当前位置:文档之家› 基于PCA与贝叶斯决策的人脸识别算法_全星慧

基于PCA与贝叶斯决策的人脸识别算法_全星慧

基于PCA与贝叶斯决策的人脸识别算法_全星慧
基于PCA与贝叶斯决策的人脸识别算法_全星慧

第36卷 第2期2014年4月

光 学 仪 器

OPTICAL 

INSTRUMENTSVol.36,No.2

Ap

ril,2014 文章编号:1005-5630(2014)02-0122-

04收稿日期:2013-11-

19基金项目:黑龙江省科技厅自然科学基金项目(F201108

)作者简介:全星慧(1978-),女,副教授,硕士,主要从事图像处理及模式识别的研究。E-mail:xinghui8@126.com通讯作者:牟海维(1963-),男,教授,博士,主要从事图像测试与信息处理技术的研究。E-mail:mhwmzh@1

63.com基于PCA与贝叶斯决策的人脸识别算法

全星慧,牟海维,吕秀丽,张 华

(东北石油大学电子科学学院,黑龙江大庆 163318

)摘要:研究了主元分析与贝叶斯决策相结合的人脸识别方法。利用主元分析提取人脸图像训练集的特征子空间,

将训练图像和测试图像投影到该子空间,提取特征向量及计算统计特性,利用最小错误率贝叶斯决策规则对测试图像进行分类,从而实现人脸识别。大量实验表明:主元分析能将人脸图像的特征信息有效地映射在特征子空间,同时采用贝叶斯决策规则能够快速准确地对人脸图像进行分类。

关键词:主元分析;贝叶斯决策;人脸识别

中图分类号:TP 391.4 文献标志码:A doi:10.3969/j

.issn.1005-5630.2014.02.007Research on face recog

nition methods based onprincipal component analysis and Bay

esian decisionQUAN Xing

hui,MU Haiwei,L Xiuli,ZHANG Hua(College of Electronic Science,Northeast Petroleum University,Daqing 

163318,China)Abstract:A method for face recognition based on principal component analysis(PCA)andBayesian decision is described.Extracting feature subspace of face image training 

sets usingPCA,the training images and test images are projected in the subspace,the eigenvectors areextracted and the statistical properties are calculated,adopt Bayesian decision based onminimum error rate to realize face recognition.Exp

erimental results show that PCA is well inthe subspace of face images to extract feature information,by Bayesian decision can quickly andaccurately classify 

the face images.Key 

words:principle component analysis;Bayesian decision;face recognition引 言

人脸识别技术是模式识别和人工智能领域的一个热门课题,它覆盖了图像处理、模式识别、人工神经

网络、

生理学及心理学等许多学科的内容,具有非常广泛的应用前景[1-

2]。通常人脸识别系统包括人脸检测、人脸预处理、人脸特征提取和人脸识别等主要步骤。本文提出了一种主元分析结合最小错误率贝叶斯决策实现人脸分类识别的算法。

1 主元分析原理及人脸特征子空间提取

基于主元分析(principle component analy

sis,PCA)的人脸特征提取方法是建立在K-L变换基础上

 第2期全星慧,等:基于PCA与贝叶斯决策的人脸识别算法

的。因为人脸结构的存在,当把这样的人脸图像归一化之后,这些图像在这个高维空间中不是随机、散乱地分布而是存在特定的规律。因此,通过K-L变换用一个低维子空间描述人脸图像,同时又可以提取所需要的识别信息。1.1 主元分析原理

对于一幅人脸图像,用f(x,y)来表示,这里x和y指空间中的坐标。实际在计算机的应用中,人脸图像f(x,y)在空间坐标和灰度上都己经被离散化了,因此可以用一个矩阵来表示一幅人脸图像,矩阵中的每一个元素对应图像中的一个像素点,

而矩阵中的相应元素的值对应该点的灰度等级。选择人脸库中每个人一定数量的图像构成训练集,其余形成测试集,用于测试系统性能。一幅N×N的图像按列相连可

构成一个N2维列向量,通过主元分析方法用一个低维子空间来表示原始图像[

3]

。设训练集中有M幅大小为N×N的人脸图像,将每幅图像看作是长度为N2的列向量,记作[x1x2…xM]。用μ表示M幅人脸图像的平均向量:

μ=1

M∑M

i=1

i(1

) 求出每一幅图像与平均向量的差异,

把差异运用K-L变换,用训练集的协方差矩阵作为产生矩阵,即S=1M∑M

i=1xi-()μxi-(

)μT=1M

QQT

(2

)其中:

Q=[x1-μ,x2-μ,

…,xM-μ](3)1.2 基于K-L变换的人脸特征子空间提取

K-L展开是图像压缩的一种最优正交变换。人们将其应用于特征提取,形成了利用子空间投影进行模式识别的基础。为了求N2×N2维矩阵的特征值和正交归一的特征矢量,直接计算几乎是不可能的,为

此引出奇异值分解定理(SVD)

[4]

:设秩为r、大小为n×r的矩阵X,

存在两个正交矩阵:U=[u0,u1,…,ur-1]∈pn×

UTU=1(4)V=[v0,v1,…,vr-1]∈pr×

VTV=1(5)以及对角阵:

Λ=diag[λ0,λ1,…,λr-1]∈pr×

r 且λ

0≥λ1≥…λr-1(6)满足

X=UΛ1/

2V

(7

)其中,pn×r、pr×r

分别表示矩阵的大小为n×r,r×r,λi(

i=0,1,…,r-1)为矩阵XXT和XTX的非零特征值,ui和vi分别为XXT和XTX对应于λi的特征矢量。

推论

U=XVΛ

1/

(8)故由式(2

)构造矩阵R=QTQ∈pM×M

(9

)容易求出其特征值λi及相应的正交归一特征矢量vi(

i=0,1,…,M-1)。因而S的正交归一特征矢量由推论可得

ui=

λ槡

iQvi i=0,1,…,M-1(10) 经K-L变换可以得到一组由大到小特征值λi对应的特征向量ui,

称之为“特征脸”。有了这样一个由“特征脸”组成的降维子空间,任何一幅人脸图像都可以向其做投影并获得一组坐标系数,这组系数表明了

该图像在子空间中的位置,从而可以作为人脸识别的依据。

·321·

光 学 仪 器第36卷 

2 贝叶斯决策理论及人脸分类识别

2.1 贝叶斯决策理论及规则

贝叶斯决策理论是统计模式识别中的一个基本方法[5]

。已知总共有c类物体,讨论在下列条件下对某一样本按其特征向量x分类的问题[

6]

:(1)各类别ωi=1,2,…,c的先验概率P(ωi)及类条件概率密度函数p(xωi)

已知。(2

)类别数一定。贝叶斯公式为

P(ωix

)=p(xωi)P(ωi)p(

x)=p(xωi)P(ωi)

∑c

i=1

p(

xωi)P(ωi)(11

) 最有代表性的决策规则分别为基于最小错误率的判决准则和基于最小风险的判决准则。本文采用基

于最小错误率的判决准则,即

若P(ωix)=maxj=1,2

,…,

P(ωjx),则x∈ωi(12

)2.2 训练样本特征统计

利用贝叶斯决策进行分类,首先需要求取各类样本的统计特性,即通过对各类训练样本在特征空间上的投影,得到每一个样本的特征向量,并对各类训练样本的特征向量分别求均值和协方差矩阵。

2.3 测试样本特征提取及分类识别

对测试图像在特征空间进行投影,得到特征向量。利用测试样本的特征向量及各类训练样本的特征向量均值和协方差矩阵,分别计算各类的类条件概率密度及先验概率,从而可以计算得到测试样本的各类后验概率,根据最小错误率的贝叶斯决策规则,

后验概率较大者,即为测试样本归属类别,从而给出分类识别结果。3 实验分析

本文采用ORL人脸数据库,该数据库包含40位人脸图像数据,每人10幅,共400幅图像组成[7]。每

幅图像的分辨率为112×92,灰度级256。这些图像面部表情、面部遮掩物、时间、光照等各不相同。本文任选库中4人

各任意选取5张图像作训练样本,这4人的训练图像如图1所示。将训练样本进行主元分析,提取特征子空间,同时将各类训练样本投影到子空间得到相应的特征向量,对各类训练样本的特征向量求均值和协方差矩阵,

并计算各类的先验概率及类条件概率密度。·

421·

 第2期全星慧,等:基于PCA与贝叶斯决策的人脸识别算法

图1 读取的人脸训练样本Fig.1 The face training 

samples图2 测试样本Fig.2 The test sample表1 测试样本所对应的后验概率Tab.1 Posterior probability 

of the test samples第一类

第二类

第三类

第四类

4.809 4×10-22 2.625 

9×10-24 

6.909×10-2

2 

4.098 

4×10-20

在第四类人脸图像中,

任选测试样本以外的一张图像作为测试样本,

其测试样本如图2所示。将测试样本投影到特征子空间得到相应的特征向量,利用式(11)计算测试样本的后验概率分布如表1所示。最后根据基于最小错误率的贝叶斯决策规则得出测试样本属于第四类。

实验比较了不同数目的训练样本下,该人脸识别算法的识别率。从ORL人脸库中随机选取4,5,6,7,8幅图像作训练样本,剩余图像用作测试样本,对不同数目的训练样本各重复实验10次,识别率都在97%以上。

4 结 论

本方法结合主元分析提取人脸特征及贝叶斯决策实现分类识别。主元分析能有效地提取原始人脸图像特征,而不依赖于面部表情,光照等因素,不仅降低了运算量而且保证了特性的稳定性,而使用基于最小错误率的贝叶斯决策规则进行分类,算法不仅简单实用而且大大提高了识别的速度。通过实验表明,本文提出的算法识别的准确率比较高。

参考文献:

[1] 刘艳丽,赵跃龙.人脸识别技术研究进展[J].计算机工程,2005,31(3):10-

11.[2] 朱树先,张仁杰,郑 刚.基于RBF神经网络的人脸识别[J].光学仪器,2008,30(2):31-

33.[3] 全星慧,于 丽,计春悦.基于主元分析的人脸识别方法研究[J].科学技术与工程,2010,10(24):6063-6065.[4] 陈元春.基于矩阵主成分分析的人脸识别方法研究[D].武汉:武汉理工大学,2012:26-42.[5] 边肇祺,张学工.模式识别[M].北京:清华大学出版社,2000:7-

21.[6] LI Z F,TANG X O.Using 

support vector machines to enhance the performance of Bayesian face recognition[J].IEEE Transactions onInformation Forensics and Security,

2007,2(2):174-180.[7] 曾 岳,冯大政,付达杰.最小风险贝叶斯决策的二值化人脸识别算法[J].计算机工程与设计,2011,32(10):3511-

3513.·521

·

贝叶斯决策模型与实例分析报告

贝叶斯决策模型及实例分析 一、贝叶斯决策的概念 贝叶斯决策,是先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准则来确定最优方案的决策方法。 风险型决策是根据历史资料或主观判断所确定的各种自然状态概率(称为先验概率),然后采用期望效用最大等准则来确定最优决策方案。这种决策方法具有较大的风险,因为根据历史资料或主观判断所确定的各种自然状态概率没有经过试验验证。为了降低决策风险,可通过科学试验(如市场调查、统计分析等)等方法获得更多关于自然状态发生概率的信息,以进一步确定或修正自然状态发生的概率;然后在利用期望效用最大等准则来确定最优决策方案,这种先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准则来确定最优方案的决策方法称为贝叶斯决策方法。 二、贝叶斯决策模型的定义 贝叶斯决策应具有如下容 贝叶斯决策模型中的组成部分: ) ( ,θ θP S A a及 ∈ ∈。概率分布S P∈ θ θ) (表示决策 者在观察试验结果前对自然θ发生可能的估计。这一概率称为先验分布。 一个可能的试验集合E,E e∈,无情报试验e0通常包括在集合E之。 一个试验结果Z取决于试验e的选择以Z0表示的结果只能是无情报试验e0的结果。 概率分布P(Z/e,θ),Z z∈表示在自然状态θ的条件下,进行e试验后发生z结果

的概率。这一概率分布称为似然分布。 c 以及定义在后果集合C的效用函数u(e,Z,a,θ)。 一个可能的后果集合C,C 每一后果c=c(e,z,a,θ)取决于e,z,a和θ。.故用u(c)形成一个复合函数u{(e,z,a,θ)},并可写成u(e,z,a,θ)。 三、贝叶斯决策的常用方法 3.1层次分析法(AHP) 在社会、经济和科学管理领域中,人们所面临的常常是由相互关联,相互制约的众多因素组成的复杂问题时,需要把所研究的问题层次化。所谓层次化就是根据所研究问题的性质和要达到的目标,将问题分解为不同的组成因素,并按照各因素之间的相互关联影响和隶属关系将所有因素按若干层次聚集组合,形成一个多层次的分析结构模型。 3.1.1层次分析模型 最高层:表示解决问题的目的,即层次分析要达到的目标。 中间层:表示为实现目标所涉及的因素,准则和策略等中间层可分为若干子层,如准则层,约束层和策略层等。 最低层:表示事项目标而供选择的各种措施,方案和政策等。 3.1.2层次分析法的基本步骤 (l) 建立层次结构模型 在深入分析研究的问题后,将问题中所包括的因素分为不同层次,如目标层、指标层和措施层等并画出层次结构图表示层次的递阶结构和相邻两层因素的从属关系。 (2) 构造判断矩阵 判断矩阵元素的值表示人们对各因素关于目标的相对重要性的认识。在相邻的两个层次中,高层次为目标,低层次为因素。 (3) 层次单排序及其一致性检验 判断矩阵的特征向量W经过归一化后即为各因素关于目标的相对重要性的排序权值。利用判断矩阵的最大特征根,可求CI和CR值,当CR<0.1时,认为层次单排序的结果有满意的一致性;否则,需要调整判断矩阵的各元素的取值。 (4) 层次总排序 计算某一层次各因素相对上一层次所有因素的相对重要性的排序权值称为层次总排序。由于层次总排序过程是从最高层到最低层逐层进行的,而最高层是总目标,所以,层次总排序也是计算某一层次各因素相对最高层(总目标)的相对重要性的排序权值。 设上一层次A包含m个因素A1,A2,…,A m其层次总排序的权值分别为a1,a2,…,a m;下一层次B包含n个因素B1,B2,…,B n,它们对于因素A j(j=1,2,…,m)的层次单排序权值分别为:b1j,b2j,…,b nj(当B k与A j无联系时,b kj=0),则B层次总排序权值可按下表计算。 层次总排序权值计算表

基于PCA算法的人脸识别毕业设计论文

太原科技大学 毕业设计(论文) 设计(论文)题目:基于PCA算法的人脸识别

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期: Ⅰ

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日 Ⅰ

基于PCA的人脸识别系统设计

1 HUNAN UNIVERSITY 毕业设计(论文) 设计论文题目基于PCA的人脸 识别系统 学生姓名李涛 学生学号20080810410 专业班级08级计科四班 学院名称信息科学与工程学院 指导老师潘华伟 学院院长章兢 20012 年 5 月18 日

摘要 随着计算机视觉技术的发展,以及社会的各个领域的需要,根据人固有的生物特征对人进行身份验证的课题吸引了一批研究人员,比较常见的有语音识别,指纹识别,人脸识别等技术。其中人脸识别因为识别率高、主动性强、使用方便等因素,在身份验证的各类方法中有独特的优势及相关的应用,成为了人体特征识别中的比较热门的研究课题。 本文首先阐述了人脸识别研究的历史,现状以及发展趋势,并说明了人脸识别的优势和难点。然后详细地说明人脸识别的两个部分:人脸检测和人脸识别。在人脸检测部分,本文主要介绍了基于haar分类器的检测方法,并详细说明了haar分类器的训练过程,讲述了分类器检测人脸的原理。在人脸识别部分,首先获取人的个人信息的,对人脸图像的采集并进行灰度化、归一化等预处理,然后采用PCA(主成分分析法)对采集到的图像进行特征提取,并存储相关的特征信息,最后对待识别的图像进行特征提取和分析,与训练的人脸图像数据计算欧式距离,最终识别出人的身份。在本文的最后,对实现的系统各项功能进行实验,对影响识别率的维数、采集图像数因素进行实验分析,并提出了主成分分析法人脸识别的优点和缺点。最后总结毕业设计中的不足,自己的心得体会,并对未来学习进行展望。 关键词:人脸检测,haar分类器,PCA,人脸识别

Abstract With the development of computer vision technology, and social needs in many areas, the subject of authentication according to the inherent biological characteristics attracted a group of researchers ,Voice recognition, fingerprint recognition, face recognition technology are common。Face recognition with the recognition rate, motivated, easy to use and other factors,has unique advantages in all kinds of authentication methods and related applications,has become a popular research topic in the human feature recognition。 This paper first describes the history, current situation and development trend of face recognition research, and describes the advantages and difficulties of face recognition。And then detail the recognition of two parts: face detection and face recognition。In the face detection part, the paper mainly describes the detection method based on haar classifier, and details of haar classifier training process, about the principle of the classification of the detected face。In face recognition part, it first obtains personal information the acquisition of face images and graying, owned by a pretreatment。And then using PCA (Principal Component Analysis) collected image feature extraction, and storage characteristics of information,int the last ,identifiable image feature extraction and analysis, and training of the face image data to calculate the Euclidean distance, and ultimately identify the identity of the person。In the last experiment, the dimension of the recognition rate, number of images collected factors experimental analysis, and the advantages and disadvantages of the principal component analysis for face recognition system implemented various functions. The final summary of graduate design deficiencies, and their own feelings and experiences and future learning prospects。 Keywords: face detection, Haar classifier, PCA, face recognition

贝叶斯分析在风险型决策中的应用

贝叶斯分析在风险型决策中的应用 姓名:王义成 班级:12级数学与应用数学四班 摘要:本文介绍了风险型决策的概念,特点及公式,简述了贝叶斯分析的基本理论,并通过一个具体生活实例,阐明了贝叶斯分析在风险型决策中的应用。 关键词:风险型决策贝叶斯分析期望损失 引言:决策分析就是应用管理决策理论,对管理决策问题,抽象出系统模型,提出一套解决方法,指导决策主体作出理想的决策。由于市场环境中存在着许多不确定因素,使决策者的决策带有某种程度的风险。而要做出理想的抉择,在决策的过程中不仅要意识到风险的存在,还必须增加决策的可靠性。在风险决策中,给出了很多如何确定信息的价值以及如何提高风险决策可靠性的方法。根据不同的风险情况,要采取不同的风险决策分析的方法。贝叶斯决策分析就是其中的一种。 一、风险型决策 风险决策就是不完全信息下的决策,是根据风险管理的目标,在风险识别和风险衡量的基础上,对各种风险管理方法进行合理的选择和组合,并制定出风险管理的具体方案的过程。风险决策贯穿于整个风险管理过程,它依据对风险和损失的科学分析选择合理的风险处理技术和手段,从若干备选方案中选择一个满意的方案。 风险型决策的特点是:决策人无法确知将来的真实自然状态,但他能给出各种可能出现的自然状态,还可以给出各种状态出现的可能性,即通过设定各种状态的(主观)概率来量化不 确定性。构成一个统计决策有三个基本要素:①可控参数统计结构(Α,Β,{pθ:θ∈Θ}, 其中参数空间中每个元素就是自然界或社会可能处的状态;②行动空间(?,Β?),其中?={a}是为解决某统计决策问题时,人们对自然界(或社会)可能作出的一切行动的全体。?中的每个元素表示一个行动。是?上的某个σ代数,这是为以后扩充概念而假设的;③损失函数L(θ,a),它是定义在Θ×?上的二元函数。从这三个要素出发,可以得到不同的风险情景空间。例如,要开发一种新产品,在市场需求无法准确预测的情况下,要确定生产或不生产,生产多少等问题就是一个风险决策问题。状态集就是市场销售情况,如销路好、销路一般、销路差等,这些状态不受决策者控制,而决策者做出某种决策后,后果也不确定,带有风险。所以,在风险型决策中,准确而又充分地估计信息的价值,合理地在信息的收集上增加投入来获取不断变化的市场信息,及时掌握各种自然状态的发生情况,可以使决策方案的选择更可靠,进而增加经济效益。 二、贝叶斯风险与贝叶斯规则 ⑴风险函数 给定自然状态θ,采取决策规则δ时损失函数L(θ,δ(x)),对随机试验后果x的期望值成为风险函数(risk function),记作R(θ,δ) ⑵贝叶斯风险 当自然状态的先验概率为π(θ),决策人采用策略δ时,风险函数R(δ,θ),关于自然状态θ的期望值称为贝叶斯风险,记作R(π,δ)如果R(π,δ1)< R(π,δ2)则称 记作δ1>δ2 策略δ1优于δ 2, ⑶贝叶斯决策规则 先验分布为π(θ)时,若策略空间?存在某个策略δπ,能够使?δ∈?,有R π,δπ≤ R π,δ ,则称δπ是贝叶斯规则,亦称贝叶斯策略。

基于matlab的人脸识别算法(PCA)

3.基于matlab的人脸识别算法 3.1 问题描述 对于一幅图像可以看作一个由像素值组成的矩阵,也可以扩展开,看成一个矢量,如一幅 N*N 象素的图像可以视为长度为N2 的矢量,这样就认为这幅图像是位于N2 维空间中的一个点,这种图像的矢量表示就是原始的图像空间,但是这个空间仅是可以表示或者检测图像的许多个空间中的一个。不管子空间的具体形式如何,这种方法用于图像识别的基本思想都是一样的,首先选择一个合适的子空间,图像将被投影到这个子空间上,然后利用对图像的这种投影间的某种度量来确定图像间的相似度,最常见的就是各种距离度量。因此,本次试题采用PCA算法并利用GUI实现。 对同一个体进行多项观察时,必定涉及多个随机变量X1,X2,…,Xp,它们都是的相关性, 一时难以综合。这时就需要借助主成分分析来概括诸多信息的主要方面。我们希望有一个或几个较好的综合指标来概括信息,而且希望综合指标互相独立地各代表某一方面的性质。 任何一个度量指标的好坏除了可靠、真实之外,还必须能充分反映个体间的变异。如果有一项指标,不同个体的取值都大同小异,那么该指标不能用来区分不同的个体。由这一点来看,一项指标在个体间的变异越大越好。因此我们把“变异大”作为“好”的标准来寻求综合指标。3.1.1 主成分的一般定义 设有随机变量X1,X2,…,Xp,其样本均数记为,,…,,样本标准差记为S1,S2,…,Sp。首先作标准化变换,我们有如下的定义: (1) 若C1=a11x1+a12x2+ … +a1pxp,…,且使 Var(C1)最大,则称C1为第一主成分; (2) 若C2=a21x1+a22x2+…+a2pxp,…,(a21,a22,…,a2p)垂直于(a11,a12,…,a1p),且使Var(C2)最大,则称C2为第二主成分; (3) 类似地,可有第三、四、五…主成分,至多有p个。 3.1.2 主成分的性质 主成分C1,C2,…,Cp具有如下几个性质: (1) 主成分间互不相关,即对任意i和j,Ci 和Cj的相关系数 Corr(Ci,Cj)=0 i j (2) 组合系数(ai1,ai2,…,aip)构成的向量为单位向量, (3) 各主成分的方差是依次递减的,即 Var(C1)≥Var(C2)≥…≥Var(Cp)

基于PCA的人脸识别算法实现毕业论文

基于PCA的人脸识别算法实现毕业论文 目录 前言 (1) 第一章人脸识别系统概述 (2) 第一节人脸识别的研究概况 (2) 第二节人脸识别的发展趋势 (3) 一、多数据融合与方法综合 (4) 二、动态跟踪人脸识别系统 (4) 三、基于小波神经网络的人脸识别 (4) 四、三维人脸识别 (4) 五、适应各种复杂背景的人脸分割技术 (4) 六、全自动人脸识别技术 (4) 第三节人脸识别技术的主要难点 (4) 一、复杂条件下人脸的检测和关键点定位 (5) 二、光照问题 (5) 三、资态问题 (5) 四、表情问题 (5) 五、遮挡问题 (5) 第四节人脸识别流程 (5) 一、人脸图像采集 (6) 二、预处理 (6) 三、特征提取 (6) 第五节本章小结 (7) 第二章人脸图像的获取 (9) 第一节人脸图像获取 (9) 第二节人脸分割 (9) 第三节人脸数据库 (10) 第四节本章小结 (11) 第三章人脸图像的预处理 (12)

第一节人脸图像格式 (12) 一、JPEG格式 (12) 二、JPEG2000格式 (12) 三、BMP格式 (13) 四、GIF格式 (13) 五、PNG格式 (13) 第二节人脸图像常用预处理方法 (14) 一、灰度变化 (14) 二、二值化 (15) 三、直方图均衡 (15) 四、图像滤波 (15) 五、图像锐化 (17) 六、图像归一化 (18) 第三节本章小结 (19) 第四章人脸识别 (20) 第一节主成分分析基本理论 (20) 一、什么是主成分分析? (20) 二、例子 (20) 三、基变换 (21) 四、方差 (23) 五、PCA求解:特征根分解 (27) 六、PCA的假设 (28) 七、总结: (28) 八、在计算机视觉领域的应用 (30) 第二节基于PCA人脸识别算法的实现 (31) 一、创建数据库 (32) 二、计算特征脸 (32) 三、人脸识别 (34) 第三节本章小结 (36) 结论 (37) 致谢 (38) 参考文献 (39) 附录 (40) 一、英文原文 (40) 二、英文翻译 (53)

基于PCA的人脸识别

基于PCA的人脸识别 哲盼 (华北电力大学自动化系, 071003) 摘要:人脸识别技术,作为目前模式识别领域研究的热点也是难点之一,其最早提出可以追溯到1888年[1]。然而,到目前为止,由于人脸识别问题自身的复杂性,使得虽然有众多科学研究人员潜心研究多年,也做出了许多的成果,但离彻底解决并达到实用,仍旧有很多关键性的问题需要解决。本文结合研究生阶段参与教研室的科研项目,对人脸识别做了一定的研究。论文首先介绍了人脸识别的背景、研究围以及方法,对人脸识别领域的一些理论方法作了总体的介绍。本文中所采用的人脸识别方法是比较经典的PCA(Principle Component Analysis,主成分分析)[2-6]。 关键词:人脸识别,主成分分析,PCA,特征脸 PCA-based face recognition CHEN Zhe-pan (Department of Automation North China Electric Power University, Baoding 071003 China) Abstract:Techniques for face recognition were proposed by Francis Galton as early as 1888[1]In recent years considerable progress has been made in the area of face recognition:Through the development of techniques like Eigenfaces computers can now outperform humans in many face recognition tasks,particularly those in which large databases of faces must be searched.Whilst these methods performs extremely well under constrained conditions,the problem of face recognition under gross variations remains largely unsolved.This thesis details the PCA(Principle Component Analysis)algorithm and the development of a real-time face recognition system aimed to operate in constrained environments Keywords:face recognition,principle component analysis,PCA, Eigenfaces 0 引言 随着社会的不断发展进步以及各方面对快速有效的身份识别技术的迫切需求,生物特征识别技术在最近十年中得到了很快的发展。生物特征识别技术是为了验证身份而采用自动测量技术对身体的特征或个人行为特点进行采集处理,并将采集的特征或特点与模板进行比较,从而完成身份验证的一种解决方案。由于生物特征识别技术利用人本身所具有的特征(如指纹、虹膜、人脸等)进行身份认证,因而它比传统的根据人所携带物品(如)和你所记忆的容(如账号和密码)更加安全和可靠。我们有理由相信生物特征识别技术将使人们的生活方式产生重大的变化[7]。 人脸识别是生物特征识别技术的一种,它也是人们生活中最常用的一种身份认证手段,同时它也是当前最热门的模式识别研究课题之一。通过人脸我们可以判定许多信息:性别、种族、大致年龄及表情等。与其它的生物特征识别技术相比,人脸识别在采

贝叶斯决策方法综述

贝叶斯决策方法综述 一、决策问题 决策就是对一件事情要做出决定,它与推断的差别在于是否涉及后果。统计学家在作推断时是按统计理论进行的,很少或根本不考虑推断结论在使用后的损失,而决策者在使用推断结果做决策时必须与得失联系在一起考虑。能给他带来利润的他就使用,使他遭受损失的就不会被采用,度量得失的尺度就是损失函数。著名统计学家A.Wald(1902-1950)在20世纪40年代引入了损失函数的概念,指的是由于决策失误导致的损失值。损失函数与决策环境密切相关,因此从实际问题中归纳出合适的损失函数是决策成败关键。把损失函数加入贝叶斯推断就形成贝叶斯决策论,而损失函数被称为贝叶斯统计中的第四种信息。 决策分析是一般分四个步骤:1)形成决策问题,包括提出方案和确定目标;2)判断自然状态及其概率;3)拟定多个可行方案;4)评价方案并做出选择。常用的决策分析技术有:确定型情况下的决策分析、风险型情况下的决策分析及不确定型情况下的决策分析。 (1)确定型情况下的决策分析。确定型决策问题的主要特征有四方面:一是只有一个状态,二是有决策者希望达到的一个明确的目标,三是存在着可供决策者选择的两个或两个以上的方案,四是不同方案在该状态下的收益值是清楚的。确定型决策分析技术包括用微分法求极大值和数学规划等方法。 (2)风险型情况下的决策分析。这类决策问题与确定型决策只在第一点特征上有所区别,即在风险型决策问题中,未来可能的状态不只一种,究竟出现哪种状态不能事先肯定,只知道各种状态出现的可能性大小(如概率、频率、比例或权等)。常用的风险型决策分析技术有期望值法和决策树法。期望值法是根据各可行方案在各自然状态下收益值的概率平均值的大小,决定各方案的取舍。决策树法有利于决策人员使决策问题形象化,把各种可以更换的方案、可能出现的状态、可能性大小及产生的后果等,简单地绘制在一张图上,以便计算、研究与分析,同时还可以随时补充。 (3)不确定型情况下的决策分析。如果不只有一个状态,各状态出现的可能性大小又不确定,便称为不确定型决策问题。常用的决策分析方法有: a)乐观准则。比较乐观的决策者愿意争取一切机会获得最好结果。决策步骤是从每个方案中选一个最大收益值,再从这些最大收益值中选一个最大值,该最大值对应的方案便是入选方案。 b)悲观准则。比较悲观的决策者总是小心谨慎,从最坏结果着想。决策步骤是先从各方案中选一个最小收益值,再从这些最小收益值中选出一个最大收益值,其对应方案便是最优方案。这是在各种最不利的情况下找出一个最有利的方案.

基于PCA的人脸识别研究报告

项目名称:基于PCA的人脸识别算法研究

摘要 随着人类社会的进步,以及科技水平的提高,一些传统的身份认证的方法逐渐暴露出各种问题,因此人们需要采用一种更加可靠安全的身份认证方法。毫无疑问人体的生物特征的独一无二的,特别是其不容易丢失及复制的特性很好满足了身份识别的需要。并且随着计算机科学技术和生物医学的发展使得利用生物特征识别成为了可能。因此基于指纹、人脸、视网膜等生物特征的识别方法也越来越多。由于人脸识别的操作快速简单,结果直观,准确可靠,不需要人的配合等优点已成为人们关注的焦点。主成分分析(PCA)法通过提取高维度的人脸图像的主元,使得图像在低维度空间中被处理来降低了图像处理的难度。由于其有效的解决了图像空间维数过高的问题,已经成为人脸识别领域非常重要的理论。此次研究的就是基于PCA的人脸识别算法的实现。 本文按照完整人脸识别流程来分析基于PCA的人脸识别算法实现的性能。首先使用常用的人脸图像的获取方法获取人脸图像。本文为了更好的分析基于PCA人脸识别系统的性能分别选用了Essex人脸数据库和ORL人脸库,并在后期采用了自建的人脸库。接下来是人脸图像预处理方法。由于采用的人脸图像质量较好,而且已经做过相应的预处理,所以本文试验中只使用灰度处理。接着使用PCA提取人脸特征,使用奇异值分解定理计算协方差矩阵的特征值和特征向量以及使用最近邻法分类器欧几里得距离来进行人脸判别分类。在实验中我们发现基于PCA的人脸识别系统的识别率很高,而且具有一定鲁棒性,所以基于PCA的人脸识别算法的实现的研究还是有意义。 【关键词】人脸识别 PCA算法奇异值分解定理欧几里得距离

贝叶斯决策理论的Matlab实现

第二章 1、简述基于最小错误率的贝叶斯决策理论;并分析在“大数据时代”,使用贝叶斯决策理论需要解决哪些问 题,贝叶斯决策理论有哪些优缺点,贝叶斯决策理论适用条件和范围是什么?举例说明风险最小贝叶斯决策理论的意义。 答:在大数据时代,我们可以获得很多的样本数据,并且是已经标记好的;要使用贝叶斯决策理论最重要的是确定类条件概率密度函数和相关的参数。 优缺点:贝叶斯决策的优点是思路比较简单,大数据的前提下我们可以得到较准确的先验概率, 因此如果确定了类条件概率密度函数,我们便可以很快的知道如何分类,但是在大数据的前提下,类条件概率密度函数的确定不是这么简单,因为参数可能会增多,有时候计算量也是很大的。 适用条件和范围: (1) 样本(子样)的数量(容量)不充分大,因而大子样统计理论不适宜的场合。 (2) 试验具有继承性,反映在统计学上就是要具有在试验之前已有先验信息的场合。用这种方法进 行分类时要求两点: 第一,要决策分类的参考总体的类别数是一定的。例如两类参考总体(正常状态Dl和异常状态D2),或L类参考总体D1,D2,…,DL(如良好、满意、可以、不满意、不允许、……)。 第二,各类参考总体的概率分布是已知的,即每一类参考总体出现的先验概率P(Di)以及各类概率 密度函数P(x/Di)是已知的。显然,0≤P(Di)≤1,(i=l,2,…,L),∑P(Di)=1。 说明风险最小贝叶斯决策理论的意义: 那股票举例,现在有A、B两个股票,根据市场行情结合最小错误率的风险选择A股(假设为0.55),而B股(0.45);但是选着A股必须承担着等级为7的风险,B股风险等级仅为4;这时因遵循最 小风险的贝叶斯决策,毕竟如果A股投资的失败带来的经济损失可能获得收益还大。 2、教材中例2.1-2.2的Matlab实现. 2.1:结果:

人脸识别PCA算法matlab实现及详细步骤讲解

% FaceRec.m % PCA 人脸识别修订版,识别率88% % calc xmean,sigma and its eigen decomposition allsamples=[];%所有训练图像 for i=1:40 for j=1:5 a=imread(strcat('e:\ORL\s',num2str(i),'\',num2str(j),'.jpg')); % imshow(a); b=a(1:112*92); % b 是行矢量1×N,其中N=10304,提取顺序是先列后行,即从上 到下,从左到右 b=double(b); allsamples=[allsamples; b]; % allsamples 是一个M * N 矩阵,allsamples 中每一行数 据代表一张图片,其中M=200 end end samplemean=mean(allsamples); % 平均图片,1 × N for i=1:200 xmean(i,:)=allsamples(i,:)-samplemean; % xmean 是一个M × N 矩阵,xmean 每一行保存的数据是“每个图片数据-平均图片” end; % 获取特征值及特征向量 sigma=xmean*xmean'; % M * M 阶矩阵 [v d]=eig(sigma); d1=diag(d); % 按特征值大小以降序排列 dsort = flipud(d1); vsort = fliplr(v); %以下选择90%的能量 dsum = sum(dsort); dsum_extract = 0; p = 0; while( dsum_extract/dsum < 0.9) p = p + 1; dsum_extract = sum(dsort(1:p)); end i=1; % (训练阶段)计算特征脸形成的坐标系 base = xmean' * vsort(:,1:p) * diag(dsort(1:p).^(-1/2)); % base 是N×p 阶矩阵,除以dsort(i)^(1/2)是对人脸图像的标准化(使其方差为1) % 详见《基于PCA 的人脸识别算法研究》p31 % xmean' * vsort(:,i)是小矩阵的特征向量向大矩阵特征向量转换的过程 %while (i<=p && dsort(i)>0) % base(:,i) = dsort(i)^(-1/2) * xmean' * vsort(:,i); % base 是N×p 阶矩阵,除以dsort(i)^(1/2) 是对人脸图像的标准化(使其方差为1) % 详见《基于PCA 的人脸识别算法研究》p31 % i = i + 1; % xmean' * vsort(:,i)是小矩阵的特征向量向大矩阵特 征向量转换的过程 %end % 以下两行add by gongxun 将训练样本对坐标系上进行投影,得到一个M*p 阶矩阵allcoor allcoor = allsamples * base; % allcoor 里面是每张训练人脸图片在M*p 子空间中的一个点,即在子空间中的组合系数, accu = 0; % 下面的人脸识别过程中就是利用这些组合系数来进行识别

贝叶斯决策方法课后习题

1.什么叫贝叶斯决策?如何进行贝叶斯决策? 风险型决策方法是根据预测各种事件可能发生的先验概率,然后再采用期望值标准或最大可能性标准来选择最佳决策方案。这样的决策具有一定的风险性,因为先验概率是根据历史资料或主观判断所确定的概率,未经试验证实,为了减少这种风险,需要较准确的掌握和估计这些先验概率。这就要通过科学实验,调查,统计分析等方法获得较为准确的情报信息,以修正先验概率,并据以确定各方案的期望损益值,拟订可供选择的决策方案,协助决策者做出正确的决策。一般来说,利用贝叶斯定理要求得后验概率,据以进行决策的方法称为贝叶斯决策方法。贝叶斯决策方法步骤: (1)进行预后验分析,决定是否值得搜集补充资料以及从补充资料中可能得到的结果和如何决定最优对策。 (2)收集补充资料,取得条件概率,包括历史概率和逻辑概率,对历史概率要加以检验,辨明其是否适合计算后验概率。 (3)用概率的乘法定理计算联合概率,用概率的加法定理计算边际概率,用贝叶斯定理计算后验概率。 (4)用后验概率进行决策分析。 2.如何进行预后验分析和后验分析? 预后验分析是后验概率决策分析的一种特殊形式的演算,这里的特殊形式是指用一套概率对多种行动策略组合进行多次计算,从中择优。 预后验分析有两种形式,一是扩大型,预后验分析,这实际上是一种反推决策树分析,二是常规型预后验分析,这实际上是一种正向分析,用表格形式进行。扩大型分析要解决的问题是搜集追加信息对决策者有多大的价值,如果试验应采取

什么行动策略,常规型分析要解决的问题是,如果试验应采取什么行动策略,但是这两种分析方法所得出的结论是一致的。 根据预后验分析,如果认为采集信息和进行调查研究是值得的,那么就应该决定去做这项工作。一旦取得了新的信息,决策者就结合这些新信息进行分析,计算各种方案的期望损益值,选择最佳的行动方案,结合运用这些信息并修正先验概率,称为后验分析,这正是发挥贝叶斯决策理论威力的地方。 3.什么是先验分析? 先验分析就是决策者要详细列出各种自然状态及其概率,各种备选行动方案与自然状态的损益值,并根据这些信息对备选方案作出抉择的决策过程,当时间,人力和财力不允许搜集更完备的信息时,决策者往往用这类方法进行决策,在贝叶斯决策中,先验分析是进行更深入分析的必要条件。 4.贝叶斯决策有哪些优点?哪些局限? 贝叶斯决策的优点表现在以下几个方面: (1)如果说在第14章中大多用的是不完善的信息或主观概率的话,那么贝叶斯决策则提供了一个进一步研究的科学方法,也就是说,它能对信息的价值或是否需要采集新的信息作出科学判断。 (2)它能对调查结果的可能性加以数量化的评价,而不是像一般的决策方法那样对调查结果,或者是完全相信,或者是完全不相信。 (3)如果说任何调查结果都不可能是完全准确的,而先验知识或主观概率也不是完全可以相信的,那么贝叶斯决策则巧妙的将这两种信息有机的结合起来了。(4)它可以在决策过程中,根据具体情况不断的使用,使决策逐步完善和更加科学。贝叶斯决策方法也有其局限性,主要表现在以下几个方面:

基于PCA和SVM的人脸识别方法

基于PCA 和SVM 的人脸识别方法 一、PCA 算法 1 计算特征脸 设人脸图像f(x,y)为二维m n ?灰度图像,用nm 维向量R 表示。人脸图像训练集为 {}p i R i ,,2,1 =,其中p 为训练集中图像总数。这p 幅图像的平均向量为: ∑==p i i R p R 1 1 对训练样本规范化,即每个人脸i R 与平均人脸R 的差值向量: R R A i i -= p i ,,2,1 = 其中列向量i A 表示一个训练样本。 训练图像由协方差矩阵可表示为: T AA C = 其中训练样本p nm ?维矩阵],,,[21p A A A A = 特征脸由协方差矩阵C 的正交特征向量组成。对于nm 维人脸图像,协方差矩阵C 的大小为nm ×nm ,对它求解特征值和特征向量是很困难的,由此引入奇异值分解定理来解决维数过高的问题。 2 奇异值分解定理 奇异值分解定理( Singular Value Decomposition 简称SVD 定理)原理表述如下: 其中A 是一个秩为r 的r n ?维矩阵,则存在两个正交矩阵: r n r R u u u U ?-∈=],,,[110 I U U T = r r r R v v v V ?-∈=],,,[110 I V V T = 以及对角矩阵 r r r R diag ?-∈=Λ],,,[110λλλ 且110-≥≥≥r λλλ 满足下试: T V U A 2 1Λ= 其中: )1,,1,0(-=r i i λ为矩阵T AA 和A A T 的非零特征值, i u 与i v 分别为T AA 和A A T

对应于i λ的特征向量。上述分解称为矩阵A 的奇异值分解(简称SVD ),i λ为A 的奇异值。 由上述定理可以得到一个推论: 1 Λ=AV U 由于协方差矩阵T AA C =,故构造矩阵: p p T R A A L ?∈= ,容易求出其特征值i λ及相应的 正交归一特征向量),,2,1(p i v i =。有上述推论可知,C 的正交归一特征向量i u 为: i i i Av u λ1 = p i ,,2,1 = 这就是图像的特征向量,它是计算p p ?低维矩阵L 的特征值和特征向量而间接求出来的。实际上l )(p l <个特征值足够用于人脸识别。因此仅取L 的前l 个最大特征值的特征向量计算特征脸。 3 特征向量的选取 我们总共得到了p (训练样本数目)个特征向量。虽然p 比nm 小很多。但通常情况下,p 仍然会太大。根据应用的要求,并不是所有的i u 都有很大的保留意义。 考虑到使用L K -变换做为对人脸图像的压缩手段,可以选取最大的前l 个特征向量,使得: αλ λ≥∑∑==p i i l i i 11 在实际中,可以选择90.0=α,或者自定义的其他值。这说明样本集在前l 个轴上的能量占到整个能量的90%以上。 4 基于特征脸的人脸识别 基于特征脸的人脸识别过程由训练阶段和识别阶段两个阶段组成。在训练阶段,每个已知规范化后的人脸i A 映射到由特征脸张成的子空间上,得到l 维向量: i T i A U C = p i ,,2,1 = 其中T l i c c c C ],,,[21 =,],,,[21l u u u U =,p 为人脸数目。 在识别阶段,首先把待识别的图像规范化后的人脸R R A i -'='映射到特征脸空间,得到

贝叶斯决策模型及实例分析(doc 12页)

贝叶斯决策模型及实例分析(doc 12页)

贝叶斯决策模型及实例分析 一、贝叶斯决策的概念 贝叶斯决策,是先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准则来确定最优方案的决策方法。 风险型决策是根据历史资料或主观判断所确定的各种自然状态概率(称为先验概率),然后采用期望效用最大等准则来确定最优决策方案。这种决策方法具有较大的风险,因为根据历史资料或主观判断所确定的各种自然状态概率没有经过试验验证。为了降低决策风险,可通过科学试验(如市场调查、统计分析等)等方法获得更多关于自然状态发生概率的信息,以进一步

确定或修正自然状态发生的概率;然后在利用期望效用最大等准则来确定最优决策方案,这种先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准则来确定最优方案的决策方法称为贝叶斯决策方法。 二、贝叶斯决策模型的定义 贝叶斯决策应具有如下内容 贝叶斯决策模型中的组成部分:)(,θθP S A a 及∈∈。概率分布S P ∈θθ)(表示决策者在观察试验结果前对自然θ发生可能的估计。这一概率称为先验分布。 一个可能的试验集合E ,E e ∈,无情报试验e0通常包括在集合E 之内。 一个试验结果Z 取决于试验e 的选择以Z0表示的结果只能是无情报试验e0的结果。 概率分布P(Z/e,θ),Z z ∈表示在自然状态θ的条件下,进行e 试验后发生z 结果的概率。这一概率分布称为似然分布。 一个可能的后果集合C ,C c ∈以及定义在后果集合C 的效用函数u(e,Z,a,θ)。 每一后果c=c(e,z,a,θ)取决于e,z,a 和θ。.故用u(c)形成一个复合函数u{(e,z,a,θ)},并可

基于PCA进行人脸识别的Matlab代码

%一个修改后的PCA进行人脸识别的Matlab代码 % calc xmean,sigma and its eigen decomposition allsamples=[];%所有训练图像 for i=1:40 for j=1:5 a=imread(strcat('D:\rawdata\ORL\s',num2str(i),'\',num2str(j),'.pgm')); % imshow(a); b=a(1:112*92); % b是行矢量1×N,其中N=10304,提取顺序是先列后行,即从上到下,从左到右 b=double(b); allsamples=[allsamples; b]; % allsamples 是一个M * N 矩阵,allsamples 中每一行数据代表一张图片,其中M=200 end end samplemean=mean(allsamples); % 平均图片,1 × N for i=1:200 xmean(i,:)=allsamples(i,:)-samplemean; % xmean是一个M × N矩阵,xmean每一行保存的数据是“每个图片数据-平均图片” end; sigma=xmean*xmean'; % M * M 阶矩阵 [v d]=eig(sigma); d1=diag(d); [d2 index]=sort(d1); %以升序排序 cols=size(v,2);% 特征向量矩阵的列数 for i=1:cols vsort(:,i) = v(:, index(cols-i+1) ); % vsort 是一个M*col(注:col一般等于M)阶矩阵,保存的是按降序排列的特征向量,每一列构成一个特征向量dsort(i) = d1( index(cols-i+1) ); % dsort 保存的是按降序排列的特征值,是一维行向量 end %完成降序排列 %以下选择90%的能量 dsum = sum(dsort); dsum_extract = 0; p = 0; while( dsum_extract/dsum < 0.9) p = p + 1; dsum_extract = sum(dsort(1:p)); end i=1; % (训练阶段)计算特征脸形成的坐标系 while (i<=p && dsort(i)>0)

相关主题
文本预览
相关文档 最新文档