。

解调仪参数

QTSD-CF01型光纤光栅高速智能解调仪,为光纤光栅传感器阵列提供输入光源并对传感器输出的光信号进行解析。支持温度、应变、加速度、压力、位移等多种光纤光栅传感器网络的监测和多种类型传感器混合组网的监测。

QTSD-CF01 采用自有DSP技术,运行速度快,可靠性高,性能稳定,该系统采用目前最新的滤波技术,具有更高性能的指标和更长的使用寿命。系统内嵌高性能处理器,具有采样频率高(多通道400Hz同时采集),测量基础高,波长解调精度为±2pm,分辨率1pm;可用于动态和静态监测,施工过程监测,工程长期监测等广泛的测量场合。光纤光栅传感智能解调仪兼容性好,具备以太网,串口以及USB等多种接口,可与自动化系统,远程图像监控系统,消防系统等融为功能更加强大的综合系统,测点多,尤其适合需要使用大量传感器的监测系统。

GDGT-01光纤光栅温度传感器

传感器参数

说明:GDGT-02光纤光栅温度传感器是针对电力行业(如发电

厂、变电站、无人值守变电站)的严酷环境开发的新型温度传感器。其封装材料采用绝缘等级高、耐高温的高分子材料。单端出纤,体积小,不影响被测设备的正常运行,且安装方便可靠。

特点:全光网络、本质防爆、抗电磁干扰、防雷击、耐高温、绝缘性好、体积小、安装方便。

用途:高压开关测温,电缆接头测温,铜铝排压接面测温,干式变压器测温,高压母线测温。

GDGT-04光纤光栅温度传感器

GDGS-01贴片式光纤光栅应变传感器

GDGS-02光纤光栅应变传感器

说明:GDGT-04光纤光栅温度传感器采用不锈钢套封装技术,

具有良好的防腐蚀性和密封性能。出纤采用高强度的铠装光缆,适应恶劣的野外测温环境,可直接埋入混凝土结构中,用于长期监测温度。

特点:全光网络、本质防爆、抗电磁干扰、防雷击、良好密封性、体积小、安装方便。

用途:混凝土结构表面,内部温度监测,钢结构表面温度监测,隧道、煤矿、矿井、油井温度监测。

说明:GDGS-01贴片式光纤光栅应变传感器采用高性能合金材

料做为封装基体。粘结安装的形式,尤其适合测量不宜电弧焊接的钢结构表面的应力和应变。对传感器进行防水处理和尾纤采用铠装光缆保护,可以适应复杂环境的结构表面监测。

特点:全光网络、本质防爆、抗电磁干扰、防雷击、体积小、安

装方便、无破坏安装。

用途:钢结构表面应变测量,船舶、潜艇应变监测,大型结构健康监测,桥梁、大坝及隧道的钢结构健康监测。

说明:GDGS-02光纤光栅应变传感器与专用底座配套使用。现

场安装时先在混凝土表面打四个φ8X55mm 的孔(通过钻孔模板准确定位),然后采用特制的紧固螺钉将底座固定在混凝土表面,最后通过螺母将传感器方便地固定在底座上,既可以进行长期监测,可以在短期监测完成后重复使用。

特点:全光网络、本质防爆、抗电磁干扰、防雷击、测量精度高、

可靠性高、可重复使用。

用途:混凝土表面应变测量,大型结构健康监测,桥梁、大坝及

隧道的混凝土结构健康监测。

说明:GDGS-03光纤光栅混凝土埋入应变传感器由不锈钢体和为了更好结合混凝土的两个凸缘组成。测量精度高、测量范围大、可靠性高、抗干扰、易于组建分布式传感网络等优点。通常用于基础、桩基、桥梁、隧道衬砌等应变测量。

特点:全光网络、本质防爆、抗电磁干扰、防雷击、测量精度高、可靠性高、成活率高。

用途:混凝土、钢筋混凝土结构应变测量,基础、桩基应变测量,桥梁结构健康监测。

说明:GDGS-04光纤光栅应变传感器与专用底座配套使用。现场安装时先将底座固定在钢结构表面,然后通过螺母将传感器方便地固定在底座上,既可以进行长期监测,又可以再短期监测完成后重复使用。

特点:全光网络、本质防爆、抗电磁干扰、防雷击、测量精度高、可靠性高、可重复使用。

用途:钢结构表面应变测量,大型结构健康监测,桥梁结构健康监测。

说明:GDGP-01光纤光栅压力传感器其各种性能非常优异,可同时测量介质温度和压力。其主要部件均用特殊钢材制造,适合各种恶劣环境使用。尾纤采用高温光缆,可耐200℃高温,长期工作温度能达到180℃。进压口安装的透水石是用带50微米小孔的烧结不锈钢制成,可以过滤杂质,延长传感器的使用寿命。

特点:本质防爆、耐高温、高压、耐腐蚀、测量精度高、长期零点稳定,极小温度漂移。

用途:大坝、基坑等地下水位及其孔隙水压力的安全监测;管道压力及危险化工容器压力监测;油田测井、试井压力和温度测量。GDGS-03光纤光栅混凝土埋入应变传感器GDGS-04光纤光栅应变传感器

GDGP-01光纤光栅压力传感器

说明:GDGP-02光纤光栅渗压传感器采用独有的压力弹性元件作为传感基底,专为精确测量完全饱和或者部分饱和土壤和岩石中的小孔水压而设计。设计应用于测量流体的压力,如埋入坝体、填土内监测其地下水位及孔隙水压力。也可安装在钻孔、测井或测压管中。

特点:测量精度高、高稳定性,极小温度漂移,长期零点稳定。用途:边坡、大坝、矿井地下水位观测,地质沉降监测,微小压力测量,液位测量。

说明:GDGD-01型压缩位移传感器利用光纤光栅固有的位移敏感特性感测位移,光纤光栅采用特殊方式封装,增加了传感器对位移的敏感性。可预埋于混凝土,对边坡、大坝等恶劣环境下的位移和温度变化进行监测。

特点:高精度、抗电磁干扰、高稳定和高可靠性、连接方便快捷、便于组网多点测量。

用途:桥梁伸缩缝位移监测,隧道结构位移监测,接触位移测量;用于土木工程结构裂缝的监测。

说明:GDGD-02型光纤光栅位移计主要应用于长期测量水工建筑物或其他混凝土建筑物伸缩缝的开合度(变形),也可用于地下洞室、边坡、大坝、高层建筑等结构物的位移、沉陷、应变和滑移,它具有可靠性高、抗干扰能力强等优点。

特点:全光网络、本质防爆、抗电磁干扰、防雷击、耐高温、高压、耐腐蚀、测量精度高、高稳定性。

用途:桥梁伸缩缝位移监测,隧道结构位移监测,接触位移测量;土木工程结构和接口缝宽的监测。

GDGD-02光纤光栅位移传感器

GDGD-01光纤光栅位移传感器

GDGP-02光纤光栅渗压传感器

说明:GDGSS-01型光纤光栅钢筋应力传感器可长期埋设于建筑物内,配合高速光纤光栅解调仪还可用于动态监测。传统锚杆应力计存在寿命短、监测范围小、零漂大的问题。利用光纤光栅传感技术可以在施工过程中对整个加固体系实施动态监测,并在运营阶段有效地实现长期监测与滑坡预警。

特点:高精度、高稳定、连接方便快捷、便于组网多点测量。用途:厂房基础、大坝、桥梁、桩基、隧洞衬砌等结构的钢筋应力监测。

说明:GDGA-01型光纤光栅加速度传感器以光纤光栅作为核心敏感元件,它将加速度检测质量块、弹性支撑体、光纤光栅直接集成为一体,真正实现了对加速度信号的全光检测。

特点:探头和传输线路不供电、抗电磁干扰、动态范围大、体积小巧。

用途:大桥、大坝、大型结构等低频振动监测。

说明:GDGC-01型光纤光栅锚索力传感器是基于环形高强度合金弹性体的受压应变原理设计的。其中传感器采用无胶化封装工艺,光纤光栅传感器和环形弹性体采用激光点焊的方式附着。特点:高精度、高稳定、连接方便快捷、便于组网多点测量。用途:斜拉桥、悬索桥、锚杆等的落成调试安装,换索安装监测以及长期运行健康监测。

GDGSS-01光纤光栅钢筋应力传感器

GDGA-01光纤光栅加速度传感器

GDGC-01光纤光栅锚索力传感器

应用范围

隧道、地铁、公路、机场、核电站的温度、应变的监控。

发电厂、煤矿、冶金、电力设备、电缆状态检测、电缆隧道及电缆夹层的温度监测水利大坝、土木、桥梁、建筑物等结构的温度,应变,位移,压力等健康监测。易燃易爆仓库、储油储气罐、油井、输油管道的温度,气体,压力的安全监测。军舰、潜艇、飞机、航空设备的温度、应变安全监测。

交通隧道火情监测

输油管道火情监测

复合光纤架空线监测

石油储罐火情监测

高压电缆温度监测

水利大坝渗漏监测

桥梁健康监测

油气井下监测

光纤光栅感温火灾探测系统在石化罐区的应用

光纤光栅感温火灾探测系统在石化罐区的应用 【摘要】介绍化工储罐区的火灾危险性质,光纤光栅感温火灾探测器的特点和工作原理,并给出光纤光栅探测器在化工罐区的工程应用,最后通过与其它线性感温探测系统的比较,总结光纤光栅感温火灾探测器的优点和缺点,使化工储罐的火灾报警设计达到安全、可靠、稳定、高效。 【关键词】化工罐区火灾探测系统光纤光栅感温探测器工业应用 1 石化储罐区的火灾危险性质 罐区储运的油品大部分都属于甲类和甲A类火灾危险性介质,通常以液态形式在常温增加压力条件下储存,具有气液两相的性质。其火灾危险性主要表现在以下几个方面: (1)易挥发。以液态形式储存,释压后,立即挥发为气体。气化后体积膨胀250~300倍,并急剧扩散蔓延。 (2)相对密度大(空气的1.5~2倍)。比空气重,容易停滞和积聚在电缆沟、下水道等低洼处,易与空气形成爆炸性混合气体,一旦达到爆炸极限,遇火源便可以燃烧、爆炸。 (3)易燃、易爆。闪点低,着火温度比一般可燃气体温度低(约为400~530℃),危险性大,与空气接触后形成爆炸性混合气体,爆炸极限是2.1%~9.5%(体积比),可被小火星点燃,爆炸速度为2000~3000m/s。 (4)燃烧热值高。热值大于15605.5kJ/ kg(91272kJ/m3),火焰温度高达2120℃,辐射热强,极易引燃、引爆周围的易燃、易爆物质,使火势扩大。 (5)易膨胀。储罐属于压力容器,储存在容器内的油品,在一定的温度和饱和蒸气压下处于气液共存的平衡状态。随着温度的升高,液态体积会不断膨胀,气态压力也会不断增大,气体泄漏的可能性也就越大。 (6)有腐蚀性。内腐蚀可以不断地使容器壁变薄,从而导致容器的耐压强度,缩短容器的使用年限,导致容器穿孔漏气或爆裂,引起火灾报站事故。同时,容器内壁因受到硫化氢的腐蚀作用,还会生成黑褐色的硫化亚铁(FeS含硫量:36%)粉末,附着在器壁上或沉积于容器底部。这种硫化亚铁粉末如果随残液倒出,或使空气大量进入排空液态的容器内,硫化亚铁会与空气中的氧气发生氧化反应,放热而自然,生成氧化铁(Fe3O4)和二氧化硫(SO2),这种自燃现象也易造成火灾爆炸事故。 (7)易产生静电。油品从管口、喷嘴或破损处高速喷出时能产生静电,静电电压可高达数千乃至数万伏。根据测定,当静电电压在350~450V时,所产

光纤光栅传感器及其在土木工程中的发展应用

光纤光栅传感器及其在土木工程中的发 展应用 摘要:介绍了光纤光栅的传感技术及其封装方式,特别是采用FRP筋嵌入式封装光纤光栅传感器(OFBG)制成的FRPOFBG筋,并对光纤光栅传感器在土木工程监测中的发展应用进行综述,以期促进该技术的推广普及。 关键词:光纤光栅,嵌入式封装,土木工程监测 0、引言

新发展起来的光纤光栅传感技术可通过反射中心波长的变化测量由外界引起的温度、应力应变变化,具有线性程度高、重复性好等优点,可对结构的应力、应变高精度地进行绝对、准分布式数字测量,比较适合结构的健康监测。光纤光栅传感器除了有光纤传感器具有的质量轻、体积小、灵敏度高、耐腐蚀、抗电磁干扰、可分布或者准分布式测量、使用期限内维护费用低等优点外,还具有以下一些独特优点J:如测量精度高,抗干扰能力强,可在同一根光纤上制作多个光栅实现分布式测量,测量范围大,稳定性、重复性好,非传导性材料,耐腐蚀、抗电磁干扰等特点,适合运用于恶劣环境中,避免了干涉型光纤传感器相位测量模糊不清等问题。 光纤光栅传感器由于自身的优点在土木工程界得到很大的应用和发展。本文先介绍光纤光栅传感技术及其封装方式,并主要阐述光纤光栅传感器在土木工程领域的一些发展应用情况。 1、光纤光栅的传感技术特点及其封装 1.1 光纤光栅的传感技术特点光纤光栅就是一段光纤,其纤芯中具有折射率周期性变化的结构。光纤光栅传感器的基本原理为:光纤光栅可将入射光中某一特定波长的光部分或全部反射。 1.2 光纤光栅的封装

1)基片式封装。将光纤光栅装在刻有小槽的基片上,通过基片将被测结构的应变传到光栅上,封装结构主要由金属薄片(或树脂薄片)、胶粘剂、护套、尾纤、传输光缆组成。基片式封装包括金属基片封装和树脂基片封装,金属基片有钢片、钛合金片等。 这种传感器结构简单,易于安装,但容易产生应变传递损耗,使得测量精度有所降低。 2)金属管式封装。管式封装应变传感器主要由封装管、光纤光栅、传输光缆、尾纤、胶粘剂组成。该封装工艺具有加工方便、产品率高、成本低廉等优点,可以满足工业化大批量生产需要。 3)夹持式封装。主要思想是在钢管封装的光纤光栅传感器的两端安装夹持构件,待测结构的应变通过夹持构件传递给光纤光栅,其标距长度可根据实际需要改变。此种传感器具有布设简单、可拆换、耐久性好、布线方便等优点,可作为桥梁、建筑等土木工程结构施工、竣工试验和运营监测的表面传感器。 4)嵌人式封装。这里特别介绍FRP-OFBG智能复合筋。FRP筋是采用连续纤维通过拉挤工艺和合成树脂基按照一定的比例胶合而成的一种纤维增强塑料筋,在其制备过程中放人光纤光栅,便可得到FRP-OFBG智能复合筋。该复合筋目前研究得比较多,它保留了FRP良好的力学等性能,又具备光纤光栅的传感特性,而且大大提高了光纤光栅的应变测量量程,是光栅传感器较好的一

常见光纤光栅传感器工作原理

常见光纤光栅传感器工作原理 光纤光栅传感器的工作原理 光栅的Bragg波长λB由下式决定:λB=2nΛ (1) 式中,n为芯模有效折射率,Λ为光栅周期。当光纤光栅所处环境的温度、应力、应变或其它物理量发生变化时,光栅的周期或纤芯折射率将发生变化,从而使反射光的波长发生变化,通过测量物理量变化前后反射光波长的变化,就可以获得待测物理量的变化情况。如利用磁场诱导的左右旋极化波的折射率变化不同,可实现对磁场的直接测量。此外,通过特定的技术,可实现对应力和温度的分别测量,也可同时测量。通过在光栅上涂敷特定的功能材料(如压电材料),还可实现对电场等物理量的间接测量。 1、啁啾光纤光栅传感器的工作原理 上面介绍的光栅传感器系统,光栅的几何结构是均匀的,对单参数的定点测量很有效,但在需要同时测量应变和温度或者测量应变或温度沿光栅长度的分布时,就显得力不从心。一种较好的方法就是采用啁啾光纤光栅传感器。 啁啾光纤光栅由于其优异的色散补偿能力而应用在高比特远程通信系统中。与光纤Bragg光栅传感器的工作原理基本相同,在外界物理量的作用下啁啾光纤光栅除了△λB的变化外,还会引起光谱的展宽。这种传感器在应变和温度均存在的场合是非常有用的,啁啾光纤光栅由于应变的影响导致了反射信号的拓宽和峰值波长的位移,而温度的变化则由于折射率的温度依赖性(dn/dT),仅影响重心的位置。通过同时测量光谱位移和展宽,就可以同时测量应变和温度。 2、长周期光纤光栅(LPG)传感器的工作原理 长周期光纤光栅(LPG)的周期一般认为有数百微米,LPG在特定的波长上把纤芯的

光耦合进包层:λi=(n0-niclad)。Λ。式中,n0为纤芯的折射率,niclad为i阶轴对称包层模的有效折射率。光在包层中将由于包层/空气界面的损耗而迅速衰减,留下一串损耗带。一个独立的LPG可能在一个很宽的波长范围上有许多的共振,LPG共振的中心波长主要取决于芯和包层的折射率差,由应变、温度或外部折射率变化而产生的任何变化都能在共振中产生大的波长位移,通过检测△λi,就可获得外界物理量变化的信息。LPG在给定波长上的共振带的响应通常有不同的幅度,因而LPG适用于多参数传感器。 光纤光栅传感器的应用 1、在民用工程结构中的应用 民用工程的结构监测是光纤光栅传感器最活跃的领域。力学参量的测量对于桥梁、矿井、隧道、大坝、建筑物等的维护和状况监测是非常重要的。通过测量上述结构的应变分布,可以预知结构局部的载荷及状况。光纤光栅传感器可以贴在结构的表面或预先埋入结构中,对结构同时进行冲击检测、形状控制和振动阻尼检测等,以监视结构的缺陷情况。另外,多个光纤光栅传感器可以串接成一个传感网络,对结构进行准分布式检测,可以用计算机对传感信号进行远程控制。 光纤光栅传感器可以检测的建筑结构之一为桥梁。应用时,一组光纤光栅被粘于桥梁复合筋的表面,或在梁的表面开一个小凹槽,使光栅的裸纤芯部分嵌进凹槽得以保护。如果需要更加完善的保护,则最好是在建造桥时把光栅埋进复合筋,由于需要修正温度效应引起的应变,可使用应力和温度分开的传感臂,并在每一个梁上均安装这两个臂。 两个具有相同中心波长的光纤光栅代替法布里-珀罗干涉仪的反射镜,形成全光纤法布里-珀罗干涉仪(FFH),利用低相干性使干涉的相位噪声最小化,这一方法实现了高灵敏度的动态应变测量。用FFPI结合另外两个FBG,其中一个光栅用来测应变,另一个被保护起来,免受应力影响,以测量和修正温度效应,所以FFP~FBG实现了同时测量三个量:温度、静态应变、瞬时动态应变。这种方法兼有干涉仪的相干性和光纤布拉格光栅传感器的优点。已在5mε的测量范围内,实现了小于1με的静态应变测量精度、0.1℃的温度灵敏度和小于1nε/(Hz)1/2的动态应变灵敏度。

光纤光栅传感系统的详细介绍

光纤光栅传感系统的详细介绍 本文介绍了光纤光栅传感系统的构成,分析了光纤光栅传感系统所用的3种不同的光源LED,LD和掺铒光源的性能,阐述了光纤光栅传感器的工作原理和各种不同的温度和应力的区分测量方法,描述了滤波法、干涉法、可调窄带光源法等几种常用的信号解调技术,最后,提出适应未来的需要如何对光纤光栅传感系统的光源、光纤光栅传感器和信号解调进行优化。 自1978年,加拿大的Hill等人首次在掺锗石英光纤中发现光敏现象并采用驻波法制造出世界上第一根光纤光栅和1989年美国的Melt等人实现了光纤Bragg光栅(FBG)的UV激光侧面写入技术以来,光纤光栅的制造技术不断完善,人们对光纤光栅在光传感方面的研究变得更为广泛和深入。光纤光栅传感器具有一般传感器抗电磁干扰、灵敏度高、尺寸小、重量轻、成本低,适于在高温、腐蚀性等环境中使用的优点外,还具有本征自相干能力强和在一根光纤上利用复用技术实现多点复用、多参量分布式区分测量的独特优势。故光纤光栅传感器已成为当前传感器的研究热点。由光源、光纤光栅传感器和信号解调系统为主构成的光纤光栅系统如何能够在降低成本、提高测量精度、满足实时测量等方面的前提下,使各部分达到最优匹配,满足光纤光栅传感系统在现代化各个领域实用化的需要也是研究人员重点考虑的问题。 本文对光纤光栅传感系统进行了介绍,对光纤光栅系统的宽带光源进行了说明,重点分析了光纤光栅传感器的传感原理及如何区分测量技术,对信号常用的信号解调方法进行了总结,最后,提出为适应未来的需要对系统各部分的优化措施。 1、光纤光栅传感系统光纤光栅传感系统主要由宽带光源、光纤光栅传感器、信号解调等组成。宽带光源为系统提供光能量,光纤光栅传感器利用光源的光波感应外界被测量的信息,外界被测量的信息通过信号解调系统实时地反映出来。 1.1 光源 光源性能的好坏决定着整个系统所送光信号的好坏。在光纤光栅传感中,由于传感量是对

光纤光栅隧道火灾监控系统

光纤光栅火灾报警系统技术方案

目录 1概述 (1) 1.1公路隧道火情监测概述 (1) 1.2隧道概况 (1) 2光纤光栅火灾报警系统 (1) 2.1系统介绍 (1) 2.1.1系统主要功能 (3) 2.1.2系统特点 (4) 2.1.3系统适用范围 (5) 2.1.4系统运行环境 (5) 2.1.5系统结构 (6) 2.1.6系统优势 (6) 2.2系统硬件功能实现 (7) 2.3系统软件功能实现 (13) 2.3.1温度视图 (13) 2.3.2光谱视图 (13) 3火灾报警系统 (15) 3.1主要设备选型 (15) 3.1.1火灾报警主机 (15) 3.1.2智能特征手动报警按钮 (15) 4系统方案 (15) 4.1总体监测方案 (15) 4.2现场设备布置 (17) 4.3系统安装 (17) 4.4系统安装结构图 (18) 4.5光纤光栅及火灾报警的安装方式 (20) 5设备清单 (23) 5.1设备清单 (23) 6报价单 (23)

1概述 1.1公路隧道火情监测概述 隧道是公路、铁路、城市地铁等交通工程项目建设的关键部分,在隧道中进行实时、准确的火情监测对保障公共财产安全和人身安全有着十分重要的意义。 根据温度的变化情况对隧道火情进行判断是最有效的监测手段。由于隧道要求对沿线的环境温度变化进行准确的定量、定位,所以,一些传统的测温技术已经远远不能满足工程的需要。比如常用的感温电缆在温度报警点的设置以及定位、定量、可重复使用性等方面有着严重缺陷,尤其是在长距离连续监测的情况下不能满足隧道火情监测的要求。 针对本项目的特点我们建议对项目中的隧道线路监控采用美国通用电气EST3系列的火灾手动报警系统及配套光纤光栅自动探测子系统技术方案。在隧道内火灾报警系统采用自动检测和手动报警相结合的方式,检测隧道内的火险情况,并通过计算机系统或区域控制器根据检测到的火灾情况控制隧道风机、照明系统等,实时监测,实现报警联动,按照控制预案组织现场援救,以完全满足本项目隧道火情监测要求。 1.2隧道概况 本次设计范围为大红山、胡洼山隧道。隧道长一个2040米,一个780米。 本项目全线共设监控所1处。监控所可实施全线的交通管理,并对路段交通进行协调控制,并可进行交通及气象参数检测、隧道管理站上传的数据接收、控制、管理等。对主线的交通数据及其它各种参数进行汇总、统计、打印;向监控所传输图像和数据,并接受其指挥控制。 2光纤光栅火灾报警系统 2.1系统介绍 FAS-3000光纤光栅隧道火灾监测系统基于光纤光栅温度传感技术,利用光纤光栅的温度敏感特性,通过隔离应力、应变的封装结构,实现对温度变化的精

光纤光栅原理及应用

光纤光栅传感器原理及应用 (武汉理工大学) 1光纤光栅传感原理 光纤光栅就是利用紫外光曝光技术,在光纤中产生折射率的周期分布,这种光纤内部折射率分布的周期性结构就是光纤光栅。光纤布喇格光栅(Fiber Bragg grating ,FBG )在目前的应用和研究中最为广泛。光纤布喇格光栅,周期0.1微米数量级。FBG 是通过改变光纤芯区折射率,周期的折射率扰动仅会对很窄的一小段光谱产生影响,因此,如果宽带光波在光栅中传输时,入射光将在相应的波长上被反射回来,其余的透射光则不受影响,这样光纤光栅就起到了波长选择的作用,如图1。 图1 FBG 结构及其波长选择原理图 在外力作用下,光弹效应导致折射率变化,形变则使光栅常数发生变化;温度变化时,热光效应导致折射率变化,而热膨胀系数则使光栅常数发生变化。 (1)光纤光栅应变传感原理 光纤光栅反射光中心波长的变化反映了外界被测信号的变化情况,在外力作用下,光弹效应导致光纤光栅折射率变化,形变则使光栅栅格发生变化,同时弹光效应还使得介质折射率发生改变,光纤光栅波长为1300nm ,则每个με将导致1.01pm 的波长改变量。 (2)光纤光栅温度传感原理 光温度变化时,热光效应导致光纤光栅折射率变化,而热膨胀系数则使光栅栅格发生变化。光纤光栅中心波长为1300nm ,当温度变化1摄氏度时,波长改变量为9.1pm 。 反射光谱 入射光谱 投射光谱 入射光 反射光 投射光 包层 纤芯 光栅 光栅周期

2光纤光栅传感器特点 利用光敏元件或材料,将被测参量转换为相应光信号的新一代传感技术,最大特点就是一根光纤上能够刻多个光纤光栅,如图2所示。 光纤光栅传感器可测物理量: 温度、应力/应变、压力、流量、位移等。 图2 光纤光栅传感器分布式测量原理 光纤光栅的特点: ● 本质安全,抗电磁干扰 ● 一纤多点(20-30个点),动态多场:分布式、组网测量、远程监测 ● 尺寸小、重量轻; ● 寿命长: 寿命 20 年以上 3目前我校已经开展的工作(部分) 3.1 基于光纤光栅传感的旋转传动机械动态实时在线监测技术与系统 利用光纤光栅传感技术的特性,实现转子运行状态的非接触直接测量。 被测参量 宽带光源 光纤F-P 腔 测点1 测点2 测点3 测点n 波长 光 强 λ1 测点1 λ2 测点2 λ3 测点3 λn 测点n 光源波长

运营期间的地铁隧道结构变形安全监测技术研究

运营期间的地铁隧道结构变形安全监测技术研究 发表时间:2017-05-14T13:31:08.110Z 来源:《建筑学研究前沿》2017年1月下作者:王鹏 [导读] 随着我国现代化建设的飞速发展,城市基础设施地铁越来越多,是城市客运交通的大动脉以及城市生命线。 广州市吉华勘测股份有限公司 510260 摘要:随着我国现代化建设的飞速发展,城市基础设施地铁越来越多,是城市客运交通的大动脉以及城市生命线,其投资大、难度高、施工期长、环境复杂等。同时地铁沿线高强度的物业开发、市政工程建设对地铁结构和运营安全带来一定的隐患,城市轨道交通结构的安全保护工作日益严峻,一但出现城市轨道交通安全事件,将严重影响城市轨道交通的正常运营。因此,在外界施工影响下,对运营期间的地铁实施必要的变形安全监测至关重要。 关键词:地铁,测量机器人,自动化监测。 1 地铁监测的意义和目的 地铁结构本身由于地基的变形及内部应力、外部荷载的变化而产生结构变形和沉降。而地铁旁边的施工正是引起外部荷载变化的主要原因,地铁结构变形和沉降超过允许值,将会对地铁的运营安全造成影响。通过监测可动态收集地铁结构变形信息,掌握结构变形情况,保障运营安全。 地铁监测的主要目的如下:1)通过对测量数据的分析、掌握隧道和围岩稳定性的变化规律,修改和确认设计及施工参数;2)通过监控量测了解施工方法的科学性和合理性,以便及时调整施工方法,保证施工安全及隧道的安全;3)了解隧道结构的变形情况,实现信息化施工,将监测结果反馈设计,为改进设计施工提供信息指导,提供可靠施工工艺,为以后类似的施工提供技术储备。 2.监测实施 因地铁隧道的特殊性,对于地铁运营期的监测,需采用自动化监测手段,即采用测量机器人和自动监测系统软件建立隧道结构变形自动监测系统。在外部施工期间自动测量地铁隧道结构顶板、侧墙及道床在三维—X、Y、Z方向(其中:X、Y为水平方向,Z为垂直方向)的变形值。 2.1监测点与基准点布置 参考工程设计、实际情况及有关规定,确定地铁受外界项目施工影响的范围,监测断面可按5~20m间距布设,每断面布设一般情况下六个监测点。在隧道两端不受建设项目施工影响的隧道远处各设置3个基准点。 2.2自动监测系统 自动监测系统主要由监测设备、参考系、变形体和控制设备构成。监测设备由测量机器人、自动化监测系统软件和监测控制房组成;控制设备由工控机及远程控制电脑组成。 1)自动化监测网络系统的硬件部分包括高精度自动全站仪、目标棱镜、信号通信设备与供电装置、计算机及网络设备等部分组成(如图1)。 图1数据采集系统图 2)系统软件包括动态基准实时测量软件和变形点监测软件两大部分。动态基准实时测量软件功能上主要有以下特点:根据距离及棱镜布设情况自动进行大小视场的切换;依据布设的网形站与站之间的观测关系,对测站点的观测方向可分组设置,可适合任意控制网形,不局限于导线网;采用局域网技术进行数据的通信,并具有网络断开的自动判断功能;为满足各种测量等级和运营环境的需要,具有各项测量限差、时间延迟、重试次数、坐标修正的设置功能;考虑到地铁内局部范围内气象一致性,在平差计算中,采用加尺度参数解算,避免了气象参数的测定,提高控制网测量的精度。 3)变形点监测软件包括各分控机上的监测软件和主控机上的数据库管理软件两部分。分控机上的监测软件用来控制测量机器人按要求的观测时间、测量限差、观测的点组进行测量,并将测量的结果写入主控机上的管理数据库中。 2.3自动监测系统工作流程 首先建立计算机和测量机器人的通信,然后对测量机器人进行初始化,此外进行测站及控制限差的设置,所有设置完毕后进行学习测量,设置点组和定时器,根据点位的重要性以及监测频率将相同的观测点纳入同一点组,最后进行自动观测。一周期观测完毕后软件便对原始观测数据进行差分处理,得到各变形点的三维坐标、变形量及变形曲线图,设置软件还可以将数据通过手机网络发送至指定的邮箱。 3地铁隧道自动化监测的技术难点 地铁隧道是狭长形的空间环境,同时列车一般以平均5分钟左右的间隔在隧道中高速运行。地铁环境的这些特点及保证地铁正常运营等因素的制约,使得自动变形监测系统在地铁变形监测中的应用,遇到比其它工程中更多的技术问题,因此自动变形监测手段有着常规测量无法比拟的优越性。自动监测系统系统可以在无人值守的情况下,全天24小时连续地自动监测,实时进行数据处理、数据分析、报表输

光纤光栅传感器的应用

光纤光栅传感器的应用 光纤布拉格光栅传感器的应用 1。光纤光栅传感器 的优点与传统传感器相比,光纤光栅传感器有其独特的优点:(1)传感头结构简单,体积小,重量轻,形状可变,适合嵌入大型结构中,能够测量结构内部的应力、应变和结构损伤,具有良好的稳定性和重复性; (2)与光纤自然兼容,易于与光纤连接,损耗低,光谱特性好,可靠性高; (3)不导电,对被测介质影响小,具有耐腐蚀和抗电磁干扰的特点,适合在恶劣环境下工作; (4)轻便灵活,可在一根光纤中写入多个光栅组成传感阵列,结合波分复用和时分复用系统实现分布式传感; (5)测量信息为波长编码,因此光纤光栅传感器不受光源光强波动、光纤连接和耦合损耗以及光波偏振态变化的影响,抗干扰能力强。 (6)高灵敏度和分辨率 正是因为它的许多优点。近年来,光纤光栅传感器已经广泛应用于大型土木工程结构、航空航天等领域的健康监测,以及能源和化工等领域。 光纤光栅传感器无疑是一种优秀的光纤传感器,特别是在测量应力和应变的情况下,具有其他传感器无法比拟的优势。它被认为是智能结构中最有前途的集成在材料内部的传感器,作为监测材料和结构的

载荷和检测其损伤的传感器。 2,光纤光栅的传感应用 1,在土木和水利工程中的应用 土木工程中的结构监测是光纤光栅传感器应用最活跃的领域 力学参数的测量对于桥梁、矿山、隧道、大坝、建筑物等的维护和健康监测非常重要。通过测量上述结构的应变分布,可以预测结构的局部载荷和健康状况。光纤布拉格光栅传感器可以预先附着在结构表面或嵌入结构中,同时对结构进行健康检测、冲击检测、形状控制和减振检测,监测结构的缺陷。 另外,多个光纤光栅传感器可以串联成传感网络,对结构进行准分布式检测,传感信号可以由计算机远程控制 (1)在桥梁安全监测中的应用目前,光纤光栅传感器应用最广泛的领域是桥梁安全监测 斜拉桥的斜拉索、悬索桥的主缆和吊杆、系杆拱桥的系杆是这些桥梁体系的关键受力构件,其他土木工程结构的预应力锚固系统,如用于结构加固的锚索和锚杆,也是关键受力构件上述受力构件的应力大小和分布变化最直接地反映了结构的健康状况,因此监测这些构件的应力状态并以此为基础进行安全分析和评价具有重要意义。加拿大卡尔加里附近的 199贝丁顿小道桥是最早使用光纤光栅传感器进行测量的桥梁之一(1993)。16个光纤光栅传感器连接到预应力混凝土支撑的钢筋和碳纤维复合材料钢筋上,对桥梁结构进行长期监测,这在以前被认为是不

光纤光栅

“现代传感与检测技术”课程学习汇报 光纤光栅传感器及其在医学上的应用 学院:机电学院 专业:仪器科学与技术 教师:刘增华 学号: S201201134 姓名:王锦 2013年03月

目录 第一章光纤光栅简介 (3) 1.1 光纤的基本概念 (3) 1.2 光纤光栅器件的基本概念 (3) 1.3 光纤光栅的加工工艺 (4) 1.4 光纤光栅的类型 (5) 第二章光纤光栅传感器 (7) 2.1光纤光栅温度传感器 (7) 2.2 光纤光栅应变与位移传感器以及振动与加速度传感器 (8) 第三章光纤光栅传感器的应用 (10) 3.1 光纤光栅传感器在结构健康测试方面的应用 (10) 3.2光纤光栅传感器在医学中的应用 (10) 3.3 光纤光栅在其他领域的应用 (11) 第四章总结 (12) 参考文献 (12)

第一章光纤光栅简介 1.1 光纤的基本概念 光纤的结构十分简单。光纤的纤芯是有折射率比周围包层略高的光学材料制作而成的,折射率的差异引起全内反射,引导光线在纤芯内传播。 光纤纤芯和包层的尺寸根据不同的用途,有多中类型。如传输图像的光纤要尽可能地收集到起端面上的光,因此其包层相对于纤芯而言非常薄。长距离传输过程中,通信光纤的厚半层能避免光束泄露出纤芯。然而,短距离通信光纤的纤芯较大,能够尽可能地手机光,一般称为多模光纤,长距离通信光纤的纤芯直径 一边比较小,一般只能传输一个模式,因此成为单模光纤。 光纤具有机械特性和光学特性。在机械方面光纤坚硬而又灵活,机械强度大。光纤的光学特性取决于他们的结构与成分。一般轴对称的单模光纤可以同时传输两个线偏振正交模式或者两个圆偏振正交模式。这两个正交模式在光纤中将以相同的速度向前传播,因而在其传播过程中偏振态不会发生变化。 1.2 光纤光栅器件的基本概念 加拿大渥太华通信研究中心的K.O.Hill等人于1978年首次在掺锗石英光纤中发现光线的光敏效应,并采用驻波写入法制成世界上第一只光纤光栅。光纤光栅是近几年发展最快夫人光纤无源器件之一,他的出现将可能在光纤技术以及众多相关领域中引起一场新的技术革命。由于它具有在管线通信、光纤传感、光计算和光信息处理等领域均具有广阔的应用前景。 光纤光栅是利用光线材料的光敏性(外界入射光子和纤芯锗离子相互作用in 器折射率永久性变化),在纤芯内形成空间相位光栅,其作用实质上是在纤芯内形成一个窄带的(透射或者反射)滤波或者反射镜。利用这一特性可构成许多性能独特的光纤无源器件,例如利用光纤光栅的窄带高反射特性构成光纤反馈腔,依靠掺铒光纤等为增益介质可制成光纤激光器;利用光纤光栅作为激光二极管的外腔反射器,可以构成课调谐激光二极管;利用光纤光栅课构成Michelson干涉仪型Mach-Zehnder干涉仪和Febry-Peort干涉仪型的光纤色散补偿器。利用闪耀光栅可以制成光纤平坦滤波器;利用非均匀光纤光栅还可以制成用于检测应力、应变、温度等诸多参量的光纤传感器和各种传感网。

光纤传感器在火灾报警中的应用

光纤传感器在火灾报警中的应用 王聪20801195 第一章摘要 随着经济建设的快速发展,新能源、新材料、新设备的广泛开发利用,火灾给人类带来损失反而增加。为了抗拒火灾带来的危害,就需要发展反应更快、可靠性更高的火灾探测报警技术。 温度传感是光纤传感器最主要和最直接的应用之一,本文从温度传感理论模型的角度,分别研究了分布反馈式光纤温度监控系统和光纤光栅温度传感器原理及特点,详述了这一新技术在火灾报警应用中的优点和技术特点,并进一步的在光纤光栅温度传感器原理得基础上给出了火灾报警系统的系统组成和设计实例分析。分析表明,利用光纤传感器进行温度探测与其他方法相比显示出巨大的优越性,它的出现为易燃易爆和强电磁场等场所的火灾探测提供了新的有效的技术途径。 关键词:温度探测、温度传感器、分布反馈式光纤温度监控系统、光纤光栅温度传感器 第二章引言 光纤传感技术是20 世纪70 年代伴随光通信技术的发展而迅速发展起来的新型传感技术。光纤传感器以其高灵敏度、抗电磁干扰、耐腐蚀、可弯曲、体积小、结构简单以及与光纤传输线路相容等独特优点,受到世界各国广泛关注。利用光纤传感器进行温度探测与其他方法相比显示出巨大的优越性,应用了光纤传感器的火灾报警系统是一种新型的火灾报警系统,它的出现为易燃易爆和强电磁场等场所火灾探测提供了新的有效的技术途径,并被越来越多的应用到各种环境的火灾报警中。

第三章分布反馈式光纤温度监控系统的原理及特点 3.1原理 光纤分布式温度监测系统[3]是光纤分布式传感技术的典型应用,是基于光纤本身的散射现象来进行温度测量的。当某一波长的脉冲光导入光纤后,从光纤返回三种随时间变化的散射光:瑞利散射(Rayleign)、拉曼散射(Rama)、布里渊散射(Brillou)。其中,瑞利散射光与入射光的频率相同,是由光纤材料折射率的变化引起的;而拉曼散射和布里渊散射两种散射光分别是由光振子和声振子引起的非顺应性散射,与入射光的频率不同。利用这三种散射光,可以分别设计出三种不同的光纤分布式温度测量系统。其中,采用基于拉曼散射光的分布式温度测量系统比较简单实用。 光纤分布式温度监测系统利用光纤本身作为温度传感器,在沿光纤分布的路径上同时得到被测物理量的一维空间连续的时间和空间分布信息,可对温度变化的异常点进行精确定位和实时监测。其系统原理框图如图(3-1)所示。 图(3-1)光纤分布式温度监测系统原理框图 激光光源向传感光纤注入激光脉冲,光在光纤中传输时会产生散射现象,即在光纤中产生四面八方各方向的散射光,其中一部分向后传输的后向散射光可沿光纤传回到光入射端。这部分后向散射光中的拉曼散射光与温度密切相关。后向散射光经定向耦合器由光电检测管进行光电变换后,送入信号处理单元处理,通过比较拉曼散射光的斯托克斯和反斯托克斯光带,以及计算激光光脉冲的运行时间,就可以确定每一个测温点的温度和位置测温点的位置(即该点与测量原点之间的光纤长度)可由发射的光脉冲与返回光信号的时间间隔以及光纤中的光速计算得到: 光纤长度L=(C/n)×Δt /2 (3-1 )

光纤光栅传感系统的现状及发展趋势

光纤光栅传感系统的现状及发展趋势 自1978年,加拿大的Hill等人首次在掺锗石英光纤中发现光敏现象并采用驻波法制造出世界上第一根光纤光栅和1989年美国的Melt等人实现了光纤Bragg光栅(FBG)的UV激光侧面写入技术以来,光纤光栅的制造技术不断完善,人们对光纤光栅在光传感方面的研究变得更为广泛和深入。光纤光栅传感器具有一般传感器抗电磁干扰、灵敏度高、尺寸小、重量轻、成本低,适于在高温、腐蚀性等环境中使用的优点外,还具有本征自相干能力强和在一根光纤上利用复用技术实现多点复用、多参量分布式区分测量的独特优势。故光纤光栅传感器已成为当前传感器的研究热点。由光源、光纤光栅传感器和信号解调系统为主构成的光纤光栅系统如何能够在降低成本、提高测量精度、满足实时测量等方面的前提下,使各部分达到最优匹配,满足光纤光栅传感系统在现代化各个领域实用化的需要也是研究人员重点考虑的问题。 本文对光纤光栅传感系统进行了介绍,对光纤光栅系统的宽带光源进行了说明,重点分析了光纤光栅传感器的传感原理及如何区分测量技术,对信号常用的信号解调方法进行了总结,最后,提出为适应未来的需要对系统各部分的优化措施。 1 光纤光栅传感系统 光纤光栅传感系统主要由宽带光源、光纤光栅传感器、信号解调等组成。宽带光源为系统提供光能量,光纤光栅传感器利用光源的光波感应外界被测量的信息,外界被测量的信息通过信号解调系统实时地反映出来。 1.1 光源 光源性能的好坏决定着整个系统所送光信号的好坏。在光纤光栅传感中,由于传感量是对波长编码,光源必须有较宽的带宽和较强的输出功率与稳定性,以满足分布式传感系统中多点多参量测量的需要。光纤光栅传感系统常用的光源的有LED,LD和掺杂不同浓度、不同种类的稀土离子的光源。LED光源有较宽的带宽,可达到几十个纳米,有较高的可靠性,但光源的输出功率较低,且很难与单模光纤耦合。LD光源具有单色性好、相干性强、功率高的特点。但LD光谱的稳定性差(4×10-4/℃)。因此,这2种光源自身的缺点制约了它们在光传感中的应用。掺杂不同种类、不同浓度的稀土离子的光源研究最广泛的是掺铒光源。现在C波段掺铒光源已经研制成功并使用,随着光通信中对通信容量和速度的要

地铁隧道结构变形监测数据管理系统的设计与实现

地铁隧道结构变形监测数据管理系统的设计与实现 摘要:探讨开发地铁隧道结构变形监测系统的必要性与紧迫性。以VisualBasic编程语言和ACCESS数据库为工具, 应用先进的数据库管理技术设计开发地铁隧道结构变形监测数据管理系统。系统程序采用模块化结构,具有直接与外业观测电子手簿连接下传原始观测资料、预处理和数据库管理等功能,实现了测量内外业的一体化。系统结构合理、易于维护、利于后继开发,提高监测数据处理的效率、可靠性以及监测数据反馈的及时性,值得类似工程的借鉴。关键词:地铁隧道;变形监测;管理系统 随着经济的发展 ,越来越多的城市开始兴建地铁工程。地铁隧道建造在地质复杂、道路狭窄、地下管线密集、交通繁忙的闹市中心,其安全问题不容忽视。无论在施工期还是在运营期都要对其结构进行变形监测,以确保主体结构和周边环境安全。地铁隧道结构变形监测内容需根据地铁隧道结构设计、国家相关规范和类似工程的变形监测以及当

前地铁所处阶段来确定,由规范[1]与文献 [2]知,运营期的地铁隧道结构变形监测内容主要包括区间隧道沉降、隧道与地下车站沉降差异、区间隧道水平位移、隧道相对于地下车站水平位移和断面收敛变形等监测。它是一项长期性的工作,其特点是监测项目多、线路长、测点多、测期频和数据量大,给监测数据处理、分析和资料管理带来了繁琐的工作,该项工作目前仍以手工为主,效率较低,不能及时快速地反馈监测信息。因此,有必要开发一套高效、使用方便的变形监测数据管理系统,实现对监测数据的科学管理及快速分析处理。现阶段国内出现了较多的用于地铁施工期的监测信息管理系统[3-4],这些系统虽然功能比较齐全、运行效率较高,能够很好地满足地铁施工期监测需要,但它主要应用于信息化施工,与运营期地铁隧道结构变形监测无论是在内容还是在目的上都有着很大的区别和局限性。而现在国外研究的多为自动化监测系统[5-6],也不适用于目前国内自动化程度较低的地铁隧道监测。此外,能够用于运营期并符合当前国内地铁隧道结构监测实际的监测数据管理系统还较为少见。因此,随着国内建成地铁的逐渐增多,开发用于运营期地铁的变形监测数据管理系统变得越来越迫切。为此,根据运营期地铁隧道结构变形监测内容[1-2]和特点,以isualBasic作为开发工具[7],应用先进的数据库管理技术[8],以目前较为流行的Access数据库作为系统数据库,设计和开发了用于运营期地铁隧道变

光纤光栅传感技术的发展及应用

光纤光栅传感技术的发展及应用 单嵩 北京工业大学应用数理学院 000612班 指导教师:王丽 摘要本文综述了当前国内外对光纤光栅传感器的研究历史和现状,论述了光纤光栅传感器的工作原理,介绍了传感器在响应压力方面的研究,并讨论了光纤光栅传感器所面临的问题。 关键词光纤,光栅,传感器 一、引言 光纤通信技术在过去二十年里有了惊人的发展,它的出现,使得全球电信网络上的传输需求以指数速率增长。而新一代光纤技术——光纤光栅将在光纤技术以及众多相关领域中引起一场新的技术革命。1978年加拿大渥太华通信研究中心的K.O.HILL等人在研究光纤非线性光学性质时偶尔地制成了最初的光纤光栅并发现掺锗石英光纤紫外光敏特性。所谓光敏性是指光纤材料在一定波长的强光照射下,其折射率会发生永久变化。而折射率沿光纤按一定规律变化就可形成各种光纤光栅。1989年G.Meltz等人首次利用244nm的紫外光采用全息干涉的方法制作了侧面写入的光纤光栅,使得制作各种波长的光纤光栅成为可能。光纤光栅作为一种全光器件,其主要优点是低损耗、易于与其他光纤耦合、偏振不敏感,温度系数低、容易封装。根据光纤周期的不同,光纤光栅可以被分为短周期光纤光栅(FBG)和长周期光纤光栅(LPFG)。短周期光栅又称为Bragg光栅,它的周期尺寸可以与工作波长相比拟,一般约为0.5μm 。Bragg光栅可以有很多种应用,从滤波器、光分插复用器到色散补偿器。长周期光栅又称为传输光栅,它的周期要比工作波长大得多,从几百微米直到几个豪米。长周期光纤光栅的工作原理与Bragg光栅有所不同。在光纤Bragg光栅中,对于适当的波长,纤芯中前向传播模式的能量会被耦合进入后向传播模式中。而在长周期光栅中,纤芯中前向传播模式的能量将会被耦合到包层中前向传播的其它模式中。这些包层中的模式都是极高损耗的,随着它们沿光纤的传播,其能量迅速衰减。目前长周期光栅主要被用作滤波器及在掺铒光纤放大器中补偿不平坦的增益谱。 目前,围绕光纤光栅技术的研究主要分为二个方向: 一是光纤光栅致光机理和写入成栅技术的研究;二是关于光纤光栅应用技术的研究,由于光纤光栅本质上是一个带阻滤波器,因此在光纤通信和光纤传感方面应用广泛。光纤传感是20世纪70年代伴随光纤通信技术的发展而迅速发展起来的,以光波为载体,光纤为媒质,感知和传输外界被测量信号的新型传感技术。作为被测量信号载体的光波和作为光波传播媒质的光纤,具有一系列独特的优点。光波不产生电磁干扰,也不怕电磁干扰,易被各种光探测器接受,可方便地进行光电或电光转换。光纤工作频带宽,动态范围大,是一种优良的低损耗传输线和优良的敏感元件。因此,光纤传感技术一问世就受到极大重视,成为传感技术的先导,在某些重要领域,如惯性导航、军用告警、智能材料结构、测试与控制、机器人及信息处理等方面得到了广泛的应用。 二、光纤光栅传感技术原理 1、光纤Bragg 光栅的应变响应机理

隧道施工期间的变形监测

TRANSPOWORLD 2011No.9 (May) 206B RIDGE&TUNNEL 桥梁隧道 隧 道监测作为新奥法的重要内容之一,在隧道施工中 起着非常重要的作用。某隧道(DK2+450~DK4+036)地处龙岩闹市区,具有埋深浅、地表建筑密集、地下管线众多、围岩破碎、施工对地表建筑及地下管线影响大等诸多施工不利因素。在施工期间对地表位移、建筑变形及爆破震动等进行监测,监测成果除了为评价施工对建筑的影响服务外,监测成果还可反馈施工,为施工方案及爆破设计参数等的优化提供重要依据,测试成果对确保施工安全、加快施工进度、降低施工成本具有重要意义。 监控测量的目的 在施工期间对隧道进行监控测量,可掌握围岩和支护的动态信息并及时反馈,指导施工作业;通过对围岩和支护的变位、应力测量,修改支护系统设计,提供二次支护的最佳时间;在位移——时间曲线中如出现以下反常现象,表明围岩和支护呈不稳定状态,应加强监视。 隧道洞内外观测 隧道开挖工作面的观测 在每个开挖面进行,特别是在 软弱破碎围岩条件下,开挖后由隧道工程师和地质工程师立即进行地质调查,观察后绘制开挖工作面略图(地质素 描),填写工作面状态记录表及围岩级别判定卡。 开挖后未被支护围岩的观测,如节理裂隙发育程度及其方向;开挖工作面的稳定状态,顶板有无坍塌;涌水情况:位置、水量、水压等;底板是否有隆起现象。 对开挖后已支护的围岩的观测,如对已施工区段的观察每天至少进行一次,观察内容包括有无锚杆被拉断或垫板脱离围岩现象;喷射混凝土有无裂隙和剥离或剪切破坏;钢拱架有无被压变形情况;锚杆注浆和喷射混凝土施工质量是否符合规定的要求;观察围岩破坏形态并分析。 洞外观察 洞外观察包括洞口地表情况、地表沉陷、边坡及仰坡的稳定以及地表水渗透等的观察,观察结果记录在工程施工日志及相关表格中。 隧道位移及变形量测 地表下沉量测 根据图纸要求洞口段应在施工过程中可能产生地表塌陷之处设置观测 点,如图1所示。地表下沉观测点按普通水准基点埋设,并在预计破裂面以外3~4倍洞径处设至少两个水准基点,以便互相校核,基点应和附近原始水准点多次联测,确定原始高程,作为各观测点高程测量的基准,从而计算出各观测 点的下沉量。地表下沉桩的布置宽度应根据围岩级别、隧道埋置深度和隧道开挖宽度而定。地表下沉量测频率和拱顶下沉及净空水平收敛的量测频率相同。地表 下沉量测应在开挖工作面前方H+h(隧道埋置深度+隧道高度)处开始,直到衬砌结构封闭、下沉 基本停止时为止。 周边位移量测 C R D 法洞内监控点布置见图2所示,而双侧壁导坑法洞内控制点布置见图3所示。量测坑道断面的收敛情况,包括量测拱顶下沉、净空水平收敛,以及底板鼓起(必要时)。拱顶是隧洞周边上的一个特殊点,挠度最大,其位移情况,具有较强的代表性和显示“闯口”作用等。 拱顶下沉和水平收敛量测断面的间距,Ⅲ级及以上围岩不大于40m;Ⅳ级围岩不大于25m;V级围岩应小于 隧道施工期间的变形监测 文/王 刚

光纤光栅感温火灾探测系统使用说明书

光纤光栅感温火灾探测系统使用说明 书 1 2020年4月19日

光纤光栅感温火灾探测系统 使用说明书 北京奥普智信光科技术有限公司

目录 1概述···········································································错误!未定义书签。2光纤光栅感温火灾探测系统主要技术指标··············错误!未定义书签。 2.1光纤光栅感温火灾探测器 ·····································错误!未定义书签。 2.2光纤光栅感温火灾信号处理器 ·····························错误!未定义书签。3光纤光栅感温火灾探测系统主要功能 ·····················错误!未定义书签。4光纤光栅感温火灾探测系统基本组成 ·····················错误!未定义书签。 4.1光纤光栅感温火灾探测器 ·····································错误!未定义书签。 4.2光缆 ········································································错误!未定义书签。 4.3光纤接续盒 ····························································错误!未定义书签。 4.4AP658-02B-40-4815II型光纤光栅感温火灾信号处理器··错误!未定 义书签。 1)光纤光栅解调器前面板·········································错误!未定义书签。2)光纤光栅解调器后面板·········································错误!未定义书签。5可视化监控软件························································错误!未定义书签。 6 系统安装 ···································································错误!未定义书签。 6.1连接关系 ································································错误!未定义书签。 6.2系统安装 ································································错误!未定义书签。 6.3系统参数设置 ························································错误!未定义书签。7操作使用 ···································································错误!未定义书签。

光纤光栅传感器及其发展趋势详解

【摘要】光纤光栅是现代光纤传感中应用最广泛的器件与技术。自1978年加拿大渥太华研究中心利用光纤的光敏效应成功制成第一根光纤光栅以来,光纤光栅传感器便因为体积小、重量轻、检测分辨率高、灵敏度高、测温范围宽、保密性好、抗电磁干扰能力强、抗腐蚀性强等特点及其具有本征自相干能力强和能在一根光纤上利用复用技术实现多点复用、多参量分布式区分测量的独特优势而被广泛应用于各行各业。本文先对光纤光栅传感器的工作原理及其分类进行论述,接着简述光纤光栅传感器的一些重要应用,然后对光纤光栅传感器的研究方向进行简单分析,最后是小结和展望。 【关键词】传感器;光纤光栅传感器;光纤光栅传感技术 一、光纤光栅传感器的工作原理及其分类 光纤光栅是利用光致折射率改变效应,使纤芯折射率沿轴向产生周期性变化,在纤芯内形成空间相位光栅。光纤光栅传感器目前研究的主要有三种类型:一是利用光纤布喇格光栅(FBG )背向反射特征制作的传感器;二是利用长周期光纤光栅(LPG )同向透射特征制作的传感器;三是利用啁啾光纤光栅色散补偿特征制作的传感器。下面将对这三种传感器的传感机理进行简单概述。 1.1 光纤布喇格光栅传感原理 光纤布喇格光栅纤芯轴向的折射率呈现周期性变化,其作用的实质相当于是在纤芯内形成一个窄带的滤波器或反射镜。如图1-1所示,当一束宽光谱光经过光纤光栅时,满足光纤光栅布喇格条件的波长将产生反射,其余的波长将透过光纤光栅继续往前传输。 图1-1 光纤布喇格光栅原理图 光纤布喇格光栅反射谱的中心波长B λ满足 Λ=eff n 2B λ 其中,eff n 为有效折射率,Λ为光纤光栅栅距。 光纤光栅的栅距是沿光纤轴向分布的,因此在外界条件诸如温度、压力等的作用下,光

相关主题
文本预览
相关文档 最新文档