当前位置:文档之家› 麦克风基础知识

麦克风基础知识

无线话筒调频知识

无线话筒调频知识 第1步、认识无线话筒 1、无线话筒的分类。无线话筒也称之为无线麦克风,按其频率是否可调节,分为固定频率无线话筒和可调频率无线话筒。区分无线话筒是固定频率无线话筒,还是可调频率无线话筒,最直观的的方法是看话筒外观是否有液晶显示屏。一般情况下,固定频率无线话筒是没有液晶显示屏的,而可调频率无线话筒的话筒身上都有液晶显示屏,固定频率的无线话筒和可调频率的无线话筒的外观如下图所示 步骤阅读步骤阅读2无线话筒按其使用的制式的类型分为三种,分别是FM无线话筒、VHF 无线话筒和UHF无线话筒。 a、FM 无线话筒:俗称FM是指FM 88-108MHz国际调频广播频段。早期消费性无线话筒是利用FM收音机来接收,系统简单,成本低廉,但因使用效果,不能满足专业品质的要求,21世纪只能成为小孩或学生的玩具。 b、VHF无线话筒:又分为低频及高频段两类型,前者使用VHF50MHz的频段,因频率较低,使用天线长度太长,又最容易受到各种电器杂波的干扰,因此这一类型的产品,在21世纪已经被高频段所取代而逐渐从市场上消失。后者使用VHF200MHz的频段,因频率较高,使用天线较短,甚至可以设计成隐藏式天线,方便,安全又美观,受电器的杂波干扰又大为减少,电路设计极为成熟,零件普及价格低廉,所以成为当今市场上的热门机种。 c、UHF无线话筒:使用频率为300-3000M的无线话筒。是21世纪话筒应用的主流。因为避免了V段的对讲机等的干扰,所以稳定性有很大提高。 步骤阅读32、查看无线话筒的频率。固定频率无线话筒是没有液晶显示屏的,其频率值一般标帖在话筒电池仓内,且频率不可调节,扭开电池仓后盖,即可见本只话筒的频率,如下图所示本只话筒的频率为: 步骤阅读4可调频率无线话筒的话筒身上都有液晶显示屏,通过这个液晶显示屏,我们就可知道这只无线话筒使用的频率和信道值,如下图所示本案例当前使用的可调频率的无线话筒的频率为:,信道为:181信道 第2步、调频 1、设备连接。固定频率无线话筒通过可调频率无线话筒接收主机,接收其声音信号,接收主机使用音频线与功放设备连接,音响与功放之间通过音频线连接,各设备连接上市电插座,这样,一套简单的音响系统就连接完成了,如下图所示 步骤阅读62、调频。 1)、本文约定,以下提及的无线话筒,即是指固定频率无线话筒。在案例中,因为无线话筒是固定频率,所以在此只能通过是调节无线话筒接收主机的频率的方式,来实现二者的对频。下图为固定频率无线话筒和可调频率无线话筒接收主机查看固定频率无线话筒频率。因为固定频率无线话筒没有液晶显示屏,不能从显示屏读取其频率,所以我们扭开无线话筒电池仓后盖,在话筒电池仓内我们找到了标帖在里面的频率标签率,如下图所示本只话筒的频率为:、打开无线话筒接收主机的电源开关,无线话筒接收主机的显示屏显示当前的信道和频率。调节无线话筒接收主机面板上的频率调节按钮,把其频率调到无线话筒的频率,二者频率一致后,无线话筒接收主机就可以接收无线话筒传送过来的声音信号了,按SET键保存这处频率值,如下图

话筒的基础知识(1)

话筒的基础知识(1) hc360慧聪网音响灯光行业频道 2004-10-19 10:18:45 传声器俗称话筒或麦克风(Microphone 简写为MIC ) .按换能原理为电动式(动圈式、铝带式),电容式(直流极化式)、压电式(晶体式、陶瓷式)、以及电磁式、碳粒式、半导体式等。 .按声场作用力分为压强式、压差式、 组合式、线列式等。 .按电信号的传输方式分为有线、无线。 .按用途来分为测量话筒、人声话筒、乐器话筒、录音话筒等。 .按指向性分为心型、锐心型、超心型、双向(8字型)、无指向(全向型)。 以上分类为较全面,目前常用分类为动圈式、电容式二种。 动圈式传声器 主要由线圈、磁钢、外壳组成。当传声器接受声波时,作用在振膜上,引起振膜振动,带动音圈作相应振动,音圈在磁钢中运动,产生电动势,声音信号转变成电信号。 动圈话筒使用较简单,无需极化电压,牢固可靠、性能稳定、价格相对便宜。在卡拉OK 方面仍广泛使用着。但它的瞬态响应和高频特性不及电容式传声器。 电容式传声器 主要由振膜、后极板、极化电源、前置放大器组成。电容传声器的极头,实际上是一只平板电容器,一个固定电极,一个可动电板,可动电板就是极薄的振膜。声波作用在振膜上引起振动,从而改变两极板间电容量的变化, 引起极板上电荷量的改变,电荷量随时间变化

形成高变电流,流经电阻R上在两端产生压降,在经过放大器输出高变信号。由于输出阻抗很高,不能直接输出,因此在传声器壳内装入一个前置放大器进行阻抗变换。将高阻改变成低阻输出。电容式传声器其实需要二组电源,一组为预放大器电源(约1.5V~3V)另一组是电容极头的极化电压(约48~52V)。现在调音台一般都有幻像供电,利用传声器电缆内两根音频芯线作为直流电路的一根芯线,利用屏蔽层作为直流电路的另一根芯线,由调音台向电容传声器馈电,这样既不影响声音的正常传输,又节约了芯线。所以称为幻像供电。 要提醒注意:当用动圈话筒时,调音台的幻像电源开关一定要关闭,否则话筒容易损坏。但当你用电容式话筒时,调音台的幻像电源开关一定要打开,否则话筒会无声。然而,当你的调音台没有幻像电源,或其它设备没有幻像电源时,可另购一只辅助电源也可使用。电容式话筒频响宽、灵敏度高,非线性失真小,瞬态响应好。也是电声特性最好的一种话筒。缺点是防潮性差,机械强度低,价格稍贵,使用稍麻烦。 信息来源:BVE

录音技术基础知识

录音技术基础知识基本录音/多轨录音 无论是盒式磁带录音机、数码多轨录音机、硬盘录音机,还是其它录音媒体,其录音过程大致相同,目的都是将声音获取到缩混带上。 做此工作,录音工程师采用两个步骤: 1、多轨录音——各种乐器和人声的录音与叠加录音的过程,每种录音都有各 自的“音轨”。 2、多轨缩混——将这些多轨内容同步录在一组立体声轨上(“母带录音”),可 以用某种播放系统如CD播放机或磁带卡座等进行再制作。 录音基础/多轨录音 多轨录音指多种乐器或人声的互相“叠加”,以便在播放任意一种音色时,同时听到其它的音色。有的录音设备具备将不同乐器录在每个“轨”上的能力。多轨录音好比将16个盒带录音机的磁带并列在一起。就成为16轨磁带(实际32轨,因为盒式磁带是立体声,有两个轨),从而具备了每轨录制不同乐器的潜力。 换言之,假如您为一个鼓手、一个贝司和一个伴奏吉他手弹奏的曲子录音,用一台多轨录音机将每种乐器录在各自轨上。由于是一起演奏的曲子,音符要互相合拍,播放时,听起来仍好象几个乐手在一起演奏一般。如果您要在歌曲中加入一个主音吉他,既然每个乐器都录在各自音频上,就要先播放前三个轨,使吉他手在第四轨上录制主音吉他时,能与其它乐器“合拍”。这个过程就叫叠加。 按传统方式,录音师要先录制“节奏轨”,包括:鼓、贝司、伴奏吉他、键盘以及一个将被替换的主音人声,所有都录在一起。下一步,录音师开始做叠加,加入其它节奏,主声部,背景人声,所有其它乐器,最后录制主音人声。而现代

录音方式通常是一次制作一个轨,按排序的乐器、鼓的循环,或者人声开始录音。 关键点是最终你的乐器必须被同时录制在一起。一旦完成后,混音过程才能开始。 录音基础/多轨缩混 缩混的目的是将你所录制的轨道缩到两个轨道(立体声)上或一个轨(单声)上。这样就可以在传统的播放系统如卡带或CD播放机上今昔播放了。 按传统方法,多轨录音机连在多通道的调音台上,这样每一个轨在调音面板上都可以被单独进行处理了。换句话说,多轨录音机的每一个输出都连接到调音台的每一个输入通道上,从那里再进行合并,成为单一的立体声输出。这个立体声的输出可以连接到母带处理机上录制立体声信号。 在合并许多通道到两个通道时,调音台还处理其它一些重要工作,如: -调节乐器的频率内容,一般称为EQ。 -给乐器增加效果,如混响,回声或合唱。 -调节每一轨的音量,保证不会有单独的乐器音量太过于大或者小。 如今,多轨录音机,多通道调调音台,均衡和效果器上的所有功能都可以集中在一个装置上。而且还可以用光盘刻录机、数码录音机或硬盘作为母带处理机。当然重要的是您的曲子中的所有的乐器都被录音、加工、缩混最后成为一种媒介而被大众听到。 一般连接端子 输入端子 在开始录音之前,你需要将乐器或者是话筒连接到录音机或调音台的输入部分。可能你会注意到有一些不同的连接类型,如:RCA型(在家用的立体声设备上也可

驻极体电容式麦克风咪头基础知识

驻极体电容式麦克风(咪头)基础知识 一、咪头的定义:: 咪头是一个声-电转换器件(也可以称为换能器或传感器),是和喇叭正好相反的一个器件(电-声)。是声音设备的两个终端,咪头是输入,喇叭是输岀。 咪头又名麦克风,话筒,传声器,咪胆等。 ECM (Electret Condenser Microphone )驻极体电容式麦克风的简称。 二、咪头的分类: 1、从工作原理上分: 炭精粒式 电磁式 电容式 驻极体电容式(以下介绍以驻极体式为主) 压电晶体式,压电陶瓷式 二氧化硅式等 2、从尺寸大小分,驻极体式又可分为若干种 ①9.7系列产品①8系列产品①6系列产品 ①4.5系列产品①4系列产品①3系列产品 每个系列中又有不同的高度 3、从咪头的方向性,可分为全向(无向),单向,双向(又称为消噪式) 4、从极化方式上分,振膜式,背极式,前极式 从结构上分又可以分为栅极点焊式,栅极压接式,极环连接式等 5、从对外连接方式分 普通焊点式:L型 带PIN脚式:P型 同心圆式:S/A型 三、驻极体传声器的结构 以全向MIC,振膜式极环连接式为例 1、防尘网: 保护咪头,防止灰尘落到振膜上,防止外部物体刺破振膜,还有短时间的防水作用。 2、外壳: 整个咪头的支撑件,其它件封装在外壳之中,是传声器的接地点,还可以起到电磁屏蔽的作用。 3、振膜:是一个声-电转换的主要零件,是一个绷紧的特氟珑塑料薄膜(聚氯乙烯)粘在一个金属薄圆环上, 薄膜与金属环接触的一面镀有一层很薄的金属层,薄膜可以充有电荷,也是组成一个可变电容的一个电极板,而且是可以振动的极板。 杜邦膜:FEP,PTFE,PFA,PET等,FEP是美国杜邦公司生产的一种特氟珑薄膜叫聚全氯乙丙烯,在驻极体传声器方面,主要用于电荷的存贮,因为内部有很多的势阱。 PPS膜:是一种不能存贮电荷的薄膜叫聚苯硫醚,在驻极体传声器方面,主要用于背极式和前极式的振动膜片。 4、垫片: 支撑电容两极板之间的距离,留有间隙,为振膜振动提供一个空间,从而改变电容量。 5、背极板: 电容的另一个电极,并且连接到了FET (场效应管)的G (栅)极上。 6、铜环:

麦克风指向性基础知识

麦克风指向性基础知识 1开始:什么是指向性? 麦克风的指向性指的是麦克风从不同的方向拾取声音。在现场设置中,最重要的是确认你所使用的麦克风的类型,从而降低声音的反馈以及依据指向性的使用哪里是放置监听的最佳位置。在工作室,你可以使用具有不同特性的传感器去做出改变。就像在录音时布置一定的装饰品,或者临近效应。 指向性麦克风:根据极性形式来分类,对前面传来的声音比后面传来的声音反应敏感得多。指向性麦克风有两个开口在膜片的两端,一边一个。膜片的振动根据相位关系,取决于两端的压力差。在后声孔的前端置一细密的声学滤网起延时作用,这样从后面传来的声音可同时从前后两个声孔到达振膜并抵消,因而指向性麦克风的极性图呈心形状。

名词解释:邻近效应 每个指向型话筒(心形、超心形)都有所谓的邻近效应,当话筒靠近声源时,低音频率响应增加,因此声音更加饱满,从而产生邻近效应。专业歌手经常利用这种效果。若想测试效果,则试着在唱歌时把话筒逐步靠近嘴唇,然后聆听声音的变化。 2.心型:只会拾取面对麦克风的这个方向 这是歌手最经常遇见的麦克风类型。常常被描述成为具有一个心型的图案,通常被用在工作室录制人声中。在你不想拾取观众的声音或者从你的监控器中传出的声音,心型麦克风在这种情况下是非常适用的(使用心型麦克风时监听应该放在你的对面,和你是180度)。在工作室中,使用心型麦克风可以有效的降低环绕声和麦克风反射回来的声音。这一点可以帮助你在不理想的环境中录音,或者减少收录你周围其他音乐的声音。

这种指向得名于它的拾音围很像是一颗心:在话筒的正前方,其对音频信号的灵敏度非常高;而到了话筒的侧面(90度处),其灵敏度也不错,但是比正前方要低6个分贝;最后,对于来自话筒后方的声音,它则具有非常好的屏蔽作用。而正是由于这种对话筒后方声音的屏蔽作用,心形指向话筒在多重录音环境中,尤其是需要剔除大量室环境声的情况下,非常有用。除此之外,这种话筒还可以用于现场演出,因为其屏蔽功能能够切断演出过程中产生的回音和环境噪音。在实际中,心形指向话筒也是各类话筒中使用率比较高的一种,但是要记住,像所有的非全向形话筒一样,心形指向话筒也会表现出非常明显的临近效应。

麦克风基本知识汇总

实际人声频率 男:低音82~392Hz,基准音区64~523Hz 男中音123~493Hz,男高音164~698Hz 女:低音82~392Hz,基准音区160~1200Hz 女低音123~493Hz,女高音220~1.1KHz 录音时各频率效果: 男歌声 150Hz~600Hz影响歌声力度,提升此频段可以使歌声共鸣感强,增强力度。 女歌声 1.6~3.6KHz影响音色的明亮度,提升此段频率可以使音色鲜明通透。 语音 800Hz是“危险”频率,过于提升会使音色发“硬”、发“楞” 沙哑声提升64Hz~261Hz会使音色得到改善。 喉音重衰减600Hz~800Hz会使音色得到改善 鼻音重衰减60Hz~260Hz,提升1~2.4KHz可以改善音色。 齿音重 6KHz过高会产生严重齿音。 咳音重 4KHz过高会产生咳音严重现象(电台频率偏离时的音色) 二、频率响应frequency response 频率响应又称带宽(frequency range),是指麦克风感应声波频率的范围,并将声波能量忠实的转换为电子讯号的能力。麦克风接受到不同频率声音时,输出信号会随着频率的变化而发生放大或衰减。一般以频率响应曲线图标之。 三、灵敏度( Sensitivity) 灵敏度代表麦克风将声音能量转换成电压后所产生的输出讯号强度,是在麦克风单位声压激励下输出电压与输入声压的比值。当输入信号固定时(1kHz),输出讯号越强,代表麦克风灵敏度越高。 测试麦克风的灵敏度是将1kHz的讯号在94dB的音压电平位准( SPL)下量测开路的麦克风,取得的毫伏特( millivolt )值,单位为mV / Pa。 四、等效噪音电平( Equivalent noise level) 等效噪音电平又称内部噪声( self noise)。麦克风的内部噪声在无声音讯号输入状态时可来自若干个方面: 1.供给麦克风电源的电压波动(偏置电压)引起的电子噪音

麦克风收音入门知识

麦克风收音入门知识 关于入门麦克风收音知识 麦克风可谓品种繁多,很多朋友面对五花八门的麦克风不知道该怎么选择,下面分享几个麦克风的小常识还有一些收音时的疑难解答,希望能够帮助你录制理想的声音。 1 麦克风的种类 9个关于入门麦克风收音的小知识 电容式麦克风 电容式麦克风( Condenser Microphone ) 是将声音送进内部振膜振动使隔板震动造成电压改变再产生讯号。它的灵敏度较高,常用于高质量的录音,像是吉他弹奏、复杂的环境音以及在录音室里做使用等。多数电容式麦克风是需要幻象电源( Phantom Power ) 才能收音,使用上比较麻烦。 动圈式麦克风 相较之下价格比较便宜的动圈式麦克风( Dynamic Microphone ) 因为含有线圈和磁铁,不像电容式麦克风轻便,对于高频的灵敏度较低,但它收录的声音较为柔润,适合用来收录人声以及现场演出等,在录音室中也常用来收高音压的乐器,像是打击、音箱等。 2 麦克风的指向性 全向式 全向式( Omnidirectional ) 对于来自不同角度的声音,其灵

敏度是相同的。常见于需要收录整个环境声音的录音工程;或是声源在移动时,希望能保持良好收音的情况;演讲者在演说时配带的领夹式麦克风也属此类。全向式的缺点在于容易收到四周环境的噪音,而在价格方面相对较为便宜。 单一指向式 常见的单一指向式为心型指向( Cardioid ) 或超心型指向( Hypercardioid ),对于来自麦克风前方的声音有最佳的收音效果,而来自其他方向的声音则会被衰减,常见于手持式麦克风等场合,此类型的极端为枪型指向( Shotgun )。 双指向式 双指向式( Bi-directional 或Figure-of-8 ) 可接受来自麦克风前方和后方的声音。可运用作为立体声录音法等特殊用途( 如MS、Blumlein 录音法)。其内部结构和全指向性基本相似,主要区别是在线路板上面( PCB )。 指向性与录音质量没有绝对关联,如上图所示我们了解它指的是收音范围。若想要录像时把自己或收录多一点环境音,建议采用全指向性的产品。 3 录制人声时的建议位置 录人声时建议对着麦克风的中心轴( On-Axis ) 唱,这是最正确的收音方式。麦克风中心点朝向下巴或朝上都是要避免的。15 ~ 20 cm 为最佳距离。当演唱到ㄅ、ㄆ、ㄈ、ㄊ、ㄏ或是英文字母B、F、P 的部分时嘴巴产生的较强烈气流可能会导致麦克风

MIC基础知识简介

MIC基础知识简介 一、传声器的定义:: 传声器是一个声-电转换器件(也可以称为换能器或传感器),是和喇叭正好相反的一个器件(电→声)。是声音设备的两个终端,传声器是输入,喇叭是输出。 传声器又名麦克风,话筒,咪头,咪胆等。 二、传声器的分类: 1、从工作原理上分: 炭精粒式 电磁式 电容式 驻极体电容式(以下介绍以驻极体式为主) 压电晶体式,压电陶瓷式 二氧化硅式等 2、从尺寸大小分,驻极体式又可分为若干种. Φ9.7系列产品Φ8系列产品Φ6系列产品 Φ4.5系列产品Φ4系列产品Φ3系列产品 每个系列中又有不同的高度 3、从传声器的方向性,可分为全向,单向,双向(又称为消噪式) 4、从极化方式上分,振膜式,背极式,前极式 从结构上分又可以分为栅极点焊式,栅极压接式,极环连接式等 5、从对外连接方式分 普通焊点式:L型 带PIN脚式:P型 同心圆式: S型 三、驻极体传声器的结构 以全向MIC,振膜式极环连接式为例 1、防尘网: 保护传声器,防止灰尘落到振膜上,防止外部物体刺破振膜,还有短时间的防水作用。 2、外壳: 整个传声器的支撑件,其它件封装在外壳之中,是传声器的接地点,还可以起到电磁屏蔽的作用。 3、振膜:是一个声-电转换的主要零件,是一个绷紧的特氟窿塑料薄膜粘在一个金属薄圆环上,薄膜与金属环接触的一面镀有一层很薄的金属层,薄膜可以充有电荷,也是组成一个可变电容的一个电极板,而且是可以振动的极板。 4、垫片:

支撑电容两极板之间的距离,留有间隙,为振膜振动提供一个空间,从而改变电容量。 5、极板: 电容的另一个电极,并且连接到了FET的G极上。 6、极环: 连接极板与FET的G极,并且起到支撑作用。 7、腔体: 固定极板和极环,从而防止极板和极环对外壳短路(FET的S,G极短路)。 8、PCB组件: 装有FET,电容等器件,同时也起到固定其它件的作用。 9、PIN:有的传声器在PCB上带有PIN,可以通过PIN与其他PCB焊接在一起,起连接另外前极式,背极式在结构上也略有不同。 四、传声器的电原理图: FET(场效应管)MIC的主要器件,起到阻抗变换或放大的作用, C;是一个可以通过膜片震动而改变电容量的电容,声电转换的主要部件。 C1,C2是为了防止射频干扰而设置的,可以分别对两个射频频段的干扰起到抑制作用。 RL:负载电阻,它的大小决定灵敏度的高低。 VS:工作电压,MIC提供工作电压 :CO:隔直电容,信号输出端. 五、驻极体传声器的工作原理: 由静电学可知,对于平行板电容器,有如下的关系式:C=ε?S/L……①即电容的容量与介质的介电常数成正比,与两个极板的面积成正比,与两个极板之间的距离成反比。 另外,当一个电容器充有Q量的电荷,那麽电容器两个极板要形成一定的电压,有如下关系式:C=Q/V ……② 对于一个驻极体传声器,内部存在一个由振膜,垫片和极板组成的电容器,因为膜片上充有电荷,并且是一个塑料膜,因此当膜片受到声压强的作用,膜片要产生振动,从而改变了膜片与极板之间的距离,从而改变了电容器两个极板之间的距离,产生了一个Δd的变化,因此由公式①可知,必然要产生一个ΔC的变化,由公式②又知,由于ΔC的变化,充电电荷又是固定不变的,因此必然产生一个ΔV的变化。 这样初步完成了一个由声信号到电信号的转换。 由于这个信号非常微弱,内阻非常高,不能直接使用,因此还要进行阻抗变换和放大。 FET场效应管是一个电压控制元件,漏极的输出电流受源极与栅极电压的控制。 由于电容器的两个极是接到FET的S极和G极的,因此相当于FET的S极与G极之间加了一个Δv的变化量,FET的漏极电流I就产生一个ΔID的变化量,因此这个电流的变化量就在电阻RL上产生一个ΔVD的变化量,这个电压的变化量就可以通过电容C0输出,这个电压的变化量是由声压引起的,因此整个传声器就完成了一个声电的转换过程。

麦克风知识

1、灵敏度: 在1KHz的频率下,0.1Pa规定声压从话筒正面0°主轴上输入时,话筒的输出端开路输出电压,单位为10mV/Pa。灵敏度与输出阻抗有关。有时以分贝表示,并规定10V/Pa为0dB,因话筒输出一般为毫伏级,所以,其灵敏度的分贝值始终为负值。 2、频响特性: 话筒0°主轴上灵敏度随频率而变化的特性。要求有合适的频响范围,且该范围内的特性曲线要尽量平滑,以改善音质和抑制声反馈。同样的声压,而频率不同的声音施加在话筒上时的灵敏度就不一样,频响特性通常用通频带范围内的灵敏度相差的分贝数来表示。通频带范围愈宽,相差的分贝数愈少,表示话筒的频响特性愈好,也就是话筒的频率失真小。 3、指向性: 话筒对于不同方向来的声音灵敏度会有所不同,这称为话筒的方向性。方向性与频率有关,频率越高则指向性越强。为了保证音质,要求传声器在频响范围内应有比较一致的方向性。方向性用传声器正面0°方向和背面180°方向上的灵敏度的差值来表示,差值大于15dB 者称为强方向性话筒。产品说明书上常常给出主要频率的方向极座标响应曲线图案,一般的类型有:单方向性“心形”;双方向性“8字型”;和无方向性“圆形”;以及单指向性“超心型”。话筒灵敏度的方向性是选择话筒的一项重要因素。有的话筒是单方向性的,有的则是全方向性的,也有一些是介于二者之间,其方向性是心形的。 a、全方向性 全方向性话筒从各个方向拾取声音的性能一致。当说话者要来回走动时采用此类话筒较为合适,但在环境噪声大的条件下不宜采用。 b、心形指向 心形指向话筒的灵敏度在水平方向呈心脏形,正面灵敏度最大侧面稍小,背面最小。这种话筒在多种扩音系统中都有优秀的表现。 c、单指向性 单指向性话筒又称为超心形指向性话筒,它的指向性比心形话筒更尖锐,正面灵敏度极高,其它方向灵敏度急剧衰减,特别适用于高噪音的环境。 4、输出阻抗: 从话筒的引线两端看进去的话筒本身的阻抗称为输出阻抗。目前常见的话筒有高阻抗与低阻抗之分。高阻抗的数值约1000~20000欧姆,它可直接和放大器相接;面低阻抗型为50~1000欧姆,要经过变压器匹配后,才能和放大器相接。高组抗的输出电压略高,但引线电容所起的旁路作用较大,使高频下降,同时也易受外界的电磁场干扰,所以,话筒引线不宜太长,一般以10~20米为宜。低阻抗输出无此缺陷,所以噪音水平较低,传声器引线可相应的加长,有的扩音设备所带的低阻抗传声器引线可达100米。如果距离更长,就应加

麦克风维护使用基本常识

麦克风维护使用基本常识 麦克风是音响系统非常重要的一个组成部分,虽然它使用简单,但其作用举足轻重。麦克风是音响设备中使用频率最高的设备之一,如果使用不当,会大大降低其寿命,影响聚会现场的正常使用。其维护保养要注意以下常识: 1.正确安装与拆卸连接线与麦克风。把XLR插头(俗称卡侬头)插入麦克风,旋转插头使上面的扣键与麦克风上的槽口对准,然后将插头推入麦克风,直至扣键定位;麦克风与连接线分开时,可握住插头,同时按住压扣键,然后将插头从麦克风拉出。切勿在没有对准或按下压扣键的情况下强行进行接入和分开的操作。 2.麦克风在使用中出现“啸叫声”,可能是由于手罩住了麦克风头部 或麦克风太接近扩音器【音箱】造成的,正确的解决方法是:首先降低音量,拉开同扩音器【音箱】的距离,尽量避免麦克风与扩音器【音箱】相对,然后再调节到合适的音量。麦克风要远离磁场或者移动设备,比如手机等,避免无线信号干扰整个音响系统。 3.麦克风是一种高灵敏度的音响设备,必须注意轻放轻拿,避免从高处掉下。撞击可能会造成麦克风灵敏度降低甚至损坏。 4.不要对麦克风用力吹气或用手拍打其头部以试音,正确的试音方是对准麦克风以正常口气说话。 5.对麦克风开关键的推拉要注意力度适中,推拉到位。如果在使用中发现有极大的噪音,可能是由于开关键未推拉到位或接触不好造成的,正确的做法是重新推拉开关。若是接触不好,应及早维修。

6.坐式用麦克风或无线话筒长期不用,应该取出电池,待使用时再安装。在使用过程中如果出现声音断续的情况,可能是由于电池电力不足造成的,要及时更换新电池。 7.不用时,将麦克风存放在干燥清洁的场所,避免在温度、湿度过高的场所存放和使用,以免影响麦克风的灵敏度和音色。 麦克风的正确拿法 在主日聚会或者敬拜现场时,麦克风是不可缺少的,然而有许多使用者拿无线麦克风的姿势是错误的,因为使用上的错误,一支麦克风不但不能发挥优越特性,而且埋没了原有的音质,结果音效很差。那么应该怎样拿麦克风,使它发挥最好的效果呢? 一、不要抓在无线麦克风的网头上 许多使用者,以手掌抓着麦克风网头【咪头】的使用方式,是严重破坏麦克风音质及指向性的最不良姿态,以这样的姿态使用麦克风,即使选用最名贵的麦克风,也会使原厂具有的绝佳特性,因而丧失变调!用手掌抱住网头【咪头】的结果等于隔绝音头气室周边的音响回路或改变气室的谐振频率,会导致麦克风的正面频率响应特性及指向特性的分离度严重的劣化,而且因手掌的聚音效应造成某一段频率的谐振而增强产生回授声。虽然无线麦克风因为没有联机的缠绊,使用方便安全,但是使用者往往不用心研究拿麦克风的正确姿势,任意抓在麦克风的网头【咪头】上,这样的使用姿势,必定会丧失麦克风原有的优越特性。使用者要利用麦克风把语音或歌声原音重现出来,就必须要先学好拿麦克风的正确姿势。拿麦克风的姿势很简单,只要记住一

无线话筒

无 线 话 筒 发 射 机 的 电 路 原 理 解析与常见障的检修 电子科学与工程系电子科学与技术0901 万自成 2011-5-22

无线话筒发射机的电路原理解析与常见故障的检修 摘要:无线话筒系统广泛应用于扩声系统,包括发射机和接收机两种单机。本文主要分析了无线话筒发射机的工作原理,并着重剖析了H-8.1无线话筒发射机的工作电路,并对一些常见故障的检修给予处理建议,以供大家参考。 关键词:拾音头前置放大器晶体振荡器音频放大电路导频电路维修。 无线话筒在音响系统中作用是毋庸置疑的,由于其具有不需要电缆的机动灵活性,又兼有有线话筒高质量的电声性能,广泛运用于电视演播室、电影同期声、舞台艺术扩声、展览讲解及其它专业与非专业应用场合。因为无线话筒发射与接收电路复杂、技术难度较高以及生产厂家资料的保密,使得市场上销售的无线话筒基本上都没有电路图,当无线话筒出现问题时,给消费者的使用与维修带来了很多困扰。笔者作为一位多年从事一线的录音工作的技术人员,从自己的日常工作的经验与积累中,经整理选一款电路典型的无线话筒,某公司的HS-8.1C无线话筒的电路作为案例,供大家参考,及介绍一些常见故障的处理,希望对业内同行有所帮助及请业内同行给予指正。 无线话筒由两部分组成,即发射部分和接收部分。声音由拾音头拾出,经音频放大后去调制载波频率,经调频放大及功率放大,从天线上发射出去。接收部分由天线、高频放大电路、混频器、差频放大电路、鉴频器和音频放大电路组成。由于篇幅限制,本文主要分析了发射机的工作原理与电路。

一、无线话筒发射机的工作原理 无线发射机包括以下部分:拾音头、前置放大器、晶体振荡器、频率调制器、倍频器、射频功率放大器及辐射天线系统等。 【1】 其中的拾音头是一个声电转换器,拾取声场里的声音信号,并把声音信号转换成电信号。无线话筒发射机拾音头多用驻极体传声器、电容传声器、动圈传声器。要求拾音头不失真地拾取声音信号,进行线性声电转换。 话筒输出的音频节目的电信号经过音频前置放大器,将微弱的低电平信号放大到高电平,用来调制发射机的调制器。要求噪声要低;失真要小;带宽要宽等。 晶体振荡器产生一个与射频有关的非常稳定的振荡频率,是发射机最重要的技术指标,要保证这个技术指标,必须用晶体控制振荡器。振荡器利用正反馈自激振荡电路,但如果电路元件的稳定性差,会影响振荡器的频率稳定度,形成频漂。 频率调制器是将信号载到另一个频率信号上。调频的抗干扰性很强,且在各类电磁干扰中,幅度干扰信号居多,理论上对频率的干扰非常小,可以忽略。 倍频器是一种理论上的放大器,区别在于输入回路和输出回路的谐振频率不同。其输出回路的谐振频率调在输入回路谐振频率的n次谐波上,即倍频器输出信号频率是输入信号频率的n次谐波。造成倍频器的效率很低,能量损失很大,但放大电压信号在电子电路中较为

教你正确使用无线话筒

无线话筒怎么用教你正确使用无线话筒 无线话筒怎么用?无线话筒是由若干部袖珍发射机(可装在衣袋里,输出功率约0.01W)和一部集中接收机组成,每部袖珍发射机各有一个互不相同的工作频率,集中接收机可以同时接收各部袖珍发射机发出的不同工作频率的话音信号。下面给大家介绍一下正确使用无线话筒的方法。 不要抓在无线麦克风的网头上使用: 许多演出者,以手掌抓着麦克风网头的使用方式,是严重破坏麦克风音质及指向性的最不良姿态,以这样的姿态使用麦克风,即使选用最名贵的麦克风,也会使原厂具有的绝佳特性,因而丧失变调!用手掌抱住网头的结果等于隔绝音头气室周边的音响回路或改变气室的谐振频率,会导致麦克风的正面频率响应特性及指向特性的分离度严重的劣化,而且因手掌的聚音效应造成某一段频率的谐振而增强产生回授声。虽然无线麦克风因为没有联机的缠绊,使用方便安全,但是使用者往往不用心研究拿麦克风的正确姿势,任意抓在麦克风的网头上,这样的使用姿势,必定会丧失麦克风原有的优越特性。一个演唱者要利用麦克风把美妙的歌声原音重现出来,就必须要先学好拿麦克风的正确姿势。拿麦克风的姿势很简单,只要记住一个重要原则:不管你怎样的拿,就是不要抓在麦克风的网头上;正确的使用姿态,应该握在麦克风的管身上。 一手抓住两支无线麦克风使用是最严重的错误方式: 在电视节目中常发现某些政治人物一手同时拿着两支甚至三支无线麦克风使用的镜头感到非常惊讶,这是非常错误的使用方式,不知道这是使用者的要求还是音响工程公司的创作,如果是前者的授意还情由可原,如果是后者的专业人员作这样的安排,应该鞭打三个大板。 因为将两个不同频率的发射器靠近使用时,会产生内调失真的谐波干扰,靠得越近或频率越多,干扰越严重,在多频道同时使用的系统,会使互相干扰及接收不稳定的问题更严重。 两支以上的无线麦克风靠在一起除了会产生高频谐波干扰的问题外,更严重的是产生麦克风的音频相位及指向性干涉现象,破坏了麦克风原有正常的音质特性。当麦克风的音频相位相同时,会使两支麦克风的输出相加,导致扩音机

话筒基本知识

话筒基本知识 话筒基本知识 话筒的种类:话筒按其结构不同,一般分为动圈式、晶体式、炭粒式、铝带式和电容式等数种,其中最常用的是动圈式话筒和电容式话筒,前者耐用、便宜,后者娇嫩、价格高、但特性优良。 动圈式话筒是通过振膜感应声波造成的空气压力变化,带动置于磁场中的线圈切割磁力线产生与声压强度变化相应的微弱电流信号。通常动圈话筒噪音低,无需馈送电源,使用简便,性能稳定可靠。 电容话筒的核心是一个电容传感器。电容的两极被窄空气隙隔开,空气隙就形成电容器的介质。在电容的两极间加上电压时,声振动引起电容变化,电路中电流也产生变化,将这信号放大输出,就可得到质量相当好的音频信号。另外有一种驻级体式电容话筒,采用了驻级体材料制作话筒振膜电极,不需要外加极化电压即可工作,简化了结构,因此这种话筒非常小巧廉价,同时还具有电容话筒的特点,被广泛应用在各种音频设备和拾音环境中。电容话筒的灵敏度高,频率响应好,音质好。 二、话筒的主要技术特性 1 、灵敏度: 在 1KHz 的频率下, 0.1Pa 规定声压从话筒正面0 °主轴上输入时,话筒的输出端开路输出电压,单位为 10mV/Pa 。灵敏度与输出阻抗有关。有时以分贝表示,并规定 10V/Pa 为 0dB ,因话筒输出一般为毫伏级,所以,其灵敏度的分贝值始终为负值。 2 、频响特性:话筒0 °主轴上灵敏度随频率而变化的特性。要求有合适的频响范围,且该范围内的特性曲线要尽量平滑,以改善音质和抑制声反馈。同样的声压,而频率不同的声音施加在话筒上时的灵敏度就不一样,频响特性通常用通频带范围内的灵敏度相差的分贝数来表示。通频带范围愈宽,相差的分贝数愈少,表示话筒的频响特性愈好,也就是话筒的频率失真小。 3 、指向性: 话筒对于不同方向来的声音灵敏度会有所不同,这称为话筒的方向性。方向性与频率有关,频率越高则指向性越强。为了保证音质,要求传声器在频响范围内应有比较一致的方向性。方向性用传声器正面0 °方向和背面180 °方向上的灵敏度的差值来表示,差值大于 15dB 者称为强方向性话筒。产品说明书上常常给出主要频率的方向极座标响应曲线图案,一般的类型有:单方向性“心形”;双方向性“ 8 字型”;和无方向性“圆形”;以及单指向性“超心型”。话筒灵敏度的方向性是选择话筒的一项重要因素。有的话筒是单方向性的,有的则是全方向性的,也有一些是介于二者之间,其方向性是心形的。

无线麦克风的基本常识

现在给大家大概介绍一下无线麦克风的基本常识,以便大家购买时能买到适合自己使用的无线麦克风, 概述; 无线麦克风分为三个频段,FM段。VHF段,和UHF段。下面简单给大家介绍各个频段的性能,使用场合等,希望能给大家购买时提供到一点帮助。 1。FM段: 大家都知FM收音机。FM收音机的频率是88-108MHz。FM频段的无线麦克风频率都高过108MHz。一般要110-120MHz之间,所以FM电台的信号不会对FM 段的无线麦克风造成干扰,不过会受到其它杂波的干扰。 FM无线麦克风的优点是:电路结构简单,成本低,利于厂家生产, 缺点是:音质差,频率会随时间/环境温度的变化而变化,经常会出现接收不良,断讯的情况,受到的干扰大。对着话筒大声叫会出现断音, 使用场合:对使用要求很低,对音质没有多大要求。只要求有声音的这种情况下就可以选用FM无线麦克风了, 2。VHF段 VHF段大家习惯简称V段,频率在180-280MHz之间。由于频率较高,一般受到的干扰很少,采用晶体锁频,不会出现变频的情况,接收性能较为稳定。V段频无线麦克风一般有两种电路, 第一种电路;高频部分就只用一个2003集成IC。其中包括。信号接收,射频放大,混频,鉴频等一步完成。灵敏度不高,音频部分采用31101线路。把音频进行压缩,扩展处理,音质比FM有很大的改善。接收性能提高了一个档次。 优点:接收稳定。短距离一般很少出现断讯, 缺点是:高频部分不太稳定,音频频响不够宽,专业场合使用效果不够理想,使用场合:一般家用,要求性能相对稳定,音质还过得去的这样场合下。就可以选用此类无线麦克风。 第二种电路:高频部分采用分立式处理,高频放大,中频放大。混频,鉴频。分步处理,效果较好,灵敏度较高,性能较为稳定。音频处理部分采用571线路,音质较好,音频频响较宽,

数字无线话筒使用说明书K歌

数字无线话筒使用说明书K歌

数字无线话筒使用说明书 一、手持开关机 1.将两节5号电池装入手持并拧紧网头(注意电池负极朝 下,电池装反将损坏手持),向上推开关打开手持,此时电源指示灯亮,手持进入开机状态。如果电源指示灯闪烁表示电池已耗尽,请更换电池再开机。 2.向下推开关电源指示灯熄灭,手持关机。长时间不使用话 筒请将电池取出。 二、接收机连接与开关机(专业) 1.将音频连接线一头插接收机音频输出2另一头插到用户的 音频设备(如功放、前级等)。将12V开关电源插入220V 交流插座,输出直流12V插入接收机DCIN,蓝色电源指示灯亮,接收机进入开机状态。 2.按住电源键一秒能够开启和关闭接收机电源。 3.断电后重新通电主机将自动进入开机状态,此时无需再按 电源键开机。 三、接收机与电脑的连接与开关机(个人) 1.将USB连接线两头分别插入电脑和接收机的USB接口。蓝 色电源指示灯,接收机进入开机状态。电脑自动把音频输入输出设备切换成接收机。(首次使用接收机的时候,电脑会自动安装驱动,电脑会依次出现图3所示的画面,直到硬件安装成功)

2.将音频连接线一头插接收机音频输出1另一头插到用户的 桌面音响输入端。 3.此时接收机将自动成为酷我k歌或QQ等者其它应用软件的 音频输入输出设备。(如果不能使用请参见疑难解答) 4.按住电源键一秒能够开启和关闭接收机电源。 5.断电后重新通电主机将自动进入开机状态,此时无需再按 电源键开机。 四、对码 1.接收机开机后按功能键进入A通道对码状态,电源指示灯 和A通道的射频指示灯亮,此时A通道能够对码,再按功能键进入B通道对码状态,电源指示灯和B通道射频指示灯亮,此时B通道能够对码。再按功能键又将切换到A通道,如此循环。 2.按照上一步将接收机切换到需要对码的通道,再按电源 键,该通道射频指示灯闪烁,此时打开任意一支手持,接收机将自动与手持实现连接,连接成功后该通道射频指示灯和音频指示灯同时亮起一秒。说明这个通道的手持对码成功,即可使用。 3.重复步骤1和步骤2以实现另一个手持与对应通道的对 码。 五、高低功率设置(根据使用范围来选择功率的高低) 1.将接收机电源线拔除,同时按住功能键和电源键再将电源

(完整版)传声器基础知识简介:

传声器基础知识简介: 一,传声器的定义:: 传声器是一个声-电转换器件(也可以称为换能器或传感器),是和喇叭正好相反的一个器件(电→声)。是声音设备的两个终端,传声器 是输入,喇叭是输出。 传声器又名麦克风,话筒,咪头,咪胆等. 二,传声器的分类: 1,从工作原理上分: 炭精粒式 电磁式 电容式 驻极体电容式(以下介绍以驻极体式为主) 压电晶体式,压电陶瓷式 二氧化硅式等 2,从尺寸大小分,驻极体式又可分为若干种. Φ9.7系列产品Φ8系列产品Φ6系列产品 Φ4.5系列产品Φ4系列产品 每个系列中又有不同的高度 3,从传声器的方向性,可分为全向,单向,双向(又称为消噪式) 4,从极化方式上分,振膜式,背极式,前极式 从结构上分又可以分为栅极点焊式,栅极压接式,极环连接式等5,从对外连接方式分 普通焊点式:L型 带PIN脚式:P型 同心圆式:S型 三,驻极体传声器的结构 以全向MIC,振膜式极环连接式为例 1,防尘网: 保护传声器,防止灰尘落到振膜上,防止外部物体刺破振膜,还有短 时间的防水作用。 2,外壳: 整个传声器的支撑件,其它件封装在外壳之中,是传声器的接地点, 还可以起到电磁屏蔽的作用。

3,振膜: 是一个声-电转换的主要零件,是一个绷紧的特氟窿塑料薄膜粘在一个 金属薄圆环上,薄膜与金属环接触的一面镀有一层很薄的金属层,薄膜 可以充有电荷,也是组成一个可变电容的一个电极板,而且是可以振 动的极板。 4 : 垫片: 支撑电容两极板之间的距离,留有间隙,为振膜振动提供一个空间, 从而改变电容量。 5: 极板: 电容的另一个电极,并且连接到了FET的G极上。 6: 极环: 连接极板与FET的G极,并且起到支撑作用。 7: 腔体: 固定极板和极环,从而防止极板和极环对外壳短路(FET的S,G极 短路)。 8: PCB组件: 装有FET,电容等器件,同时也起到固定其它件的作用。 9: PIN:有的传声器在PCB上带有PIN,可以通过PIN与其他PCB焊接在一起,起连接 另外前极式,,背极式在结构上也略有不同. 四,、传声器的电原理图: FET(场效应管)MIC的主要器件,起到阻抗变换或放大的作用, C;是一个可以通过膜片震动而改变电容量的电容,声电转换的主要部件. C1,C2是为了防止射频干扰而设置的,可以分别对两个射频频段的干扰起到抑制作用. R L:负载电阻,它的大小决定灵敏度的高低. V S:工作电压,MIC提供工作电压 :C O:隔直电容,信号输出端. 五,驻极体传声器的工作原理: 由静电学可知,对于平行板电容器,有如下的关系式: C=ε·S/L ……① 即电容的容量与介质的介电常数成正比,与两个极板的面积成正比,与两个极板之间的距离成反比。

无线话筒实验报告

无线话筒实验报告 一、实验目的 1. 了解无线话筒的构造与工作原理; 2. 掌握调频发射机整机电路的设计与调试方法,以及高频电路的调试中常见故障的分析与排除; 3. 以小功率调频发射机为例,学会如何将高频单元电路组合起来实现满足工程要求的整机电路的设计与调试技术; 4. 巩固理论知识,提高实际动手能力和分析能力; 5. 增强与同学之间的交流与合作能力。 二、实验仪器与工具 (1)直流稳压电源一台; (2)数字万用表一只; (3 )示波器(≥100MHz) 一台; (4)调频收音机(87~108Hz) 一台; (5)烙铁,镊子,斜口钳若干; 三、系统原理分析 调频系统的组成: 对于小功率的调频无线话筒,设计时在保证技术指标的前提下,应力求电路简单、性能稳定可靠。单元电路的级数尽可能少,以减小级间的相互感应、干扰和自激。本实验设计中采用的调频发射系统如下: 音频放大→高频振荡与频率调制→缓冲隔离→高频功放

图中的高频功放在发射功率较小时可工作于甲类状态(丙类状态要求有较大的功率激励)。 主要技术指标: ●发射功率P A:一般是指发射机输送到天线上的功率。只有当天线的长度L和发射频率的波长可以比拟时,天线才能有效地将信号发射出去。 ●工作频率或波段:发射机的工作频率是指其载波频率,应依据调制方式,在国家有关部门所规定的范围内选取。调频广播频段规定为87MHz~108MHz。 ●总效率:总效率=发射的总功率/消耗的总功率 ●输出阻抗:对调频广播而言,一般要求输出阻抗为50欧姆,对电视差转而言一般要求75欧姆 ●残波辐射:残波辐射是指杂波功率与有效输出功率之比 ●信杂比:信杂比是指已调波在规定的频偏情况下经理想解调后又用信号功率和载波功率之比 ●失真度:失真度是指已调波在规定的频偏情况下经理想解调后输出单音频信号的失真度 ●频率响应:频率响应是指已调波在规定的频偏情况下经理想解调后输出音频的幅频响应

麦克风知识汇总

麦克风知识汇总 麦克风,学名为传声器,是将声音信号转换为电信号的能量转换器件,由Microphone翻译而来。也称话筒、微音器。二十世纪,麦克风由最初通过电阻转换声电发展为电感、电容式转换,大量新的麦克风技术逐渐发展起来,这其中包括铝带、动圈等麦克风,以及当前广泛使用的电容麦克风和驻极体麦克风。 按换能原理为:电动式(动圈式、铝带式),电容麦克风 式(直流极化式)、压电式(晶体式、陶瓷式)、以及电磁式、碳粒式、半导体式等。 按声场作用力分为:压强式、压差式、组合式、线列式等。 按电信号的传输方式分为:有线、无线。 按用途分为:测量话筒、人声话筒、乐器话筒、录音话筒等。 按指向性分为:心型、锐心型、超心型、双向(8字型)、无指向(全向型)。 此外还有驻极体和最近新兴的硅微传声器、液体传声器和激光传声器。 动圈传声器音质较好,但体积庞大。 驻极体传声器体积小巧,成本低廉,在电话、手机等设备中广泛使用。 硅微麦克风基于CMOS MEMS技术,体积更小。其一致性将比驻极体电容器麦克风的一致性好4倍以上,所以MEMS麦克风特别适

合高性价比的麦克风阵列应用,其中,匹配得更好的麦克风将改进声波形成并降低噪声。 激光传声器在窃听中使用。 麦克风历史 麦克风的历史可以追溯到19世纪末,贝尔(Alexander Graham Bell)等科学家致力于寻找更好的拾取声音的办法,以用于改进当时的最新发明——电话。期间他们发明了液体麦克风和碳粒麦克风,这些麦克风效果并不理想,只是勉强能够使用。 1949年,威尼伯斯特实验室(森海塞尔的前身)研制出MD4型麦克风,它能够在吵杂环境中有效抑制声音回授,降低背景噪音。这就是世界上第一款抑制反馈的降噪型麦克风。 1961年,德国汉诺威的工业博览会上,森海塞尔推出了MK102型和MK103型麦克风。这两款麦克风诠释了一个全新的麦克风制造理念——RF射频电容式,即采用小而薄的振动膜,具有体积小,重量轻的特点,同时能够保证出色的音质。另外,这种麦克风对电磁干扰非常敏感。它们对气候的影响具有很强的抗干扰性能,非常适用于一些全新的领域,例如,探险队使用,日夜在室外操作,面对温差极大的、气候恶劣的户外条件,该麦克风仍然表现出众。 森海塞尔专门为音乐家设计制造的第一款麦克风曾在1967年的消费者电子产品博览会上展出。黑色与金色相间的MD409型是典型的立式麦克风,它的平面设计形状堪称森海塞尔的经典之作,而和它类似的MD415主要是一款手持式麦克风。它是最坚固的话音麦克风

相关主题
文本预览
相关文档 最新文档