当前位置:文档之家› 工业水处理技术问答—纯水一号

工业水处理技术问答—纯水一号

工业水处理技术问答—纯水一号
工业水处理技术问答—纯水一号

工业水处理技术问答—纯水一号

水是大自然赐给人类珍贵的资源,我们的祖先很早就知道充分利用水资源,表现生活的智慧,也传递了水的文化。水---滋润着世间万物,孕育着芸芸众生,承载着地球上所有生命的希望,随着社会不断发展,水资源已无法承受人类无度的索取和肆意的破坏,水体污染,水资源紧缺,已严重威胁到经济的发展和人类健康的生活环境。随着工业水处理的快速发展,工业超纯水设备已经广泛的应用在工业水处理的各行各业。对此深圳纯水一号技术人员做出了以下有关工业水处理技术的一些相关性回答:

1、什么叫离子交换剂?可分哪几类?

凡是能够与溶液中的阳离子或阴离子具有交换能力的物质都称

为离子交换剂。

离子交换剂分无机质类和有机质类两大类。无机质类又可分天然的——如海绿砂;人造的——如合成沸石。有机质类又分碳质和合成树脂两类。其中碳质类如磺化煤等;合成树脂类分阳离子型——如强酸性和弱酸性树脂;阴离子型——如强碱性(I、Ⅱ型)和弱碱性树脂;其他类型的有氧化还原型树脂、两性树脂和螯合树脂等类。

2、离子交换树脂发展的简况怎样?

离子交换现象早在18世纪中期就为汤普森(Thompson)所发现。直至1935年亚当斯(Aclams)和霍姆斯(Holmes)研究合成了具有离子交换功能的高分子材料,即第一批离子交换树脂——聚酚醛系强酸性阳离子交换树脂和聚苯胺醛系弱碱性阴离子交换树脂。离子交换树脂的大发展主要是在第二次世界大战以后。当时美国和英国一些公司成功地地合成了聚苯乙烯系阳离子交换树脂,在此基础上又陆续开发了交换容量高、物理-化学稳定性好的其他聚苯乙烯系离子树脂,相继又开发了聚丙烯酸系阳离子树脂。20世纪60年代,离子交换树脂的发展又取得了重要突破,美国罗姆-哈斯公司(Rohm anes Hass)和德国拜耳公司(Bayer)合成了一系列物理结构和过去完全不同的大孔结构离子交换树脂。这类树脂除具有普通离子交换树脂的交换基团外,同时还有像无机和碳质吸附剂及催化剂那样的大孔型毛细孔结构,使离子交换树脂兼具了离子交换和吸附的功能,为离子交换树脂的广泛应用开辟了新的前景。

离子交换树脂和它的应用技术的发展一直是相互促进、互相依赖的。承受离子交换树脂的发展,树脂应用技术也在不断改善,开始是间歇式工艺,很快就发展到固定床工艺,20世纪60年代后逆流技术及连续式离子交换工艺,双层床技术等获得了很快的发展,这些新的应用技术和工艺的开发,使离子交换树脂在许多领域的应用更加有效的经济。20世纪70年代后,人们正以极大的兴趣,注意着热再生离子交换技术的发展。

3、离子交换树脂有哪些主要性能?

离子交换树脂是高分子化合物,所以它的性能因制造工艺、原料配方、聚合温度、交联剂等的不同而不同,其主要性能分为两部分。

(1)物理性能

①外观树脂是一种透明或半透明的物质,因其组成不同,颜色各异,如苯乙烯树脂呈黄色,也有呈黑色和赤褐色的,但对性能影响不大。一般情况下,原料杂质多或交联剂多,树脂的颜色稍深(但树脂在运行过程中,因为各种原因有时颜色也会变化)。树脂外形呈球状,要求圆球率达到90%以上。

②粒度树脂颗粒的大小将影响交换速度、压力损失、反洗效果等。颗粒大小不能相差太大。用于水处理的离子交换树脂的颗粒以20~40目为宜。粒度的表示方法以有效粒径和不均匀系数来表示。

③密度关系到水处理工艺和树脂装填量。密度的表示方法有:干真密度(一般1.6g/cm3左右)、湿真密度(一般1.04~1.30g/cm3之间)、视湿密度(一般在0.60~0.80g/cm3之间)。

④含水率树脂的含水率越大,表示孔隙率越大,交联度越小。

⑤溶胀率树脂浸水之后要溶胀,它与交联度、活性基团、交换容量、水中电解质密度、可交换离子的性质等有关。树脂在交换与再生过程中会发生胀缩现象,多次胀缩树脂易碎裂。

⑥耐磨性反映树脂的机械强度。它应保证每年树脂耗量不超过7%。

⑦溶解性树脂内含有低聚合物要逐渐溶解,在树脂使用过程中也会发生胶溶。

⑧耐热性阳树脂耐温100℃左右,强碱性阴树脂可耐60℃,弱碱性阴树脂可耐温80℃。但在低于或等于0℃时,易结冰而破碎。

⑨导电性干树脂不导电,湿树脂可电导。

(2)化学性能

①离子交换树脂的交换反应具有可逆性,因此既可以交换,也可以再生,可反复使用。

②具有酸、碱性。H+型阳离子交换树脂和OH-型阴离子交换树脂等的性能与电解质酸、碱相同,在水中能电离出H+和OH-的能力。

③具有中和与水解性能。因它具电解质性质,能与酸、碱进行中和反应,也能进行水解。

④离子交换树脂吸着各种离子的能力不一,具有选择性。

⑤交换容量。表示其交换离子量的多少。根据树脂的形态可分平衡交换容量、全交换容量、工作交换容量等。

4、离子交换树脂的结构是怎样的?

离子交换树脂结构主要由高分子骨架和活性基团两部分组成。

(1)高分子骨架也称母体结构,它具有网状结构,是不溶于酸或碱的高分子物质。高分子骨架按其聚合单体可以分为苯乙烯系、酚醛系及丙烯酸系等。

(2)活性基团它牢固地结合在高分子骨架上,由不能自由移动的官能团离子和可以自由移动的可交换离子两部分组成。其中:①官能团离子决定离子交换树脂的“酸”、“碱”性和交换能力的强弱。官能团离子是强酸的(-SO3-),就叫强酸性离子交换树脂;是强碱的(≡N+),就叫强碱性离子交换树脂。同样,按官能团离子的性质,还可以有弱酸(-COO-),弱碱(-NH2+)和其他类型的离子交换树脂。②可交换离子。现代交换理论把离子交换树脂看做是一种胶体型物质:高分子骨架是“胶核”,活性基团作为高分子骨架表面的“双电层”,官能团和部分可交换离子组成吸附层,另一部分可交换离子组成扩散层。由于可交换离子组成吸附层,另一部分可交换离子组成扩散层。由于可交换离子是可以自由移动的,因而可以与水中同符号的离子发生交换反应。

如果离子交换树脂上的可交换离子为阳离子,例如H+,就叫H 型阳离子交换树脂;如果可交换离子为阴离子,例如OH-,就叫OH型阴离子交换树脂。其余可依次类推。

5、离子交换树脂为什么制成球形?

离子交换树脂根据需要,可以制成粉状,不规则的颗粒或球状。但在化学水处理中使用的离子交换树脂是球状的。由于球状树脂制造简单,在采用悬浮聚合时,可以直接制成球形。在体积相同的情况下,球状树脂的表面积最大,有利于提高交换能力。

球状树脂充填性好,阻力较均匀,使树脂层各处的流量较均匀;而且水通过球状树脂层压力损失小,树脂的磨损也小。

树脂成球状的质量分数通常用圆球率表示,一般要求圆球率在90%以上。

6、离子交换树脂的粒度及均匀性对水处理有什么影响?

树脂粒度的大小,对水处理工艺有较大的影响,树脂颗粒过大,则使交换速度减慢;树脂颗粒过小,又会使水通过树脂层的压力损失增大。树脂的粒度应均匀,否则由于小颗粒树脂堵塞了大颗粒间的孔隙,会使水流不均和阻力增大。

另外,树脂粒度不均匀也使反洗操作不易控制;反洗流速过大会冲掉小颗粒树脂;而反洗流速过小,又不能松动大颗粒树脂,使反洗效果变差。一般水处理使用的树脂粒度以20~40目为宜,也就是0.3~1.2mm。在高流速装置中要求粒度范围更窄,约0.45~0.65mm,这可使流体阻力更小,同时树脂球粒的耐压强度较一致。

7、什么叫离子交换树脂的溶胀性?它与什么因素有关?

离子交换树脂是亲水性高分子化合物,当将干的离子交换树脂浸入水中时,其体积常常要变大,这种现象称为溶胀,使离子交换树脂含有水分。由于树脂具有这种性能,因而在其交换和再生过程中会发生胀缩现象,多次的胀缩就容易促使颗粒破裂。

影响离子交换树脂溶胀的因素有:

(1)交联度。高交联度树脂的溶胀能力较低。

(2)活性基团。活性基团易电离,即交换容量愈高,树脂的溶胀性越大。

(3)溶液浓度。溶液中电解质浓度越大,树脂内外溶液的渗透压差反而减小,树脂的溶胀就小,所以对于“失水”的树脂,应将其先浸泡在饱和食盐水中,使树脂缓慢膨胀,不致破碎,就是基于上述道理。

一般讲,强酸性阳离子交换树脂由Na型变成H型,强碱阴离子交换树脂由Cl型变成OH型,其体积均增加约5%。

8、什么是离子交换树脂的选择性?有什么规律性?

由于离子交换树脂对于水中各种离子吸着(或吸附)的能力不相同,对于其中一些离子很容易被吸着,而对另一些离子却很难吸着。被树脂吸着的离子,在再生的时候,有的离子很容易被置换下来,而有的却很难被置换。离子交换树脂的上述这种性能称之为选择性。树

脂的选择性在实际水处理运行中,将影响离子交换过程和树脂的再生过程。

离子交换树脂的选择性有其一定的规律性,例如,水中离子载的电荷越大,就越易被离子交换树脂吸着。反之,如果离子的电荷越小,就越不容易被吸着,如二价的离子比一价的离子更易被吸着。但如果离子载有相同的电荷时,原子序数大的元素所形成的离子的水合半径小,就容易被离子交换树脂所吸着。

在含盐量不太高的水溶液中,常见离子的选择性次序为:

(1)对于强酸性阳离子交换树脂:

Fe3+>Al3+>Ca2+>Mg2+>K+≈NH4+>Na+>H+>Li+;

(2)对于强碱性阴离子交换树脂:

SO42->NO3->Cl->OH->F->HCO3->HsiO3-;

(3)对于弱酸性阳离子树脂:

H+>Fe3+>Al3+>Ca2+>Mg2+>K+>Na+>Li+;

(4)对于弱碱性阴离子交换树脂:

OH->SO42->NO3->PO43->Cl->HCO3->HsiO3-。

但必须指出,选择性能还与离子交换树脂的活性基团有关。

9、如何选择离子交换树脂?

选择离子交换树脂的一般原则是选择交换容量大、容易再生、而且使用耐久的树脂。具体来说:

(1)交换容量是离子交换树脂性能的一个重要指标,交换容易越大则同体积的树脂能吸附的离子越多,一个交换周期的制水量也越大。一般来说,弱酸或弱碱性树脂比强酸或强碱性的树脂交换容量大。另外,在同类树脂中,由于树脂的交联度不同,交换容量也不同。一般交联度小的树脂交换容量大;交联度大的树脂交换容量小。因此在选择树脂时要注意。

(2)要根据原水中需要去除离子的性质来选择树脂。如果只需要去除水中交换吸附性弱的离子时,则必须选用强酸或强碱性树脂。

(3)要根据出水水质要求来选择树脂。如果只需要部分除盐的系统,可以选用强酸性阳树脂和弱碱性阴树脂配合使用。对于必须完全除盐的纯水或高纯水系统,则要选择吸附性最强的强酸性阳离子交换树脂和旨碱性阴离子交换树脂配合使用,以去除较难吸附的离子。

(4)要根据原水中杂质的成分来选择树脂。如原水中有机物较多,或去除离子的半径较大时,应选用交联网孔直径较大的树脂。尽量选择高强度多孔性树脂。

(5)用于混合床的树脂,较多的是强酸-强碱性树脂的组合。但要考虑混合床树脂再生时分层容易,因此,要求两种树脂的湿真密度之差应大一些,一般应不小于15%~20%。另外,还要考虑到混合床运行时交换流速比较大,树脂磨损较为严重的情况,故应选择耐磨性的树脂。

(6)要根据除盐水工艺要求来选择树脂。例如双室床,选用强、弱性树脂配合使用,因为弱性树脂容易再生,对再生剂的质量要求也比较低,可以利用强性树脂再生后的再生液来再生弱性树脂,这样,再生剂的消耗低,制水成本低。

10、什么是离子交换树脂的全交换容量和工作交换容量?

将离子交换树脂中所有的活性基团都变成可交换离子之后,而把这些可交换离子全部交换下来的容量称全交换容量。因此,全交换容量也即表示离子交换树脂中能够起交换作用的活性基团的总数。

离子交换树脂的工作交换容量是在水处理的实际运行条件下(或模拟条件下),也就是离子交换树脂在动态的工作状态下测得的交换容量。由此可知,运行条件不同,测得的工作交换容量也就不同,影响工作交换容量的因素很多,例如,水的离子浓度、交换终点的控制指标、树脂层的高度、交换速度以及交换基团的形式等。在实际使用中,树脂的工作交换容量更有意义,但全交换容量与工作交换容量没有固定的比值关系,因此,不能以全交换容量去推算工作交换容量。

此外,还有平衡交换容量,也就是离子交换树脂在水溶液中到达交换平衡状态时的交换容量。

11、大孔型树脂有什么特点?

大孔型树脂是在凝胶型树脂制备的基础上改进发展制得,它的特点:

(1)树脂的结构上,存在永久性微孔。其大小、孔道的数量和分布情况,是根据需要在制备过程中通过致孔剂来调节,不是仅仅通过交联度来控制的,树脂无论在干、湿情况下都永久性地存在孔道;

(2)树脂的表面积,由于内部为多孔海绵状,其表面积可以人为调节到1000m2/g以上;

(3)交换速度,由于大孔树脂内部微孔多而大,表面积大,离子交换扩散速度增大,交换速度加快,有的比凝胶型树脂大10倍;

(4)应用范围,扩大到非水体系,甚至气体也可以用;

(5)稳定性,耐溶胀收缩性很好。有好的耐化学性能和耐辐照性能。耐磨损性能也较好。有良好的耐热和耐冷热变化性能。有较强的抗有机物污染性能。流动性能好,对流体阻力小。一般用于吸附和分离相对分子质量大的物质。

但大孔型树脂的价格贵,体积交换容量低,再生剂耗量略高。

12、凝胶型与大孔型树脂有什么区别?

凝胶型树脂与大孔型树脂的主要区别在于它们的孔隙度不同。

用普通聚合法制成的离子交换树脂,是由许多不规则的网状高分子所组成,类似凝胶,所以称为凝胶型树脂。常见的凝胶型树脂,如苯乙烯系列的001,201等。

凝胶型树脂的孔隙度很小,一般都在3nm以下,而且严格的讲这些孔隙并不是真正的孔,而是交联与水合多聚物凝胶结构之间的距离,它随运行条件而改变,在干的凝胶型树脂中,这种“孔”实际上是消失了。

凝胶型树脂浸入水中会发生溶胀,体积变大。这种溶胀性会使树脂的机械强度降低;同时当凝胶型树脂在不同离子形态时,其膨胀率也会发生变化,这样就会因为树脂的反复膨胀、收缩而使树脂颗粒破裂。

大孔型树脂则不同:它的“孔”大于原子距离,而且不是凝胶结构的一部分,所以这个孔是真正的孔,其大小及形状不受环境条件而改变,因而在水溶液中不显示溶胀。

由于无机物离子的直径都很小(0.3~0.7nm),用普通的凝胶型树脂是完全可以除去;但当水中有有机物分子存在时,由于其分子很大(胶硅化合物的粒径可大于50nm,某些蛋白质分子为5~20nm),用普

通凝胶树脂除去它们则有困难。而且再生时,这些被吸附的有机物也不易被再生下来,所以凝胶型树脂易于被有机物所污染。

由于大孔型树脂的孔径较大,在10~200nm以上,因之它能够比较容易地吸着高分子有机物,并且容易被再生下来,所以有较好的抗污染性。

大孔型树脂有交换容量较低,再生时酸碱用量大及价格较高等问题。

凝胶型树脂在聚合的时候,需要加入交联剂,并要控制交联剂数量上的变化,使得在树脂中形成相应的微孔,孔径在0.5~5nm之间。主要是用于吸附水中阴、阳离子,对有机物的吸附能力很弱。易污染老化,比表面积<0.1m2/g干树脂。外观呈透明球状颗粒。

大孔型树脂是在合成的过程中,添加芳香烃、脂肪烃、醇类等有机溶剂,即所谓致孔剂,当树脂聚合后,除去上述溶剂,即在树脂里形成许多大孔。大孔树脂在湿态时呈不透明或乳白色,内表面积在

5m2/g以上,视密度与真密度之差大于0.05g/cm3。大孔树脂在水处理中能起吸附、过滤作用,能去除有机物质、腐殖酸、木质磺酸等;还可除铁、去色、并保护离子交换树脂免受污染,而延长交换树脂的使用寿命。在纯水制备过程中,如果主要起过滤作用,大孔型树脂要装在离子交换树脂或反渗透装置的前面;如果主要是用于吸附,大孔树脂宜于酸性水中进行吸附。

13、树脂对使用的温度有何要求?

各种树脂均具一定的耐热性能,在使用中对温度要求都有一定的界限,过高或过低都会严重影响树脂的机械强度和交换容量。温度过低如小于或等于0℃时,树脂易冻结,使机械强度降低,颗粒破碎,从而影响树脂的使用寿命、降低交换容量;温度过高,会引起树脂热分解,也影响树脂的交换容量来使用寿命。各种树脂的耐热性能应由鉴定试验来确定。但一般来说,阳树脂比阴树脂的耐热性能好。盐型树脂比H型或OH型好,而盐型又以Na型树脂耐热性能最好。一般的阳树脂可耐100~110℃,阴树脂可耐50~60℃(强碱性)。而弱碱阴树脂的耐热性能要比强碱性的好,一般可耐80~90℃。因此,树脂在使用时,对于水温要有严格的控制。

14、对离子交换树脂要检测哪些项目?

检测离子交换树脂的目的:一是检验新树脂的质量;二是掌握树脂使用后的质量变化情况。故树脂使用前应有检测数据,使用后也应定期(半年)进行检测。

离子交换树脂检测之前要清洗和转型,阳树脂转为钠型,阴树脂转为氯型,以便于在统一的基础上分析比较。检测的项目有:

(1)离子交换树脂的全交换容量。全交换容量是树脂性能的重要标志,交换容量愈大,同体积的树脂能吸附的离子愈多,周期制水量

愈大,相应的酸、碱耗量也就低,检测全交换容量也为了便于选择树脂。

(2)离子交换树脂的工作交换容量。工作交换容量是树脂交换能力的重要技术指标。是指动态工作状态下的交换容量,工作交换容量的大小与进水离子浓度、终点控制、树脂层高、交换速度等有关。因此,工作交换容量的测定具有重要的实用价值。

(3)离子交换树脂的机械强度。树脂在使用过程中相互摩擦,以及每一运行周期树脂的膨胀与收缩和表面承受压力,会使树脂破裂、粉碎,所以树脂机械强度的检测,关系树脂的使用寿命。

(4)离子交换树脂的密度检测。检测树脂的视密度用来计算离子交换塔所需湿树脂的用量。湿视密度一般为0.6~0.85g/mL;检测树脂的湿真密度是便于确定反冲洗强度大小,并且与混合床树脂分层有很大关系。湿真密度一般为1.04~1.30g/mL左右。

(5)离子交换树脂所含的水分。因为树脂交联网孔内都有一定量的水分,与树脂交联度及孔隙率有关,交联度越小,孔隙率则越大,因此,检测树脂水分计算出含水率,可以间接反映出树脂交联度的大小。一般树脂含水率约50%左右。

(6)离子交换树脂的颗粒度。颗粒大小对树脂交换能力、树脂层中水流分布的均匀程度、水通过树脂层的压力降以及交换与反洗操作

等都有很大影响。树脂的颗粒度越小,其交换速度越大,水力损失也大,进、出水压差也越大。因此,颗粒度与运行操作有很大的关系。

(7)离子交换树脂的中性盐分解容量。检测树脂中性盐的分解容量主要是测定树脂中的强酸或强碱基团的组成。因此树脂交换基团的组成不同,使水中离子交换和吸附强度也不相同。另外,检测中性盐的分解也是测定树脂交换基团的离解能力。离解能力强的,离子交换速度快,否则,就慢。检测树脂中性盐分解容量对选用树脂很重要。

(8)离子交换树脂中灰分及铁含量。灰分和铁会沉积在树脂表面,堵塞孔隙,不易洗脱,长期积累会影响树脂交换能力和使用寿命。因此需要及时检测,采取措施。

(9)离子交换树脂的耗氧量。耗氧量主要是反映树脂受有机物污染的程度。树脂受有机物污染之后,清洗水耗量剧增,工作交换容量降低,出水水质差。检测树脂耗氧量,以判断树脂被污染的程度,及时采取有效措施。

15、离子交换树脂的强度为什么会降低?

离子交换树脂的强度降低造成破碎的原因主要有:

(1)离子交换树脂由于强氧化剂的作用而分解,降低了树脂强度。这种情况大都发生在阳树脂,例如由于进水余氯控制过高而受到影响。但是阴树脂受有机物的严重污染也会降解影响其强度。从运行的

经验表明,有必要使进水的耗氧量降低至1mg/L以下(27℃,高锰酸钾法氧化4h),国外有的规定进水耗氧量<0.3mg/L。

(2)离子交换树脂由于反复的机械摩擦而损坏,如经常反冲洗、快速水力输送、交换流速过大、空气及超声波的擦洗等,影响树脂强度。

(3)由于离子交换树脂有时在高压力、高流速状况下运行,进、出水压差太大,树脂受到挤压碎裂而损失其强度。

(4)由于在运行操作中树脂的容积膨胀太大,例如树脂在转型时的膨胀速度过快过大,反复胀缩而使树脂强度降低。

(5)树脂的热稳定性能差,使用时水温过高,例如凝结水回收水温较高,往往会引起树脂碎裂,使强度降低。

(6)由于树脂保管不当,失水干燥,一旦遇水就会胀裂;或是环境温度低于0℃,因树脂内部水分冻结而胀裂、破碎,造成树脂的强度降低。

16、离子交换树脂使用后颜色变深说明什么?

离子交换树脂是一种半透明或透明的物质,依其组成的不同,其颜色也不一样,苯乙烯系树脂均呈黄色;丙烯酸系树脂有的无色透明,有的呈乳白色。一般讲,交联剂多,原料中杂质多,制出的树脂颜色则深。

离子交换树脂在使用一段时间后,由于水中的铁质或有机物的污染,其颜色也会变深;失效的离子交换树脂的颜色,比再生好的树脂要稍深一些。

因此有时候可以从树脂颜色的变化,看出树脂的“失效”程度。

17、树脂受到污染的原因是什么?

离子交换树脂在运行的过程中,如果发现颜色变深;树脂交换容量不断地下降;清洗水不断地增加;出水水质变差;周期性制水量不断下降等现象,可以认为树脂受到污染。污染的原因主要有:

(1)有机物引起的污染有机物质在水中往往带有负电,成为阴离子交换树脂污染的主要物质。有机物主要是存在于天然水中的腐殖酸、胶团性的有机杂质、相对分子质量从500至5000的高分子化合物以及多元有机羧酸等,这些物质吸附在树脂上,有的占据或者结合了树脂上的活性基团,有的使树脂的强碱活性基团碱性降低而降解,使树脂降低了离子交换能力。这类污染从COD的监测中可以检出。

(2)油脂引起的污染水中往往含有油类物质,形成膜状物,堵塞或包裹了树脂的微孔,阻碍树脂微孔中的活性基团进行离子交换。

(3)悬浮物引起的污染水中悬浮物质,紧裹着树脂表面的液膜层,从而隔绝了树脂的离子交换过程,使树脂受到污染。这种污染以阳离子交换树脂为多。

(4)胶体物质引起的污染水中胶体颗粒常带负离子,使阴离子交换树脂受到污染。胶体物质中以胶体硅对树脂的危害最大,它吸附并在树脂的表面上聚合,阻止树脂进行离子交换。

(5)高价金属离子引起的污染原水中的高价金属离子(如混凝剂中高价金属离子的后移等),如Al3+、Fe3+等扩散进入阳离子交换树脂的内部,由于这些高价金属离子的交换势能高,与树脂中的固定离子—SO3-牢固结合形成Al(SO3)3、Fe(SO3)3等,从而使这部分的固定离子失去作用,丧失了离子交换能力。

(6)再生剂不纯引起的污染离子交换树脂的再生剂不纯往往混有许多杂质,尤其是烧碱(NaOH)中的杂质甚多,如Fe3+、NaCl、Ns2CO2等,对阴离子交换树脂的污染最为严重。

此外,细菌、藻类以及水中含氟、氨基酸之类物质等也会不同程度地使树脂受到污染。

18、为什么阴离子交换树脂容易变质?

阴离子交换树脂的化学稳定性要比阳离子交换树脂差,所以阴离子树脂对于氧化剂和高温的抵抗能力较弱。阴离子树脂最易受到侵害的部位是分子中的氮,如季铵型的强碱悸阴树脂在受到氧化剂侵蚀时季铵逐渐变为叔铵、仲胺、伯胺,使得碱性减弱,最后降解为非碱性物质。这就是阴离子交换树脂的氧化变质过程。在此过程中,强碱性交换基团逐渐降解减少,弱碱性交换基团比例增加,阴树脂总的交换

基团也在减少。开始时阴离子树脂氧化变质的速度最大,随后逐渐降低,约两年之后,氧化变质速度几乎恒定。为了防止阴树脂氧化变质,在进入阴离子交换塔之前,要尽力将水中氧化剂除去。运行中,要切实控制好水温。有的厂为了提高阴树脂的除硅效果将再生剂溶液加温,但要注意切不可过高。

19、树脂受到铁的污染庆当如何处理?

树脂受铁的污染颜色变深,由深褐色直至完全变黑。分析树脂中铁含量,如果Fe<0.01%,没有问题;如果Fe>0.10%表示受到严重污染;当Fe在0.01%~0.10%为中等污染。铁污染时,可用4%的亚硫酸钠(Na2SO3)溶液浸泡4~12h,或用10%HCl接触树脂5~12h,但在处理之前需用食盐水处理,使其树脂失效(转型)。

20、怎样判断树脂受油污染?

树脂受到油的污染,会产生“抱团”现象,这类污染大都发生在阳离子交换树脂。油附着于树脂上增加了树脂颗粒的浮力。被油污染的树脂颜色呈棕色至黑色。判断树脂是否受到油的污染,只要取少许树脂加水摇动1min,观察水面是否有“彩色”出现,如果有“彩色”说明是油的污染。受油污染的树脂,是非离子型表面活性剂为主的碱性清洗剂处理最为有效。

21、有哪些类别的专用树脂?

水处理书籍

水处理 《现代膜技术与水处理工艺》 《现代水处理技术(第二版)》 《工业水处理技术问答(第四版)》 《工业废水处理及再生利用》 《污水处理厂工艺设计手册(第二版)》 《有机废水处理的基本设计与计算》 《水的深度处理与回用技术(第三版)》 《光催化水处理技术》 《高浓度难降解有机废水的治理与控制(第二版)》《循环冷却水技术问答》 《水处理新技术与案例》 《污水处理节能降耗问答》 《废水处理生物膜》 《水污染控制工程》 《放射性废水处理技术》 《水工业仪表自动化》 《工业水处理及实例精选》 《污染水体生物治理工程》 《城镇污水厂生物除磷工艺优化理论与实践》 《废水处理工程技术手册》 《水工艺处理技术与设计(第二版)》 《制革工业废水处理技术及工程实例(第二版)》《水处理与膜分离技术问答》 《废水污染控制技术手册》 《工业废油处理技术》 《水和废水污染物分析测试方法》 《氧化沟污水处理理论与技术(第二版)》 《河道工程施工·管理·维护》 《污水处理机械设备设计与应用(第二版)》 《小城镇污水处理设计及工程实例》 《污水处理设备操作维护问答(第二版)》 《污水处理厂运行和管理问答(第二版)》 《水处理新技术、新工艺与设备》 《高浓度有机工业废水处理技术》 《序批式活性污泥法污水处理技术》

《水系统集成优化:节水减排的系统综合方法(第二版)》《污水处理在线监测仪器原理与应用(第二版)》 《城市供水水质检测技术》 《水处理滤料与填料》 《村镇集雨饮水安全保障适用技术》 《水污染控制案例教程》 《小城镇污水处理厂的运行管理》 《小城镇给水处理设计及工程实例》 《膜生物反应器技术与应用》 《水工程施工手册》 《松花江水环境污染特征》 《水资源循环经济配置与核算》 《厌氧颗粒污泥的吸附特性及工程应用》 《城市污水厂处理设施设计计算(第二版)》 《污水分析与检测》 《制药行业VOCs监测技术》 《工业污水及渗滤液处理技术》 《工业水处理技术》 《水处理填料与滤料(第二版)》 《饮用水源地水体中有机毒物监测技术》 《污水处理的生物相诊断》 《水环境监测评价与水华智能化预测方法及应急治理决策系统》《循环冷却水处理技术》 《水环境中持久性有机污染物(POPs)监测技术》 《水处理构筑物设计与计算(第三版)》 《复合高分子絮凝剂》 《废水处理实用技术及运行管理(第二版)》 《城镇净水厂改扩建技术与应用》 《现代膜技术运行工程案例》 《博斯腾湖水环境综合治理》 《MBR新工艺设计》 《水环境监测与分析技术》 《城市污水回用深度处理设施设计计算 (第二版)》

工业循环冷却水处理系统

工业循环冷却水处理系统 一、概述 循环冷却水在使用之後,水中的Ca2+、Mg2+、Cl-、SO42-等离子,溶解固体和悬浮物相应增加,空气中污染物如灰尘、杂物、可溶性气体以及换热器物料泄露等,均可进入循环冷却水,使循环冷却水系统中的设备和管道腐蚀、结垢,造成换热器传热效率降低,过水断面减少,甚至使设备管道腐蚀穿孔。 循环冷却水系统中结垢、腐蚀和微生物繁殖是相互关联的,污垢和微生物粘泥可以引起垢下腐蚀,而腐蚀产品又形成污垢,要解决循环冷却水系统中的这些问题,必须进行综合治理。 采用水质稳定技术,用物理与化学处理相结合的办法控制和改善水质,使循环冷却水系统中的腐蚀、结垢、生物污垢得到有效的解决,从而取得节水、节能的良好效益。臭氧产品已在国内电子、电力、饮料、制药行业广泛应用,质量达到国外同行业90年代水平。投入产出比的可比效益为:1:2-1:10以上,节约能源,提高设备使用效率,延长设备的使用寿命和运行的安全性,减少环境污染。 臭氧可以作为唯一的处理药剂来替代其它的处理冷却水处理剂,它能阻垢、缓蚀、杀菌、能使冷却水系统在高浓缩倍数甚至在零排污下运行,从而节水节能,保护水资源;同时,臭氧冷却水处理不存在任何环境污染。国外应用臭氧进行循环水处理已经取得了成功,而我国在这个领域却是空白。 二、系统工艺 循环水冷却通常分为密闭式循环水冷却系统和敞开式循环水冷却系统。密闭式循环水冷却系统中,水是密闭循环的,水的冷却不与空气直接接触。敞开式循环水冷却系统,水的冷却需要与空气直接接触,根据水与空气接触方式的不同,可分为水面冷却、喷水冷却池冷却和冷却塔冷却等。 敞开式循环水冷却系统可分为以下3类: 1.压力回流式循环冷却系统 此种循环水系统一般水质不受污染,仅补充在循环使用过程中损失的少量水量。补充水可流入冷水池,也可流入冷却构筑物下部。冷水池也可设在冷却塔下面,与集水池合并。 补充水→ 冷水池→ 循环泵房→生产车间或冷却设备→冷却塔 压力回流式循环冷却系统

《工业水处理》投稿须知

《工业水处理》(月刊)创刊于1981年,由中海油天津化工研究设计院主办、国家工业水处理工程技术研究中心协办,为全国中文核心期刊、中国科技论文统计源期刊(中国科技核心期刊)、中国期刊方阵双效期刊。每月20日出版。 主要报道国内外有关循环冷却水、锅炉水、工艺用水及工业废水等的水处理技术动态、研究报告、专题述评、经验总结、科学管理及行业快讯等。读者对象主要是从事水处理工作的科研、设计、教学、生产、管理等单位的专业技术人员。 《工业水处理》注重报道水处理领域内最新的科技动态、研究和应用成果,对水处理行业的发展具有导向性,是本行业最具权威性的杂志。 《工业水处理》栏目配置全面、合理:“专论与综述”侧重应用技术及基础理论,“试验研究”专门报道新的研究成果和高新技术,“分析与检测”为讨论水质分析方法及水质检测技术的专栏,“经验交流”栏则充分反映水处理技术推广应用的现场实践,“水处理工程”主要报道水处理工程设计实践及经验,“水处理动态”及时报道国内外有关水处理的新技术、新工艺、新产品及新行业动向,而“国际水处理会议”专栏则已成为介绍国际最权威水处理专业会议的全国唯一窗口。 投稿须知 《工业水处理》(月刊)系国内外公开发行的专业性科技期刊。主要报道国内外有关循环冷却水、锅炉水、工艺用水及工业废水等的水处理技术动态、研究报告、专题述评、经验总结、科学管理及行业快讯等。读者对象主要是从事水处理工作的科研、设计、教学、生产、管理等单位的专业技术人员。本刊欢迎广大水处理工作者加强联系,踊跃投稿。 《工业水处理》栏目配置全面、合理:“专论与综述”侧重应用技术及基础理论,“试验研究”专门报道新的研究成果和高新技术,“分析与检测”为讨论水质分析方法及水质检测技术的专栏,“经验交流”栏则充分反映水处理技术推广应用的现场实践,“水处理工程”主要报道水处理工程设计实践及经验,“水处理动态”及时报道国内外有关水处理的新技术、新工艺、新产品及新行业动向,而“国际水处理会议”专栏则已成为介绍国际最权威水处理专业会议的全国唯一窗口。 1.投稿须知 除国内外简讯外,受理稿件应符合下列条件: (1)来稿如有保密内容,需附有单位介绍信或推荐函,并由作者单位负责保密审查; (2)外籍作者来稿,暂不接受英文稿; (3)多作者稿署名中,如第1作者不是通讯联系人,应另加注释; (4)作者简介:姓名、出生年、性别、民族(汉族可省略)、籍贯、毕业学校、学位、职称及联系电话、E-mail等,如系多作者,仅介绍第1作者或执笔人; (5)论文所涉及项目如为国家或地方基金资助项目,请在来稿注文中注明(包括基金项目名称和项目号),本刊将优先选用; (6)本刊已入编《中国学术期刊(光盘版)》、"中国期刊网"、万方数据-数字化期刊群、维普资讯-中文科技期刊数据库,其作者的著作权使用费和本刊稿酬一次性给付,不愿在上述数据库中刊出的作者,

(发展战略)国内外水处理技术的状态 发展方向

国内外相关技术的现状发展趋势世界上许多地区正面临着最严重的缺水。据世界银行的统计,全球80%的国家和地区都缺少民用和工业用淡水。随着资源成本不断上升和环保意识逐渐增强,许多企业开始运用绿色技术,降低碳排放,尽量减少废物产生。其中水处理技术就是其中非常重要的一项绿色技术。 根据联合国统计,到2025年,三分之二的世界人口可能会面临水资源短缺,因此水处理技术将会越来越得到重视,这包括了高效率的水资源管理和污水处理。例如:在北美尤其在加拿大,水管理及污水处理设施的面临的问题十分急切。63%的目前运行的设施都在超期运行,他们的平均运行时间已经达到18.3年。其中52%污水处理设施在超期运行。在美国的干旱地区,对海水淡化技术的需求越来越高。海水淡化技术主要局限在于效率,而随着淡水的短缺,这些局限逐渐被淡化和忽视。水处理技术的发展拥有巨大的前景,许多国家都在实施水处理的政策和项目。根据全球知名增长咨询公司的预测,至2010年,全球水资源管理和污水处理技术市场规模预计将达到3,500亿美元。 目前先进的水管理和污水处理技术及其发展趋势包括了循环用水、反渗透海水淡化和臭氧化等。例如,反渗透海水淡化技术正在迅速占领的大型设施市场,而这一领域过去主要以热工过程设备为主。

处理效率的提升和渗透膜价格的回落,促使反渗透海水淡化市场在过去5年中迅速发展,现在应用反渗透海水淡化技术的已不再是小规模的工厂,大型反渗透海水淡化厂已是司空见惯。 在污水处理方面,澳大利亚的研究人员在生物发电领域提出了一种新的旋转生物电化学接触器,这项技术能够将已经运用于污水处理行业30年的旋转生物污水处理技术的效率提高15%;此外,一种能够处理高污染废水的技术也已经问世,这种技术能够处理污染物浓度超过300,000ppm的污水,而处理成本仅有原先通过储存和化学处理方法的十分之一。这种技术目前被认为是最简单、最易于使用及经济的处理技术. 中国目前同样也面临巨大的淡水短缺和水污染的问题。作为一个人均拥有水资源量最小的国家,必须采取措施以避免未来严重危机的发生。中国北方缺水问题极度严重,因此国家启动了浩大的“南水北调”工程,整个工程耗资达到几十亿美元,预计2050年建成。污水问题同样困扰着中国,估计有3亿人口的饮用水是被污染的。2004年至2008年,污水排放量年增长率达到18%,从482亿吨增长至572亿吨。预计在2010年,中国的污水排放将达到640亿吨。中国持续的工业化、城市化进程和经济的快速增长,是导致污水排放量连年上升的主要原因;而与此相对的是,中国的污水处理厂却基本上未能实现满负荷的运行。以2008年为例,中国污水处理厂的处理污

用做工业循环水的低温水处理实验

工业技术(357~359) 用做工业循环水的低温水处理实验 王树勖,杨岳,刘继文 (中国石油兰州石化公司石油化工研究院,甘肃兰州730060) 摘要:利用高硬度的地下低温水做工业循环冷却水,通过实验筛选出以L SH-407G做水质稳定剂(水稳剂)。中试结果表明,在循环水浓缩倍数为3.8~4.2,p H为7.5~8.5的条件下,该水稳剂的阻垢缓蚀性能最佳。 关键词:低温水;高硬度;阻垢;水稳剂 中图分类号:X74 文献标识码:B 文章编号:1009-0045(2004)05-0357-03 中国石油兰州石化公司原料动力厂(以下简称动力厂)低温水车间建于1969年,所用低温水取自于黄河边深层地下水,温度一般在12℃,设计供水量2200t/h,水压力0.5MPa。最初其低温水供该公司下属4个厂的工艺冷却设备使用,但由于低温水总硬度高,在使用过程中导致换热设备结垢严重,故部分用户减量或停用,现只有该公司的石油化工厂和动力厂使用,总用量仅为300t/h,且大部分低温水经换热后直接排入雨排,回收利用率约为48%。本工作通过筛选适宜的水稳剂,实现了低温水的循环利用。 1 低温水做循环水用存在的问题及对策 低温水的pH为8105,其水质分析结果见表1。 表1 低温水水质分析结果mg/L 测试项目分析结果测试项目分析结果 电导率3636Ca2+198.37 浊度0.62总碱度182.51 SO2-475.28钾钠离子75.36 Cl-42.13SiO2 4.81 总硬度296.76总铁0.052  3:单位为μs/cm。 根据表1数据,计算低温水的朗格利尔指数(L.S.I)和雷兹纳指数(Rs)[1]:浓缩倍数为1.0时,L.S.I=0.55,属结垢型水;浓缩倍数为4.0时,L.S.I=2.86,Rs=2.78属强结垢水质。因此,要实现低温水用做循环水,水稳剂应具有优良的阻垢分散性能;另外由于浓缩倍数达到4.0时,低温水总硬度与总碱度之和大于1500mg/L,因此必须向循环水系统中加入一定量的酸,以中和一部分碱,使总硬度与总碱度之和小于1500mg/L,从而削弱循环水水质结垢倾向。 2 水稳剂筛选实验 对兰州石化公司石油化工研究院开发出的L SH-407系列A、B、C、D、E、F、G、H、I共9个型号的水稳剂进行筛选实验,以确定低温水做循环水使用时的最佳水稳剂。 2.1 阻垢与缓蚀性能评价实验 水稳剂的阻垢实验和腐蚀实验分别按中国石化总公司《冷却水分析和实验方法》中的“碳酸钙阻垢法”和“旋转挂片失重法”进行,实验条件如下: 静态阻垢实验 实验用水为配制水,Ca2+和HCO-3浓度均为550mg/L,浓缩1.5倍,水温(80±1)℃,时间10h。 旋转挂片腐蚀实验 实验用水为实际原水,水温(50±1)℃,转速75r/min,试片采用碳钢标准I型片,时间为72h。 2.111 阻垢性能评价 LSH-407系列水稳剂是选取阻垢分散性能较好的丙烯酸/磺酸基团的多元共聚物、有机膦酸,  收稿日期:2004-05-14;修回日期:2004-06-01 作者简介:王树勖(1971-),男,甘肃白银人,工程师,现从事水处理技术研究工作。 第22卷 第5期2004年9月 石化技术与应用 Petrochemical Technology&Application Vol.22 No.5 Sep.2004

工业水处理设备图解

电子工业超纯水设备 主要用途: 微电子产品生产用高纯水,半导体、显象管制造业用超纯水,集成电路板生产清洗用超纯水,蓄电池、锂电池、太阳能电池、干电池等生产用水。 工艺流程一:反渗透+混床

工艺流程二:反渗透+EDI设备

化学化工高纯水设备 主要用途: 纺织印染造纸用水;化学试剂生产用水;精细化学药剂生产用水;日用化妆品生产用水等。工艺流程:

RO+EDI超纯水处理设备 我公司从事的反渗透和EDI技术,属当今世界上最先进的脱盐技术,在电子、医药等行业水质净化、清洗、水质纯化以及废水处理有着广泛的应用。例如,在电子工业方面,可以作为线路板清洗用超纯水的处理设备,与其它技术诸如电渗析、离子交换和蒸馏相比,具有能耗低、脱盐率高、除菌能力强和操作简单、维护方便的特点,大大节省了运行、维修成本。而且没有废水排放。反渗透和EDI技术,在当今已涉足了生产的众多领域。我们的JHH-EDI超纯水系列产品在众多电子厂、制药厂以及科研实验室使用效果非常好,实际运行成本仅为传统离子交换的65%左右。我公司愿意为广大客户提供最好的超纯水工艺和设备,为贵司减少生产成本和提高生产效率尽一份力!

EDI超纯水处理设备 EDI 系统 EDI是将电渗析技术和离子交换技术有机结合形成的一种新型除盐技术。可以有效的去除水中全部离子,出水电阻率可稳定在15MΩ.CM以上,连续运行、无化学污染、水的利用率高,在高纯水制备工艺上有着广阔的应用前景。 EDI 装置是应用在反渗透系统之后,取代传统的混合离子交换技术(MB-DI)生产稳定的去离子水。EDI技术与混合离子交换技术相比有如下优点: ①水质稳定 ②容易实现全自动控制 ③不会因再生而停机 ④不需化学再生 ⑤运行费用低 ⑥厂房面积小 ⑦无污水排放。 高纯水水处理技术的发展史: 第一阶段:预处理—— > 阳床——> 阴床——> 混合床 第二阶段:预处理—— > 反渗透——> 混合床

钢铁工业主要水处理系统

与钢铁工业节水问题紧密相关的另一个问题是钢铁工业用水的处理,只有水处理问题得到有效的解决,节水工作才能真正取得成效。国外大钢铁企业的经验证明,正确使用水处理剂,可以有效解决水循环系统的结垢问题,不仅延长了系统使用寿命,节约水资源,而且可以实现污水零排放,节水和环保效果非常显著。 在钢铁工业中,需要进行水处理的系统主要是: (1)炼铁厂:高炉、热风炉冷却净循环水处理系统;高炉煤气洗涤水浊循环系统;高炉炉渣水循环系统;鼓风机站净循环水处理系统。 (2)炼钢厂:氧气转炉烟气净化污水处理系统;转炉间接冷却循环水处理系统;电炉净循环冷却水系统;转炉软化冷却水系统;电炉软水冷却水系统;转炉污泥处理系统;电炉真空处理污水处理系统。 (3)连铸厂:结晶器软水闭路循环水系统;二次冷却浊循环水系统;污泥脱水处理系统。 (4)热轧厂:热轧净循环水处理系统;热轧浊循环水处理系统;过滤器反洗水处理系统;含油、含乳化液废水处理系统;污泥处理系统。 (5)冷轧厂:间接冷却开路循环水处理系统;酸碱废水处理系统;含油、含乳化液废水处理系统;污泥处理系统。 水处理剂中用量较大的有三类:絮凝剂;杀菌灭藻剂;阻垢缓蚀剂。絮凝剂亦称混凝剂,其作用是澄凝水中的悬浮物,降低水的浊度,通常用无机盐絮凝剂添加少量有机高分子絮凝剂,溶于水中与所处理水均匀混合而使悬浮物大部沉降。杀菌灭藻剂亦称杀生剂,其作用是控制或清除水中的细菌和水藻。阻垢缓蚀剂主要用于循环冷却水中,提高水的浓缩倍数,降低排污量以实现节水,并降低换热器和管道的结垢和腐蚀。 针对钢铁工业的特点,水处理剂的使用需注意以下几点:

(1)在钢铁企业中,具有高热流密度的设备较多,这与化工工业有着显著的不同。因此,开发应用耐高温、低公害或无公害的阻垢缓蚀剂,是钢铁工业水处理剂的研发方向之一。(2)结垢堵塞问题突出。高炉煤气洗涤循环水的水质成分很复杂,由于矿石中氧化钙的溶入,造成管道结垢,喷头堵塞,影响生产正常运行。在转炉炼钢过程中,投入造渣剂石灰,部分石灰细粉被烟气带出,在烟气洗涤塔中与循环水生成氢氧化钙,随后与烟气中的二氧化碳反应生成碳酸钙,造成洗涤塔中喷嘴堵塞,输水管道断面减少,阻力增加,浪费能源。在高炉煤气洗涤和转炉烟气净化浊循环水中,也需要解决洗涤水中大量悬浮物以及严重结垢问题。这些方面均需要开发优质的聚凝剂、分散剂及除硬稳定剂。 (3)连铸及轧钢浊循环水主要是细小的氧化铁皮悬浮物及循环水中油的去除问题。这类循环水的水处理工艺是沉淀、除油、过滤、冷却。水处理药剂主要采用絮凝剂、助凝剂、除油剂及少量的阻垢分散剂等。目前国内生产的絮凝剂主要是铝盐及铁盐,助凝剂主要是聚丙烯酰胺类高分子药剂。与国外同类产品相比,使用效果较差。因此,开发适用于钢铁企业的高效絮凝剂、助凝剂、除油剂是当务之急。 如有侵权请联系告知删除,感谢你们的配合!

工业水处理工程方法分类

工业水处理工程方法分类 工业水处理工程是将工业生产过程中产生的废水进行深度处理,这对保护环境,减少环境负担起到非常重要的作用。 工业废水是指工业生产过程中产生的废水、污水和废液,其中含有随水流失的工业生产用料、中间产物和产品以及生产过程中产生的污染物。随着工业的迅速发展,废水的种类和数量迅猛增加,对水体的污染也日趋广泛和严重,威胁人类的健康和安全。因此,对于保护环境来说,工业废水的处理比城市污水的处理更为重要。 1.按实施方式分类 废水处理方法按对污染物实施的作用不同可分为两大类:一类是通过各种外力的作用把有害物从废水中分离出来,称为分离法;另一类是通过化学或生物作用使有害物转化为无害或可分离的物质(再经过分离予以除去),称为转化法。 分离法 废水中的污染物存在形态的多样性和物化特性的各异性决定了 分离方法的多样性。离子态的污染物可选择离子交换法、电解法、电渗析法、离子吸附法、离子浮选法进行处理。分子态污染物可选择萃取法、结晶法、精馏法、吸附法、浮选法、反渗透法、蒸发法进行处理。胶体污染物可选择混凝法、气浮法、吸附法、过滤法进行处理。

悬浮物污染物可选择重力分离法、离心分离法、磁力分离法、筛滤法、气浮法进行处理。 转化法 转化法可分为化学转化法和生化转化法两类。化学转化法包括中和法、氧化还原法、化学沉淀法、电化学法;生物转化法包括活性污泥法、生物膜法、厌氧生物处理法、生物塘。 2.按处理程度分类 按废水处理程度划分,废水处理技术可分为一级、二级和三级处理。 一级处理主要是通过筛滤、沉淀等物理方法对废水进行预处理,目的是除去废水中的悬浮固体和漂浮物,为二级处理作准备。经一级处理的废水,其BOD除去率一般只有30%左右。 二级处理主要是采用各种生物处理方法除去废水中的呈胶体和 溶解状态的有机污染物。经二级处理后的废水,其BOD除去率可达90%以上,处理水可达标排放。 三级处理是在一级、二级处理的基础上,对难降解的有机物、磷、氮等营养性物质进一步处理。三级处理方法有混凝、过滤、离子交换、反渗透、超滤、消毒等。

国内外水处理技术的现状发展趋势

国内外相关技术的现状发展趋势 世界上许多地区正面临着最严重的缺水。据世界银行的统计,全球80%的国家和地区都缺少民用和工业用淡水。随着资源成本不断上升和环保意识逐渐增强,许多企业开始运用绿色技术,降低碳排放,尽量减少废物产生。其中水处理技术就是其中非常重要的一项绿色技术。 根据联合国统计,到2025年,三分之二的世界人口可能会面临水资源短缺,因此水处理技术将会越来越得到重视,这包括了高效率的水资源管理和污水处理。例如:在北美尤其在加拿大,水管理及污水处理设施的面临的问题十分急切。63%的目前运行的设施都在超期运行,他们的平均运行时间已经达到18.3年。其中52%污水处理设施在超期运行。在美国的干旱地区,对海水淡化技术的需求越来越高。海水淡化技术主要局限在于效率,而随着淡水的短缺,这些局限逐渐被淡化和忽视。水处理技术的发展拥有巨大的前景,许多国家都在实施水处理的政策和项目。根据全球知名增长咨询公司的预测,至2010年,全球水资源管理和污水处理技术市场规模预计将达到3,500亿美元。 目前先进的水管理和污水处理技术及其发展趋势包括了循环用水、反渗透海水淡化和臭氧化等。例如,反渗透海水淡化技术正在迅速占领的大型设施市场,而这一领域过去主要以热工过程设备为主。

处理效率的提升和渗透膜价格的回落,促使反渗透海水淡化市场在过去5年中迅速发展,现在应用反渗透海水淡化技术的已不再是小规模的工厂,大型反渗透海水淡化厂已是司空见惯。 在污水处理方面,澳大利亚的研究人员在生物发电领域提出了一种新的旋转生物电化学接触器,这项技术能够将已经运用于污水处理行业30年的旋转生物污水处理技术的效率提高15%;此外,一种能够处理高污染废水的技术也已经问世,这种技术能够处理污染物浓度超过300,000ppm的污水,而处理成本仅有原先通过储存和化学处理方法的十分之一。这种技术目前被认为是最简单、最易于使用及经济的处理技术. 中国目前同样也面临巨大的淡水短缺和水污染的问题。作为一个人均拥有水资源量最小的国家,必须采取措施以避免未来严重危机的发生。中国北方缺水问题极度严重,因此国家启动了浩大的“南水北调”工程,整个工程耗资达到几十亿美元,预计2050年建成。污水问题同样困扰着中国,估计有3亿人口的饮用水是被污染的。2004年至2008年,污水排放量年增长率达到18%,从482亿吨增长至572亿吨。预计在2010年,中国的污水排放将达到640亿吨。中国持续的工业化、城市化进程和经济的快速增长,是导致污水排放量连年上升的主要原因;而与此相对的是,中国的污水处理厂却基本上未能实现满负荷的运行。以2008年为例,中国污水处理厂的处理污

德士古水系统结垢原因分析及解决办法

第5期2006年9月中 氮 肥 M 2Sized Nitrogenous Fertilizer Progress No 15Sep 12006 德士古水系统结垢原因分析及解决办法 李耀东 (上海焦化有限公司,上海 200241) [中图分类号]TQ 085+4 [文献标识码]B [文章编号]100429932(2006)0520030202 [收稿日期]2006204227 [作者简介]李耀东(1974-),男,上海人,工程师。 1 概 述 德士古水煤浆加压气化工艺自20世纪90年代初引入我国后,广泛应用于化肥和甲醇的生产,目前国内已有十几套生产装置。在德士古水煤浆加压气化装置的生产过程中,水系统的结垢问题一直是困扰装置长周期稳定运行的一大难题。我公司德士古装置在10a 来的运行过程中,曾发生过因管线严重结垢而被迫全线停车检修的经历。这些年来,也进行过不断的改进,如:采、阻垢剂等多种方法,消除或缓解了部分水系统管道中的结垢现象。但由于未能完全弄清水系统的结垢机理,在水系统的调配过程中,仍多次出现因调配不合理而导致管道严重结垢的现象,给系统的生产,特别是环保,带来了较大的影响。2 运行情况介绍 在今年年初的水系统调配过程中,曾尝试将甲醇地沟废水送往A215集水池(主要用以收集德士古装置外排的废水),以便在德士古煤浆系统无法吸纳而A215尚有富余能力时平衡掉这部分废水。一段时间后发现A215的出口流量不断下降,仅一个月就从45t/h 降至20t/h 。经多方查找,在先后排除了集水池淤积、流量计故障、输送泵叶轮磨损等原因后,最终将原因锁定在出口管道堵塞上,并确定导致管道结垢的根源为甲醇地沟废水的引入。在将甲醇地沟废水切除,并对A215出口其中一路管线进行重排后,A215的出口流量恢复至35t/h 。但两个月后,再次发 现出口流量下降,且下降速度非常迅速,两周后 即降至15t/h 。经过认真分析,发现这段时间内唯一的变化是将除氧器的放散气通过排污管线接至了地沟,而正是这股放散气,又一次造成了A215管线的结垢。之后通过对该管道分段拆检 和流量试验,也验证了管道再次结垢原因的判断。于是将除氧器的放散气从地沟切除,接至除氧器的顶部高点放散,重排部分A215出口管线,并对原先A215至动力分公司沉淀池的管道进行了酸洗,A215的出口流量又恢复至40t/h 以上,并一直维持至今。 2003年,为调整德士古装置的水平衡,曾 经将部分真空闪蒸冷凝液接至渣池,作为渣池的补充水,以取代原先作为补充水的工业水,达到少用新鲜水、回用废水、降低废水排放总量的目的。但几个月后就频繁出现渣池泵不打量的情况。停车检修发现渣池泵进出口管线严重结垢,原DN80管道垢层最厚部位的通径还不到10mm ,严重影响了渣池泵的打量。之后严格禁止 将真空闪蒸冷凝液作为渣池补充水后,渣池泵管线结垢的现象才得到了遏止。3 原因分析311 结垢机理 在德士古水系统中,引起结垢的主要是在水中溶解度极小的MgCO 3和CaCO 3,25℃时两种物质的溶度积分别为1×10-5和418×10-9,溶解度分别为31162×10-3和61928×10-5mol/L ,二者混合后的饱和水溶液的硬度(以CaCO 3计)为3231128mg/L ,此数据即为以MgCO 3和CaCO 3为结垢物质的水溶液的临界硬度。当Ca 2+、Mg 2+的浓度大于3231128mg/L (25℃ 时),且水中有超过这一浓度的CO 32-时,就会

污水处理生化问答试题(一)

污水处理生化问答试题(一) 1 什么是活性污泥? (参考文献:污水处理问答,国防工业出版社,王又蓉,2007年第一版,摘自第216页) 答:向生活污水中注入空区进行曝气,并持续一段时间后,污水中即生成一种絮凝体。这种絮凝体主要是由大量繁殖的微生物群体所构成,它有巨大的表面积和很强的吸附性能,称为活性污泥。 2 常见的预处理方法有哪些? (参考文献:水环境监测技术问答,化学工业出版社,陈朝东,2006年第一版,摘自第90页) 答:常见的预处理方法有:离心分离、过滤、消解、溶剂萃取、蒸发和挥发等。 3

曝气池有臭味的原因及处理方法有哪些? (参考文献:废水生物处理原理和方法,中国轻工业出版社,谢冰徐亚同,2008年第一版,摘自第217页) 答: 原因:曝气池供养不足,DO值低,出水氨氮有时较高。 处理方法:增加供养,使曝气池DO浓度高于2mg/L 4 曝气池泡沫不易扩散,发黏的原因及处理方法有哪些? (参考文献:废水生物处理原理和方法,中国轻工业出版社,谢冰徐亚同,2008年第一版,摘自第217页) 答: 原因:进水负荷过高,有机物分解不全,起泡沫微生物大量繁殖 处理方法:降低负荷,将浮渣引流到曝气池外排除,投加化学抑制起泡微生物的繁殖。 5 如何防止污泥脱氮上浮?

(参考文献:污水处理问答,国防工业出版社,王又蓉,2007年第一版,摘自第244页) 答:为防止这一现象发生,应增加污泥回流量或及时排除剩余污泥,在脱氮之前把污泥排除,或降低混合液污泥浓度,缩短污泥龄和降低溶解氧等,使之不能进行到消化阶段。 6 好氧池污泥发黑的原因及处理方法是什么? (参考文献:废水生物处理原理和方法,中国轻工业出版社,谢冰徐亚同,2008年第一版,摘自第217页) 答: 原因:曝气池DO过低,有机物厌氧分解释放出H2S,其与Fe2+作用生成FeS 处理方法:增加供氧或加大回流污泥量 7 翻池现象的原因? (应知应会) 答:1)积泥时间太久,泥渣发酵放出气泡; 2)进水温度过高,造成池水对流;

工业水处理技术

给水工程 1.(概念)硬度是水质的一个重要指标。生活用水与生产用水均对硬度指标有一定的要求,特别是锅炉用水中若含有硬度盐类,会在锅炉受热面上生成水垢,从而降低锅炉热效率、增大燃料消耗,甚至因金属壁面局部过热而烧损部件、引起爆炸。因此,对于低压锅炉,一般要进行水的软化处理;对于中、高压锅炉,则要求进行水的软化与脱盐处理。硬度盐类包括Ca2+、Mg2+、Fe2+、Mn2+、Fe3+、Al3+等易形成难溶盐类的金属阳离子。一般天然水中其他离子含量很少,将钙、镁离子的总含量称为水的总硬度。硬度又可分为碳酸盐硬度和非碳酸盐硬度,前者在煮沸时易沉淀析出,称为暂时硬度;后者在煮沸时不沉淀析出,称为永久硬度。 2.(经典题目。看起来像大题)P395-396石灰软化》》为除去水中钙、镁离子,反而加入Ca(OH)2,似乎存在着矛盾。而其中道理可从下列反应中看出:(请记住反应式,自己看书记式子)1)Ca(OH)2——Ca2++2OH-2)2HCO3-+2OH-——2CO32-+2H2O 3)Ca2++CO32-——CaCO3沉淀》》》》》》Ca(OH)2+2HCO3-——CaCO3沉淀+CO32-+2H2O(此4式,可记住最后一条足以证明)根据上述反应,每投加1molCa(OH)2,可去除水中1molCa2+。此式说明熟石灰能去除碳酸盐硬度;熟石 灰虽亦能跟水中非碳酸盐的镁硬度起反 应生成氢氧化镁,但同时又产生了等物 质量的非碳酸盐的钙硬度: MgSO4+Ca(OH)2——Mg(OH)2沉淀+CaSO4 MgCl2+Ca(OH)2——Mg(OH)2沉淀+CaCl2 (这两条式子,考试时写出一个足以证 明)。综上所述,石灰软化主要是去除水 中的碳酸盐硬度以及降低水的碱度。但 过量投加石灰,反而会增加水的硬度。 石灰软化往往与混凝同时进行,有利于 混凝沉淀。 3.离子交换树脂是由空间网状结构骨架 (即母体)与附属在骨架上的许多活性 基团所构成的不溶性高分子化合物。活 性基团遇水电离,分成两部分》1)固定 部分,仍与骨架牢固结合,不能自由移 动,构成所谓固定离子;2)活动部分, 能在一定空间内自由移动,并与其周围 溶液中的其它同性离子进行交换反应, 称为可交换离子或反离子。 4.离子交换的实质是不溶性的电解质 (树脂)与溶液中的另一种电解质所进 行的化学反应。(大概在P397-398,请记 住一条公式做例子) 5.离子交换树脂的基本性能:1)外观, 呈不透明或半透明球状颗粒。2)交联度, 取决于制造过程。30含水率,相应地反 应了孔隙率,交联度越小,孔隙率越大, 含水率也越大。4)溶胀性。5)通常所 谓树脂真密度和视密度是指湿真密度和 湿视密度。6)交换容量是树脂最重要的 性能,定量地表示树脂交换能力的大小。 7)由于树脂活性基团分为强酸、强碱、 弱酸、弱碱性,水的 pH值势必对其交换 容量产生影响。 6.(莫非是填空)逆流再生操作步骤:1) 小反洗2)放水3)顶压4)进再生液5) 逆向清洗6)正洗。 7.(名词解释)水的纯度常以水中含盐 量或水的电阻率来衡量。电阻率是指断 面1cmX1cm,长1cmX1cm体积的水所测得 的电阻。电导率是电阻率的倒数。 8.(见提纲排水部分22条,老师再次提 到这个名词,极可能是名词解释)污染 指数FI值表示在规定压力和时间的条件 下,滤膜通过一定水量的阻塞率。(数 值小于4为可用) 9.(P424,估计是选择题,这么简单,必 记)强碱树脂的选择性顺序一般为: SO42->NO3->Cl->F->HCO3->HSiO3- 10.强碱阴离子交换器的运行过程曲线。 (我也不清楚怎么考。自己看图,大概 在P425) 11.弱碱阴离子交换器的运行过程曲线。 (同上) 12.(名词解释)复床是指阳、阴离子交 换器串联使用,达到水的除盐的目的。

钢铁工业水处理工艺简述

钢铁工业水处理工艺简述 一、烧结水系统 1、系统工艺流程: (1)工艺流程: ↓加药↓补水 a、生产循环用水→水池(冷却)→泵(旁滤)→设备用水点。 b、原水→软水制备→软水→泵→余热锅炉发生器。 (2) 工艺流程简述: 根据各设备生产用水压力要求,泵房加压泵分高低压给水系统。高压水系统主要供给烧结室设备冷却用水及小流量冲洗地坪,低压水系统主要供给混合、制粒室、机尾整粒电除尘、原料电除尘和抽风机室生产用水及设备冷却用水及一些地面洒水。各系统用水经泵加压后送至设备用水点,使用后的水靠余压回流至泵房热水池,经上塔泵加压送至冷却塔冷却,冷却降温后的水流入冷水池,又经高低压系统生产给水泵送至设备使用,如此循环。此外,为保证循环水水质要求,设稳定水质的加药装置和旁滤设施。 为供余热回收利用蒸汽发生器用水,原水需经过软化处理。原水经过滤装置,进入软化装置,流入软水池,经软水加压泵供给设备使用。 2、主要设备: (1)泵房主要设备:各高低压加压水泵、冷却塔、加药装置、过滤器、起吊设备。 (2)软水站主要设备:过滤器、软化装置、软水加压泵。 二、炼铁水系统 1、系统工艺流程: (1) 工艺流程:

↓加药↓补水 a、冷却壁、风口等生产循环用水→水池(冷却)→泵(旁滤)→设备用水点。 ↓补水 b、铸铁机生产循环用水→平流沉淀池→泵→铸铁机冷却用水点 ↓抓渣↓补水 c、高炉冲渣水→渣沟→冲渣过滤池→集水井→泵→冲渣 (2) 工艺流程简述: 根据各设备生产用水压力及水质要求,系统分为净环和浊环给水系统。其中净环给水泵房加压泵又分高中压给水系统。高压给水系统主要供高炉冷却壁背部水管冷却、风口小套、铁口套、炉顶打水等设施的冷却用水。中压给水系统主要供高炉鼓风机站风机电机、稀油站、冷却壁及风口、炉底冷却水、出铁厂、热风炉等设施的冷却用水。 以上高炉净环冷却高中压供水经设备冷却后,开式自流回循环泵站净环热水池,再由冷却上塔泵送至冷却塔,冷却降温后的水流入净环冷水池,再分别由高压循环水泵和中压循环水泵加压送往高炉高中压用水设备进行循环使用。高炉净环强制排污水作为高炉冲渣及铸铁机浊环水系统补充水,当高炉喷淋管用水时,喷淋回水作为高炉冲渣及铸铁机浊环水系统补充水串级使用。此外为改善净环水系统水质,设有旁滤设施和加药装置。 铸铁机浊循环水系统主要供铸铁机冷却。该浊环水供铸铁机冷却使用,用后水经明沟进入平流沉淀池,经沉淀处理后由泵加压循环使用。补充水由高炉净环水系统串级供给。 高炉冲渣浊循环水系统提供高炉冲渣用水。冲渣用后的浊回水流入渣滤池,通过底滤法过滤除渣,渣滤池流出的滤后水重力进入集水井,由供水泵加压送渣粒化循环使用。当渣滤池转入清渣作业时,由设于渣滤池阀门室的排水泵将渣滤池排空以便清渣。当渣滤池清渣作

工业循环水处理

循环冷却水处理 第一章循环冷却水系统及其水处理概况 第一节循环冷却水系统总概 人类日常生活离不开水,工业生产也同样离不开水。随着工业生产的发展,用水量越来越大,很多地区已经出现供水不足的现象,因此合理和节约用水已经成为发展工业生产中的一个重要问题。 工业用水主要包括锅炉用水、工艺用水、清洗用水和冷却用水、污水等。其中用水量最大的是冷却用水,约占工业用水量的百分之九十以上。不同的工业系统和不同用途对水质的要求是不同的;但各工业部门使用的冷却水对水质的要求基本上是一致的,这就使得冷却水质控制在近年来作为一门应用技术获得了迅速的发展。在工厂中,冷却水主要用来冷凝蒸汽,冷却产品或设备,如果冷却效果差,就会影响生产效率,使产品的收率和产品的质量下降,甚至于会造成生产事故。 水是比较理想的冷却介质。因为水的存在很普遍,和其它液体相比,水的热容或比热较大,水的汽化潜热(蒸发潜热)和熔化潜热也很高。比热是单位质量的水温度升高一度时所吸收的热量。常用的单位是卡/克·度(摄氏)或英热单位(B.T.U.)/磅·度(华氏)。用这两个单位表示水的比热度时,其数值是相同的。热容大或比热大的物质升高温度时需要吸收大量的热量,而本身温度并不明显升高,因此水具有良好的贮热性能。潜热是物态发生转变时所吸收或放出的热量。一克分子水蒸发成为一克分子蒸汽需要吸收近一万卡的热量,因此水蒸发时能吸收大量的热量,从而使水温下降,这种依靠水份蒸发带走热量的过程称为蒸发散热。 和水一样,空气也是一种常用的冷却介质。水和空气的导热性能都很差,在0℃时,水的导热系数是0.49千卡/米·小时·℃,空气的导热系数是0.021千卡/米·小时·℃,但水与空气相比,水的导热系数要比空气高24倍左右。因此,当冷却效果相同时,用水冷却比用空气冷却的设备要小得多。大型工业企业和用水量大的工厂一般都采用水冷却。常用的水冷系统可以分成三类,即直流系统、密闭系统和敞开蒸发系统,后两种冷却水都是循环使用的,故又称为循环冷却水系统。 1、冷却水系统 用水来冷却工艺介质的系统称作冷却水系统。冷却水系统通常 有两种:直流冷却水系统和循环冷却水系统。 1.1直流冷却水系统 在直流冷却水系统中,冷却水仅仅通过换热设备一次,用过后水就被排放掉,因此,它的用水量很大,而排出水的温升却很小,水中各种矿物质和离子含量基本上保持不变。 1.2循环冷却水系统 循环冷却水系统又分封闭式和敞开式两种。 1.2.1 封闭式循环冷却水系统 封闭式循环冷却水系统又称为密闭式循环冷却水系统。在此系统中,冷却水用过后不

工业水处理技术的发展趋势 赵晓龙

工业水处理技术的发展趋势赵晓龙 发表时间:2019-05-14T09:35:26.897Z 来源:《建筑细部》2018年第21期作者:赵晓龙 [导读] 降低水的浪费和污染,延长设备的使用周期,保证系统的稳定性。 江苏京源环保股份有限公司江苏南通 226000 摘要:目前就我国的工业水处理来说,处理效果并不理想,因此有必要充分的了解水处理技术,合理的应用相应技术,提高水的利用率,降低水的浪费和污染,延长设备的使用周期,保证系统的稳定性。 关键词:工业;水处理;技术 1工业水处理技术的发展现状 1.1物理机械处理技术 物理机械工业用水处理技术一般包括渗析法、反渗析法及磁场处理法等方法,其中磁场处理法相对其他工业用水物理机械处理技术处理方法较为有效。采用此种方法,对工业用水处理的过程,无需使用任何化学药剂,减少了化学药剂对水资源的污染程度,属于无公害、无污染的绿色水处理方法。同时采用此种水处理方法,能够提高工业生产设备的使用年限,降低其结垢率,提升水垢处理速度的,减少工业用水中有害物资对机械设备的腐蚀,降低维修保养成本,简化维修步骤。采用磁场处理法进行水处理的去垢速度一般约为100~ 500m/h,较其他物理机械处理技术处理速度提升近50~100倍左右,且采用磁场处理法进行水处理抑垢率高达90%以上。 1.2化学生物处理技术 化学生物技术在工业水处理过程中是通过对微生物的分解与沉降并研制绿色多功能的净化药剂,将工业水中的有害物质进行分解,达到可持续发展的目的。化学生物技术实现了工业水处理药剂从有毒、有害、不可分解、功能单一到无毒、无害、可分解、多种功能的转变。在采用化学生物处理技术对工业用水进行处理时,聚天冬氨酸作为其重要的组成部分,能够高效的去垢及对微生物进行分解,其具有无毒、无磷,绿色等诸多优点。 1.3新型复合处理技术 新型复合处理技术在工业水处理的过程中通常是采用生物渗透膜法去污的方法,对工业用水中的磷和氮进行分解。其克服了传统方法在去氮除磷方面的诸多不足之处,实现了高效的去除工业用水中的磷和氮等多种影响物质。 1.4超滤膜水处理技术 超滤膜工业水处理技术一般包括短流程工业水处理技术、双模工业水处理技术以及组合超滤膜工业水处理技术。 (1)短流程工业水处理技术:短流程工业水处理作用原理是将多道工业水处理技术与膜处理技术项结合而进行的处理方法,其主要用于水质较好,污染程度不高的工业水处理,具有实施操作方便,过程简单,处理速度快,费用低等诸多特点。 (2)双膜工业水处理技术:双膜工业水处理技术是采用双层超滤膜或超滤膜与反渗透结合的方法对工业水进行处理的方法。其主要用于污染程度较高,较难处理的工业水处理当中,可以有效解决含盐量较高、污染较严重等工业用水问题。通过采用双层超滤膜或超滤膜与反渗透结合可以使水资源得到有效的净化,提高工业水质量,减少水源长途调配,节约水源运输成本。 (3)组合超滤膜膜处理技术:组合超滤膜膜处理技术是将短流程工业水处理技术与双模工业水处理技术相结合而成的工业水处理技术。其能够大幅提升工业水的处理质量,提高工业水处理效率,但其在实施过程中费用较高,无法被广泛采用,因此应加强组合超滤膜膜处理技术应用的研发,降低其使用费用,将先进的水处理技术进行广泛推广使用。 2工业水处理的措施 2.1加强培训、指导 首先,团队作业是工业水处理的非常有效方法,通过正确的培训和指导,能够确保工业水处理的进行,按照正确的路线来完成,很多工作的实施,都可以进一步减少固有的挑战,而且在各项工作的开展上,不会造成新的挑战,整体上的工作进行,可以按部就班的落实。其次,培训与指导的过程中,应注意加强工业水处理的监督。有些工作人员存在经验作业的现象,要坚持按照统一标准来部署,减少错误的操作,尤其是在重要指标和一些净化措施上,都不能展现出严重的问题。 2.2含氰工业废水处理 从客观的角度来分析,工业废水处理的内容当中,含氰工业废水处理,是比较重要的组成部分,而且产生的影响力非常突出,想要在未来工作的开展上取得理想的成绩,必须加强该方面工作的有效巩固。碱性氯化法是处理含氰工业废水的有效方式,且目前该技术已经相对成熟,在处理过程中要注重含氰废水的全面分流,不能与其它废水混合,以减少镍、铁等金属离子的干扰,提升处理效率。碱性氯化法的原理是以碱性环境破坏氰化物,通常应用氯系氧化剂进行。碱性氯化法的包含两个处理阶段,一级处理是不完全氧化阶段,以化学试剂将氰氧化为氰酸盐;第二阶段将已经转化的氰酸盐进一步氧化,完全分解成CO2和水,进而达到废水处理的目的。 2.3含重金属粒子的工业废水处理 从长远的角度来分析,重金属工业废水也是重点关注的对象。近年来,我国的工程建设和地方规划,不断的开展创新,以至于重金属工业废水的类型、数量表现为大幅度增加的特点,想要在日后工作的开展上,更好的解决固有的问题,必须坚持在该方面取得更好的成就。对于综合性金属废水的处理,处理的方法、工艺、流程较为简单,采用碱性条件下生成氢氧化物沉淀的工艺对该类污水进行处理,就能达到理想的处理效果。处理工艺流程如下:综合重金属废水—调节池—快混池—慢混池—斜管沉淀池—过滤—PH回调池—排放。该污水处理工艺需要全面控制反应条件,尤其是PH回调池的PH值,要控制在9-10之间,同时要控制污水流经混池的反应时间,采用机械搅拌或空气搅拌的方式更为科学。 2.4食品工业废水的处理 食品生产过程排出的废水含有的污染物和杂质普遍属于有机物,其种类包含了固体、油脂、酸、碱、糖、盐等。常见的固体污染物为果皮、菜叶、碎肉等,油脂、淀粉、胶体等可能以悬浮状态存在于废水之中。除此之外,还包含食品原料掺杂夹带的泥沙等有机物。食品

相关主题
文本预览
相关文档 最新文档